快速扫描纳米红外仪

仪器信息网快速扫描纳米红外仪专题为您提供2024年最新快速扫描纳米红外仪价格报价、厂家品牌的相关信息, 包括快速扫描纳米红外仪参数、型号等,不管是国产,还是进口品牌的快速扫描纳米红外仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速扫描纳米红外仪相关的耗材配件、试剂标物,还有快速扫描纳米红外仪相关的最新资讯、资料,以及快速扫描纳米红外仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

快速扫描纳米红外仪相关的厂商

  • 上海纳动纳米位移技术有限公司是专业从事纳米定位、测控技术、运动控制产品的研发制造与产业化的高新技术企业。公司坐落于我国社会经济和科学技术发展最具活力的地区之一 ——上海市国家级漕河泾高科技园区。我们的开发人员拥有数字和模拟电子技术,空间研究,机械工程和纳米技术等相关专业知识的工程师。产品应用包括硬盘驱动器的磁头测试,半导体制造的光刻和计量仪器,扫描电子显微镜(SEM)和原子力显微镜(AFM),以及大量的航空航天等空间应用,半导体制造与检测、生物显微成像、精密光学系统、光电子对准与封装、光学跟踪与扫描、超精密加工、先进自动化、MEMS等领域。广泛应用和服务于国内各高校、科研院所以及各类生产光学显微镜、激光设备、半导体IC装备、检测仪器、光电设备、光学仪器、医疗设备、特种精密加工机床等的装备制造商。公司一直坚定地参与前沿技术的研究和发展。这些年来我们一直提供领先的、具有成本效益的纳米定位和运动控制的位置传感技术。我们专注于关键的OEM应用的定制解决方案开发。我公司以最低的成本在最短的时间,提供最佳的解决方案,我们提供快速、全面的服务和支持,并始终如一地达到最佳的性价比。我们的方案已完美解决各合作公司的挑战性任务及科研难题,我们期待与您共同合作与进步,遨游科技的海洋。我们的目标:用我们高质量和高性能的技术,提供超性价比的产品和服务,实现价格最优惠。公司本着“正直,进取,合作,创新”的精神,努力把公司打造成为我国重要的纳米定位与运动控制的研发和产业化基地。
    留言咨询
  • 苏州海兹思纳米科技有限公司成立于2009年,是全球领先的扫描探针显微镜(SPM)专业制造商/供应商,是国家高新技术企业、中国教育装备行业协会会员、江苏省教育装备行业协会会员。公司致力于为纳米微观技术的研究生产领域,并提供一流的微纳米测试、加工与计量解决方案。本公司拥有一支业界国内外领先的开发和科学技术顾问团队,凭借十多年的扫描探针显微镜开发经验,不断地在技术及工艺上改进和积累,依靠先进的技术提高产品的质量。公司注重于产、学、研方面广泛的合作,能根据用户的需求订制特殊的显微镜系统。2010年与教育部教育装备研究与发展中心合作,2011年被瑞士Nanosurf 公司注资成为中瑞合资公司,并引进超微型扫描隧道显微镜(STM)的技术,研发生产专用于国内中学教学用的STM产品。 本公司作为苏州工业园区苏州纳米城内的微纳装备重点企业,得到政府相关政策的大力支持,与国内外先进技术高校、科研所、企业合作,大力研发、生产SPM产品。本公司的产品应用于纳米材料、物理化学、生物与生命科学、制药、半导体、LED和太阳能电池等多个领域。主要产品为Nanofirst 3000型多模式原子力显微镜(AFM)、Nanofirst 3600型台式一体化原子力显微镜、实用型原子力显微镜(Nanosurf easyScan2 AFM)、多模式原子力显微镜(Nanosurf easyScan2 FlexAFM)、全自动大样品原子力显微镜(Nanosurf Nanite)、镜头式原子力显微镜(Nanosurf Lens AFM)、生物I型原子力显微镜(Nanosurf Inverted Microscopy AFM)、生物II型原子力显微镜(Nanosurf FluidFM)和超微型扫描隧道显微镜(Nanosurf Teaching STM)等。世界首款LensAFM将光学显微镜与原子力显微镜完结结合,触及材料的特性,获取三维表面结构数据。FluidFM作为目前唯一实现微纳米流体和AFM准确定位以及力敏感的结合体,利用中空式探针,实现分配&传输、注入&抽取、吸附&放置等小体积局部液体传输/收集或物体操纵,应用在生物细胞,生物传感器,纳米图案,电路印刷,光学等领域。本公司原子力显微镜销往国内几十所大学,并与国内外重点高校科研所建立技术服务中心,如清华大学、上海理工大学、上海大学、南京大学、西安工业大学、天津大学、中国科学技术大学等都建有本公司的技术服务中心。 2013年开始,本公司在教育部教育装备研究与发展中心和苏州纳米城的大力支持下,与苏州承祚纳米科技有限公司携手并肩,加大力度,在全国推广中学纳米科技创新实验室和纳米智慧课堂项目,携带着中学专用的教学型扫描隧道显微镜和原子力显微镜等前沿的纳米科技产品开始走向中学教育市场,深受广大中学老师和学生的欢迎。短短时间,就已在北京、上海、广州、贵州、苏州、南通、清远等地的多所中学建立了纳米创新实验室,开展了丰富多彩的中学纳米科技教学活动,在专家团队和中学老师们的帮助下,编撰完成三册中学纳米科技教材,协助全国共4所中学完成了国内或省内的纳米科技公开实验课,协助苏州两间中学分别建立了全国首个纳米科技课程基地和全国首个纳米科技特色学校,得到了教育部教育装备研究与发展中心的肯定。
    留言咨询
  • 400-860-5168转3386
    安拓思纳米技术(苏州)有限公司(Antuos Nanotechnology(Suzhou)Co.,Ltd.),坐落于美丽的独墅湖畔——苏州生物纳米园。是一家集研发、加工、生产和代理为一体的先进制药设备供应商。自成立以来一直致力于自主研发及引进国外先进制药设备及技术,为国内外广大科研单位及制药企业提供先进的制药设备解决方案,深受国内外客户的好评,已经成为广大用户的重要选择! 安拓思公司专注于纳米制剂技术,生物工程技术,纳米化工技术。主要产品应用于脂质体药物的研发和生产,微球药物的研发和生产,生物疫苗,诊断试剂等等。供应的设备包括热熔挤出机,高压均质机,微射流均质机,微流控,脂质体挤出器,微球制备设备等。已经广泛的应用于国内各大科研单位及制药企业,行业涉及:生物行业(蛋白类药物,检测试剂,酶工程,人用疫苗,兽用疫苗等),制剂行业(脂肪乳,脂质体,纳米粒,微球等),食品行业(饮料,牛奶,食品添加剂等),化工行业(新能源电池,纳米纤维素,涂料,造纸,高分子材料等),目前在国内外的用户数量超过2000个。
    留言咨询

快速扫描纳米红外仪相关的仪器

  • 2015年Anasys发布了最新一代产品nanoIR2-s,在广受欢迎的第二代纳米红外光谱系统的基础上增加了散射近场光学成像和光谱功能(s-SNOM)。实现了同一平台兼具AFM-IR和s-SNOM两种技术。仪器的空间分辨率达到10nm,广泛用于各种聚合物、有机无机复合材料、生物样本、半导体、等离子体、纳米天线等。纳米红外&散射近场光学成像和光谱系统(nanoIR2-s)AFM-IR &s-SNOM l AFM-IR 消除分析化学研究人员的担忧--与FTIR光谱完全吻合,没有吸收峰的任何偏移l s-SNOM使用金属镀层AFM探针代替传统光纤探针来增强和散射样品纳米区域内的光辐射,空间分辨率由AFM针尖的曲率半径决定l 专利技术实现智能的光路优化调整,无需担心光路偏差拖延你的实验进度l 最准确的定性微区化学表征,得到美国国家标准局NIST, 橡树岭国家实验室等美国权威机构的认可l 简单易用的操作,被三十多位企业用户和近百位学术界所选择l 基于DI传承的多功能AFM实现纳米热学,力学,电学和磁学测量:l 纳米热分析模块(nanoTA, SThM)l 洛仑兹接触共振模块(LCR)l 导电原子力显微镜镜(CAFM)l 开尔文电势显微镜(KPFM)l 磁力显微镜(MFM)l 静电力显微镜(EFM)10纳米空间分辨率化学成像和光谱石墨烯等离子体 高分辨率成像 石墨烯表面等离子体的近场相位和振幅成像;优于10nm的光学成像PTFE的nano FTIR光谱显示相干分子振动时域图(上图),和相应的近场光谱(下左图)。pNTP分子层的近场光谱(图下右)。
    留言咨询
  • 布鲁克Hysitron PI 88是布鲁克公司生产的新一代原位纳米力学测试系统,其特点是系统设计高度模块化,后期可在已有系统上自行配置并拓展其他功能。该系统通过视频接口将材料的力学数据(载荷-位移曲线)与相应SEM视频之间实现时间同步,允许研究者在整个测试过程中极其精确地定位压头并对变形过程成像。解决了传统纳米压痕方法,只能通过光学显微镜或原位扫描成像观察压痕前后的形貌变化,因无法监测中间过程,而最终对载荷-位移曲线上的一些突变无法给出解释甚至错误解释的问题。PI 88安装于SEM,可以精确施加载荷,检测位移,在电镜下进行压痕、压缩、弯曲、划痕、拉伸和疲劳等力学性能测试;此外,通过升级电学、加热模块,还可研究材料在力、电、热等多场耦合条件下结构与性能的关系。
    留言咨询
  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询

快速扫描纳米红外仪相关的资讯

  • Nature子刊带大家进入热扫描探针构筑的奇妙纳米世界
    上世纪五十年代末期,诺奖得主、物理学鬼才理查德费曼在加州理工学院的物理年会上,作了题为《There' s Plenty of Room at the Bottom》的报告,具前瞻性地提出了他对于纳米尺度操作及控制的框架性想法,并由此开启了无数科研工作者在纳米尺度上探究物质奥秘并通过相关的纳米技术来改变、造福人类的道路。同样是在上世纪五六十年代,采用平面处理工艺批量制备晶体管的策略出现,由此开启了集成电路产业的飞速发展。摩尔博士在六十年代中期提出了著名的摩尔定律“当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍”。而其中元器件数量的增多,是通过不断缩小元器件的关键尺寸来实现的。不论是在纳米尺度上进行探索,或是与人们生活息息相关的集成电路产业发展,都需要制备各种各样的纳米结构、纳米功能单元或纳米器件。而在制备各类纳米结构的过程中,为重要的操作就是通过光刻来实现在不同的材料上定义图案区域。目前,在工业上,先进的EUV光刻机具备7 nm技术节点的制备工艺中所需的图形加工能力,但其单值高,比一架F-35战斗机的价格还会高出不少。对于科研工作者来说,目前通常采用的基于光学曝光原理的科研光刻设备(科研的无掩模曝光系统、掩模对准式曝光系统等),能够实现的图形加工分辨率一般在微米尺度或亚微米尺度。而随着研究对象尺度的不断减小,对纳米尺度结构构筑的需求,上述基于光学曝光原理的科研光刻系统显然是不能够完全满足的。基于聚焦电子束、离子束的各类图案化加工设备,比如电子束光刻系统、聚焦离子束系统等,能够有效满足科研中对于纳米尺寸的图形加工需求。然而,由于电子束流和离子束流需要聚焦,这类设备通常由较为复杂的电子光学系统构成,因此价格相较于上述科研光学光刻设备要高出很多(即使是科研的电子束曝光系统,其单值也远超科研的光学曝光设备)。另一方面,聚焦电子束、离子束系统的复杂性也对操作人员和设备维护人员提出了较高的要求。 图1 热扫描探针光刻系统诱导材料局部变化的三种机制 在科研领域中,扫描探针光刻(thermal scanning probe lithography)是另一种颇受关注的图案化工艺方案,能够实现纳米(甚至原子的)图案制备的需求,其核心思路是通过纳米针诱导材料表面局部的改性来实现图案化。纳米针诱导材料表面改性的机制有很多种,包括力学、电学、热学、扩散等等,也由此产生了许多不同的扫描探针光刻技术。在诸多的扫描探针光刻技术中,热扫描探针光刻技术(thermal scanning probe lithography,t-SPL)是近年来发展起来的一种可快速、可靠、高精度地实现纳米图案化工艺,其技术核心是利用加热针的热能来诱导局部材料的改性。通常,热是材料转化中较为普遍的驱动因素,在很多材料中能诱导结晶、蒸发、熔化等改性现象。在纳米尺度上,由于只有很小的体积被加热,所以材料改性的特征时间是以纳秒量来计算的。因此,加热几微秒就足以改变针下的材料。对于刻写速度而言,悬臂梁的机械扫描运动成为图案化工艺速度方面的主要限制。然而,凭借扫描探针领域良好的技术积累,目前可以实现高达20 mm/s的刻写速度,能够满足大多数科研上的图案化制备工艺需求。同时在微纳图案结构的加工精度及分辨率方面,热扫描探针光刻技术可以实现特征线宽在10 nm以下的微纳结构的制备。图2 利用热扫描探针光刻进行热敏抗刻蚀剂的图案化工艺后,结合各类工艺实现的微纳结构及器件案例 作为一种高精度图案化工艺设备,近些年来热扫描探针光刻技术得到飞速发展,然而很多研究人员还比较陌生。着眼于此,洛桑联邦理工的S. T. Howell博士以及瑞士Swisslitho的F. Holzner博士撰写了综述《Thermal scanning probe lithography—a review》(已于2020年4月6日刊载在NPG旗下期刊Microsystems & Nanoengineering,详细信息可参考链接https://doi.org/10.1038/s41378-019-0124-8),Howell等人向大家详细介绍了热扫描探针光刻的历史、原理、图案转移工艺以及在基于新型低维材料的微纳电子器件、自旋电子器件、光子学微纳结构、微纳流控、微纳机电等领域的应用案例。图3 利用热扫描探针光刻进行定域材料转换的应用案例 另一方面,不同于很多新型光刻策略还停留在实验室中,瑞士Swisslitho公司已经成功将热扫描探针光刻技术商品化,名为NanoFrazor。在国内外的诸多用户当中,已有不少基于NanoFrazor制备的结构而开展的研究,相关结果也都发表在了Science、Nature、PRL、等高水平期刊上。图4 热扫描探针诱导的增材工艺的应用案例
  • 苏州特尔纳米在JEOL扫描电镜上成功安装纳米操纵手
    扫描电镜是一种通用性和扩展性极强的分析型实验仪器,而纳米操纵手是当前扫描电镜的重要扩展附件之一,可以实现在微观领域的控制、移动和物性测量等功能。苏州特尔纳米技术有限公司独立开发的纳米操纵手已经通过验收,是我国第一台工业级纳米操纵手。2009在JEOL的钨灯丝扫描电镜上成功安装,可以达到与电镜无缝连接,受到中国科学院苏州纳米技术与纳米仿生研究所的认可。我们相信,该装置的研制成功必将大大延长扫描电镜在微观世界的应用极限,为材料分析、制造提供更方便快捷的手段。苏州特尔纳米技术有限公司网站http://www.derltech.com/index.html联系方式:林志伟先生13951806583
  • 扫描力探针技术在能源纳米技术研究中大有可为
    p  能源纳米技术,泛指利用纳米材料和纳米尺度的特征效应构筑能源纳米器件,致力于解决可再生能源转化和存储过程中的瓶颈问题,目前已成为一个重要的学科交叉领域。能源纳米器件显著区别于电子器件和光电子器件,其工作机制决定于器件中电子、空穴和离子等载流子的长程传输过程,其传输过程常与化学转化相耦合,并且不同于传统化学反应中电子被局域在原子核附近。基于原子力显微镜(AFM)发展的扫描力探针显微术(SFM)从最初的形貌扫描工具,逐步发展成了可探测力学、电学、热学、磁学、光学和化学等性质的多模式功能成像技术,同时结合其高空间和时间分辨率,适应于复杂环境的原位工况成像能力等优势,被广泛用于能源纳米器件工作机理的研究。/pp  中国科学院苏州纳米技术与纳米仿生研究所研究员陈立桅团队,长期致力于能源纳米器件界面形貌、化学结构和电子过程的扫描力探针研究,目前已在Acc. Chem. Res,Nat. Commun.,JACS,Adv. Mater.,Joule,Nano Lett.,Nano Energy 等期刊上发表了一系列原创性研究成果。近日,受邀在《先进材料》(Advanced Materials)上撰写题为Functional Scanning Force Microscopy for Energy Nanodevices 的综述文章(DOI: 10.1002/adma.201802490),聚焦近年来能源纳米器件的扫描力探针技术的研究进展。/pp  该综述首先介绍了扫描探针各种功能成像技术的发展历程,从最基本的形貌成像模式开始(图1),依次介绍纳米力学模式、化学成像模式、载流子探测模式和时间分辨成像技术等。第二部分介绍了各种扫描力探针功能成像模式在能源转换器件,如有机光伏电池和有机-无机钙钛矿电池中的进展。该部分重点突出了原位工况研究器件内部界面动态演化的重要意义和面临的挑战(图2)。在第三部分中,该综述介绍了以锂离子电池为典型代表的能源储存器件中固态电解质中间相(SEI)的形貌、力学性质、化学组分在电池循环中的演变,及其与电池循环性能的关联(图3)。该类器件区别于能源转换器件的主要特点是器件行为决定于离子的传输,因此推动了一系列探测离子运动的功能成像模式的发展。最后,该综述总结了扫描力探针技术在能源纳米技术发展中起到的积极推动作用,同时指出进一步提高测量分辨率和测量精度对于推动能源纳米技术领域革新具有重要意义。/pp style="text-align: center "  此综述和相关研究工作得到国内外合作者的大力支持,受到国家自然科学基金、科技部重点研发计划、江苏省自然科学基金、中科院先导专项和科研装备研制项目、苏州纳米协同创新中心(教育部2011计划)以及苏州纳米所的经费资助与研发条件支持。br/img title="1.jpg" alt="1.jpg" src="https://img1.17img.cn/17img/images/201809/uepic/3077aae7-37fa-4433-af33-770f84021604.jpg"//pp style="text-align: center "  图1.扫描力探针技术原理图,通过针尖扫描过程中是否振动将扫描力探针技术分为非振动模式(a)和振动模式(b)两大类br/img title="2.jpg" alt="2.jpg" src="https://img1.17img.cn/17img/images/201809/uepic/611aebf3-4b8d-49b6-9176-fdacae6f7a8e.jpg"//pp style="text-align: center "  图2.原位工况研究有机光伏器件和有机-无机钙钛矿光伏器件能级结构的演变br/img title="3.jpg" alt="3.jpg" src="https://img1.17img.cn/17img/images/201809/uepic/b1bdb1ed-c242-4cdc-952b-b2a6033070e1.jpg"//pp style="text-align: center "  图3.锂离子电池SEI形成原理示意图及其形貌变化的原位表征/ppbr//p

快速扫描纳米红外仪相关的方案

  • 扫描电镜在纳米测量中的成象误差
    本文从扫描电镜二次电子像成像原理出发,分析用扫描电镜测量纳米尺度时可能出现的成像误差。重点分析了《成份边界的成像误差》,并提出了减小成份边界成像误差的方法。分析了《台阶的成像误差》也提出了减小台阶成像误差的方法。同时提请纳米测量者注意《渐变边界的成像误差》。在讨论中提出:在纳米测量中,应尽量避免用边界作为测量的标记点或标记线;纳米标准器具,更应避免用边界作为标记点或标记线;最好用成份细线的中心点或中心线作为标记点或标记线;其次是用小颗粒的中心点,细刻线的中心线作为标记点或标记线。为研究纳米标准器具提出了技术方向。
  • 扫描电镜纳米膜应用案例
    纳米膜分离技术可以截留能通过超滤膜的部分溶质,而让不能通过反渗透膜的物质通过,从而有助于降低目的截留溶质的损失。这种技术具有操作方便、处理效率高、无污染、安全和节能等诸多优点。通过扫描电镜观察,中间有极为细小的间隙的薄膜,膜表面分离皮层具有纳米级微孔结构。
  • 用扫描电镜来了解基于纳米线的气体传感器
    纳米线广泛应用于电子领域。通常用于晶体管,并在效率方面有巨大优势,因为它们的高纵横比可以很好地控制通道电流。纳米线在用作蛋白质和化学传感器时也被广泛研究。通过改进和开发新的制造方法,研究人员正在探索更新更高效的基于纳米线的气体传感器。在这篇博客中,讨论扫描电镜如何帮助表征纳米线和了解其气体感知行为。

快速扫描纳米红外仪相关的资料

快速扫描纳米红外仪相关的试剂

快速扫描纳米红外仪相关的论坛

  • 扫描美国纳米生物专利技术

    扫描美国纳米生物专利技术  纳米生物技术是纳米技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。纳米生物技术所要研究的对象是生物分子、细胞、组织在纳米层次的结构变化,其主要的研究方向包括:生物材料(材料——组织介面、生物相容性材料),仪器(生物传感器、研究工具),治疗(药物和基因载体)等。  美国是世界上申请有关纳米技术专利最多的国家,搜索“纳米”可找到近8000个专利,日本排在其后,我国名列第三。相对而言,我国在纳米生物技术的理论研究和应用研究方面相比其他学科远远地走在了前面。为了更多地探知美国在纳米生物技术领域的研究现况,指导我国的研究策略,我们从公开申请的专利中去探知美国的研究状况,特别介绍一些国内研究人员比较感兴趣的技术和方法:

  • 【原创大赛】扫描电镜下的碳纳米管纳米铜等修饰的铂丝电极

    【原创大赛】扫描电镜下的碳纳米管纳米铜等修饰的铂丝电极

    http://ng1.17img.cn/bbsfiles/images/2012/01/201201010057_343495_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2012010100001162_01_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/12/201112312356_343459_1705310_3.jpg拍摄时间:2011年12月样品名称:扫描电镜下的碳纳米管纳米铜等修饰的铂丝电极所使用的显微镜:扫描电镜以及数码相机的生产厂家和型号:日立S4800物镜及目镜放大倍数:如图中所示照明方式:明场

  • 【求助】碳纳米管的扫描电镜观察

    我想用FEI 250FEG场发射扫描电镜观察ZnO纳米管,我用的是低真空模式,没有喷金,试了多次没试出来,用什么模式多大电压、束斑比较好?另外,屏幕背景发状(有时候成条状),如何最快的调整好对比度和亮度?(自动对比度在调好的基础上调的,不太好使)谢谢各位!

快速扫描纳米红外仪相关的耗材

  • 超高分辨TERS针尖增强拉曼探针/Nano IR纳米红外探针
    NEXT-TIP SL公司成立于2012年,是西班牙研究委员会 (CSIC) 的衍生公司。其生产的TERS针增强拉曼探针和纳米红外探针,基于纳米粒子沉积技术,形成具有可控尺寸和成分的纳米颗粒涂层,具有超高的横向分辨率,大大提高了使用寿命。TERS针增强拉曼探针Next-Tip TERS 探针的出色性能与其形态特征有关。这些探头的设计经过开发,具有优异的 AFM 性能和超强的拉曼信号。突破针增强拉曼探针的限制:&bull 高可靠性,使用户能够专注于样品的表征。&bull 高达3 nm的超高分辨率&bull 超高灵敏度,可获得完全清晰/稳定的光谱,质量优于传统TERS。增强因子和对比度增强系数 (EF) 值是根据探针针的增强电场来量化拉曼信号的增强的参数。这个参数基于对比度值。对比度值根据在同一点的近场和远场扫描收集的实验数据计算。金TERS探针保证对比度高于20,银TERS探针保证对比度高于40,使得Next-Tip TERS 探针的增强系数高达105 -106。寿命银镀层的TERS探针由另一层金纳米粒子保护,以避免氧化和污染,保持等离激元的效应。致密的金纳米颗粒涂层提升了金属层厚度,大大提高了探针的耐用性。此外,纳米颗粒沿探针表面形成的不规则结构延长了其测量的寿命。性能可控的涂层沉积过程可实现坚固探头的高可重复性和高分辨率。此外,这种涂层工艺可以在针的点放置一个或两个纳米颗粒,实现超高空间分辨率。测量显示 AFM 分辨率小于5 nm,TERS 分辨率小于10 nm。TERS针增强拉曼探针类型高分辨率TERS在锐的硅基针上附着尤其致密,不规则和锐的纳米颗粒涂层,可获得超高空间分辨率和高质量的成像。基础TERS: 通过致密、不规则、颗粒状坚固的纳米颗粒涂层,用优化的涂层产生超强的拉曼信号,获得准确的成像和光谱数据。各型号参数对比银芯基础TERS探针高分辨金TERS探针高分辨银芯TERS探针型号NT-EASY-TERS-70银NT-EASY-TERS-300银NT-TERS-E-85金NT-TERS-E-335金NT-TERS-E-85银NT-TERS-E-335金共振频率(kHz)703008533585335力常数(N/m)2262.8452.845悬臂长度(μm)240160240160240160TERS针增强拉曼探针 测量结果1L MoS2/AuCNT/Graphene Oxide单层过渡金属二硫化物(TMDC)拉曼激发模式高精度表征参考文献:Alvaro Rodriguez, Matěj Velický , Jaroslava &Rcaron áhová, Viktor Zólyomi, János Koltai, Martin Kalbá&ccaron , and Otakar Frank. Activation of Raman modes in monolayer transition metal dichalcogenides through strong interaction with gold. Phys. Rev. B 105, 195413 – Published 10 May 2022. DOI: https://doi.org/10.1103/PhysRevB.105.195413Nano IR纳米红外探针纳米红外光谱的原理是基于一个锐的金属涂层前沿,激发激光束落在该前沿上。探针针的电磁场由于局部表面等离激元共振和避雷针效应的共同作用而具有局域限制和增强的效果。更强的纳米红外信号Next-Tip探针得到的红外信号比常用AFM探针高出几倍(约5倍)。下图显示了使用相同带宽激光源的两种探针在硅上获取的未标准化的近场振幅光谱。更高的纳米红外信噪比与使用标准的探针得到的光谱相比,使用Next-Tip探针得到的光谱具有更小的背景干扰,从而得到更高的SNR和更清晰的光谱。下图显示了使用两种探头在13.6秒内记录的PMMA的三阶解调纳米红外吸收光谱。Nano IR纳米红外探针类型各型号参数对比象鼻形金字塔形型号NT-IR-E-85NT-IR-E-335NT-IR-P-75NT-IR-P-330共振频率(kHz)8533575330力常数(N/m)2.8452.842悬臂长度(μm)240160225125
  • 多功能纳米压痕仪配件
    多功能纳米压痕仪配件通过扫描材料表面实现对材料力学性能的纳米尺度的高精度测量,精确给出硬度,弹性模量,杨氏模量等材料力学性能。多功能纳米压痕仪配件特色最高位移测量能力可达300mkm, 最高负载科大100mN。实现静态压痕和动态压痕测量以及sclerometry测量具备原子力显微镜和纳米硬度测量仪的功能采用模块化设计,可广泛集成原子力显微镜,光学显微镜,激光干涉仪器等尖端材料表面测量仪器,为用户提供综合性材料微观力学测试方案。多功能纳米压痕仪配件选型4D紧凑型多功能纳米压痕仪4D紧凑型是全球结构最为紧凑小巧的纳米硬度测试仪,它采用纳米压痕法测量材料硬度和弹性模量(杨氏模量),负载高达2N,广泛用于材料力学性能测量研究。也非常适合大学或研究单位的纳米压痕仪测量硬度的教学或演示教学。4D标准型多功能纳米压痕仪4D标准型具有测量材料硬度,弹性模量和其它力学性能的功能。它采用静态和动态纳米压痕技术以及sclerometry方法测量材料性能。并且可以接触式或半接触式地测量材料表面形貌,采用光学显微镜高精度地对压头和样品进行精确互动性定位。多功能纳米压痕仪4D标准型还可以接入另外的传感器或测量模块,实现对材料表面进行其它测量。4D+增强型多功能纳米压痕仪4D+增强型配置是全球功能最多的多功能纳米硬度测量仪器。它具有纳米压痕仪和原子力显微镜的功能,具备了所有的物理和力学性能测量能力。它具有原子力显微镜测量模块,能够以纳米级分辨率研究压痕后留下的表面痕迹和图像,并能够全自动测量,可以批量处理分析测量结果。
  • 纳米操纵系统
    在扫描电镜、聚焦离子束和双束 系统上进行纳米操纵和测量的最 佳方案. 主要应用 纳米结构的电学测量和表征 纳米结构的力学测量和表征 微米纳米尺度组装 透射电镜、拉曼和其它分析仪器 的样品制备 表面科学实验和研究 纳米连接技术研发 原位纳米尺度样品定位
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制