当前位置: 仪器信息网 > 行业主题 > >

快速扫描纳米红外仪

仪器信息网快速扫描纳米红外仪专题为您提供2024年最新快速扫描纳米红外仪价格报价、厂家品牌的相关信息, 包括快速扫描纳米红外仪参数、型号等,不管是国产,还是进口品牌的快速扫描纳米红外仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速扫描纳米红外仪相关的耗材配件、试剂标物,还有快速扫描纳米红外仪相关的最新资讯、资料,以及快速扫描纳米红外仪相关的解决方案。

快速扫描纳米红外仪相关的仪器

  • 2015年Anasys发布了最新一代产品nanoIR2-s,在广受欢迎的第二代纳米红外光谱系统的基础上增加了散射近场光学成像和光谱功能(s-SNOM)。实现了同一平台兼具AFM-IR和s-SNOM两种技术。仪器的空间分辨率达到10nm,广泛用于各种聚合物、有机无机复合材料、生物样本、半导体、等离子体、纳米天线等。纳米红外&散射近场光学成像和光谱系统(nanoIR2-s)AFM-IR &s-SNOM l AFM-IR 消除分析化学研究人员的担忧--与FTIR光谱完全吻合,没有吸收峰的任何偏移l s-SNOM使用金属镀层AFM探针代替传统光纤探针来增强和散射样品纳米区域内的光辐射,空间分辨率由AFM针尖的曲率半径决定l 专利技术实现智能的光路优化调整,无需担心光路偏差拖延你的实验进度l 最准确的定性微区化学表征,得到美国国家标准局NIST, 橡树岭国家实验室等美国权威机构的认可l 简单易用的操作,被三十多位企业用户和近百位学术界所选择l 基于DI传承的多功能AFM实现纳米热学,力学,电学和磁学测量:l 纳米热分析模块(nanoTA, SThM)l 洛仑兹接触共振模块(LCR)l 导电原子力显微镜镜(CAFM)l 开尔文电势显微镜(KPFM)l 磁力显微镜(MFM)l 静电力显微镜(EFM)10纳米空间分辨率化学成像和光谱石墨烯等离子体 高分辨率成像 石墨烯表面等离子体的近场相位和振幅成像;优于10nm的光学成像PTFE的nano FTIR光谱显示相干分子振动时域图(上图),和相应的近场光谱(下左图)。pNTP分子层的近场光谱(图下右)。
    留言咨询
  • 布鲁克Hysitron PI 88是布鲁克公司生产的新一代原位纳米力学测试系统,其特点是系统设计高度模块化,后期可在已有系统上自行配置并拓展其他功能。该系统通过视频接口将材料的力学数据(载荷-位移曲线)与相应SEM视频之间实现时间同步,允许研究者在整个测试过程中极其精确地定位压头并对变形过程成像。解决了传统纳米压痕方法,只能通过光学显微镜或原位扫描成像观察压痕前后的形貌变化,因无法监测中间过程,而最终对载荷-位移曲线上的一些突变无法给出解释甚至错误解释的问题。PI 88安装于SEM,可以精确施加载荷,检测位移,在电镜下进行压痕、压缩、弯曲、划痕、拉伸和疲劳等力学性能测试;此外,通过升级电学、加热模块,还可研究材料在力、电、热等多场耦合条件下结构与性能的关系。
    留言咨询
  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询
  • 碳纳米管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值,如:其独特的结构是理想的一维模型材料 巨大的长径比使其有望用作坚韧的碳纤维,其强度为钢的100倍,重量则只有钢的1/6 同时它还有望用作为分子导线,纳米半导体材料,催化剂载体,分子吸收剂和近场发射材料等。 Specim可提供碳纳米管近红外光谱及影像分析工具,采用近红外光谱相机,搭载与近红外显微平台,并配合压电陶瓷纳米位移台,实现碳纳米管的影像及光谱扫描,不仅可以用于电致发光的光谱分析,也可用与光致发光光谱测量,为研究者提供大量的光谱及影像数据以供研究分析使用。光谱测量范围:970nm- 2500nm(900nm-1700nm)。
    留言咨询
  • 纳米红外光谱系统(nanoIR系列)是美国Anasys仪器公司于2010年研发的基于原子力显微镜(AFM)的材料表征工具。其采用独有专利的光热诱导共振技术(PTIR,也称AFM-IR),使红外光谱的空间分辨率突破了光学衍射极限,提高至10纳米级别。在得到微区形貌,表面物理性能的基础上,进一步帮助研究人员全面解析样品表面纳米尺度的化学信息。Anasys开创了纳米红外化学解析的新领域,由于超高空间分辨率的红外光谱采集和化学成分成像,被公认为近十来年光谱领域最大的技术进步。该技术曾荣获2010年度美国R&D100大奖。2016年Anasys发布了最新一代产品nanoIR2-FS,在广受欢迎的第二代纳米红外光谱系统的基础上实现快速扫描功能,光谱采集速度3s/光谱;专利的轻敲模式纳米红外将空间分辨率提高至10nm以上,并大大提高红外成像速度,并使得较软的生物材料等软物质的化学成像实现质的飞跃。快速扫描纳米红外光谱(nanoIR2-FS) —纳米尺度红外光谱解决方案 NanoIR系列包含有一个原子力显微镜用于探测形貌及成像,除此之外,采用一个可调脉冲激光源照射样品,利用AFM针尖在纳米尺度下探测辐射吸收,获得纳米尺度红外光谱,特定波长下的扫描成像图为用户提供超高分辨率的组分分布。NanoIR应用广泛,如聚合物共混物、薄至单层的薄膜、界面和表面、电纺纤维、细胞、细菌、淀粉质物质、半导体表面有机污染物等。主要特点:消除分析化学研究人员的担忧--与FTIR光谱完全吻合,没有吸收峰的任何偏移基于专利保护的脉冲共振增强技术:实现单分子层超薄样品化学分析专利技术实现智能的光路优化调整,无需担心光路偏差拖延你的实验进度最准确的定性微区化学表征,得到美国国家标准局NIST, 橡树岭国家实验室等美国权威机构的认可简单易用的操作,被三十多位企业用户和近百位学术界所选择基于DI传承的多功能AFM实现纳米热学,力学,电学和磁学测量:纳米热分析模块(nanoTA, SThM)洛仑兹接触共振模块(LCR)导电原子力显微镜镜(CAFM)开尔文电势显微镜(KPFM)磁力显微镜(MFM)静电力显微镜(EFM) AFM-IR技术: 图1 工作原理nanoIR2-FS使用连续可调脉冲红外光源从侧面照射样品。样品吸收特定波长的辐射波,产生热量引发样品快速热膨胀,从而使AFM微悬臂产生共振震荡。震荡波以铃流的形式衰减。用傅里叶变换对铃流信号进行分析,获得振动的振幅和频率。通过建立微悬臂的振幅与光源波长的关系可得到局部吸收光谱(见图1)。AFM-IR光谱与传统FTIR光谱高度吻合,可使用传统的FTIR数据库进行分析(见图2)。 图2 聚苯乙烯的nanoIR谱图与FTIR谱图的对比 典型应用案例:金基底上自组装的PEG单分子层的纳米化学研究图3左上图为AFM形貌图,右上图为在1340cm-1下的红外吸收化学成像,可观察到几十纳米分辨率的化学组分分布。 下图为AFM-IR光谱。 图3 金基底上自组装的PEG单分子层的纳米化学研究 高分子共混物的化学组分研究利用纳米红外AFM-IR对高抗冲聚丙烯共聚物(HIPP)三种不同微区组分进行成分鉴定和定量分析,1378cm-1处红外成像 (图4 c)显示橡胶粒子的硬核区域具有更强的红外吸收,表明其主要成分是聚丙烯,这是第一次获得聚丙烯是一些HIPP体系中橡胶粒子硬核的主要成分的直接证据。利用AFM-IR光谱和FTIR光谱的高度一致性,使用常规FTIR用标准的乙丙共聚、共混标样制作工作曲线,利用AFM-IR光谱对三种不同微区的组分进行定量分析。Analysis of Nanodomain Composition in High-Impact Polypropylene by Atomic Force Microscopy-Infrared. Anal. Chem. 2016, 88, 4926?4930 图4高抗冲聚丙烯共聚物(HIPP)三种不同微区组分的研究a HIPP结构示意图,b AFM形貌图, c 1378cm-1处红外成像, d 三个不同微区的AFM-IR光谱, e 利用FTIR制作定量分析的工作曲线, f 利用AFM-IR光谱和e工作曲线计算得到三个微区PE的含量
    留言咨询
  • 音圈电机纳米扫描台 400-860-5168转6164
    基于音圈电机驱动和高精度导向模组实现纳米级超高分辨力的定位/扫描直线运动,内置光栅位移传感器,结构紧凑,通过自主研发的高性能纳米伺服系统获得优异的闭环控制效果,具有纳米级运动分辨率和运动精度,同时兼具高速、高动态位移定位和扫描功能。特点:高精度、高动态、跨尺度、大承载、灵活性应用领域:光学系统中透镜的定位医学装置中精密电子管、真空管控制机械工具的多坐标定位平台柔性机器人中使未端执行器快速精确定位
    留言咨询
  • 纳米CT扫描仪(3D-XRM)是布鲁克推出的最新纳米断层扫描系统,是显微 CT 技术领域的先行者,在为用户带来了终级分辨率的同时,提供最佳的用户体验。SKYSCAN 纳米CT扫描仪(3D-XRM 的每个组件都融入的最新的技术,使其成为当今市场上性能、适用性都广泛的系统。 ●多用途系统,最大样品尺寸300mm,分辨率(像素尺寸)最高 60 纳米; ●金刚石窗口x射线源,焦斑尺寸500nm; ●创新的探测器模块化设计,支持最多 4 个探测器、可现场升级; ●全球速度最快的 3D 重建软件(InstaRecon); ●支持精确的螺旋扫描重建算法。 以水泥为基材和地质科学:表征和定量分析孔隙结构、测量渗流、研究储碳过程、分析尾矿、提高开采效率以及了解钢和其它金属的颗粒定向。提供精准的三维亚微米成像,用于数字岩石物理模拟、原位多相渗流研究、三维矿物学及金属的研发与开发。 ▼Geology, Oil & gas exploration 了解更多应用方向,请致电束蕴仪器(上海)有限公司
    留言咨询
  • 产品描述PK2H70-012U为微扫描红外成像超分辨重建专用型产品。微扫描技术包括不同的模式,拍摄同一场景的多张图像,同时每次将图像在检测器平面上移位等于检测器间距的一小部分的距离,然后将场景的采样帧用于形成单个高分辨率帧。压电位移台PK2L70-012U-S使焦平面阵列中的聚焦透镜沿X轴和Y轴移动本系列产品具有超紧凑、超高动态、超高精度等特性,是超高分辨客户应用的理想选则。利用精密并联运动设计通过FEA优化的精密弯曲来确保高刚度和较长的设备寿命,PK1L130-050U/100U位移台可提供很好的性能。超高的刚度和动态使用频率,可实现高精度和快速的闭环响应。本产品具有亚纳米性能。PK2H70-012U压电纳米台均可提供闭环反馈(-S)或开环(无反馈)。独特的位置传感器并行计量设计可测量位移输出,直接实现亚纳米分辨率,线性误差低于0.02%的精度和重复性。PK2H70-012U压电平台可定制转接板与面包板光学平台上进行固定。压电平台可根据要求提供钛金属材料,具有更高的温度稳定性和定制真空制备版本。产品特性—XY位移:12μm(闭环)—中孔尺寸:?28mm—承载能力:1Kg—紧凑型设计—直接驱动具有更高的动态特性选配功能—可定制转接装置及中心孔径大小—可选PZT&Sensor连接器及线缆长度—可选配闭环(SGS) 位置反馈系—可定制其他行程版本应用领域—红外微扫描成像—超分辨率显微镜—掩模、晶圆定位—干涉测量、测量技术—显微操纵 结构原理 叠堆形式 典型应用PK2H70-012U系列技术参数
    留言咨询
  • ? Femtocut是一套采用红外波段飞秒激光器作光源,可以对生物医学样品,多种有机和无机材料进行光学细微加工和处理的设备。具有超精密切割,钻孔结合高分辨率非介入式3D成像等功能。它可以: l 用于光学基因转移的靶定向转染。l 细胞内染色体分离l 组织切片中单细胞分离l 光学方法击出细胞元素l 纳米加工和光学波导写入l 光学数据存储 设备外观图片 透明材料和生物细胞的3D纳米加工系统产品概述: Femtocut系统采用紧凑的近红外皮秒激光器对透明材料进行3维纳米加工。低能量(亚纳焦至纳焦)高至90兆赫兹重复频率的激光脉冲通过高数值孔径(NA1.3)光学组件聚焦并在亚飞升(10-15升)体积内产生光学击穿。光束能量密度可用一台电机驱动的衰减器控制。焦点区域光功率密度可达几个TW/cm2的水平,于是可以通过多光子电离过程进行超精细的剥蚀加工。加工最小尺寸小于70纳米(半高全宽度)。设备的基本结构是一台配置了高速检流计振镜扫描组件的常用显微镜。能够以亚微米精度进行全幅扫描,局部区域(ROI)扫描,线扫描以及单点剥蚀(点扫描,钻孔)等模式的加工操作。配置了一台电机驱动平台用于大区域加工操作。聚焦光学元件安装于压电陶瓷驱动平台上,可实现精度为40nm的垂直定位。Femtocut还是一套非介入式层析诊断工具。可以对样品进行高分辨率成像来选择微加工处理的目标区域,也可同时监视剥蚀处理的效果。 飞秒激光脉冲分离染色体 人染色体的纳米加工处理 染色体内部孔洞的加工 CHO细胞的靶定位转染。GFP质粒通过一个瞬 态生成的亚微米小孔导入到细胞膜中应用领域:超短脉冲激光已经成为半导体,金属材料,介电材料,高分子材料和生物组织的纳米结构成型的强大工具,显示了不可替代的卓越的性能。在大多是材料中,紫外激光具有较强的线性吸收,所以其仅适用于进行表面团成型。作为鲜明对比,Femtocut 则能够提供真正的三维加工处理。其能够处理的深度可达100μm. 加工线宽达到亚微米量级。通过采用焦点区域的多光子电离过程,切割尺寸可以突破衍射极限的限制。这一系统可以在对近红外透明的材料上进行直接的纳米微尺度结构写入。这一能力大大开拓了在工业,医疗和科学研究领域的应用范围。 飞秒激光纳米尺度微成型技术已经用于波导刻写,光掩膜加工和某些特殊材料的表面改性领域。更进一步,还可在多种材料上进行细微钻孔。激光诱导细胞膜瞬态改变眼组织纳米尺度结构成型:角膜薄片制备超快激光和生物材料的相互作用的一个重要特点是其作用区域强烈地被限制在焦点区域,这样就大大地减小了对邻近组织的损害。于是,可以利用这一特性将突变组织和正常生命细胞分离开来。Femtocut的高空间分辨率处理能力还可以在不发生任何显见的损害效应情况下将单细胞器从细胞中撞击出去。 Femtocut这种极强的局域工作特性使其具有成为实现DNA操控的强大工具的潜能。它可以用来对染色体某些特定的基因片段进行光学去活性处理。不仅如此,飞秒激光脉冲还显示了应用于人类染色体片段分离以及高度局域的基因和分子转移的前景。 不同材料上进行结构成型:A:金 B: 硅 C:玻璃 细胞间连接的激光加工处理处理前细胞间连接的激光加工处理(处理后)技术数据:紧凑型飞秒激光器(典型数据)激光脉冲宽度: 100fs重复频率:80 MHz激光平均输出功率:1.5W波长:710-990 nm全幅扫描,局部感兴趣区域(ROI)扫描, 线扫描,单点照明(点扫描,钻孔)典型光束扫描区间:350x350μm (水平)200μm(垂直)平台位移行程:120x102mm空间分辨率:1μm (水平)2μm (垂直)聚焦光学元件:放大率40倍数值孔径(NA)1.3CCD相机数字成像视频监视接口运行环境温度:15-35摄氏度相对湿度:5-80%电源功率需求:交流230V(50赫兹)系统尺寸基座490x280x480mm316kg扫描头:280x190x90mm36kg控制组件:450x300x130mm38kg激光器(典型值):600x370x180mm342kg(激光头)450x440x270mm321kg(电源)270x200x380mm320kg(水冷器)对于激光器运行建议配置空调系统所有参数可能会有所变动恕不提前通知
    留言咨询
  • 【实验箱配件列表】 1. 教学型扫描隧道显微镜,包括:(1)STM扫描头;(2)具有10倍放大镜的屏蔽罩;(3)大理石隔震台;(4)电子控制器;(5)USB线和电源线。 2. 工具盒:扁嘴钳子、剪刀、尖口镊子、样品支架、铂铱丝(Pt-Ir)金属探针等。 3. 软件安装盘。【特点】 ● 一体化精致设计,安装简单,携带方便 ● 操作步骤简单,适于中学或大学教学 ● 在普通实验环境下便可快速获得原子图像 ● 低电压操作,确保实验安全 ● 功能强大的图像处理、数据 分析软件,可观测三维原子图像【应用】 ● 多学科教学:物理、化学、纳米科技等 ● 观测原子、分子等微观粒子,认识纳米尺度下的微观图像 ● 可分区导体和非导体 ● 可拓展:实现纳米操纵和刻蚀,操纵微观粒子【主要技术指标】
    留言咨询
  • 仪器简介: CSPM5500是本原纳米仪器有限公司于2008年8月研制成功的新一代扫描探针显微镜,其功能齐全、性能优越、运行稳定、使用方便,非常适合用户开展纳米研究工作。 技术参数:(1)国际主流的研究级专业仪器,集成原子力显微镜(AFM),横向力显微镜(LFM),扫描隧道显微镜(STM) (2)分辨率: 原子力显微镜:横向0.2nm,垂直0.1nm(以云母晶体标定) 扫描隧道显微镜:横向0.1nm,垂直0.01nm(以石墨晶体标定) (3)高精度计量型仪器,采用NanoSensors提供的可溯源于国际计量权威机构Physikalisch-Technische Bundesanstalt (PTB)的标准样品进行校准 (4)一键式快速全程全自动进样,无需手动预调,行程大于30mm,可容纳超大样品 (5)两级可读数样品调节机构,可对样品进行精确的检测区域定位 (6)一次扫描技术,图像分辨高达4096×4096物理象素,微米级扫描即可得到纳米级的实际信息 (7)先进PID反馈算法实现快速高精度作用力控制,确保系统在高速扫描中稳定成像,实际扫描速度提升一个数量级 (8)系统采用10M/100M快速以太网(Fast Ethernet 10/100)或USB 2.0与计算机连接 (9)主控机箱前面板具有16×4液晶显示屏,系统当前状态实时显示 (10)具备实时在线三维图像显示功能,便于用户在检测过程中随时直观获得样品信息主要特点:(1) 标准配置: 原子力显微镜(AFM):包括接触、轻敲、相移成像(Phase Imaging)等多种工作模式 横向力显微镜(LFM):具有摩擦力回路曲线、摩擦力载荷曲线、摩擦力恒载荷曲线等摩擦学性能分析测量功能 扫描隧道显微镜(STM):包括恒流模式、恒高模式、I-V曲线、I-Z曲线等 曲线测量分析功能:力-距离曲线、振幅-距离曲线、相移-距离曲线等(2)选配功能: 纳米加工:包括图形刻蚀模式、压痕/机械刻画、矢量扫描模式、DPN浸润笔模式等; 磁力显微镜/静电力显微镜; 环境控制扫描探针显微镜; 液相扫描探针显微镜; 导电原子力显微镜; 扫描探针声学显微镜; 扫描开尔文探针显微镜; 扫描电容显微镜; 压电力显微镜
    留言咨询
  • 布鲁克Anasys的 nanoIR3-s 系统将散射扫描近场光学显微镜(s-SNOM)、纳米级红外光谱(AFM-IR)与原子力显微镜(AFM)完美整合到单一平台。依托 Anasys 技术在 AFM 纳米光学表征方面的领先地位,nanoIR3-s 可提供纳米级红外光谱、化学成像和光学成像,在 2D 材料样品上实现 10 纳米空间分辨率。该系统还可以提供达到纳米级分辨率的 AFM 形貌和性能成像,因此是对各种材料科学应用开展相关性研究的理想仪器。只有 nanoIR3-s 能够提供:高性能纳米级 FTIR 光谱高性能红外近场光谱,采用目前最先进的纳米红外激光源纳米级 FTIR 光谱,采用集成式DFG,可与宽带同步辐射光源集成适用于光谱和化学成像的多芯片 QCL 激光源
    留言咨询
  • 俄歇电子能谱仪(Auger Electron Spectrometer, AES)为微电子业常见的表面分析技术之一。原理是利用一电子束为激发源,使表面原子之内层能阶的电子游离出,原电子位置则会产生电洞,导致能量不稳定,此时外层电子会填补产生之电洞,进而释放能量传递至外层能阶电子,造成接受能量的电子被激发游离,游离的电子即为Auger电子。因其具有特定的动能,所以能依据动能的不同来判定材料表面的元素种类。PHI的710纳米探针俄歇扫描 提供高性能的俄歇(AES)频谱分析,俄歇成像和溅射深度分析的复合材料包括:纳米材料,催化剂,金属和电子设备。维持基于PHI CMA的核心俄歇仪器性能,和响应了用户所要求以提高二次电子(SE)成像性能和高能量分辨率光谱。PHI的同轴镜分析仪(CMA)提供了同轴分析仪和电子枪的几何实现高灵敏度多角度广泛收集,以便完成三维结构图,在纳米级技术的发展这是最基础的。为了提高SE成像性能,闪烁探测器(Scintillator)已被添加以提高图像质量,另再加上数码按钮的用户界面再一次的提高了易用性。在不用修改CMA和仍维持俄歇在纳米分析的优势下,再添加了高能量分辨率光谱模式,使化学态分析的可能再大大的提高。总括来说,700Xi以优越的俄歇纳米探针从世界ling先的俄歇表面分析仪器,提供了实用和成熟的技术,以满足纳米尺度所需要的广泛实验与研发的用途。同轴电子枪和分析几何和高级的俄歇灵敏度:710的场发射电子源提供了一个高亮度而直径小于6 nm的电子束以产生二次电子成像。710的同轴几何使用了“同轴式分析器(CMA)”,促使高灵敏度俄歇通过广泛角度收集进行分析,即使样品是表面平滑或复杂的形状或高表面粗糙度,都可以确保迅速完成所有分析程序。高稳定性成像平台:隔声外壳与振动隔离器提供更稳定的成像和分析。隔声外壳从真空控制面板降低频率范围从30赫兹到5K赫兹左右的20 dB的声压等级(SPL),稳定的温度大约降低系统造成SEM图像漂移。新的振动隔离器也减少了地面振动对扫描电镜图像和小面积分析的影响。增强的SE图像用户界面:PHI710增强SE成像性能,闪烁器检测器(Scintillator)已被添加在仪器上从而提高图像质量,加上数码按钮的用户界面更再次提高了使用的方便性。新的高分辨率光谱模式:随着PHI的新技术,能量分辨率可调从0.5%到0.05%。多种化学物质的状态可以更容易有效的被观察出来。PHI SmartSoft-AES用户界面:PHI SmartSoft是一个操作仪器上为用户的需要而着想的软件界面。该软件是任务导向型和卷标在顶部的显示指引用户通过引入样品,分析点的定义,并设置了分析。多个位置分析可以定义和zui佳范例的定位提供了一个强大的“自动Z轴调整”的功能。在广泛使用的软件设置,可让新手能够快速,方便地设置了测量,并在未来可以轻易的重复以往或常用的类似测量。
    留言咨询
  • 技术特点: 超高定位精度 高动态 轴间运动学解耦设计 多运动模式:定位/扫描 兼容超高真空 运动行程:50~200um应用领域: 光学对准 纳米压印 显微成像/操纵 表面检测 半导体加工规格参数:型号NP-ST-XY-100位移方向X,Y传感器类型光栅/激光干涉仪行程(um)100X100闭环分辨率(nm)0.35空载谐振频率(Hz)900最大负载(kg)1材料铝合金尺寸(mm)130X130X20
    留言咨询
  • 如有需要请通过伯英科技联系我们。多功能扫描探针显微镜(带纳米力学测试功能)型号:NT-206,是集多功能于一身的原子力显微镜,带有复杂的硬件与软件分析系统,可分析形貌与力学性能,分辨率为纳米级别。可添加:纳米压痕、划痕、磨损,附着力、摩擦力测试,纳米光刻等功能。A probe is positioned above journal neck of watch gearEmbedded videosystem in combination with motorized XY micropositioning stage provide convenient tuning of the instrument and its fine targeting onto the features on the sample surface. All that dramatically enhances the instrument' s functionality when researching micro- and nanosize objects.To meet requirements of specific research tasks, AFM NT-206 can include specialized changeable probe holders for microtribometry and adhesiometry or for nanoindentation.NT-206 ::: Description ::: Features ::: Delivery set ::: Software 多功能扫描探针显微镜(带纳米力学测试功能)技术指标:Measurement modes:测量模式: Motion patterns at the measurements: - area (matrix) - line - single point.Contact static AFM 接触静态Lateral force microscopy /with contact static AFM/ 横向力显微镜/用静态接触AFMNon-contact dynamic AFM 非接触式动态AFMIntermittent contact AFM (similar to Tapping Mode) 间隙接触(敲击)Phase contrast imaging /with intermittent contact AFM/ 相衬成像/用间隙接触AFMTwo-pass mode (for static and dynamic AFM) 6. 两回合模式(适合静态与动态AFM)Two-pass mode with varying separation (for static and dynamic AFM) /Original technique!/两回合模式,伴随变化的间距,Multicycle scanning (for static and dynamic AFM) /Original technique!/多回合扫描(适合静态与动态AFM)Multilayer scanning with varying load (for static and dynamic AFM) /Original technique!/多回合扫描,伴随变化的载荷(适合静态与动态AFM)Electrostatic force microscopy (two-pass technique) *, **静电力显微镜(双回合技术)Current mode *, **电流模式Magnetic force microscopy (two-pass technique) *, **磁力显微镜(双回合技术)Static force spectroscopy (with calculation of quantitative parameters, surface energy and elastic modulus in the measurement point)静态力谱(在测量点,计算定量参数、表面能与弹性模量)Dynamic force spectroscopy动态力谱Dynamic frequency force spectroscopy /Original technique!/动态频率力谱Nanoindentation *纳米压痕Nanoscratching *纳米划痕Linear nanowear *线性纳米磨损Nanolithography (with control of i load, ii depth and iii bias voltage) *纳米光刻(控制力,深度,偏压)Microtribometry * /Original technique!/微观摩擦力计量Microadhesiometry * /Original technique!/微观附着力计量Shear-force microtribometry * /Original technique!/剪切力微观摩擦力计量Temperature-dependent measurements (under all above modes) *基于温度的测量(适用于所以以上模块)Note. * - Specialized accessories or rig required*需要特殊的附件或工具 ** - Specialized probes required **需要特殊的探针Scan field area:扫描面积from 5x5 micron up to 50x40 micronsMaximum range of measured heights:最大高度范围from 2 to 4 micronLateral resolution (plane XY):侧面分辨率1–5 nm (depending on sample hardness)Vertical resolution (direction Z):竖直分辨率0.1–0.5 nm (depending on sample hardness)Scanning matrix:扫描矩阵Up to 1024x1024 pointsScan rate:扫描速度40–250 points per second in X-Y planeNonlinearity correction :非线性校正A software nonlinearity correction providedMinimum scanning step:最小扫描步阶0.3 nmScanning scheme:扫描步骤The sample is moved in X-Y plane (horizontal) and in Z-direction (vertical) under stationary probe.Scanner type:扫描器类型A piezoceramic tube.Cantilevers (probes):悬臂(探针)Commercial AFM cantilevers of 3.4x1.6x0.4 mm. Recommended are probes from Mikromasch or NT-MDT. Checked for operation with probes by BudgetSensor and NanosensorsCantilever deflection detection system:悬臂倾斜探测系统Laser beam scheme with four-quadrant position-sensitive photodetectorSample size:样品尺寸Up to 30x30x8 mm (w–d–h) extending block insert allows measurement of samples with height up to 35 mmHigh voltage amplifier output: 高压放大器输出+190 VADC:16 bitOperation environment:操作环境Open air, 760+40 mm Hg col., T = 22+4°С, relative humidity 70%Range of automated movement of measuring head:测量头自动移动范围10x10 mm in XY plane for micropositioning of probe relative measured sample at step 2.5 micron with optical visual monitoringOverall dimensions:总尺寸Scanning unit: 185x185x290 mm Control electronic unit: 195x470x210 mmField of view of embedded videosystem:植入视频系统的视场1x0.75 mm, visualization window 640x480 pixel, frame rate up to 30 fps.Vibration isolation:防震隔离Additional antivibration table is recommendedHost computer:控制计算机Not less than: Celeron 2.2, RAM 256 MB, HDD 80 GB, VRAM 128 MB, monitor 17" 1024x768x32 bit, Windows XP SP1, 2 USB port. Recommended: Core i5 or equivalent, RAM 2 GB, HDD 320 GB, VRAM 1 GB, monitor 1600x1200x32 bit, Windows XP SP2 or higher, 2 free USB port.Software:软件Special control software SurfaceScan and the AFM image processing package SurfaceView / SurfaceXplorer are included. * Before measurements, the probe can be positioned to necessary place over the sample with help of automated motorized stage. To provide monitoring for the scan area and objects below the probe, the instrument embeds a videosystem allowing to watch the probe motion over the sample surface. Videosystem and the motorized stage for the probe positioning over sample are included in base set by default. A combination of these two options allows rather flexible selection of objects to be measured on the sample surface at direct visual monitoring by the opeartor.多功能扫描探针显微镜(带纳米力学测试功能)组成模块: DELIVERY SETNT-206 ::: Description ::: Features ::: Delivery set ::: Software ::: BASIC SETScanning unit (atomic force microscope)Includes a base platform with embedded XY positioning stage and a detachable measuring head with integrated video systemControl electronic unit with the connetcion cables in the set (the case variants)Software package including:The software runs under Win32. Supplied on CD. Updates available at this site in section ARCHIVE SOFTWAREAFM control software SurfaceScan for driving complex and data acqusition and visualization .SurfaceView and SurfaceXplorersoftware package for the measured data processing, visualization and analysis.The software can include plug-ins for processing AFM-data obtained with other microscopes.A set of drivers for connection of control electronic unit with host PC and running videosystem.Note:1 Base set includes also the control software (for Win32) and user manual.多功能扫描探针显微镜(带纳米力学测试功能)可选配件 ::: ADDITIONAL ACCESSORIES (optional)A specialized antivibration rackA changeable probe holderChangeable scaners for ranges: 5x5x2 um10x10x3 um20x20x3.5 um40x40x3.5 um50x50x3.5 um90x90x3.5 umSet for scanning the sample emmersed in liquid mediumThermocell: a changeable sample platform for measured sample heating up to 150 °С with stand-allone controllerA changeable holder for conducting probesExtending block insert allowing measurement of thick samples with height up to 35 mmA changeable microtribometer-adhesiometer unitOption: a set of AFM probes(Prod. by Mikromasch)A changeable shear-force microtribometer unitOption: a set of calibration test gratings(Prod. by Mikromasch)A changeable nanoindentor unit多功能扫描探针显微镜(带纳米力学测试功能)软件 SOFTWARENT-206 ::: Description ::: Features ::: Delivery set ::: SoftwareControl software for AFM NT-206 SurfaceScan is a 32-bit Windows application. It runs under Windows XPsp2/Vista/7 operating systems.The control software provides all preliminary tunings and settings necessary for the AFM operation: visual control over the laser-beam detection system adjustment, tuning of the cantilever oscillations (in dynamic modes), feed-back system adjusting, sample positioning under the probe and sample approach to the probe before measurements and removal after the measurements. A full-field or any reduced area within the full field of the scanner can be selected for measurements.Operator can watch any combination of acquired AFM/LFM images in data visualization window or switch to look at them in one window. Additionally, profile of currenly acquired line can be monitored as well.Acquired data are saved in files of special format that can be then processed, visualised (in 2-D and 3-D presentation) and analysed with a specialized software package SurfaceView or SurfaceXplorer.
    留言咨询
  • 布鲁克Hysitron PI 88是布鲁克公司生产的新一代原位纳米力学测试系统,其特点是系统设计高度模块化,后期可在已有系统上自行配置并拓展其他功能。该系统通过视频接口将材料的力学数据(载荷-位移曲线)与相应SEM视频之间实现时间同步,允许研究者在整个测试过程中极其精确地定位压头并对变形过程成像。解决了传统纳米压痕方法,只能通过光学显微镜或原位扫描成像观察压痕前后的形貌变化,因无法监测中间过程,而最终对载荷-位移曲线上的一些突变无法给出解释甚至错误解释的问题。PI 88安装于SEM,可以精确施加载荷,检测位移,在电镜下进行压痕、压缩、弯曲、划痕、拉伸和疲劳等力学性能测试;此外,通过升级电学、加热模块,还可研究材料在力、电、热等多场耦合条件下结构与性能的关系。
    留言咨询
  • The Hysitron PI 89 扫描电镜联用纳米压痕仪利用扫描电子显微镜(SEM、FIB/SEM)的卓越成像能力,可以在成像的同时进行定量纳米力学测试。这套全新系统搭载 Bruker 领先的电容传感技术,继承了引领市场的第一批商业化原位 SEM 纳米力学平台的优良功能。该系统可实现包括纳米压痕、拉伸、微柱压缩、微球压缩、悬臂弯曲、断裂、疲劳、动态测试和力学性能成像等功能。控制和性能具有固有的位移控制,位移范围从1nm to 150μm,业界领先的力范围从1μN to 3.5N,和78kHz的反馈速率和39kHz的数据采集速率,从而记录各种瞬态事件。Hysitron PI 89的紧凑设计允许最大的样品台倾斜,以及测试时成像的最小工作距离。PI 89为研究者提供了比竞争产品更广阔的适用性和性能:重新设计的结构增加适用性和易用性 1 nm精度的线性编码器实现更大范围下更好的自动测试定位重复性更高的框架刚度(~0.9 x 106 N/m)提供测试过程更好的稳定性两种旋转/倾斜模式实现城乡、FIB加工、以及各种探测器的联用,包括EDS, CBD, EBSD, and TKD等。
    留言咨询
  • 德国neaspec 纳米傅里叶红外光谱仪nano-FTIR---具有10nm空间分辨率的纳米级红外光谱仪 产品简介: neaspec公司的nano-FTIR技术现代化学的一大科研难题是如何实现在纳米尺度下对材料进行无损化学成分鉴定。现有的一些高分辨成像技术,如电镜或扫描探针显微镜等,在一定程度上可以有限的解决这一问题,但是这些技术本身的化学敏感度太低,已经无法满足现代化学纳米分析的要求。而另一方面,红外光谱具有很高的化学敏感度,但是其空间分辨率却由于受到二分之一波长的衍射极限限制,只能达到微米级别,因此也无法进行纳米级别的化学鉴定。近期neaspec公司利用其独有的散射型近场光学技术发展出来的nano-FTIR纳米傅里叶红外光谱技术,使得纳米尺度化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率,和傅里叶红外光谱的高化学敏感度,因此可以在纳米尺度下实现对几乎所有材料的化学分辨。因而,现代化学分析的纳米新时代从此开始。 neaspec公司的散射型近场技术通过干涉性探测针尖扫描样品表面时的反向散射光,同时得到近场信号的光强和相位信号。当使用宽波红外激光照射AFM针尖时,即可获得针尖下方10nm区域内的红外光谱,即nano-FTIR. nano-FTIR技术视频和实际测量碳纳米管视频介绍: nano-FTIR 光谱与标准FTIR光谱高度吻合 在不使用任何模型矫正的条件下,nano-FTIR获得的近场吸收光谱所体现的分子指纹特征与使用传统FTIR光谱仪获得的分子指纹特征吻合度极高(如下图),这在基础研究和实际应用方面都具有重要意义,因为研究者可以将nano-FTIR光谱与已经广泛建立的传统FTIR光谱数据库中的数据进行对比,从而实现快速准确的进行纳米尺度下的材料化学分析。对化学成分的高敏感度与超高的空间分辨率的结合,使得nano-FTIR成为纳米分析的独特工具。 主要技术参数配置: 。反射式 AFM-针尖照明。标准光谱分辨率: 6.4/cm-1。专利保护的无背景探测技术。基于优化的傅里叶变换光谱仪。采集速率: Up to 3 spectra /s。高性能近场光谱显微优化的探测模块。可升级光谱分辨率:3.2/cm-1。适合探测区间:可见,红外(0.5 – 20 μm)。包括可更换分束器基座。适用于同步辐射红外光源 NEW!!!德国neaspec 纳米傅里叶红外光谱仪nano-FTIR信息由深圳市蓝星宇电子科技有限公司为您提供,如您想了解更多关于德国neaspec 纳米傅里叶红外光谱仪nano-FTIR报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • 扫描电镜/FIB原位纳米压痕仪:布鲁克Hysitron PI 88 PI 88是布鲁克公司生产的新一代原位纳米力学测试系统,其最大特点是系统设计高度模块化,后期可在已有系统上自行配置并拓展其他功能。真正实现直接观察条件下的定量纳米力学表征;高级的XYZ方向样品定位,配合可选倾斜和旋转样品台;模块化设计,可搭载全套测试技术,包括800℃热台,划痕,扩展量程的传感器,电学偏压等。轻松搭载定量纳米力学测试深入了解纳米尺度下的力学性能在您实验室已有的熟知仪器上获得力学数据,在您电镜上扩展如下功能,包括:1.纳米压痕微悬臂弯曲2.微柱或微颗粒压缩3.拉伸测试4.纳米划痕整个实验过程中始终如一的稳定性布鲁克的原位解决方案专为电镜环境下的出众性能而设计。真空相容性/检测器定位和机架柔度等相关因素均被严格考虑。我们专属的传感器技术确保实验过程中精细纳米力学测量所需的灵敏度和稳定性,而数位控制器提供了超快的反馈和数据采集率。因而应力诱发变形过程之前、之中、之后都得以高速捕获加以分析。稳定性和精准度Hysitron PI88 配套一套真空适用的布鲁克纳米尺度传感器和导电金刚石压头。通过传感器中的静电力施以载荷,电容记录位移。低电流设计带来的超低温漂保证了前所未有的灵敏度。与传感器配合的是一套在XYZ三轴方向均8mm的高级样品定位载台,可实现在较大样品上超好的横向精度以及线性和灵活定位。在这一简洁平台机械继承的载台和传感器为使用者提供了纳米力学测试所需的稳定、刚性的基础。该系统通过视频接口将材料的力学数据(载荷-位移曲线)与相应SEM视频之间实现时间同步,允许研究者在整个测试过程中极其精确地定位压头并对变形过程成像。解决了传统纳米压痕方法,只能通过光学显微镜或原位扫描成像观察压痕前后的形貌变化,因无法监测中间过程,而最终对载荷-位移曲线上的一些突变无法给出解释甚至错误解释的问题。PI 88安装于SEM,可以精确施加载荷,检测位移,在电镜下进行压痕、压缩、弯曲、划痕、拉伸和疲劳等力学性能测试;此外,通过升级电学、加热模块,还可研究材料在力、电、热等多场耦合条件下结构与性能的关系。800°C HeatingElectrical CharacterizationPush-to-Pull DevicenanoDynamic ModenanoScratch Mode
    留言咨询
  • 产品描述PK3L60-080U多轴纳米扫描台是基于压电控制的80um行程的位移台,可在XYZ轴上提供纳米分辨率的运动。它非常适用于小型组件的纳米定位,例如反射镜,光纤,激光二极管,微光学器件,传感器或细胞样本。应用包括光学延迟线,干涉仪的路径长度变化,激光光刻,扫描显微镜和膜片钳等。扫描具有高度可靠的多层低压压电(PZT)堆栈,可进行高占空比操作。精密的、有限元优化的平行四边形固态挠性导向系统可确保完美的平行运动。由于采用了无摩擦导轨,位移台无需维护,不易磨损,并具有快速响应和快速稳定的性能,使其适用于动态过程,例如高频误差补偿,跟踪,快速步进或连续扫描。分辨率仅受控制电路的噪声限制,但由于压电陶瓷材料的滞后和蠕变,其可重复性和稳定性受到影响。可以选择使用集成的SGS测量系统来克服迟滞和蠕变的影响,并且PK3L60-080U定位系统可以配备电容测量系统,PK3L60-080U压电扫描台可以轻松地与其他机械定位系统结合使用。拥有小的体积、无摩擦、无间隙、定位分辨率高等优点。PK3L60-080U系列非常适合从光学研究到OEM系统的各种应用。非常适合即要求有孔径又对体积有限制的应用。本系列产品种类包括X、Z、XZ、XY、XYZ轴运动系统版本。请参照相关型号介绍。产品特性—XYZ位移:80μm(闭环)—中孔尺寸:?25mm—承载能力:0.6Kg—紧凑型设计—高精度柔性导向选配功能—可定制转接装置—可选PZT&Sensor连接器及线缆长度—可选配闭环(SGS) 位置反馈系—可定制中心孔径大小应用领域—扫描显微镜—超分辨率显微镜—掩模、晶圆定位—干涉测量、测量技术—显微操纵 结构原理 堆叠形式 典型应用PK3L60-080U系列技术参数
    留言咨询
  • 仪器简介 ANASYS公司长期致力于纳米热学分析领域,开发出了多种新颖的、易操作的研究和分析仪器。基于多年累积的纳米热学专利技术,ANASYS又推出了一款最新的测试技术仪器&mdash &mdash Nano-IR纳米级红外光谱仪。突破了传统的傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,让用户可以获得纳米尺度上的红外光谱分析、热分析、扫描探针成像和热力学性能测试。技术参数主要技术参数光谱范围:1200-1600cm-1光谱分辨率:16cm-1最大图像尺寸:100&mu m× 100&mu m光谱采集时间:&le 1min主要特点① 与&ldquo 远场&rdquo 光学相比,改技术的特点在于吸收的辐射可以通过尖端近场的尖端得到测量。② PTIR技术可以实现纳米级红外并获得样品的化学性质。③ 接触共振获得样品的力学性质。④ 通过原子力显微镜(AFM)获得高分辨率的样品三维相貌图。⑤ 纳米热学分析获得样品的热量传输温度。⑥ Nano-IR操作软件能够自动的跟踪并且可以让用户便捷的获得样品任 意位置的红外吸收光谱。
    留言咨询
  • 扫描俄歇纳米探针 400-860-5168转4058
    1. 使用CMA通州分析器,同时实现高灵敏度和高传输率。即使在低电流高空间分辨率情况下,都可轻松的进行分析。2. 以20kV加速电压和电流1nA进行俄歇分析,AES空间分辨率可达≤8nm3. 在保有所有CMA的优点同时,并加上了获得AVS(美国真空协会)设计奖的高能量分辨率功能,可以AES进行各种纳米级区域的化学态分析4. Windows兼容软件 同轴筒镜分析高灵敏度和高通量分析仪CMA1.同轴筒镜分析仪同轴CMA是PHI公司在其电子光谱仪的中心轴上放置电子枪。CMA能各方面360度收集产生的俄歇电子,因此具有不受样品形貌和倾角影响的优点,下图显示同轴CMA和非同轴谱仪SCA的灵敏度特点。CMA从垂直入射到角度入射均能表现出高灵敏度特点,角度依赖性低,从而采用各种入射角度,分析各种形貌的样品均可得到好的定量结果。 △同轴CMA及非同轴分析器SCA灵敏度的比较 2.比较分析形态复杂的样本下图比较CMA和SCA所采集的铜锡球SEM成像,以及俄歇成分像,SCA中俄歇成分图的阴影效果非常明显,而CMA所获得的SEM像和俄歇成分像可准确地反映真实结果。 △球状样品中CMA和SCA数据的比较SEM空间分辨率≤3nmAES成分像空间分辨率≤8nm 俄歇分析通过SEM观察确定分析位置,再进行采谱,成分分布成像和深度剖析。在SEM观察时需要细小的聚焦电子束斑,同时进行俄歇分析,需要非常稳定的电子束。SEM成像分辨率可达3纳米左右,AES710使用低噪声电源(图1),采用隔音罩以减小震动、声音和温度的影响,AES分析时分辨率可达到8nm(20kV 1nA)图2案例:球墨铸铁断面中晶间杂质的分析。图2所示:二次电子像,Ca(蓝色)Mg(绿色)Ti(红色)俄歇成分像,以及S的俄歇成分分布像,表明了AES纳米级微区的化学分析能力。 AES化学态分析图谱和分布像PHI710 AES成分像,每个像素点对应的图谱可对元素存在的化学态进行解析,进而化学态成像。高能量分辨率下图显示半导体芯片电极Si KLL的高能量分辨率成分分布图。由Si KLL谱进行 小二乘法拟合(LLS)得出三个主要成分:硅、氮氧化硅、金属硅化物,可得到这三种硅的化学态在同一表面的分布像。 △半导体芯片电极分析实例 基于Windows系统的操作软件和数据处理软件SmartSoftTM-AES(操作软件)SmartSoft AES是在Windows系统上运行的PHI710控制软件。软件设置的AES分析操作流程显示在屏幕上,即便是初学者也可以轻松掌握。为提高分析效率,实时测量位置,SEM图、俄歇分布图及谱图等都能同事呈现。Zalar旋转功能使深度剖析灵活实现,烘烤和真空控制自动化。下图是操作屏幕画面。 PHI MultiPakTM(数据分析软件)提供分析软件PHI MultiPak使俄歇分析更完善。支持快速创建报告,并提供了基于WINDOWS系统的易于使用的数据处理功能和数据分析能力。
    留言咨询
  • 产品描述PKWL60-080U是一款超紧凑的亚纳米闭环控制扫描台,显微镜中的物镜对准通常需要一个开放的中心空间(例如,用于光线通过),PKWL60-080U压电扫描台(带有25mm的中心孔)是针对此类应用而开发的,每个轴都经过机械预加载。独特的产品设计非常紧凑,在XZ运动轴上的运动均可达80μm(闭环)行程,并且由于柔性机械设计而实现了无间隙的平行运动。其紧凑的设计使其是许多应用的理想工具,例如:光纤对准、双光子聚合和激光写入应用等。可以选择使用集成的SGS测量系统来克服迟滞的影响,并且PKWL60-080U定位系统可以配备电容测量系统,PKWL60-080U压电扫描台可以轻松地与其他机械定位系统结合使用。拥有小的体积、无摩擦、无间隙、定位分辨率高等优点。PKWL60-080U系列非常适合从光学研究到OEM系统的各种应用。非常适合即要求有孔径又对体积有限制的应用。本系列产品种类包括X、Z、XZ、XY、XYZ轴运动系统版本。请参照相关型号介绍。产品特性—XZ位移:80μm(闭环)—中孔尺寸:?25mm—承载能力:0.7Kg—高度紧凑型设计—高精度柔性铰链结构导向选配功能—可定制转接装置及中心孔径大小—可选PZT&Sensor连接器及线缆长度—可选配闭环(SGS) 位置反馈系—可选择XYZ轴版本(80μm)应用领域—扫描显微镜—超分辨率显微镜—掩模、晶圆定位—干涉测量、测量技术—显微操纵 结构原理 叠堆形式 典型应用PKWL60-080U系列技术参数
    留言咨询
  • 10nm 空间分辨率化学成像和光谱高性能纳米级 FTIR 光谱只有 nanoIR3-s 能够提供:高性能纳米级 FTIR 光谱高性能红外近场光谱,采用目前先进的纳米红外激光源纳米级 FTIR 光谱,采用集成式DFG,可与宽带同步辐射光源集成适用于光谱和化学成像的多芯片 QCL 激光源点光谱技术POINTspectra 激光器可执行多个波长的光谱分析和高分辨光学成像。nanoIR3-s让测试更加简单:在 AFM 图像中选择要测量的特征测量样品的波谱,选择感兴趣的波长采集高分辨光学属性图根据对多个波长的干涉图的快速测量,获得空间分辨率达到 10nm 的振幅和相位图像 实现 10nm 分辨率Tapping AFM-IR,用于独特的互补性红外光谱分析。支持全系列扫描探针显微镜模式Contact Mode(接触模式)Tapping Mode(轻敲模式)Lateral Force Microscope(横向力/摩擦力显微镜)Phase Imaging(相位成像)Magnetic Force Microscopy (磁力显微镜)Electrostatic Force Microscopy (静电力显微镜)Conductive Atomic Force Microscopy (导电原子力显微镜)Kelvin Probe Force Microscopy (开尔文探针力显微镜)Force Curve Spectroscopy(力曲线)Liquid Imaging(液态环境扫描)Heater-Cooler Imaging(高低温环境扫描)SThM(扫描热显微镜)Nano-TA(纳米热分析)LCR(洛伦兹纳米力学分析)
    留言咨询
  • 德国neaspec 纳米傅里叶红外光谱仪nano-FTIR---具有10nm空间分辨率的纳米级红外光谱仪 产品简介: neaspec公司的nano-FTIR技术现代化学的一大科研难题是如何实现在纳米尺度下对材料进行无损化学成分鉴定。现有的一些高分辨成像技术,如电镜或扫描探针显微镜等,在一定程度上可以有限的解决这一问题,但是这些技术本身的化学敏感度太低,已经无法满足现代化学纳米分析的要求。而另一方面,红外光谱具有很高的化学敏感度,但是其空间分辨率却由于受到二分之一波长的衍射极限限制,只能达到微米级别,因此也无法进行纳米级别的化学鉴定。近期neaspec公司利用其独有的散射型近场光学技术发展出来的nano-FTIR纳米傅里叶红外光谱技术,使得纳米尺度化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率,和傅里叶红外光谱的高化学敏感度,因此可以在纳米尺度下实现对几乎所有材料的化学分辨。因而,现代化学分析的纳米新时代从此开始。 neaspec公司的散射型近场技术通过干涉性探测针尖扫描样品表面时的反向散射光,同时得到近场信号的光强和相位信号。当使用宽波红外激光照射AFM针尖时,即可获得针尖下方10nm区域内的红外光谱,即nano-FTIR. nano-FTIR技术视频和实际测量碳纳米管视频介绍: nano-FTIR 光谱与标准FTIR光谱高度吻合 在不使用任何模型矫正的条件下,nano-FTIR获得的近场吸收光谱所体现的分子指纹特征与使用传统FTIR光谱仪获得的分子指纹特征吻合度极高(如下图),这在基础研究和实际应用方面都具有重要意义,因为研究者可以将nano-FTIR光谱与已经广泛建立的传统FTIR光谱数据库中的数据进行对比,从而实现快速准确的进行纳米尺度下的材料化学分析。对化学成分的高敏感度与超高的空间分辨率的结合,使得nano-FTIR成为纳米分析的独特工具。 主要技术参数配置: 。反射式 AFM-针尖照明。标准光谱分辨率: 6.4/cm-1。专利保护的无背景探测技术。基于优化的傅里叶变换光谱仪。采集速率: Up to 3 spectra /s。高性能近场光谱显微优化的探测模块。可升级光谱分辨率:3.2/cm-1。适合探测区间:可见,红外(0.5 – 20 μm)。包括可更换分束器基座。适用于同步辐射红外光源 NEW!!!
    留言咨询
  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询
  • 洞察纳米世界的利器 :纳米级光学成像 + 高光谱扫描您手边纳米研究神器:无标记识别 + 纳米表征 + 映射产品介绍 Cytoviva超分辨率荧光显微成像系统技术最初源于美国国防部和美国宇航局共同开发空中成像技术。Cytoviva已经发展成为一个专有技术,并将其专利整合到的显微成像系统中,可以在纳米尺度进行材料的光谱定量分析和活细胞的观察。并在2006和2007连续两年获得著名的R&D 100奖的获奖荣誉,2007获得了Nano50TM奖,源于它对纳米科学研究的杰出的贡献。 2005年进入市场以来,Cytoviva在全球范围内已有几百台的装机,包括美洲、亚洲到欧洲国家重点实验室、学术科研机构和独立的工业实验室。 Cytoviva超光谱成像系统配合cytoviva显微镜系统,可以广泛应用于量化细胞和组织中的纳米材料。该系统捕获扫描范围内近红外(400-1000nm)内每个像素的光谱信号。先进的分析软件可以提供的扫描材料的详细光谱信息。 CytoVivac超光谱成像系统配合CytoViva纳米显微镜可以同时提供材料及生物样品的光谱分析和图像数据。该系统在可见-近红外光谱范围内(VNIR)进行数据采集。Cytoviva HSI有着广泛的应用研究范围:纳米药物递送、纳米毒理学、纳米材料、细胞生物学、病理学、病毒学、植物学等等。光谱分析方法支持非荧光、荧光标记的成分在活细胞、组织和纳米材料等不同样本中的观察分析。 Cytoviva技术正迅速成为纳米材料和生命科学研究的实验室标准。Cytoviva能提供您所需要的实验结果。为客户采集到真实,定量的研究数据提供了一套无缝的解决方案。 产品特点● 无需荧光标记● 纳米尺度样品光学图像表征(20-50nm)● 纳米高光谱表征● 映射多种环境中纳米尺度样品应用方向● 药物递送,纳米药物研发及临床试验● 外泌体研究,肿瘤早期诊断、研究及治疗● 食品及组织中细菌检测● 脑疾病研究:Alzheimer’s Disease,AD ;帕金森● 纳米乳剂● Liposomes● 免疫组化,组织切片直接观察,纳米级表征● 病毒、病原体检测与表征● 高分子材料检测与表征● 小分子材料检测与表征● MOF 材料检测与表征● 纳米尺寸材料检测与表征● 表面等离激元(单分子发光)● 环境污染治理● 稀土材料、上转换纳米材料表征● 复合纳米材料研究● 生物燃料研发组合光谱成像技术 多功能集成显微镜系统可同时提供宽场成像模式(反射,透射,明场,暗场,偏振光和荧光),以及高光谱显微成像模式(拉曼,荧光,光致发光,透射和反射);又保证了无论在哪种成像模式之间切换都不需要移动样品,确保呈现同一区域的所有多模态图像信息。 拉曼系统内置四个光栅,用于优化光谱分辨率,可配备最多 3 个激光器(从蓝色到 NIR+),用于实现 Raman,PL 以及 FL 高光谱成像。检测器从普通 CCD 到 EMCCD 根据不同需求可供选择。
    留言咨询
  • 全面的纳米级表征nanoIR3 具有全面的纳米级表征能力。独特的点波谱(POINTspectra)功能,单激光源可同时提供点波谱和化学成像,加快数据获取,提升研究的成本效益。高波谱成像,能够创建表面内的 3D 波谱图,帮助识别未知物,并导出另行处理。Bruker 独有的共振增强 AFM-IR 模式 可提供高性能、高质量的多样化光谱,帮助识别纳米级材料,深入了解材料的变化和成分。共振增强 AFM-IR 是灵敏度最高的有机材料纳米级光谱分析技术Tapping AFM-IR 化学成像nanoIR3 融合了独有技术,依托多年行业领先的 Anasys AFM-IR 仪器开发经验,是性能最强的纳米级红外。专利 Tapping AFM-IR 成像技术可以实现最高空间分辨率的化学成像,同时提供优质红外光谱。无论用户是想获得聚合物、薄膜、单层还是微纳米污染物的化学成分,都能使用现有的 Tapping AFM-IR 光谱、化学成像和材料性能成像系统快速又轻松地获得高分辨图像,该系统适用于材料和生命科学应用
    留言咨询
  • NEXT-TIP SL公司成立于2012年,是西班牙研究委员会 (CSIC) 的衍生公司。其生产的TERS针增强拉曼探针和纳米红外探针,基于纳米粒子沉积技术,形成具有可控尺寸和成分的纳米颗粒涂层,具有超高的横向分辨率,大大提高了使用寿命。TERS针增强拉曼探针Next-Tip TERS 探针的出色性能与其形态特征有关。这些探头的设计经过开发,具有优异的 AFM 性能和超强的拉曼信号。突破针增强拉曼探针的限制:• 高可靠性,使用户能够专注于样品的表征。• 高达3 nm的超高分辨率• 超高灵敏度,可获得完全清晰/稳定的光谱,质量优于传统TERS。增强因子和对比度增强系数 (EF) 值是根据探针针的增强电场来量化拉曼信号的增强的参数。这个参数基于对比度值。对比度值根据在同一点的近场和远场扫描收集的实验数据计算。金TERS探针保证对比度高于20,银TERS探针保证对比度高于40,使得Next-Tip TERS 探针的增强系数高达105 -106。寿命银镀层的TERS探针由另一层金纳米粒子保护,以避免氧化和污染,保持等离激元的效应。致密的金纳米颗粒涂层提升了金属层厚度,大大提高了探针的耐用性。此外,纳米颗粒沿探针表面形成的不规则结构延长了其测量的寿命。性能可控的涂层沉积过程可实现坚固探头的高可重复性和高分辨率。此外,这种涂层工艺可以在针的点放置一个或两个纳米颗粒,实现超高空间分辨率。测量显示 AFM 分辨率小于5 nm,TERS 分辨率小于10 nm。TERS针增强拉曼探针类型高分辨率TERS在锐的硅基针上附着尤其致密,不规则和锐的纳米颗粒涂层,可获得超高空间分辨率和高质量的成像。基础TERS: 通过致密、不规则、颗粒状坚固的纳米颗粒涂层,用优化的涂层产生超强的拉曼信号,获得准确的成像和光谱数据。各型号参数对比银芯基础TERS探针高分辨金TERS探针高分辨银芯TERS探针型号NT-EASY-TERS-70银NT-EASY-TERS-300银NT-TERS-E-85金NT-TERS-E-335金NT-TERS-E-85银NT-TERS-E-335金共振频率(kHz)703008533585335力常数(N/m)2262.8452.845悬臂长度(μm)240160240160240160TERS针增强拉曼探针 测量结果1L MoS2/AuCNT/Graphene Oxide单层过渡金属二硫化物(TMDC)拉曼激发模式高精度表征参考文献:Alvaro Rodriguez, Matěj Velický, Jaroslava Řáhová, Viktor Zólyomi, János Koltai, Martin Kalbáč, and Otakar Frank. Activation of Raman modes in monolayer transition metal dichalcogenides through strong interaction with gold. Phys. Rev. B 105, 195413 – Published 10 May 2022. DOI: https://doi.org/10.1103/PhysRevB.105.195413Nano IR纳米红外探针纳米红外光谱的原理是基于一个锐的金属涂层前沿,激发激光束落在该前沿上。探针针的电磁场由于局部表面等离激元共振和避雷针效应的共同作用而具有局域限制和增强的效果。更强的纳米红外信号Next-Tip探针得到的红外信号比常用AFM探针高出几倍(约5倍)。下图显示了使用相同带宽激光源的两种探针在硅上获取的未标准化的近场振幅光谱。更高的纳米红外信噪比与使用标准的探针得到的光谱相比,使用Next-Tip探针得到的光谱具有更小的背景干扰,从而得到更高的SNR和更清晰的光谱。下图显示了使用两种探头在13.6秒内记录的PMMA的三阶解调纳米红外吸收光谱。Nano IR纳米红外探针类型各型号参数对比象鼻形金字塔形型号NT-IR-E-85NT-IR-E-335NT-IR-P-75NT-IR-P-330共振频率(kHz)8533575330力常数(N/m)2.8452.842悬臂长度(μm)240160225125
    留言咨询
  • 产品描述Nano Indenter G200系统是一种准确,灵活,使用方便的纳米级机械测试仪器。 G200测量杨氏模量和硬度,包括从纳米到毫米的六个数量级的形变测量。 该系统还可以测量聚合物,凝胶和生物组织的复数模量以及薄金属膜的蠕变响应(应变率灵敏度)。 模块化选项可适用于各种应用:频率特定测试,定量刮擦和磨损测试,集成的基于探头的成像,高温纳米压痕测试,扩展负载容量高达10N和自定义测试。主要功能电磁驱动可实现高动态范围下力和位移测量用于成像划痕,高温纳米压痕测量和动态测试的模块化选项直观的界面,用于快速测试设置 只需几个鼠标点击即可更改测试参数实时实验控制,简便的测试协议开发和精确的热漂移补偿屡获殊荣的高速“快速测试”选项,用于测量硬度和模量多功能成像功能,测量扫描和流程化测试方法,帮助快速得到结果简单快捷地确定压头面积函数和载荷框架刚度主要应用高速硬度和模量测量界面附着力测量断裂韧性测量粘弹性测量扫描探针显微镜(3D成像)耐磨损和耐刮擦高温纳米压痕工业应用大学,研究实验室和研究所半导体和电子工业制造业轮胎行业涂层和涂料工业生物医药行业医疗仪器更多应用:请根据您的要求与我们联系应用高速硬度和模量测量材料的机械特性表征在新材料的研究与开发中具有重要意义。 Nano Indenter G200能够以每秒一个数据点的速率测量硬度和模量。 对机械性能的高速评估使半导体和薄膜材料制造商能够将先进技术应用于生产线上的质量控制与保证。界面粘附力测量通常通过沉积能够存储弹性能量的高压缩层来诱导薄膜分层。 界面粘附力测量对于帮助用户理解薄膜的失效模式是至关重要的。Nano Indenter G200系统可以触发界面断裂并测量多层薄膜的粘附性和残余应力性质。断裂韧性断裂韧性是在平面应变条件下发生灾难性破坏的应力 – 强度因子的临界值。 较低的断裂韧性值表明存在预先存在的缺陷。 通过使用刚度映射法容易地通过纳米压痕评估断裂韧性。 (刚度映射需要连续刚度测量和NanoVision选项)粘弹特性聚合物是非常复杂的材料 它们的机械性能取决于化学,加工和热机械历史。 具体来讲,机械性能取决于材料分子母链的类型和长度,支化,交联,应变,温度和频率,并且这些依赖性通常是相互关联的。 为了采用聚合物进行研究时获得有用的信息进行决策,应在相关背景下对相关样品进行机械性能测量。 纳米压痕测试使得这种特定的测量更容易完成,对样品制备要求不高,可以很小且少量。 Nano Indenter G200系统还可用于通过在与材料接触时振荡压头来测量聚合物的复数模量和粘弹性。扫描探针显微镜(3D成像)Nano Indenter G200系统提供两种扫描探针显微镜方法,用于表征压痕印痕的裂缝长度,以测量设计应用中的断裂韧性。 断裂韧性定义为含有裂缝的缺陷材料抵抗断裂的能力。Nano Indenter G200的压电平台具有高定位精度和NanoVision选项,可提供高达1nm的步长编码器分辨率,最 大扫描尺寸为100μm×100μm。 测试扫描软件选项将X / Y运动系统与NanoSuite软件相结合,可提供500μm×500μm的最 大扫描尺寸。 NanoVision阶段和测试扫描选项都需要精确定位在样品区域来完成纳米压痕测试和断裂韧性计算。耐磨性和耐刮擦性Nano Indenter G200系统可以对各种材料进行划痕和磨损测试。 涂层和薄膜将经受许多工艺,测试这些薄膜的强度及其与基板的粘合性,例如化学和机械抛光(CMP)和引线键合。 重要的是这些材料在这些工艺过程中抵抗塑性形变并保持完整,也不会在基板上起泡。 对于介电材料,通常需要高硬度和弹性模量来支持这些制造工艺。高温机械测试高温下的纳米压痕提供了在达到塑性转变之前、之中与之上的精确测量能力,得到材料的纳米力学响应。 了解材料行为,例如形变机制和相变,可以预测材料失效并改善热机械加工过程中的控制。 在主要机械测试方法过程中改变温度是对材料进行纳米尺度测量塑形转变的一种方式。产品优势Nano Indenter G200系统专为各种材料的表征和开发过程中进行纳米级测量而设计。 该系统是一个完全可升级,可扩展且经过生产验证的平台,全自动硬度测量可应用于质量控制和实验室环境。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制