库伦硫化物发生器

仪器信息网库伦硫化物发生器专题为您提供2024年最新库伦硫化物发生器价格报价、厂家品牌的相关信息, 包括库伦硫化物发生器参数、型号等,不管是国产,还是进口品牌的库伦硫化物发生器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合库伦硫化物发生器相关的耗材配件、试剂标物,还有库伦硫化物发生器相关的最新资讯、资料,以及库伦硫化物发生器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

库伦硫化物发生器相关的厂商

  • 夏津汇康臭氧发生器有限公司从事臭氧发生器设备及臭氧发生器工程的设计、研发和制造。公司成立以来,生产的内置式臭氧发生器、外置式臭氧发生器、壁挂式臭氧发生器、移动式臭氧发生器已被多家食品、制药企业、医疗机构和水产养殖企业用于空气消毒。生产的水处理臭氧发生器也广泛应用于污水处理、净水处理、原水处理和游泳池水处理等领域。 本企业也专注于臭氧发生器配件的研发和生产。生产的臭氧发生器电源和臭氧发生管被多家臭氧发生器生产企业选用。进入市场以来,性能良好、质量可靠。欢迎各臭氧发生器企业选购我公司的臭氧发生器配件产品。 质量是企业的生命,我们必须提供无可挑剔的产品和服务,让顾客满意;诚信是企业的无形资产,是企业发展的源泉,它既是做人的标准,更是经营企业的前提和保障。我们一定牢固树立诚信意识,主动融入市场经济的大潮,抓住机遇、与时俱进,在合作竞争中谋求双赢,实现可持续发展。
    留言咨询
  • 苏州阿洛斯环境发生器有限公司(Suzhou AROS Environment Generators Co., Ltd. ),2015年8月成立于苏州张家港保税区科创园,资金1000万,占地1600平米,是“张家港领军人才”和“姑苏领军人才”企业。公司致力于应用场景测试通用平台的开发,广泛服务能源、环保、化工、燃料电池、汽车等行业的广大客户。
    留言咨询
  • 中环北方(北京)仪器仪表有限公司是一家集技术研发、制造、销售及售前售后服务为一体的现代化企业。主营产品: 电感耦合等离子体发射光谱仪(ICP-OES)系列、多功能原子荧光烷基汞分析仪、粉尘中游离二氧化硅分析仪系列、智能蒸馏装置系列、COD消解仪、智能微波消解仪、智能石墨消解赶酸仪、智能石墨电热板、过滤器、土壤研磨器及干燥箱、萃取仪、红外测油仪、硫化物测定仪、固体废弃物毒性特性进出系统、挥发性VOCS色谱前处理(顶空进样器、吹扫捕集、热解吸、低温浓缩装置、气体进样器、气体发生器)及各类振荡器等一系列产品。 公司产品获得中国环境科学研究院、中国环境监测总站以及各省市县环境监测站、清华大学、北京大学、PONY谱尼测试集团等广大客户一致好评。 企业始终坚持以实验室能力提升需求“专注创新、专心产品、专诚服务”为宗旨,致力于先进技术推广、专业的技术研发团队、生产团队,销售团队,售后服务团队,便捷、高效全面技术支持和服务。
    留言咨询

库伦硫化物发生器相关的仪器

  • 多数H2S/硫化物的校准设备都具有不稳定性,尤其是在ppm、ppb级别下的校准更是存在很大缺陷。而库伦H2S硫化物发生器G200中的标准溶液为电化学溶液,所以很好的避免了不稳定这一缺点。技术参数浓度范围:31 nM... 6,2 mM电极电容:approx. 350 mAh规格:length: 220mm breadth: 160mm height: 250mm精度:99,78 % (安培计探头) 97,51 % (亚甲蓝法)电源:230 V, 50 Hz, Power Supply unit浓度范围:0,002 ... 60,0 mg/l H2S resp. 0,062 ... 1871 μmol/l H2S准确度:± 0,25 %反应步骤:1、排气时间:约45分钟,2、第一次浓度变化:约15-30分钟浓度变化时间:跟浓度跃度和流量有关浓度变化时间:1小时10次 可重复性:99,78 % (安培计探头) 97,51 % (亚甲蓝法)干燥物质的能力:约4个工作日电极电容:350 mAh
    留言咨询
  • 上海那艾实验仪器设备[那艾仪器厂家]网站 全国送货厂家一手货! 品质保证!实验仪器非电子产品,使用效率和售后服务很重要。我们同品质比价格,同价格比效率,同效率比售后。设备仪器属于精密设备 客户订单录档案 免费1年质量保质,任何问题提供配件保养维护上海那艾仪器专注以实验仪器设计、研发,生产,销售为核心的仪器企业,目前热卖销售生产有一体化蒸馏仪,中药二氧化硫蒸馏仪,COD消解仪,高氯COD消解仪,硫化物酸化吹气仪,全自动液液萃取仪,挥发油测定仪等等。硫化物酸化吹气吸收装置(NAI-LHW-6)是我公司根据国家标准研发生产,适用于地面水、地下水、生活污水和工业废水中硫化物的测定。该酸化吹气仪具有容易控制、操作简便、快捷等特点。该仪器是由恒温水浴、温控仪、气体分配、样品架、升降系统、气体流量调节阀、转子流量计等组成。主要特征1、仪器机身采用框架一体式设计,稳固牢靠,主体采用品牌冷轧板配合静电粉末涂装,更加耐磨、耐腐蚀;2、从空开到触点,继电保护器到按钮开关等,选用正泰/德力西或同级别品牌电气,保证仪器品质和的使用寿命;3、创新采用平行横排布局方式,操作便捷直观;设计了加酸瓶塞摆放架,方便用户加酸时的瓶塞摆放,不易遗失,安全简单;4、采用恒温水浴加热方式,PID控温精确,加热均匀,温度状态实时显示;5、垂直加酸、氮气吹脱、酸化吸收一体化设计,盐酸入口、气体进口、样品出口三口一体且相互独立,操作互不干扰;6、浮子流量计调节范围:0.1-1l/min,六路单独控制,确保实验安全有效进行;7、每个样品的氮气流量独立控制调节或关闭;无需升降支架,稳定无漏气;8、可定时操作,到达时间,自动停止。适用标准HJ 1226—2021水质 硫化物的测定-亚甲基蓝分光光度法HJ/T 60-2000 水质硫化物的测定 碘量法HJ 833-2017 土壤和沉积物 硫化物的测定 亚甲蓝分光光度法(水浴)GB/T 11941-1989 水源水中硫化物卫生检验标准方法HZ-HJ-SZ-0111 水质硫化物间接火焰原子吸收法(非水浴)产品参数产品型号NAI-LHW-6加热方式自动控温恒温水浴加热功率1800W气体流量计0.1-1L/min温度范围室温~99.9℃显示方式数字显示控温精度±1 ℃氮气入口压力0.1Mpa工作电源AC(220±22)V,50HZ
    留言咨询
  • 上海那艾实验仪器设备[那艾仪器厂家]网站 全国送货厂家一手货! 品质保证!实验仪器非电子产品,使用效率和售后服务很重要。我们同品质比价格,同价格比效率,同效率比售后。设备仪器属于精密设备 客户订单录档案 免费1年质量保质,任何问题提供配件保养维护上海那艾仪器专注以实验仪器设计、研发,生产,销售为核心的仪器企业,目前销售生产有一体化蒸馏仪,中药二氧化硫蒸馏仪,COD消解仪,高氯COD消解仪,硫化物酸化吹气仪,全自动液液萃取仪,挥发油测定仪等等。硫化物酸化吹气吸收装置是我公司根据国家标准研发生产,适用于地面水、地下水、生活污水和工业废水中硫化物的测定。该酸化吹气仪具有容易控制、操作简便、快捷等特点。该仪器是由恒温水浴、温控仪、气体分配、样品架、升降系统、气体流量调节阀、转子流量计等组成。主要特征1、采用恒温水浴加热方式,加热均匀,温度状态实时显示;2、垂直加酸、氮气吹脱、酸化吸收一体化设计,盐酸入口、气体进口、样品出口三口一体且相互独立,操作互不干扰。3、量调节范围:0.1-1l/min,六路单独控制,确保实验安全有效进行;4、每个样品的氮气流量独立控制调节或关闭;无需升降支架,稳定无漏气5、针定时操作,到达时间,自动停止,并报警提示。适用标准HJ 1226—2021水质 硫化物的测定-亚甲基蓝分光光度法HJ/T 60-2000 水质硫化物的测定 碘量法HJ 833-2017 土壤和沉积物 硫化物的测定 亚甲蓝分光光度法(水浴)产品参数 产品型号 NAI-LHW-6加热方式 自动控温恒温水浴加热功率2000W气体流量计0.1-1L/min温度范围室温~99.9℃显示方式数字显示控温精度±1 ℃氮气入口压力0.1Mpa工作电源AC(220±22)V,50HZ
    留言咨询

库伦硫化物发生器相关的资讯

  • 青岛能源所硫化物全固态电池失效机制研究获进展
    近日,中国科学院青岛生物能源与过程研究所研究员崔光磊带领的固态能源系统技术中心,在硫化物基全固态电池失效机理研究和性能提升方面取得重要进展。相关成果发表在《科学通报》(Science Bulletin )上。   由高理论容量的高镍层状正极材料和锂金属负极组成的硫化物基全固态锂金属电池有望解决目前商用锂离子电池能量密度低、安全性差等问题,是颇具前景的下一代高比能电池技术之一。实验研究表明,全固态电池存在循环寿命短、库仑效率低、容量衰退快等问题,影响了其进一步的发展与应用。由于缺乏合适的表征手段,全固态电池的衰退机制尚不清晰,因而需要准确、可靠的先进表征手段来剖析电极材料降解失效原理以阐明电池内在的衰退机制。   科研人员采用先进高分辨无损三维同步辐射X射线断层扫描成像技术(SXCT),对LiNi0.8Co0.1Mn0.1O2(NCM)|Li6PS5Cl|Li固态电池衰退机制开展研究。实验结果表明,因正极电化学-机械力学耦合失效诱导的反应异质性产生不均匀的锂离子通量并传输到负极,进而产生不均匀的锂沉积、溶解行为及死锂的产生等。锂负极不均匀的电化学反应行为又反作用于正极并强化其反应异质性,形成一种正负极衰退互相促进的正强化机制。随着电池继续循环,正负极不均匀反应加剧造成结构破坏,同时正负极体积缩胀引起电解质的塑性变形,最终致使电池失效。对比实验表明,采用LiZr2(PO4)3 (LZP)对正极进行改性,有效抑制了正极的电化学-机械力学耦合失效,并显著提高了负极锂沉积-溶解均匀性和电解质的结构完整性。该工作揭示了硫化物基全固态电池中由锂离子传输动力学的动态演变引起的正负极之间正强化的衰退机制,首次提出了全固态金属锂电池正负极相互信赖、相互关联的失效行为,为进一步优化和发展全固态电池提供了新的思路和指导方向,并为开发下一代高能量密度与高安全性的高镍三元硫化物基全固态电池奠定了研究基础。   研究工作得到国家自然科学基金、中科院战略性先导科技专项、中科院青年创新促进会和山东能源研究院等的支持。青岛能源所硫化物全固态电池失效机制研究获进展
  • 对话欧洲石油巨头TOTAL | 岛津新一代硫化学发光检测器 SCD-2030助力石油化工中硫化物可靠性分析
    内容概要 Nexis™ SCD-2030是岛津为解决实验室需求而开发出的新一代硫化学发光检测系统。其卓越的高灵敏度与稳定性、易维护性以及行业首创的自动化功能,显著提升实验室工作效率。 欧洲石油巨头道达尔公司(以下简称:TOTAL)与岛津欧洲公司(以下简称:SHIMADZU)目前在石油化工领域开展深度合作,其研发部门Giusti博士和Piparo博士使用硫化学发光检测器Nexis™ SCD-2030开展油品中硫化物的痕量分析研究并取得不错的成果。 岛津欧洲创新中心采访了道达尔研发部门的Giusti博士和Piparo博士,针对在使用Nexis™ SCD-2030期间:硫化学发光检测器解决了哪些问题?生物燃料未来将面临哪些挑战?双方未来将在哪些方面开展深入合作等话题进行了专访… … SHIMADZU:Giusti博士,感谢百忙之中接受这次采访。首先,请您介绍下您团队的研究方向及目前已取得的成果。道尔达研发部门的Pierre Giusti博士(左)和Marco Piparo博士(右) TOTAL:谢谢岛津公司提供这次交流机会。Piparo博士和我所属道达尔公司研发&分析部门,工作最大的聚焦点在提供最新分析工具,主要是仪器和方法。部门始终的要求是不断寻找和评价具有实用性的分析技术,适用于日程或未来的工作需求。关于实用性这点,对我们而言,最真实的需求是将研发部门建立的稳定可靠的分析方法,成功地转移到质控部门,无论分析人员的技术是否熟练,均可获得稳定的检测结果。我们部门也会提供技术指导和支持对于公司其他部门。我们时刻面临诸多挑战,例如:生物燃料的开发及使用,塑料制品的回收与再生利用等问题。 SHIMADZU:为何考虑在这方面开展研究工作? TOTAL:能源市场由于全球气候问题,技术发展以及社会因素在不断变化,能源行业正处于巨变前沿。我们的研究工作主要改善并提升石油传统分析方法,同时建立全新油品、石油燃料、聚合物的分子指纹图谱,成为全球能源市场的重要参与者。最终实现2050年二氧化碳的净零排放量这一社会目标,普及低二氧化碳排放量燃料的使用,减少对石油燃料的依赖。 SHIMADZU:关于目前开展的合作项目,为什么考虑岛津公司作为合作伙伴呢? TOTAL:我们研发部门通常会开展多个项目,而每个项目需要创新和好的想法,这需要有合作伙伴共同实现。不仅如此,仪器厂商还需要愿意倾听我们用户的真实需求和问题,持续不断地从客户角度出发,关注开发用户所需求的产品和技术,岛津公司符合以上预期和要求。在此情况下,双方开展项目合作,以及计划共同开发含氧化合物的专属分析系统并申请专利。 道达尔公司研发人员与岛津应用专家交流探讨 SHIMADZU:岛津仪器在项目中解决了哪些问题? TOTAL:岛津公司一直提供多种先进的仪器和分析方法,对我们日常研发工作起到很大的帮助。其中硫化学发光检测器(SCD),采用全新技术开发的产品,使我们可以在复杂基质中,准确地检测到痕量硫化物。同时岛津质谱仪在使用高速扫描模式采集数据时,没有发生质谱歧视或灵敏度大幅下降的情况发生,以上仪器特点对我们日常工作非常重要。此外,这么多年使用岛津仪器的感受,产品非常皮实耐用,稳定性也非常好,确保日常分析结果的准确、可靠。 岛津全新硫化学发光检测器Nexis™ SCD-2030 Piparo博士提到之前使用SCD-2030检测器分析柴油中硫化物的应用案例。为了考察检测器的选择性、重现性和等摩尔浓度,采用脱硫柴油基质,加入七种与柴油相关的不同含硫化合物(分别为硫化物、硫醇和噻吩),目标硫化物的S添加浓度为下表。 通过实验结果发现在S的最低浓度点,所有加标样品的面积重现性均低于4%(n=6);回收率为92%~106%(n=3)。“SCD-2030能够有效避免油品中复杂基质的干扰,实现硫化物的高灵敏和高选择性检测,可获得良好的重现性和回收率。” Giusti博士补充道。 最低浓度点Level1的七种硫化物的色谱图(S: 1 to 4mg/L) SHIMADZU:最后,谈谈未来的合作方式及合作方向? TOTAL:基于iC2MC实验室,希望未来双方可以建立一个项目推进讨论平台,与岛津研发人员定期进行项目探讨,开展头脑风暴等,交流最前沿的元素分析,质谱分析技术,色谱分离等不同分析技术。此外,计划两年内,开发出用于生物燃料研究的专属含氧化合物的分析系统。该系统将结合岛津的气相色谱技术以及道达尔公司的技术,以及法国波城大学和西班牙奥维耶多大学的联合研究成果,为推动生物燃料的开发、生产改善做出贡献。 *iC2MC(https://ic2mc.cnrs.fr/) 道达尔研发人员与岛津欧洲创新中心经理平冈合影 参考文献:(1) R. L. Tanner, J. Forrest, L. Newman, “Determination of atmospheric gaseous and particulate sulfur compounds. [Atmospheric SO2 sampling, calibration, and data processing],” Brookhaven National Laboratory, Upton, NY, USA, Tech. Rep. BNL-23103. Jan. 1977.(2) X. Yan, “Unique selective detectors for gas chromatography: Nitrogen and sulfur chemiluminescence detectors,” J. Sep. Sci., vol. 29, pp. 1931-1945, Jun. 2006.(3) Y. Nagao, ”Reliable Sulfur Compounds Analysis in Diesel using Sulfur Chemiluminescence Detector Nexis SCD-2030,” Shimadzu Application News.
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。循环后的PEO和β-Li3PS4/S界面层的特征由SEM描述,如图6所示。图6a-6h显示了循环后PEO界面层的SEM图像,其中图6a-6d显示了平视形态,图6e-6h显示了横断面形态。图6a显示了循环后带有PEO界面层的Li7P3S11板材。片材的中间部分与Li-BP-DME接触以产生SEI,而片材的边缘部分是涂在Li7P3S11片材上的原始PEO薄膜,没有与Li-BP-DME接触。PEO界面层与Li-BP-DME反应的部分的形态与Li7P3S11片材的未反应区域明显不同。图6c显示了未反应区域的PEO层的放大SEM图像,它是光滑、平坦和致密的。图6b和6d显示了SEI区域的放大SEM图像,它也是致密的,而不是裸Li7P3S11片材的充满裂纹的片材(图1k和1l)。SEI表面是凹凸不平的鱼鳞层,说明靠近Li-BP-DME的SEI表面是以有机物为主体。图6e-6h显示了PEO界面层的横截面形态。循环前的SEM图像为图6e和6g,显示了3.56μm的PEO界面层的致密和平整。图6f和6h显示了循环后PEO界面的SEM图像,其厚度为3.29μm,与循环前相比,其厚度略有减少。然而,它仍然是致密和相对平坦的,没有裂缝。在PEO界面层下的Li7P3S11薄片也得到了很好的保护和致密,没有出现裸Li7P3S11的分层(图1n)。从这两个角度来看,PEO界面层可以有效地阻止液态金属锂-BP-DME对硫化物SE Li7P3S11的侵蚀。β-Li3PS4/S界面层也通过SEM进行了表征,如图6i-6p所示。图6i和图6k是循环前的β-Li3PS4/S界面层的平视形态图。结果显示,界面层的边缘是平坦而致密的,但在界面层的较厚部分存在一些裂缝。图6j和图6l显示了循环后的界面层的平视形态。界面层表面存在裂缝,球形的有机物在裂缝处聚集/生长,而没有裂缝的地方则是平坦而密集的。图6m-6p显示了界面层的横截面形态,其中循环前的界面层光滑、致密、平整,厚度为2.05μm(图6m和图6o)。循环后的界面层厚度约为0.67μm(如果包括上面的凹凸不平的有机层,则1μm),但裂缝出现并增长,使β-Li3PS4/S界面层爆裂(图6n和图6p)。因此,β-Li3PS4/S界面层失败的原因不是它与Li-BP-DME的反应,而是由于其不均匀的厚度所引起的裂缝。Li-BP-DME溶液通过这些裂缝与硫化SE Li7P3S11反应,导致Li7P3S11和β-Li3PS4/S之间的界面反应产物的增长,使界面层破裂。在形成更多的裂缝后,当β-Li3PS4/S界面层被破坏时,对称电池就会失效。为了了解PEO-LiTFSI界面层与硫化物SE Li7P3S11/有机LE Li-BP-DME兼容,以便在室温下实现良好的Li+传导,通过TOF-SIMS技术测量了循环后的PEO@Li7P3S11片。结果显示,大量的无机和有机界面反应产物积累。无机产物包括LiF(F-,Li2F+,Li3F2+),Li2CO3(Li3CO3+),Li2NO3(NO2-,NO3-),Li3P(P-),Li2S(S-),LiH(Li2H+),LiCx(C-,C2-,C4-,C6-,Li3C3+),Li2O(O-),Li3PO4(PO2-,Li3P2O2、Li3P2O3-, Li2PO2+, Li4POH4+),Li2SO3(Li3SO+),LiSH(Li2SH+),LiOH(Li2OH+),微量硫化物SE Li7P3S11的一些分解产物(PS2-,PSO-),以及由微量杂质元素产生的LiCl(Cl-)。有机产品包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H3+,C2H5+,C3H7+,C4H7+),烯基化合物(C3H5+),甲酸锂HCOOLi(CHO2-)、乙酰化锂HCCOLi(C2HO-),LiTFSI的有机分解产物(OFH3-、CH2OF-、C2O2F-、CNO-)和残留的乙腈(ACN)小分子(CN-)。从负离子(图7a和补充图6)和正离子(图7b)模式的映射图像可以看出,除了C-和Li+的分布相对均匀外,无机和有机二级离子片段的分布并不均匀。这些二次离子碎片的聚集分布与循环后PEO界面层的SEM图像(图6d和图6h)的粗糙表面一致。根据负离子和正离子模式的深度曲线(图7c-7f),S-、SH-和Li+二次离子碎片的信号强度随着深度的增加而增强,这表明SEI层中越来越多的Li2S(S-)、LiSH(SH-)无机物。一些无机离子碎片(如F-、PSO-、PS2-、PO2-、P-、Li3P2O2-、Li2+、Li2OH+、Li2F+、Li3F2+和Li3O+)的信号强度随着深度的增加先减后增,说明这些无机物在SEI表面或深层的分布较多,而在SEI表层的分布较少。其中,无机物LiF(F-、Li2F+、Li3F2+)、LiOH(Li2OH+)、Li3PO4(Li3P2O2-)、Li2O(Li3O+)都是有利于Li+传导的成分。其他无机二次离子碎片如NO2-、NO3-、Li3CO3+、Li2H+、Li3C3+和Li4POH4+的信号强度随着深度的增加而降低,说明Li2NO3(NO2-、NO3-)、Li2CO3(Li3CO3+)、LiH(Li2H+)、LiC(Li3C3+)等无机物更多地分布在SEI层的表面,在SEI层内部分布很少。CN-、CH2OF-、CH-和C2H-的信号强度很强,但随着深度的增加而降低,表明这些有机物主要分布在靠近SEI的表面。CN-的存在表明小的乙腈分子仍然存在,而CH2OF-是LiTFSI的分解产物。其他有机离子碎片C7H5-, C2HO-, CHO2-, OFH3-, C2O2F-, CNO-, CH3+, C2H3+, C2H5+, C3H5+, C3H7+, C4H7+, C3H6O+, CH2OLi+的信号强度随深度增加而明显下降,说明这些有机物只分布在SEI的表面。这些离子碎片的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图7g)。基于TOF-SIMS的表征结果表明,当温度高于玻璃状态时,PEO-LiTFSI界面层中Li+的传导模式不再是PEO分子链运动引起的Li+的跳跃性传导、而是在PEO界面层中产生了大量的无机锂导体(LiF、Li2CO3、Li2NO3、Li3P、Li2S、LiH、LiCx、Li2O、Li3PO4、Li2SO3、LiSH、LiOH)。一般认为,单一的化合物不能实现理想的SEI膜的理想功能,因为当不同的化合物成分共存于SEI中时,它们可以相互合作,形成异质结构,从而改善阳极面的离子导电性和电子绝缘性能。此外,氰基和甲氟烷的作用进一步改变了Li+在PEO层中的传输模式,因为氟具有很强的电子汲取能力,可以削弱含氟有机物(OFH3-、CH2OF-(甲基氟醚))与Li+的相互作用。此外,含氟有机物可以与含氟阴离子(TFSI-)相互作用,抑制阴离子的运输,从而减少浓度极化。作为增塑剂的小乙腈分子和液体锂金属Li-BP-DME的残留物也可以促进Li+在电解质中的迁移。在无机锂盐、甲醚和增塑剂的共同作用下,界面层可以有效地运输Li+。Li-BP-DME溶液作为一种活性电子间接转移引发剂,可以引发环氧乙烷的阴离子活性聚合,生成PEO。因此,高分子量的PEO与Li-BP-DME具有良好的化学稳定性。因此,该界面层具有化学/电化学稳定性、高Li+导电性和电子绝缘性。由于TOF-SIMS的检测限制,测试深度只能达到500nm,这与SEM显示的2.6μm的界面层厚度不同(图6f和图6h)。因此,TOF-SIMS只测试SEI的表面层和SEI内层的一部分。根据这部分信息,无机产物的信号强度随着深度的增加而增加,而有机化合物的信号强度则随着深度的增加而减少。可以推测,在靠近硫化物SE的一侧积累了更多的无机产物,而在靠近Li-BP-DME的一侧存在更多的有机产物。β-Li3PS4/S能够作为硫化物SE和有机LE电池系统的界面层的机制是由于β-Li3PS4/S与醚基液体电解质反应的唯一产物是DME溶解的Li3PS4,它不溶于各种有机极性溶剂,从而阻止了β-Li3PS4/S的进一步溶解,从而阻止了硫化物SE Li7P3S11被有机LE Li-BP-DME侵蚀的现象。为了了解β-Li3PS4/S界面层如何有效地工作,通过TOF-SIMS技术测量了循环后的β-Li3PS4/S@ Li7P3S11片层。β-Li3PS4/S表面的SEI带负电和正电的片段的质谱显示在补充图8。可以看出,在界面上产生了一些无机和有机产物。无机物有Li2CO3(Li3CO3+), Li2NO3(NO2-), Li3P(P-), Li2S(S-), LiH(Li2H+), LiCx(C-), Li2O(O-), Li3PO4(PO2-, Li4POH4+)、 LiSH(SH-),LiOH(OH-),硫化物SE Li7P3S11(PS2-,PSO-)的分解产物,以及由杂质元素氟产生的LiF。有机化合物包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H5+,C3H7+,C4H7+),烯基化合物(C2H3+,C3H5+),甲酸锂HCOOLi(CHO2-),乙酰锂HCCOLi(C2HO-)和其他有机化合物。从负离子(图8a)和正离子(图8b)模式的映射图像可以看出,各种界面产物均匀分布。有机物质CH-、C2H-、C-、O-和无机物质Li2OH+的信号强度很强,说明SEI表面基本上是由有机物质和少量无机LiOH组成。根据负离子和正离子模式的深度曲线(图8c-8f),Li2H+、Li3CO3+、Li4POH4+和Li2F+(杂质碎片离子)的信号强度随深度增加而降低,说明SEI层表面存在Li2H(Li2H+)、Li2CO3(Li3CO3+)、Li3PO4(Li4POH4+)和LiF(Li2F+)。其他无机离子片段,如S-、S2-、SH-、P-、PS-、PS2-、PSO-、Li2+、Li2S+、Li3S+、Li3O+和Li2OH+的信号强度随着深度的增加而增加,表明Li2O(Li3O+)、Li3P(P-)、LiSx(Li2S+, Li3S+)、 LiOH(Li2OH+)、LiSH(SH-)和与Li7P3S11有关的离子性物种PSx-(P-、PS-、PS2-、PSO-是PSx-的氧化产物)在SEI层的分布相对较多,在SEI表层的分布较少。与无机物的信号强度相比,大多数有机物(CHO2-, C2HO-, CH3+, C2H3+, C2H5+, C3H3+, C3H5+, C3H7+, C4H7+)的信号强度较弱,并随着深度的增加而降低,说明它们只分布在SEI表面。相反,CH-和C2H-信号强度较强,并随深度的增加而减少,表明SEI中的有机物质。这些二级离子片段的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图8g)。从上述数据中,可以得到一个相对清晰的SEI结构。β- Li3PS4/S界面层被分为两层。靠近Li-BP-DME的一层是溶解的β-Li3PS4/S,因为在这层中同时存在着与Li3PS4有关的离子物种PSx-和与DME有关的有机离子物种CH-, C2H-, CHO2-, C2HO-。此外,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH也存在于该层中,它们相互配合,提高了Li+的导电性和负极端的电子绝缘性。另一层是靠近硫化物SE Li7P3S11的致密的β-Li3PS4/S层。受TOF-SIMS测量范围的限制,SEI的深度为500nm,小于SEM显示的SEI层厚度的1μm(图6n和图6p)。然而,根据有机和无机物质随深度增加而变化的趋势,可以推断出SEI具有上述的双层结构。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。【结论】总之,通过一系列系统的表征,明确了硫化物SE Li7P3S11与有机LE Li-BP-DME之间的界面反应机制。在此基础上,设计并探索了硫化物SE (Li7P3S11)与有机LE (Li-BP-DME)之间稳定的界面层材料,从而突破了硫化物SE与有机LE之间长期存在的固-液界面相容性难题。事实证明,PEO-LiTFSI聚合物界面层和β-Li3PS4/S界面层在近1100h和1000h的长期稳定循环中是有效的。此外,对这两种界面层进行了详细的描述,以深入了解其保护机制。该工作为解决硫化物固体电解质与有机液体电极之间的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【作者及团队介绍】 第一作者:彭健,男,博士毕业于中科院物理所。研究方向为新型电极材料、新型硫化物固态电解质材料及电池研究。伍登旭,男,本科毕业于北京理工大学化学与化工学院,现为中科院物理所E01组研究生。主要研究方向为硫化物固态电解质及其界面问题。姜智文,男,本科毕业于南京工业大学,现为英国南安普顿大学研究生。主要研究方向为硫化物固态电解质及其界面问题。 合作作者:陈立泉:中科院物理所博士生导师。中国工程院院士。北京星恒电源股份有限公司技术总监。曾任亚洲固体离子学会副主席,中国材料研究学会副理事长,2004年至今任中国硅酸盐学会副理事长。主要从事锂电池及相关材料研究,在中国首先研制成功锂离子电池,解决了锂离子电池规模化生产的科学、技术与工程问题,实现了锂离子电池的产业化。近年来,开展了全固态锂电池、锂硫电池、锂空气电池、室温钠离子电池等研究,为开发下一代动力电池和储能电池奠定了基础。曾获国家自然科学奖一等奖、中科院科技进步奖特等奖和二等奖,2007年获国际电池材料协会终身成就奖。2001年当选为中国工程院院士。合作作者:李泓:中国科学院物理研究所研究员,博士生导师。主要研究方向为高能量密度鲤离子电池、固态鲤电池、电池失效分析、固态离子学。提出和发展了高容量纳米硅碳负极材料,基于原位固态化技术的混合固液电解质高能量密度鲤离子电池及全固态电池等。发表了470余篇学术论文,引用47000次,授权70余项发明专利,H因子115。国家重大人才工程B类专家,荣获国家杰出青年科学基金资助。目前是科技部和工信部+四五储能和智能电网重点专项实施方案与指南编写组的总体组组长,国家新能源汽车创新中心学术委员会委员。国际固态离子学会、国际鲤电池会议、国际储能联盟科学执委会成员。围绕固态电池,推动孵化成立了多家企业。 通讯作者:吴凡:中科院物理所博士生导师、共青团常州市委副书记。入选国家级人才计划、中科院人才计划、江苏省杰出青年基金。获全国青年岗位能手(共青团中央)、全国未来储能技术挑战赛一等奖、全国先进储能技术创新挑战赛二等奖(国家工信部)、江苏青年五四奖章等荣誉。

库伦硫化物发生器相关的方案

  • PFPD 按照ASTM D 6228-11方法检测天然气中的硫化物
    天然气是当前人类社会最重要的能源之一,主要存在于石油,煤以及页岩等地质层中,开采的天然气中会有杂质、硫化物等。硫化物具有一定毒性,会使催化剂中毒失效,且其在潮湿条件下腐蚀性较强,可能会造成天然气集输管网腐蚀穿孔,从而引起严重的生产事故,威胁现场工作人员生命安全。所以需要对杂质和含硫化合物充分的脱除。但是商品化后的天然气也并不是完全不含硫化物,为了避免泄漏后不被人察觉,会人为添加具有刺激性气味的硫化物,以避免发生爆炸事件。所以对天然气中硫化物的检测,一方面需要确定脱硫后的天然气中硫的含量符合标准,另一方面,也可以确定所含的刺激性硫化物的含量,从而适量的添加,以起天然气泄漏是的提醒作用。该方法采用PFPD(脉冲火焰光度检测器)检测天然气中的硫化物,其方法内容遵循ASTM Method D 6228-11;该标准中采用气相色谱-火焰光度检测器(GC-FPD)检测天然气中的硫化物。
  • 应用方案 | 水中低浓度硫化物的检测
    含硫化物的水多呈现黑色,且有刺激性的臭味,这主要是由于H2S气体不断从水中释放所致。水中的硫化物容易水解,以H2S形式释放到空气中,被人大量吸收后马上恶心呕吐,甚至会呼吸困难、窒息等,发生强烈的致毒感。如果空气中达到15~30 mg/m3,会导致眼膜发炎,视神经受到损害。逸散于空气中的H2S长期被人吸入体内,可与人体内细胞色素、氧化酶及人体蛋白、氨基酸中的二硫键(-S-S-)作用,影响细胞的氧化过程,造成细胞缺氧,危及人的生命。如果长期饮用含硫化物较高的水,会造成味觉迟钝、食欲减退、体重减轻、毛发生长不良,严重时发生衰竭和死亡。
  • 使用安捷伦 GC/Q-TOF 分析咖啡中的挥发性硫化物
    咖啡中释放出来的挥发性硫化物对咖啡的香气和味道起着非常重要的作用。由于许多香味化合物都是以痕量水平存在,对怡人的咖啡香气进行完全表征是一项比较困难的事情。复杂食物基质中痕量水平(低ng/mL 级)硫化物的定性和定量通常需要耗时的样品制备过程和高分离度的复杂仪器,如2D GC/MS 联用仪。使用高分辨率、高灵敏度和快速分析的安捷伦GC/Q-TOF 系统,可以通过最少量的样品制备和1D GC 标准方法得到高质量、一致性的结果。对于GC/Q-TOF 方法,只需对样品进行简单的液液萃取,即可进行咖啡中挥发性硫化物的分析。具有低质量误差的高分辨率的质谱图有助于在严重基质干扰下对目标化合物进行识别和分析。7200 GC/Q-TOF 具有低pg 级的方法检出限,质量精度误差小于 5ppm。基质中检测的线性范围高达3 个数量级,线性相关系数大于0.995。对ng/mL 级的2- 噻吩甲醛和2- 乙酰基噻唑成功运用了标准加入法进行测定,这个浓度是咖啡萃取物中的天然浓度水平。总之,安捷伦7200 GC/Q-TOF 可对复杂食物基质中的化合物进行痕量水平分析,无需复杂繁琐的样品制备和分离方法。

库伦硫化物发生器相关的资料

库伦硫化物发生器相关的试剂

库伦硫化物发生器相关的论坛

  • 硫化物会和联氨/羟胺发生反应吗?

    [size=16px]请教下大佬们,[color=#3333ff]硫化物会和联氨/羟胺发生反应吗[/color]?联氨(N2H4,-2价),羟胺(NH2OH,-1价),硫化物(-2价,最低价态)虽然从氧化还原价态上,联氨和羟胺不会被硫化物还原为更低价的NO3-(+5价)或NO2-(+3价),但它会不会被硫化物氧化为NH4+(-3价)呢?能不能查到相应的化学反应方程式?求助!!谢谢大家!![/size]

  • 为什么测硫化物的时候要加入适量盐酸羟胺,可以有效防止水样中氧化性物质与硫化物发生氧化还原反应

    为什么测硫化物的时候要加入适量盐酸羟胺,可以有效防止水样中氧化性物质与硫化物发生氧化还原反应

    [size=16px]我在查资料的时候发现有文件说,测硫化物的时候要[color=#ff0000]加入适量盐酸羟胺[/color],可以有效[color=#009900]防止水样中氧化性物质[/color]与硫化物发生氧化还原反应。虽然现行标准没有这一步骤,但我好奇的是盐酸羟胺在这里起到什么作用?它是怎么作用的?盐酸羟胺是会先消耗掉氧化物质,避免和硫化物反应,而其本身又不会和硫化物反应吗?[/size][size=16px]有没有大佬了解这个问题?求教!!万分感谢!![img=,690,645]https://ng1.17img.cn/bbsfiles/images/2023/03/202303261525145500_654_5383916_3.jpg!w690x645.jpg[/img][/size]

  • 我国学者发现低熟原油的极性有机硫化物DBE增加原因

    沉积有机质中往往含有丰富的有机硫化物,除了只含硫的常见硫化物如硫醚、四氢噻吩、噻吩和苯并噻吩之外,还包含一些包含其他杂原子(如含N或O)的有机硫化物。为了与普通硫化物区分,我们称之为极性有机硫化物(如N1S1,N1S2,O1S1,O2S1等等)。与一般的有机硫化物相比,极性有机硫化物因为杂原子多,因而有着较高的极性,其组成非常复杂,用常规分析手段很难分离分析,它们的成因目前也尚未明确。根据以上特点,近期广州地化所廖玉宏研究员课题组以江汉盆地高硫低熟原油为研究对象,利用具有超高分辨率的傅里叶变换离子回旋共振质谱仪(FT-ICR MS,型号为SolariX XR 9.4T)研究了江汉低熟原油中极性有机硫化物的分布特征,并探讨了其来源。  低熟原油是一种特殊的原油,具有含杂原子极性化合物丰富的特征,它经历的埋藏深度浅、热演化程度低,因而保留了很多原生的地球化学信息。研究发现,在江汉低熟油中,硫元素主要以形成硫杂环而不是形成硫醚的形式存在于有机化合物的分子结构中。硫杂环以及稠合的芳环个数的增加,都会导致硫化物和极性有机硫化物的等效双键值(DBE)增加。  极性硫化物与相应的极性化合物的分布特征对比研究结果表明,某些极性有机硫化物很可能是由沉积可溶有机质中一些包含活跃官能团(如共轭的C=C双键、羟基)的前驱体在成岩阶段早期经由分子内硫化作用形成的。在此过程中,这些前驱体能够形成的硫杂环个数受其分子结构中活跃官能团数量的控制:比如一对共轭的C=C双键能够通过与微生物的硫酸盐还原作用(BSR)形成的H2S发生加成反应而形成一个四氢噻吩环,而不含活跃官能团的前驱体分子则无法发生加成反应被硫化。需要注意的是,由于其具有反应活跃的特点,含活跃官能团的前驱体分子既可以发生硫化形成有机硫化物,也可以发生氢化形成相应的烃类。如果分子结构中的活跃官能团数量足够多,则可能有一部分官能团发生氢化而其他官能团发生硫化,即硫化和氢化之间存在竞争。比如含有40个C原子的类胡萝卜素分子结构中共有11个共轭的C=C双键,可以通过硫化和/或氢化形成含0~5个硫杂环的一系列化合物,分子结构中每增加一个硫杂环,化合物的DBE增加1。此外四氢噻吩环的芳香化会形成噻吩环,导致DBE在原有基础上增加2(图2)。这一系列化合物在江汉低熟原油中都有检测到,从而证实了上述机理的合理性。  硫化作用形成的硫化物或者氢化作用形成的非硫化物都会继承这些前驱体的分布特征(如奇偶优势),因而原油中的极性有机硫化物与一些含氮含氧的极性化合物有着类似的分布特征,差别仅仅在于前者在结构上比后者多了一个或几个硫环。基于这种分子结构上的继承性,通过研究低熟油中的极性有机硫化物的分子结构和分布特征可以还原它们的前驱体在沉积物中的分子结构和分布特征,从而获得有用的地球化学信息。  该项成果得到国家自然科学基金面上项目、中国科学院先导科技专项A以及有机地球化学国家重点实验室自主课题资助。论文近期发表在国际期刊《Organic Geochemistry》上

库伦硫化物发生器相关的耗材

  • 氢化物发生器
    最佳的氢化物原子吸收法应用-我国原子吸收分析行业著名专家吴廷照教授集数十年研究的多项专有技术应用于仪器的相关部件,特别是流动注射氢化物发生器原子吸收的应用,使氢化物原子吸收法的灵敏度和检出限都达到国际最佳水平,例如测砷最佳灵敏度可达0.08ng/ml/1%( 文献指标为0.15 ), 检出限最佳可达0.06ng/ml,精密度RSD
  • 标准口汞发生器
    多孔玻板吸收管,标准口塞气泡吸收瓶,多孔玻柱吸收管,大小包氏吸收瓶,撞击式气体采样瓶,二氧化硫吸收瓶,氮氧化物吸收瓶,标准口索氏提取器,KD浓缩器,砷化氢发生与吸收装置,水蒸气蒸馏装置,BOD培养瓶(双套磨口),COD回流装置,标准口蒸馏器,标准口氨氮蒸馏器,新型硫化物反应吹气吸收装置等一系列环保玻璃仪器!
  • 精密延迟发生器
    Kentech公司的精密延迟发生器无源延时线是一种小型工具,是专为快速摄像系统和其他快速仪器的关键时序调整而设计的,精密延迟发生器可以应用于快速取景相机的帧间定时调整,和激光系统的触发或脉冲整形。也提高其它延迟长度和调整档幅度满足顾客的特殊要求。精密延迟发生器特点可以延迟任意输入的信号,延迟调整范围是在25ps档,20ns内。延迟发生器的组成部件有一组转换的50Ω校准延迟线以及控制微机。不会产生内部振动,上升时间小于1ns,高电压进行短脉冲。在前面板或RS232遥控接口设置延迟。当前的延迟设置显示在LCD显示器上,设备具有相对或绝对延迟模式。使用相匹配的继电器,切换延迟线的各个部分,设置延迟。整个调整范围内,上升时间可以重复设置,所有延迟设置的上升时间少于0.8ns。该延迟发生器有延迟短,相对高电压的触发信号的功能。Kentech公司的许多高压脉冲发生器可以使用此功能在两个或多个输出脉冲通道之间实现高度稳定的相对定时。精密延迟发生器产品规格?最大可调延迟 20ns?延迟增量 25ps?最小设置时的吞吐量延迟 6ns?增幅间误差?振动 零有效,机械装置。?特性阻抗 50?。?电压处理 直流30V。随着脉冲信号电压高达30V,可能改变延迟,但信号通过设备播。 如果延迟设置不改变,脉冲传播, 脉冲限制1.8μA库仑。如为2ns 时1.5KV。?使用前面板键和串行端口进行全功能控制。?LCD显示状态和功能。?串口RS232,75到9600波特,(率存储在EEPROM),需要从终端或模拟器得到简单文本命令。?延迟 绝对或相对。?内存 非易失性内存存储最后一次手动延迟设置和相对或绝对延迟模式,绝对最小延迟和波特率。(请注意,当电源关闭时延迟将恢复到最小值,但信号仍然会被传输。) ?尺寸 270 x 210 x 87 mm 3 ?电源 要求通用电源 功率约20W。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制