控温光催化反应仪

仪器信息网控温光催化反应仪专题为您提供2024年最新控温光催化反应仪价格报价、厂家品牌的相关信息, 包括控温光催化反应仪参数、型号等,不管是国产,还是进口品牌的控温光催化反应仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合控温光催化反应仪相关的耗材配件、试剂标物,还有控温光催化反应仪相关的最新资讯、资料,以及控温光催化反应仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

控温光催化反应仪相关的厂商

  • 上海利闻科学仪器有限公司(Shanghai LeewenScientific Instrument Co.,Ltd.),坐落于上海市嘉定区,是一家集研发、生产、销售和服务于一体的生产商。公司汇集电子、制冷、设计、制造、等多方面技术和人才,集中致力于实验仪器和生物医学工程等高新技术领域,专业化提供生化仪器、分析仪器、玻璃仪器等实验室产品。主要研发生产:低温恒温设备、小型喷雾干燥机、光催化反应仪、拍打式均质器、超声波细胞粉碎机、雪花制冰机、昆虫嗅觉仪等实验室设备。经营理念:细心于我们的服务,专心于我们的质量 以质量求生存,以质量求发展,向质量要效益 以最合理的价格,最完善的服务,提供最优秀的产品
    留言咨询
  • 光催化反应器/反应仪_连续流反应器_高压恒流泵_[杭州布瑞利斯] (bril-tech.com)
    留言咨询
  • 皇河科技中国有限公司,由皇河科技(香港)有限公司和广州皇河仪器科技有限公司组成,一直致力于为高校研究所实验室和企业质量管理部门提供专业和优质的解决方案,让分析和研究实验更轻松、更精准!我们签约代理的产品: 理化分析: - 梅特勒-托利多 分析天平, 卤素水分测定仪, pH/电导/溶氧/离子浓度计、滴定仪/卡氏水分仪、密度/折光计等 - 西班牙Telstar 冷冻干燥机(冻干机)/生物安全柜 - 德国VITLAB 移液器、瓶口分液器、瓶口滴定装置、电动吸液器、计量塑料器皿等 - 德国Wiggens 顶置搅拌器、磁力搅拌器、均质器、振荡器、培养箱、本生灯等 - 德国ChemVak 防腐蚀隔膜真空泵、无油活塞真空泵、旋片式油封真空泵等 - 英国Kinesis 色谱柱、氘灯等色谱耗材 - 美国WATERS 液相色谱 - 西班牙Fungilab 粘度测定仪 - 德国VIVO 恒温水浴、恒温振荡水浴、加热冷却循环温控装置生命科学: - 美国Beckman Coulter 离心机、核酸蛋白分析仪、细胞计数器等 - 西班牙Telstar 冷冻干燥机(冻干机)/生物安全柜 - 英国KGW 液氮罐、杜瓦瓶等 - 美国Wheaton 细胞反应器、转瓶机、细胞培养器皿等 - 瑞士Infors HT 发酵罐 - 德国ChemVak 便携式培养液抽吸系统化学反应系统: - 美国Julabo-ACE 化学反应釜、均质乳化反应釜、高温高压反应釜、超声反应釜、光催化反应釜等材料分析: - 美国AMETEC 材料试验机(拉力机)、密度梯度柱、熔融指数仪、硬度计、PETPlus粘度仪 更多信息请拨打020-89606080与我们联系
    留言咨询

控温光催化反应仪相关的仪器

  • 控温光催化反应仪 400-860-5168转4202
    控温光催化反应仪JT-GHX-AC光化学反应仪, 又称为光化学反应釜,多功能光化学反应器.主要用于研究气相或液相介质、固定或流动体系、紫外光或模拟可见光照、以及反应容器是否负载TiO2光催化剂等条件下的光化学反应。具有提供分析反应产物和自由基的样品,测定反应动力学常数,测定量子产率等功能,广泛应用化学合成、环境保护以及生命科学等研究领域。主要特征:1.光化学反应仪智能微电脑控制,可观察电流和电压实时变化 2.进口光源控制器,内置光源转换器,功率连续可调,稳定性高 3. 光化学反应仪具有分步定时功能,操作简便 4.反应暗箱内壁使用防辐射材料,且带有观察窗 5.采用内照式光源,受光充分,灯源采用耐高压防震材质,经久耐用 6.配有8(6/12可选)位磁力搅拌装置,使样品充分混匀受光 7.双层耐高低温石英冷阱,可通入冷却水循环维持反应温度 8.光化学反应仪高温度保护系统,自动断电功能 9.机箱外部结构设有循环水进出口,内部设有2个专用插座,供灯源和搅拌反应器用 技术参数:型号:JT-GHX-AC多试管控温光化学反应仪 (一)主体部分 1.光源功率可连续调节大小。 2.集成式光源控制器,可供汞灯、氙灯、金卤灯等多种光源使用。 3.汞灯功率调节范围:0~1000W可连续调节。 4.氙灯功率调节范围:0~1000W可连续调节。 5.金卤灯功率调节范围:0~500W可连续调节。 (二)小容量反应部分 1.石英试管规格:30ml、50ml(或定做)。 2.可同时处理8个样品(或定做)。 3.八位磁力搅拌装置可同步调节8个样品的搅拌速度。 (三)控温装置 1.冷却水循环装置制冷量:>1000W 2.控温范围:-5°C到100°C 3.冷却水循环装置设有脚轮和底部排液阀。性能特点:1、光催化反应仪电气控制部分与保护反应暗箱分开,装配、维护、升级方便合理,整机大气美观! 2、光催化反应仪主控电源控制器光照时间数显灵活控制,适合记时作业和数据对比实验使用! 3、专业稳定的模拟光源和稳定、节省空间的体积设计,特别适合空间有限的实验室配备! 4、配套有多试管磁力搅拌器反应器功能,弥补了多试管围绕光源旋转不合理性和多试管自转机械性能差的弊端,可实现同时、部分试管充气功能,多试管磁力搅拌器反应器实际实用价值性能卓越! 5、配套有多口磁力搅拌反应容器功能,可以使反应过程具有强磁力搅拌、充气、放气、密封、测温等功能! 6、光催化反应仪配套有固体反应装置,可以对固体物质进行光催化反应,高效聚光装置提升催化速度! 7、本型号光化学反应仪增添了非实验阶段自动遮光装置,将开启光源初灯光闪烁不稳定及阶段取样的光源遮住,使实验精度提高。 8、配套有缺水报警装置,当冷却水供给出现水压不足或者漏水严重影响到实验安全性时,发出报警声,提醒操作人及时检查水源供给状况。 9、光催化反应仪配置有冷却水供给装置,进口压缩机无氟作业,确保光源长时间稳定运行,适合连续作业实验。该低温冷却水供给装置自身配备有静音外循环泵,提供冷却水循环增压,同时节约水源的浪费。 10、冷却水供给装置采用触摸按键控制,界面大方,无传统面板仪表外观呆板之感,防水防高温,可根据客户要求增添USB电脑接口和操作软件驱动,数字化作业感优越! 11、灵活多样的产品设计,可以根据客户的要求制定 小容量光化学反应仪产品配置:配置单数 量德国莱茵证书1份控制主机1台反应暗箱1台光源控制器1台双层石英冷阱1个专用循环机1套汞灯(1000W)1支氙灯(1000W)1支金卤灯(500W)1支搅拌装置1套反应罐16只(30ml,50ml各8只)移动推车1个
    留言咨询
  • 光催化反应器,三联光催化反应器,反射式三联光催化反应器,反射式恒温高通量光催化反应器,光催化反应器,产品名称:反射式三联光催化反应器产品类型:光催化反应釜反射式三联光催化反应器产品名称反射式三联光催化反应器 (基础型)反射式三联光催化反应器 (Pro专家型)制冷形式双半导体模块制冷压缩机制冷,直流变频压缩机, R134a环保制冷剂名义制冷量110W×2130-455W制冷消耗功率 (含风机)400W70-220W空载zui低制冷温度18℃10℃带载zui低制冷温度28℃15℃温度控制方式ON/OFF位式调节直流变频,制冷量无极调节恒温精度±1℃±0.2℃装置形式一体式主机+反应腔模块化, 反应模块可任意快拆快装替换搅拌转速0-1000rpm0-1000rpmLED灯电源输出4路预留,24V 8A4路预留,24V 8A总功率(含光源)600W400W反射式恒温高通量光催化反应器(基础型) 反射式三联光催化反应器1、创新性的采用多面反射式设计,将传统光化学反应单面照射改进为前部后部、下部三面照射,使得反应管内的溶液能够更均匀的接受光照;2、内置半导体制冷恒温系统,能够保证反应室内温度在三台Kess灯满功率照射时,温度不高于25℃,减少了光源的热效应对反应的影响,确保实验数据的准确可靠;3、内置磁力搅拌系统,搅拌转速0-1000pm连续可调4、可按需定制适配多种反应试管、Schlenk管、反应瓶的支架,可轻松实现多联高通量实验;5、这个催化装置是专为Kessel光源设计的,能解决传统直接照射式的光催化反应热效应大、照射不均的问题。反射式三联光催化装置(Pro专家型) 反射式三联光催化反应器1、主机外壳采用碳钢喷塑,反应腔体采用蓝色尼龙板,二者快拆式锁扣连接;2、采用模块化设计,反应模块可任意快拆快装替换;3、个性化需求。可根据实验需要,换装不同尺寸规格和照射形式的反应腔体,实现一机多用;4、采用直流变频压缩机,更好的控温精度和效果;5、磁力搅拌采用3个独立电机分别驱动,性能更可靠;6、压缩机的内置隐形设计,美观且小巧。
    留言咨询
  • 光催化反应仪CY-GHX-AC控温紫外光反应装置光化学反应仪, 又称为光化学反应釜,多功能光化学反应器.主要用于研究气相或液相介质、固定或流动体系、紫外光或模拟可见光照、以及反应容器是否负载TiO2光催化剂等条件下的光化学反应。具有提供分析反应产物和自由基的样品,测定反应动力学常数,测定量子产率等功能,应用化学合成、环境保护以及生命科学等研究领域。 主要特征:1.光化学反应仪智能微电脑控制,可观察电流和电压实时变化2.进口光源控制器,内置光源转换器,功率连续可调,稳定性高3. 光化学反应仪具有分步定时功能,操作简便4.反应暗箱内壁使用防辐射材料,且带有观察窗5.采用内照式光源,受光充分,灯源采用耐高压防震材质,经久耐用6.配有8(6/12可选)位磁力搅拌装置,使样品充分混匀受光7.双层耐高低温石英冷阱,可通入冷却水循环维持反应温度8.光化学反应仪高温度保护系统,自动断电功能9.机箱外部结构设有循环水进出口,内部设有2个专用插座,供灯源和搅拌反应器用 技术参数:型号CY-GHX-ACY-GHX-ACCY-GHX-BCY-GHX-BC主体部分1.光源功率可连续调节大小。2.集成式光源控制器,可供汞灯、氙灯、金卤灯等多种光源使用。3.汞灯功率调节范围:0~1000W可连续调节。4.氙灯功率调节范围:0~1000W可连续调节。5.金卤灯功率调节范围:0~500W可连续调节。反应部分1.石英试管规格:30ml、50ml(或定做)。2.可同时处理8个样品(或定做)。3.八位磁力搅拌装置可同步调节8个样品的搅拌速度。1.玻璃反应器皿可以分别选用250ml、500ml、1000ml等(或定做)。2.大功率强力磁力搅拌器使样品充分混匀受光。制冷装置(选配)制冷装置(标配)制冷装置(选配)制冷装置(标配)控温装置(可选配)1.冷却水循环装置制冷量:>1000W2.控温范围:-5°C到100°C3.冷却水循环装置设有脚轮和底部排液阀。 光催化反应仪CY-GHX-AC控温紫外光反应装置光催化净化技术主要是利用光催化剂二氧化钦(T' 02)吸收外界辐射的光能,使其直接转变为化学能。当能量大于Ti02禁带宽度的光照射半导体时,光激发电子跃迁到导带,形成导带电子(e-),同时在价带留下空穴阶(h+)。由于半导体能带的不连续性,电子和空穴的寿命较长,它们能够在电场作用下或通过扩散的方式运动,与吸附在半导体催化剂粒子表面上的物质发生氧化还原反应,或者被表面晶格缺陷俘获。空穴和电子在催化剂粒子内部或表面也能直接复合,空穴能够同吸附在催化剂粒子表面的月口一或HZO发生作用生成经基自由基HO " , HO.是一种活性很高的粒子,能够无选择的氧化多种有机物并使之矿化。由于光催化还属于一种新兴的技术,有很多因素还需要额外考虑,诸如纳米光催化剂的制备技术、纳米光催化剂的高活性和高寿命技术、纳米光催化剂的固载化技术和纳米光催化剂反应的设计技术,这些因素的实现势必会使得净化器价格攀升,从而影响推广。然而该技术z大的不足在于,从利用太阳光效率的角度看,半导体的光吸收波长范围狭窄,主要在紫外区,利用太阳光的比例低 光生载流子的复合率很高,导致量子效率较低。光催化反应器按光源的照射方式可分为非聚集式反应器和聚集式反应器。非聚集式反应器可以采用电光源,也可以采用太阳光源,光源大多垂直反应面进行照射。该反应器的优点是结构简单、操作方便,缺点是用电光源的反应器运行费用过高,而用太阳光的反应器则反应速率较慢。聚集式反应器以太阳光作为光源,一般采用抛物槽或抛物面收集器来聚集太阳光并辐射在能透过紫外光的中心管上聚集式反应器能够利用直射和反射的光线,在一定程度上克服了非聚集式反应器的缺点。光催化反应器按催化剂的存在形式又可分为流化床反应器和固定床反应器。在流化床反应器中,催化剂粉末直接或负载在颗粒状载体上后以悬浮态存在于水溶液中,能随待处理液发生翻滚、迁移。在固定床反应器中,催化剂多负载在具有较大连续表面积的载体上,待处理液流过催化剂表面发生反应;流化床反应器结构相对简单,催化剂与污染物接触面积大,但催化剂难以回收,活性成分损失大,而且在水溶液中易于凝聚,因此很难成为一项实用的污水处理技术。固定床反应器操作简单,废水可循环处理,实现了催化与分离一体化,避免了催化剂的分离和回收过程。但在高温烧结过程中催化剂的多孔结构和暴露在外的面积会发生变化,催化剂与液相的有效接触面积较小,催化效率不高。目前,载体的选择和催化剂固定技术已成为固定床反应器研制过程中十分关键的环节。影响光催化反应器效率的因素影响光催化反应器效率的因素很多,如光源(光源强度、波段与光照方式)、催化剂性质(催化剂粒径、类型与载体)、氧化剂种类待处理废液性质(废液的初始浓度组成、CL值、抑制物含量)、温度、废液的流动力学特征和停留时间等因素对反应器的运行都有影响,反应器的整体设计要综合考虑这些因素。
    留言咨询

控温光催化反应仪相关的资讯

  • 耐驰技术总监徐梁:级数反应与自催化反应
    p  strong仪器信息网讯/strong 仪器信息网近期开通了a href="https://www.instrument.com.cn/zt/thermalanalysiskinetics" target="_self"热分析动力学专题/a,邀请到了耐驰公司技术总监徐梁。span徐梁/span在热分析领域积累了十余年丰富的理论与实践经验,是行业内资深的热分析应用专家。谈及热分析动力学,徐梁重点介绍了热分析动力学中的级数反应与自催化反应,并以环氧树脂的热固化为例,讲解了如何进行机理函数的判断与选择。/ppstrongspan  /span一、热分析动力学概述/strong/pp  化学动力学是近代物理化学的一门重要分支,它对实践中千变万化的各类化学反应,从反应速率和反应机理角度进行抽象研究,涉及的重要变量有时间、温度、浓度、压强、催化剂、溶剂等。/pp  热分析动力学是对化学动力学的一种简化,它与DSC、TGA为代表的热分析技术结合紧密,将热分析测试手段中不常涉及、或很难研究的一些因子作了简化或合并,从而将反应速率仅仅表示为时间、温度与转化率三个变量的函数。其基本方程的微分形式为:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/dd7f9617-c2d7-47ae-9376-949a1b125dda.jpg" title="001.png" alt="001.png"//pp  这一方程用来唯象地描述如下表观反应:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/eba5cdc2-8760-4634-8422-c89a42750712.jpg" title="002.png" alt="002.png"//pp  在这里,t为时间,T为温度,α为归一化转化率。dα/dt(后文有时简写成img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/ede44961-202a-424f-9b38-08d5aea09178.jpg" title="003.png" alt="003.png"/span style="font-size:14px font-family:' Times New Roman' ,' serif' " /span)则为转化率随时间的变化率,在经典热分析动力学的范畴内,它仅取决于以下两项:/ppspan  strongk(T)/strong/span:速率常数项,表征反应速率与温度的相关性。一般使用阿伦尼乌斯方程的形式:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/73089899-f1c3-4dd4-a393-c110ee6b5e1d.jpg" title="78-3.png" alt="78-3.png"//pp  其中Ea是表观活化能,常用单位kJ/mol。从物理化学角度这一项与反应的激活能位垒有关,在现象层面则与反应速率随温度而变的特性直接相关。活化能越高,改变反应温度对速率的影响越大。A则为指前因子,又称频率因子,是一个直接的正比系数。R为气体常数,R=8.314 J/(mol*K)。/pp  strongf(spanα)/span/strong:机理函数项。表征反应速率与转化率的相关性,可视为对反应机理的数学描述。这一项最为灵活多变,有形形色色的机理函数用来描述不同的反应机理,常见的有级数反应、自催化反应、相边界反应、成核生长反应、扩散障碍反应等大的类别,每一类别包含多个不同的机理函数,用于细化对不同反应的描述。/pp  至于化学动力学中的其他变量,或被略去(如绝大多数热分析测试在常压下进行,因此压强因子被略去),或被归一化处理(如浓度的相对变化被归一化处理为转化率,见后文),或被简并到正比项A(例如分子摩尔浓度、体系粘度、分子截面积等其它影响分子碰撞几率的因素)、指数项Ea(由此Ea被称为“表观活化能”而与真正物化意义上的激活能有一定差异)、甚至机理函数(例如反应界面的几何特性)之中。/pp  由上分析可见,热分析动力学本质上是一种唯象科学,它仅用于对千变万化的热分析数据进行数学层面的抽象与处理,例如对于常见的TGA测试数据,由于失重比例(100%→x%)可归一化为转化率α(0-1),因此一条TGA曲线本质上就是(spanα,t,T/span)三者的函数关系,在转化率-时间曲线上取斜率则为转化速率 img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/a6b72a14-38db-4325-9bb2-c79e8a50caad.jpg" title="003.png" alt="003.png"/(类似于DTG)。DSC曲线与此相似,经一定的修正预处理后,峰面积比例可处理成转化率,对其求导可得到转化速率(形状上类似于DSC热流信号):/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 377px " src="https://img1.17img.cn/17img/images/201907/uepic/10b4065d-eb9f-4ef0-a19f-8d295064b81b.jpg" title="78-4.png" alt="78-4.png" width="600" height="377" border="0" vspace="0"//pp  由此,不管是TGA还是DSC,在数学上均可被抽象为(img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/874668a0-685d-49b1-81be-6b68bcd2042f.jpg" title="003.png" alt="003.png"/,spanα,t,T/span)关系曲线,然后被套入基本方程中进行求解。在求解方式上有无模型动力学与模型动力学两大体系,不管使用哪一种方法,最终都是要求得方程中的Ea、A、以及f(α)相关参数等项,即获取完整的、仅包含(spanα,t,T/span)三变量的动力学方程,此时反应(转化率spanα/span 、转化速率img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/d4f24016-3891-46c2-bad1-f6a68f5d6a26.jpg" title="003.png" alt="003.png"/)随时间(t)、温度(T)、以及温度微商(升降温速率dT/dt,一般写成β)的演变规律可视为已知。因此从方程出发,可对实际不同控温程序下的反应进程进行预测,或按照速率控制要求对控温程序进行模拟优化,用以指导实际控温工艺,获取期望的反应进程。/pp  以上是对热分析动力学作一全景式的概略介绍。热分析动力学作为物理化学与实验技术相结合的一门分支学科,所涉甚广。篇幅所限,下文仅对均相反应体系中常用的两大类机理函数:级数反应与自催化反应作进一步的讨论。/pp  strong二、均相反应体系/strong/pp  所谓均相反应体系,指的是反应物分子均匀地分布在反应体系中,宏观上各区域之间没有明显的浓度差,在任一时刻体系各处的反应速率相同的一种理想状态。在这种反应体系中,除温度之外,分子浓度及其变化是决定反应速率的主导因素。/pp  与之形成对比的是,异相(也称为非均相)反应体系有着明显的反应界面的概念,分子的化学反应仅发生在一定的反应界面上。在这种体系中,浓度的变化不再是速率的主导因素,事实上,在界面之外,分子始终保持原始浓度,而反应速率为零。除温度之外,决定界面上的反应速率的,仅仅只是反应界面的几何特性,及其随时间的演变方式(扩展,收缩,增厚)、演变维度(一维、二维、三维)。/pp  不管是均相还是异相体系,都只是一种理想化的数学模型。实际的化学反应体系往往更为复杂,但在小尺度反应(例如热分析的小量样品测试)、传质传热理想化的情况下,大体可归为这两类体系之一。在热分析领域,均一的纯液相反应(例如溶液中的反应)一般可归为均相反应,涉及多相的反应(气固、液固、气液、固固多相、液液多相)一般为异相反应,个别反应界面概念模糊的纯固相反应有时也可简化处理为均相反应。在获取了小尺度反应模型之后,对于实际工业应用的尺度放大,应附加传质传热的相关修正。/pp  需要注意的是,这里的均相、异相涉及的是反应物与产物的相态,而与材料本身是否成分均匀、单一无关。例如固体的结晶反应,虽然材料的化学成分很纯,但由于晶区与非晶区相态不同,反应为异相反应。而纤维增强预浸布中的液态树脂的固化反应,尽管宏观材料为复合材料,包含多种成分(树脂,纤维等等),甚至在小尺度上纤维增强体的分布都不一定均匀,但假如不考虑树脂与纤维之间的相互作用,把固化反应简化为主要在液态树脂内部进行,仍然可视为均相反应。/pp  strong三、级数反应/strong/pp  级数反应是最简单、也是最常用的一种均相反应模型。这里考虑的是反应过程中,反应物的浓度下降对反应速率的影响。其通式为:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/e20b9426-ee5c-4548-814b-e9587b553554.jpg" title="004.png" alt="004.png"//pp  在这里,相对的浓度变化,被归一化处理为转化率:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/b8206b8f-a3d3-4015-bfe4-41d8cb6aab49.jpg" title="005.png" alt="005.png"//pp  例如体系中反应物的初始浓度为0.7mol/L,反应结束时反应物浓度下降为0.2mol/L(实际反应中反应物不一定消耗完全)。则该浓度的相对变化被归一化处理为0-1的转化率。即:/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none" align="center"tbodytr class="firstRow"td width="202" valign="top" style="background: rgb(191, 191, 191) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"摩尔浓度/spanspan mol/L/span/p/tdtd width="202" valign="top" style="background: rgb(191, 191, 191) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family:宋体"转化率α(无因次量)/span/p/tdtd width="202" valign="top" style="background: rgb(191, 191, 191) border: 1px solid rgb(0, 0, 0) padding: 5px "pspan1 - /spanspan style="font-family:宋体"α/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.7/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan1/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.6/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.2/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.8/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.5/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.4/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.6/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.4/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.6/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.4/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.3/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.8/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.2/span/p/td/trtrtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0.2/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan1.0/span/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan0/span/p/td/tr/tbody/tablep  这里1-α与反应物在反应过程中的相对剩余量相对应,而我们似乎丢失了绝对摩尔浓度的相关信息。事实上,反应物浓度为0.7mol/L、还是7mol/L,对反应速率当然有影响,但该影响已被抽离、并归到正比因子A之中。摩尔浓度高的体系,分子碰撞几率大、或者说碰撞频率较高,反应速率通常较快,因此频率因子A会较大。由此使用经典的热分析动力学方法,对同一反应、不同摩尔浓度下的测试结果进行建模,指前因子很可能不同。这是需要注意的一点。/pp  在均相体系中,级数为整数、具有明确物理化学意义的级数反应,常见的有如下两种:/pp  strong一级反应(F1)/strong:n=1,strong style="white-space: normal "f(α)=1-/strong strong style="white-space: normal "α/strong。即在温度不变的情况下,反应速率与反应物的相对剩余量成正比,或者说在反应过程中,随着反应物的消耗与转化,反应速率同比下降。这种情况常见于均相体系中的单分子反应 A à B,例如分子内结构重排、自发衰变、部分液相分解反应等。/pp  strong二级反应(F2)/strong:n=2,strong style="white-space: normal "f(α)=(1-/strongspan /spanstrong style="white-space: normal "α)sup2/sup/strong 。在温度不变的情况下,反应速率与表观反应物相对剩余量的平方成正比,常见于液相中的双分子反应,例如 2A→B。/pp  我们再从数学上观察一下,对于/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/eecab12f-4820-4035-b6bb-97c15fb82280.jpg" title="004.png" alt="004.png"//pp  这个方程,当n取不同值时,f(α)随α的变化关系。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 490px " src="https://img1.17img.cn/17img/images/201907/uepic/4426359a-09c9-4068-860b-0856206ea040.jpg" title="78-7.png" alt="78-7.png" width="600" height="490" border="0" vspace="0"//pp  上图可见:/pp  1. 所有曲线的最大值均出现在起点处。这意味着在温度不变的情况下,级数反应以开始发生时速率最大,随后速率单调下降。/pp  2. 以n=1为对角线,n越大,f(α)随α衰减越快,表明反应级数越高,随着反应物的转化,反应速率下降趋势越明显。/pp  从物理化学角度,反应级数应为正整数,且很少超过3(多于三分子共同参与的合成反应很少见)。但从表观动力学的数学拟合意义上,反应级数可以是非整数,取值范围可以超过3,也可以小于1,但这种情况往往是内在非均相反应机理的表现。例如用级数函数拟合,级数超过3或更高,表明反应速率随着反应物的转化而快速下降,有可能涉及到产物堆积于界面的界面扩散障碍反应 若级数小于1,有可能牵涉到界面收缩的相边界反应,例如n=2/3对应界面球状收缩的三维相边界反应,n=1/2对应界面柱状收缩的二维相边界反应,n=0(零级反应)对应界面面积不变的一维相边界反应。/pp  strong四、自催化反应/strong/pp  自催化反应,有时也称为自加速反应,是指随着反应的进行,产物的生成会对反应起到促进作用。这类反应的机理函数通式为扩展的Prout-Tompkins方程(Bna):/pp  这里1-α对应于反应物的相对剩余量,α对应于产物的相对生成量,而反应速率同时是这两者的函数,随反应物的消耗而速率下降,随产物的生成而速率上升。从物理化学角度,这类反应常见于发酵反应、聚合反应、链式反应等。/pp  最简单的自催化反应是Prout-Tompkins方程(B1),即上式中的n、m两个级数均为1:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/b05adcea-dcb1-4812-bee9-6ae7cacd54fb.jpg" title="006.png" alt="006.png"//pp  用以描述类似如下的反应过程:/pp style="text-align: center "span style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/e4cbeff3-d9c6-4b76-9fd1-9185c4fc2139.jpg" title="008.png" alt="008.png"/  /span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 353px " src="https://img1.17img.cn/17img/images/201907/uepic/8a3c8f6e-3f53-4469-b33d-430da6f2c90a.jpg" title="78-8.png" alt="78-8.png" width="600" height="353" border="0" vspace="0"//pp  在这里,反应速率本应随着A的消耗而下降,但产物B一旦生成,即作为反应物之一,参与并促进了反应的进行。因此在反应的起始阶段,当B的量甚小时,反应速率不高 在反应的终止阶段,A的剩余量已降至甚低,反应速率也不高。反应最大速率点将出现在A与B的量均较充分的阶段,即反应的中期阶段。这一点可通过对B1方程的作图得到验证:/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 463px " src="https://img1.17img.cn/17img/images/201907/uepic/186c0a07-4589-4535-a641-283327e56493.jpg" title="78-9.png" alt="78-9.png" width="600" height="463" border="0" vspace="0"//pp strong 五、热分析曲线 - 级数反应与自催化反应的表现差异/strong/pp  级数反应与自催化反应的差异,在等温实验下表现最为明显。在理想的等温条件下,温度因子k(T)项为常数,动力学方程可简化为:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/9dee8d07-b05a-487d-b356-56848f5ca670.jpg" title="007.png" alt="007.png"//pp  即反应速率img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/75e4c46d-031e-4a70-8621-81ae0087dfd2.jpg" title="003.png" alt="003.png"/与spanf(α)/span直接成正比。而从之前的讨论可知,对于级数反应,f(α)随转化率α单调下降 对于自催化反应,f(α)的极值约出现在反应的中期阶段。实际的等温测试得到的是 (DSC、DTG)随时间t的演变关系,涉及到对上式进行积分,得到α(t)函数后再对t求导,稍微复杂一些,这里不作具体的数学推导。但不管怎样,由于α与t是同向变化关系,因此以上的规律依然存在。/pp  结合物化意义来讲,等温条件下,对于级数反应,反应速率与反应物的量相关,在起始反应时反应物浓度最高,此时反应速率最大,随后随着时间的演变、反应物的消耗而逐渐减速 而对于自催化反应,在反应早期,由于产物B的量很少,对反应的催化作用很不明显,因而此时反应速率甚低,而由于反应速率低,B的量积累很慢,体现在反应初期阶段漫长的低速“诱导期”。当B的量积累到一定程度时,对反应的催化加速效应逐渐明显,随着反应速率的加快又促成了B的大量生成,进一步加速反应,因此在反应中期,反应会有一个快速的提速期。到反应后期,随着反应物A的严重消耗,反应速率再度下降,直至反应完成。/pp  这两类反应的典型等温DSC结果对比如下:/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 300px " src="https://img1.17img.cn/17img/images/201907/uepic/d546d884-cd4a-4b89-8c1d-c0a2e13b14d6.jpg" title="78-10.png" alt="78-10.png" width="600" height="300" border="0" vspace="0"//pp  以上对比结果可通过对两类机理函数的img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/fb3bd5bc-d072-4434-ac01-96c48e0f4fa7.jpg" title="007.png" alt="007.png"/函数推导并作图得到验证。此处略过。/pp  对于动态升温测试,完整的动力学方程为:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/e58ea0fc-084c-4e8c-bd3c-f16861ec3774.jpg" title="78-11.png" alt="78-11.png"//pp  这里除了f(α)变化对速率的影响外,还混入了温度的连续上升对反应的加速作用。因此即使是级数反应,最大速率点也不再出现在反应起始处。事实上,以一级反应为例:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/f1c44c22-a8a2-4048-8eb0-bc188d2eb0b1.jpg" title="78-12.png" alt="78-12.png"//pp  在反应的前半程(spanα 0.5/span ),f(α)项的下降倍率不超过50%,而由温度T上升导致的指数式增速效应要显著得多。因此反应前期速率将逐渐增大。到反应后半程,f(α)将以越来越小的数字乘入到整个速率方程中,即f(α)倍率式减速效应占据主导,因此反应后期速率将逐渐减小。/pp  对于自催化反应,反应初期f(α)甚小,同时温度也较低,因此反应早期阶段整个反应速率都很低,呈现漫长的诱导期,直至随着产物的积累、f(α)的变大,加上温度上升的增速效应,反应可能出现较突然的加速。随后随着反应的快速转化、f(α)的快速减小而减速。/pp  因此在动态升温图谱上,这两种类型反应均体现为“峰”,而自催化反应往往“基线”更平、峰形更尖窄。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 300px " src="https://img1.17img.cn/17img/images/201907/uepic/dbdd1ee0-7a38-4cea-b733-36a4a53741f7.jpg" title="78-13.png" alt="78-13.png" width="600" height="300" border="0" vspace="0"//pp  strong六、复合式自催化反应/strong/pp  单纯的自催化函数,在实际应用中用得较少。道理很简单,若将Prout-Tompkins方程代入动力学方程:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/c65e211b-6ab2-4ced-a3cb-93d84bb7d18e.jpg" title="78-14.png" alt="78-14.png"//pp  在反应起始点,转化率α=0,此时反应速率 。而反应速率为零,意味着反应不会发生,α将始终为0!/pp  或者更具象地,结合Prout-Tompkins方程的化学模型:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/013de288-464b-49f5-be84-36b926d30a9c.jpg" title="008.png" alt="008.png"//pp  反应的进行必须有B的参与。除非在反应体系的初始状态下直接混入一定量的B,否则若以纯A作为起点,在没有B的参与下永远不会有第一个产物B生成,也就意味着反应永远不会发生。/pp  事实上,对于一个实际的反应体系,往往是两种转化路径并行存在:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/77082be0-a07d-4573-b41d-94e6a17904e5.jpg" title="78-16.png" alt="78-16.png"//pp  即A本身可以独立转化为B(或许速率较慢,但有一定的转化几率),而A也可在B的“催化”下生成B(通常更为有效)。/pp  这类反应可称之为复合式自催化反应,在假设两个路径活化能相同的情况下,机理函数通式为Cnm:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/7fa51b57-b7f6-401e-aa5f-50442e66789a.jpg" title="78-17.png" alt="78-17.png"//pp  仔细观察上式可知,这一方程是Fn与Bna两项的加和,在Bna项前加了权重因子(自催化系数)Kcat。/pp  该方程的简化函数有C1(级数项n、m均等于1,即F1与B1的组合)、Cn(m=0,反应物以级数n、而产物以一级形式参与自催化)。其中Cn较为常用。/pp  另如果考虑两个路径活化能不同,有Kamal-Sourour型动力学方程:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/07acd7bb-1aa4-4cd1-b1ef-932a7daca698.jpg" title="78-18.png" alt="78-18.png"//pp  这一方程是活化能不同的Fn与Bna按一定权重加和。/pp  作为级数反应与自催化反应的混合,复合式自催化反应在加速特性方面将介于纯级数反应与纯自催化反应之间,即存在一定的诱导期,在诱导期之后,其反应加速相比级数反应显得较为明显,但又不如纯自催化反应那么突然。当然具体加速表现还取决于两个路径之间的组合权重。/pp  strong七、实例:环氧树脂的热固化 - 机理函数的判断与选择/strong/pp  前文已详细讨论了对于均相反应体系,不同的反应类型(级数反应、自催化反应、复合式自催化反应),其反应进程的特性表现。这里我们将通过对某一环氧树脂固化反应的DSC曲线的动力学拟合,来帮助大家更直观地理解三者的差异。/pp  下图在三个不同的升温速率(5、10、20K/min)下进行了DSC测试,得到了环氧树脂的固化放热峰。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 370px " src="https://img1.17img.cn/17img/images/201907/uepic/5509108f-1f88-4390-bf53-05d1cd8bbe6a.jpg" title="78-19.png" alt="78-19.png" width="600" height="370" border="0" vspace="0"//pp  有相关论文表明环氧树脂的固化为自催化反应。但这里我们先将该论断放在一边,假设我们完全不了解该反应的内在化学机制,因此尝试用不同的机理函数进行拟合,通过拟合匹配的优劣来判断可能的反应类型。/pp  下图彩点为实测曲线,实线为使用级数反应Fn对实测曲线的拟合。我们先前已知DSC信号直接对应于反应速率。/pp  将拟合线与实测线相对比,重点关注反应前期阶段,可见级数反应没有明显的诱导期,加速较为温和,而实测信号左侧水平区较为明显,随后的加速也较为明显(实测线的峰左侧较拟合线更为陡峭),表明反应可能牵涉到自催化机制。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 367px " src="https://img1.17img.cn/17img/images/201907/uepic/20be0d43-239e-474c-bb48-17b5b7e282a2.jpg" title="78-20.png" alt="78-20.png" width="600" height="367" border="0" vspace="0"//pp  下图尝试用纯自催化函数Bna进行拟合。总体拟合质量得到了很大改善,但反应早期阶段仍拟合不佳。从拟合实线可见,纯自催化反应的诱导阶段更长、更接近水平,而随后的加速阶段上升更快。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 368px " src="https://img1.17img.cn/17img/images/201907/uepic/472faf29-bb1d-4f72-a380-1572d96362b9.jpg" title="78-21.png" alt="78-21.png" width="600" height="368" border="0" vspace="0"//pp  下图是用复合式自催化函数Cn得到的拟合结果。此处实测线与拟合线几乎完美吻合,表明反应机理可能为级数路径与自催化路径的组合:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/30deda48-aa86-4a2e-baa1-4d5faef7f4a7.jpg" title="009.png" alt="009.png"//pp  组合权重因子Kcat=1.34。/pp  其它动力学参数如下:/pp  Ea = 46.2 kJ/mol/pp  lgA = 2.5 1/s/pp  n = 1.7/pp  这些数值均在合理的取值范围内。表明该机理函数比较可信。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 367px " src="https://img1.17img.cn/17img/images/201907/uepic/7b27af1c-6991-4d5c-ab6a-8c94ce73c55a.jpg" title="78-22.png" alt="78-22.png" width="600" height="367" border="0" vspace="0"//pp  strong八、总结/strong/pp  热分析动力学是化学动力学与热分析实验手段相结合的一门分支学科,它将影响反应速率的各类因素进行筛选、提炼与抽象,简化为温度与转化率的函数,应用于实验数据的归纳,与不同控温程序下实验结果的预测,或按照速率控制要求对控温程序进行优化。/pp  反应体系可以分为均相体系与异相体系。均相体系中较为常见的反应机理有级数反应与自催化反应。除温度影响之外,级数反应的速率变化仅与反应物的消耗相关,自催化反应则额外引入了产物生成对反应的加速效应。/pp  不同的反应类型,在动力学上使用不同的机理函数进行表征,在热分析曲线上则有着不同的规律性表现(诱导期-加速-减速特性)。在对反应本身的化学机制缺乏了解的情况下,我们可以通过对实测热分析曲线选择不同的机理函数进行拟合对比,根据拟合效果、与动力学参数结果的合理性,来猜测可能的反应机理。/pp  strong参考文献/strong/pp  i1. M.E.Brown:Handbook of Thermal Analysis and Calorimetry, Vol 1, Chapter 3. (c) 1998 Elsevier Science B.V./i/ppi  2. 《化工工艺的热安全 -- 风险评估与工艺设计》 (瑞士)弗朗西斯.施特塞尔 著,陈网桦、彭金华、陈利平 译,刘荣海 审校,科学出版社,2009.8./i/pp style="text-align: right "  耐驰科学仪器商贸(上海)有限公司 应用实验室/pp style="text-align: right "  徐梁/pp style="text-align: right "  2019. 7./pp style="text-align: right "  /ppbr//p
  • 美国麦克推出全自动小型催化反应器
    美国麦克公司推出"Microactivity-Refference"全自动小型催化反应器     美国麦克仪器公司于近日发布了一款全自动小型催化反应器--Microactivity-Refference.它是一款全自动计算机控制的用于催化反应的微型反应器,温度高达1000℃,压力可达100bar。该反应器可实现诸多反应,如加氢裂化,氢化处理,异构反应,加氢反应,加氢脱硫,加氢脱氮,氧化反应,聚合反应,重整(芳构化),水蒸汽重整等等  MICROACTIVITY-Reference该装置为一体结构,包括了电路系统,控制系统和质量流量计系统及置于热箱中的六通阀和反应器。基于具有分布式控制结构的TCP/IP以太通讯技术,系统可以在线远程控制或面板控制。独立于计算机的微处理安全集成控制器。同时,该系统配置了各种选配附件供研究人员选择  如果需要了解更详细的资料,请登陆美国麦克公司中国区网站www.mic-instrument.com.cn或致电中国区各办事处
  • 固体核磁共振“超级放大镜”观察催化反应网络
    2016年,中国科学院大连化学物理研究所(以下简称大连化物所)院士包信和和研究员潘秀莲等提出的OXZEO催化技术发布于《科学》杂志。该项技术自提出以后就广受关注,并且入选了当年的“中国科学十大进展”。  近日,基于OXZEO催化剂设计概念,大连化物所院士包信和、研究员侯广进等利用固体核磁共振技术,在金属氧化物分子筛(OXZEO)双功能催化剂催化合成气转化机理研究领域取得了新进展。相应研究成果于6月23日发表在《自然-催化》上。  重要的催化过程与复杂的反应网络  催化技术在资源利用、能源转化和环境保护等诸多领域发挥着关键作用,是人类现代社会发展速度与质量的重要保证。而石油资源是当代能源和材料的核心来源。近年来,随着石油资源的日益匮乏,寻找补充性乃至替代性技术路径,以此满足现代社会发展日益旺盛的能源和材料需求尤为重要。  我国长期以来“富煤、缺油、少气”的资源结构,导致石油资源长期高度依赖进口。但是石油进口依赖国际环境,价格不可控,获取也容易受限。此外,人们对生态环境的保护意识也在不断增强,改良乃至废止高污染、高排放化工过程的呼声越来越高。但同时,生产效率又不能被牺牲,这使得催化研究领域面临很大的挑战。  针对国家的需求和能源现状,包信和从20世纪90年代回国起就全身心投入到能源小分子催化转化的科学研究中,带领团队深入的开展基础研究,聚焦“纳米限域催化”领域,一干就是二十余年。2016年,包信和与潘秀莲等在煤基合成气转化制低碳烯烃的研究中,创建了OXZEO催化过程。随着研究的不断深入,OXZEO催化概念已拓展成为碳资源转化的重要平台。  然而,OXZEO催化体系中涉及合成气经C1物种到多碳产物的转化过程,其反应网络非常复杂,包含催化剂表面众多的活化过程和复杂的多碳中间体,如何确定其活性组分和中间产物成为研究的难题,反应机理研究面临着挑战。  独特的设计思路  长期以来,基于在表界面催化及固体核磁共振谱学表征领域积累的丰富研究经验,包信和和侯广进等想到可以借助固体核磁共振方法对复杂多碳物种及其所处吸附相化学环境的原子超高分辨表征的优势,实现对OXZEO催化转化过程中催化剂表面活化多碳中间体的准确鉴别。  “在中科院和大连化物所的大力支持下,为研究团队搭建了优异的仪器平台,特别是前些年中科院的修购计划支持了包括高场800MHz固体核磁共振谱仪等的仪器装备,为催化反应机理研究提供了重要的设备保障。”侯广进说。  先进的表征技术和优秀的研究平台是团队在催化反应机理领域克难攻坚的利器。  基于对OXZEO催化过程的大量反应实践,研究团队发现,以甲醇催化转化为代表的传统C1转化反应机理并不能准确解释OXZEO催化体系中观察到的很多实验现象。为了充分论证OXZEO催化体系中包含的特殊反应路径,基于ZnAlOx金属氧化物是典型的合成气转化制甲醇催化剂,而H-ZSM-5分子筛是经典的甲醇转化制烃催化剂。于是团队提出要建立一个ZnAlOx/H-ZSM-5模型催化体系,可以说,这是一种独特的设计思路。  “如果我们可以在模型体系中观测到不同于甲醇直接转化过程报道过的中间体,并能够与OXZEO催化过程中观测到的独特反应现象相关联,”论文的第一作者纪毅说,“我们就可以说明OXZEO双功能催化概念是独特的,而我们观测到的关键中间体也对应了OXZEO催化中涉及的独特反应路径。”  研究人员利用模型催化体系,借助准原位固体核磁共振-气相色谱联用的分析检测方法,观测了从初始碳-碳键生成到稳态转化过程中,包括表面多碳羧酸盐、多碳烷氧基、BAS吸附环戊烯酮、环戊烯基碳正离子在内多种中间体的动态演化过程。检测到了数量众多、种类丰富的含氧化合物中间体物种,揭示了合成气直接转化的OXZEO过程与传统甲醇转化的重要区别,有力的解释了OXZEO合成气转化过程中烯烃及芳烃产物独特的高选择性。  接下来“向前也向后”  在上述研究的基础上,团队进一步提出和论证了一氧化碳和氢气在分子筛中也参与了含氧化合物的生成,并初步建立了OXZEO催化转化过程中C1中间体到多碳产物的反应网络和反应机理。  除了模型催化体系外,研究人员还在多种OXZEO催化剂上均观测到了关键中间体,验证了包括含氧化合物路径在内的反应机理的普适性。  但是,团队的研究工作不止于此,后续的基础研究会“向前也向后”。  “我们会进一步深入开展金属氧化物上C-O、H-H键活化以及C-H键形成的机理研究,进而拓展到其它碳资源转化领域如二氧化碳加氢等。”论文共同第一作者高攀告诉《中国科学报》。  与此同时,大家心里都有一个“梦”,就是将催化机理研究与实际反应密切结合,尽早实现OXZEO过程的工业化。  “基础研究需要一步一个脚印的积累,如果这些催化化学中基础科学问题的研究成果能够帮助应用研究学者建立一套完整的催化体系,设计出更高效的、理想化的催化剂,那我们的梦想就一定能实现。”侯广进提到。  有了前进的方向,整个团队将卯足精神,向前冲锋。侯广进对组内人员也提出了希望:“每个人都要有自己的思考,带着研究性思想去做工作,及时沟通交流,团队合作,协力攻坚,相信我们一定会取得更多、更好的研究成果。”  “作为包老师研究团队中的一个研究组,核磁共振是我们的特色也是优势,与其他几个研究组形成学科交叉、优势互补。最终目标,肯定是要从基础研究推向实际应用。”侯广进说。

控温光催化反应仪相关的方案

控温光催化反应仪相关的资料

控温光催化反应仪相关的试剂

控温光催化反应仪相关的论坛

  • 【讨论】国内外光催化反应器的发展情况

    【讨论】国内外光催化反应器的发展情况

    随着我国社会经济的迅速发展,不可避免地伴随着大量废弃物排放,这导致了严重的环境污染和生态破坏。这些因素正危及我国居民生存安全。另外,调查表明环境污染问题也会影响到我国的可持续性发展。所以,保护与治理环境是构建环境友好、和谐社会和实现我国社会经济叮持续发展的重要任务。传统污染物处理方法不能彻底消除降解污染物,也容易造成二次污染,使用范围窄。仅适合特定的污染物,还伴随着能耗高,不适合大规模推广等缺陷。近些年来,利用光催化技术降解和消除污染物得到人们的广泛关注。光催化氧化技术是一种集高效节能、操作简便、反应条件温和、同时可减少二次污染等突出特点于一身的一项新的污染治理技术,而且从地球卜物质循环的角度来看,光催化技术可以将大量的有机污染物降解为CO2和H2O.从而被植物利用.形成了循环,如图l所示,可以说光催化技术正足人类所急需的一种技术。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206281052_374718_2556116_3.jpg 光催化技术起源于20世纪70年代.自从日本学者Fujishima和Honda发现了利用TiO2单晶可将水光催化分解之后。世界范围内,便开始了光催化氧化技术在污水处理、空气净化、抗菌杀毒等方面的应用研究,于是光催化技术受到全世界的广泛关注。并得到了快速发展。如今人们对于光催化技术的研究主要分为对光催化剂的研究(如TiO2、ZnO)和对光催化反应条件的研究,其中。对反应条件的研究中,人们为了让光催化氧化反应能稳定和高效的进行,会设计出相应的反应器,用来为反应提供良好的平台,一个设计良好的反应器,将能大大提高反应体系的反应效率,从而达到高效、节能、稳定等目的。1 光催化反应器的设计依据 光催化反应器的设计主要目的是为了给光催化氧化反应提供高效和稳定的反应空间和环境。实现光催化过程对光的充分利用,从而提高反应效率。由于光催化反应需要有光子参与,光催化剂才能将光能转化成为化学反应所需的能量,来进行催化降解作用,因而在设计反应器的时候,最主要的两个理论依据就是光的传输理论和催化反应动力学理论。光的传输以及在光在反应器中的分布直接影响到催化剂对于光的吸收效率。充分均匀的催化剂分散可保证光在传输途中浪费少,这样催化剂对光的利用效率高,反之将会有较多催化剂由于得不到或者只接受到很少的光照而不能充分的进行光催化氧化反应。2 国内外光催化反应器的发展 早期的光催化研究大多是在一些很随意的反应条件下进行的。比如在液相光催化反应中,催化剂与污染物溶液混合时,一般的实验过程都是人工用玻璃棒进行搅拌。由于人为误差的因素难以避免,会对结果的准确性和再现性产生较大影响。为了满足对光催化反应器准确、稳定和高效的要求,反应器的设计也在不断的变化。一个设计较好的反应器,不仪可以提高光催化反应的效率,而且可以将其大规模化。可高效稳定的进行光催化作业,从而实现产业化。到目前为止,有一些类型的反应器已经用于诸如污水和空气处理的工业化应用。2.1流动床光催化反应器 流动床光催化反应器是将催化剂与待降解物质直接混合的一种反应器。一直以来,人们都在为满足不同的光催化反应要求,设计不同的反应器。应用最多的儿种类型的反应器包括椭圆型、底灯型和柱型,如图2所示。这几种反应器的特点是不仅效率较高,制作难度低。而且可以用于大多数的反应类型,可以同时满足液相和气相两种类型的光催化反应,因而得到了广泛的应用。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374721_2556116_3.jpg 椭圆型反应器(图2(a)所示)是将灯管和反应区分别放在椭圆的2个焦点上,这样可以很好的将灯管所发出的光集中在反应区内,减少了光的浪费,提高了整体的效率。虽然反应器中的反应区在椭圆型焦点上,但是这不表示灯管所发出的所有光线都能达到反应器,而且这种类型的反应器.光的传输路程较长,这样就增加了光在传输过程中的损失,并且反应区域内光的分布不均匀。底灯型反应器(图2(b)所示)是对椭圆型反应器的改进,它的光源位于抛物线的焦点上,但是光源的光线并不是聚焦在另一个焦点,而是从下往上射人反应区,光进入了反应区域后就不会再被反射回来。更大程度的利用了光源。柱型反应器是现在比较成熟的类型,一般可分为中灯外反应区(图2(c)所示)和中反应区外灯(图2(d)所示)2种。柱型反应器有着较高的光利用率和良好的对称性(可使光在反应区内均匀的分布,减少局部差异)。一些发达园家,这两种反应器已经用来处理污水,在这2种反应器中.光从光源发出来后,基本上都会通过反应区。特别是中灯外反应区这样的反应器.光的利用率几乎可以达到最大。在光源的光照强度合适的情况下,甚至可以不需要反射壁。都可以达到光的最大利用率。而且这种柱型的反应器制造难度小,成本低。适合大规模的生产和运用。因此现在的大多数针对反应器的研究,也是以柱型为模型来进行的。2.2 固定床光催化反应器 在近年来,人们将催化剂固定在一些载体表面来进行催化反应.即固定床反应器,这样避免了光催化剂的分离问题。固定床与传统的流动床的区别在于,催化剂不随液体或者气体一起流动.而是固定在玻璃或者其它介质表面,污染物流经其表面来进行反应。这样一来,人们就可能更精确的了解催化剂的性质,并易于控制催化反应的进行,也易于催化剂和反应物的分离。基于这种思路,人们设计了一些新型的光催化反应器,其中效果比较好的是平板型和喷泉型,如图3所示。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374722_2556116_3.jpg 平板型的反应器是将催化剂固定在平板上,在光照的条件下.将污染物液体或者气体缓慢的通过催化剂表面降解,属于层流型反应器。这种反应器的好处在于制造简单,待降解物经过催化剂的时候光照时间和光照强度基本一致,并很容易控制流动速度。当流速放慢的时候可提高反应物的降解程度。但是所需时问也就相应增加;当加快流速的时候虽然降解的程度不如流速慢的情况.但是所需时间较少。这种平板反应器可以根据不同的降解需求。调整流速,达到相应的效果。平板型的反应器还有另一个其他反应器不具备优点,由于催化剂是固定在平板上的。不会随着待降解物的流动而流动,也就省去了后续催化剂分离的步骤。但是也由于催化剂固定的原因,在降解一定时间后,催化剂的催化效率会降低,而更换催化剂比较困难,并且光的损失也比较严重。因为光源发出的光最多只有50%被利用.即使加装了反射壁.也会有大量的光损失掉。鉴于平板型反应器的造价低.易于控制的优点,很多实验室都运用平板反应器来进行一系列的光催化研究。 喷泉型反应器是近几年由Puma和Yueu等人提出的,此类反应器与平板型反应器大致相同,将催化剂固定在斜面上,在顶部固定光源,将待降解物斜面中心的喷嘴喷出,然后在重力作用下流经催化剂从而得到降解。此种反应器主要是用于研究催化剂的反应效率.由于结构相对比较复杂,所以应用也较少。还有很多种新型的反应器.比如球型反应器.这种反应器在理论上能达到非常高的光利用率,并且无论是光的分布。还是污染物的分布.还有催化剂的分布都能达到非常高的均匀性和稳定性.反应效率也是非常理想的,但是制作非常的困难.所以现在这种球型的反应器并不常见,是一种理想化的反应器。3 结语 随光催化技术的提高,光催化反应器也在被不断的改进和优化.越来越受到人们的重视.特别是光催化技术实现工业化后,反应器的设计需要进行系统的优化没计才能使光催化反应效率达到最优值,一个设计优良的反应器,不仅可以提高反应效率,还能减少对能源和原材料的浪费.提高经济效益。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206291103_374928_2556116_3.jpg

  • 【求助】光催化反应注意事项

    那位大侠在做光催化,能否提供一些光催化实验所需注意的事项,比如反应器与光源的距离,搅拌速率,取样位置等等,拜托啦!!!![em09509]

控温光催化反应仪相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制