谐振仪音乐数学原理

仪器信息网谐振仪音乐数学原理专题为您提供2024年最新谐振仪音乐数学原理价格报价、厂家品牌的相关信息, 包括谐振仪音乐数学原理参数、型号等,不管是国产,还是进口品牌的谐振仪音乐数学原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合谐振仪音乐数学原理相关的耗材配件、试剂标物,还有谐振仪音乐数学原理相关的最新资讯、资料,以及谐振仪音乐数学原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

谐振仪音乐数学原理相关的仪器

  • 产品简介采用体感音波顶级音频谐振系统,将音乐中的音域的16-160HZ变换成数十微米到数千微米振幅的物理振动,与人体的器官。组织、细胞等产生广泛的“同频谐振”,使细胞有序的振动增加活性,同时音乐低频律动会诱导大脑产生相应频率的脑波,召唤α波(疲劳和昏睡的状态下产生的波段)为主导,从而摆脱失眠并进入睡眠。产品组成:1、体感音乐催眠床1台2、 10.1寸平板电脑1台3、平板支架1套4、体感控制器1个5、催眠眼罩2个6、音乐治疗导论1本7、安装工具1套产品详情a、产品尺寸约为:146cm*94cm*108cm(收起)±3cm;205cm*94cm*62cm(展开)±3cm;产品重量:60KG,工作电压:12V5A;b、设备材质组成:高规格加粗木方做骨架,加密弓字簧+进口牛皮筋+中软海棉+无纺布+坐架布,坐垫使用高密度海绵,靠背、扶手内胆填充3A公仔棉,晨光龙机械架,含羽绒棉填充抱枕一个,沙发表皮材质:超纤皮,颜色为:米黄,最高承重:100KG,最高承重:100KG;c、电动控制系统:靠背可进行最大180度任意调节 d、高清传输控制模式;播放控制:系统开机 ,音量、振动大小调节,上下曲切换,播放暂停,静音,振停,定时,蓝牙模式切换等;喇叭2个:规格:4欧3瓦;安装:靠背上方左右侧的位置;e、集成一键电源开启,接收控制器输入信号,音频输出至喇叭,并提取音频中的15-150赫兹低频经放大输出至换能器。播放模式(MAP3格式):SD卡、蓝牙、USB、3.5MM音频输入;3.5MM音频输出至耳机,内置扶手右侧,两个USB充电口;f、换能器 6个:规格:8欧15瓦;安装:靠背2个,坐垫4个;Mini SD卡1张,256M存储音乐文件(内置主机)g、10.1寸平板系统1套(含平板支架):约10.5mm轻薄金属机身,约680g轻盈重量,内存容量4GB,储存容量128GB,10.1寸平板电脑,电容触摸屏,windows操作系统,1920*1200高清屏。平板系统内置4大类型高清心理视频,视频全程配有文字字幕,方便来访者及心理咨询师观看,(含催眠放松训练真人视频,时长不低于16分钟。肌肉放松训练真人视频,时长不低于11分钟,渐进式催眠训练真人视频,时长不低于16分钟。冥想放松训练真人视频,时长不低于6分钟。)含专业心理催眠图片(错觉图,不可能图形等),α脑波音乐,冥想音乐,中国五行音乐,催眠减压音乐,大自然背景音乐等音乐资源;h、配备音乐治疗导论书籍一本,中国心理学会推荐用书(涵盖音乐治疗的历史,音乐治疗的定义及基本原理,音乐治疗的形式等。)i、催眠眼罩2个 23*7CM,黑色,透风棉质,带耳机通风口,带松紧调节扣
    留言咨询
  • 变频谐振高压发生器,串联谐振耐压测试装置,变频谐振耐压测试仪华宝牌变频谐振高压发生器是华宝电气与华豪电力借鉴美国最新技术依据国家电力试验标准研制生产的高智能、大容量、多保护、积木式变频谐振高压发生装置变频谐振耐压测试装置。HB-BXG,,QQ11231349681、输出标准正弦波,畸变率<0.5%2、可整定电压、频率、保护电流,试验时间3、自动调频调压,可存储一千组实验数据4、频率:0.1-320Hz, 分辨率:0.01-0.001Hz5、超小、轻、积木型干式电抗器和干式变压器6、具有三种工作模式,方便用户灵活选择,提高试验速度,工作模式为:全自动模式、手动模式、自动调谐手动升压模式.7、自动扫频时频率起点可以在规定范围内任意设定,扫频方向可以向上、向下选择,同时液晶大屏幕显示扫描曲线,方便使用者直观了解是否找到谐振点8、采用了DSP平台技术,可以方便的根据用户需要增减功能和升级,也使得人机交换界面更为人性化。关键词:变频谐振高压发生器,串联谐振耐压测试装置,变频谐振耐压测试仪变频串联谐振交流耐压试验装置、变频谐振、变频串联谐振、串联谐振、串联谐振耐压装置、调频串联谐振、串联谐振耐压试验装置、串联谐振试验设备、电缆耐压试验装置、工频耐压试验装置、高压交联电缆交流耐压试验设备、交流耐压试验装置、调频谐振、调频串联谐振交流耐压试验装置,交流串联谐振,交流变频串联谐振,变频谐振,变频串谐,串谐试验装置,串谐耐压装置,GIS交流耐压试验装置,发电机工频(交流)耐压试验装置,电动机工频(交流)耐压试验装置、变压器工频(交流)耐压试验装置主要产品:微机继电保护测试仪、瓦斯继电器校验台、气体继电器校验仪、大电流发生器、热继电器校验仪、检漏继电器校验仪、电缆芯线对号器、直流高压发生器、高压数字兆欧表、变压器油耐压测试仪、直流电阻测试仪、回路电阻测试仪、电缆故障测试仪、多功能电力参数测试仪、模拟断路器(开关)、试验变压器、交直流耐压装置、伏安特性综合测试仪、智能钳型相位伏安表、核相器、开关动特性测试仪、变压器变比组别测试仪、变压器容量损耗测试仪、单/双钳式接地电阻测试仪、有载分接开关测试仪、液体介损电阻率测试仪、绝缘油含气量测试仪、气体密度继电器校验仪、真空度测试仪、氧化锌避雷器带电测试仪详情请登录:或或查询。 HB是华宝电气的简称,购买时请认准青岛华宝电气以防假冒
    留言咨询
  • 一、电磁谐振式高频疲劳试验机产品制造和检验标准1、 JB/T5488—91《高频疲劳试验机》标准;2、 GB2611—92《试验机通用技术要求》;3、 JB/T8286—1999《轴向加荷疲劳试验机动态力校准》。二、电磁谐振式高频疲劳试验机主要技术特点1. 电磁谐振式高频疲劳试验机主 机1.1 主机框架采用门式结构,双丝杠传动,刚度高、试验空间大,又能很好地保证同轴度。保证试验数据的精确性、稳定性。下台座带有梯型槽,试样装夹非常方便。1.2 主机采用多自由度的力学模型进行优化设计,使动态力误差远小于同类产品,其波动度指标高于同类产品(静态试验力精度±0.5%,静态、动态试验力波动度均高达±0.5%)。1.3 由于主机模型分析及设计上的独到之处,使本公司的高频机在整个频率范围内一般不需要动态试验力补偿。1.4 交流伺服电机及伺服驱动系统采用日本松下公司产品,调速范围宽,可靠性高。2. 电磁谐振式高频疲劳试验机 控制系统2.1 控制系统采用数字闭环控制系统,智能化数字选频,可有效地抑制非谐振频率的干扰,对频率、相位等自动跟踪,使控制系统能够始终工作在主机谐振点上,波形失真度小,工作稳定、起振容易,且不随试样或构件本身性能的变化而停振。2.2 具有常规疲劳试验(对称或不对称)、块谱疲劳试验,调制控制疲劳试验等功能。2.3 负荷放大器自动调零、自动标定。2.4 具有超载、超行程、过压、过流、过热等保护功能;可任意设置负荷保护上、下限;具有事故自动停机及试样断裂自动停机;自动记录试验数据,保证试验的有效性。3. 电磁谐振式高频疲劳试验机 计算机及软件系统3.1 由计算机直和控制系统紧密配合接对试验系统进行管理和控制,在计算机上,采用虚拟面板形式,按钮式操作。对试验全程操控。3.2 具有疲劳裂纹扩展等速率试验功能,也可完成在疲劳裂纹扩展中的等应力疲劳试验。3.3 支持网络功能,即可在办公室、家中等地监视(或经授权监控)试验,试验过程中可做到无人值守,保护功能完善,稳定性、可靠性高于其他同类产品。二、电磁谐振式高频疲劳材料试验机主要技术指标1. 最大静态试验力: ±100kN2. 最大单向脉动试验力: ±100kN3. 最大动态试验力(峰值): 50kN4. 试验力分档: 1、2、5、10(或2%—100%F.S)5. 静态试验力精度: ±0.5%6. 试验力波动度(24小时):静态试验力波动度:±0.5%动态试验力波动度:±0.5%7. 频率范围:60 ~ 300Hz. 5级频率调节8. 试验空间:上下空间:700mm 试验跨度:580mm9. 电能消耗:三相电源380V;300VA;2500VA(电机运行时)10. 重量:2800kg
    留言咨询

谐振仪音乐数学原理相关的方案

谐振仪音乐数学原理相关的论坛

  • 串联谐振和并联谐振的区别

    串联谐振和并联谐振这两种现象是正弦交流电路的一种特定现象,它在电子和通讯工程中得到广泛的应用,但在电力系统中,发生谐振有可能破坏系统的正常工作。接下来分析一下串联谐振和并联谐振这两种谐振到底都有哪些区别。从负载谐振方式划分,可以为并联谐振逆变器和串联谐振逆变器两大类型,下面对这两种类型进行比较:串联谐振回路是用L、R和C串联,并联谐振回路是L、R和C并联。(1)串联谐振逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。当逆变失败时,浪涌电流大,保护困难。并联谐振逆变器的负载电路对电源呈现高阻抗,要求由电流源供电。在逆变失败时,冲击不大,较易保护。(2)串联谐振逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。并联谐振逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。(3)串联谐振逆变器是恒压源供电。并联谐振逆变器是恒流源供电。(4)串联谐振逆变器的工作频率必须低于负载电路的固有振荡频率。并联谐振逆变器的工作频率必须略高于负载电路的固有振荡频率。(5)串联谐振逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率。并联谐振逆变器的功率调节方式,一般只能是改变直流电源电压Ud。(6)串联谐振逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。并联谐振逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。(7)串联谐振逆变器的晶闸管所需承受的电压较低,用380V电网供电时,采用1200V的晶闸管就行。并联谐振逆变器的晶闸管所需承受的电压高,其值随功率因数角φ增大,而迅速增加。 (8)串联谐振逆变器可以自激工作,也可以他激工作。而并联谐振逆变器一般只能工作在自激状态。(9)在串联谐振逆变器中,晶闸管的触发脉冲不对称,不会引入直流成分电流而影响正常运行;而在并联谐振逆变器中,逆变晶闸管的触发脉冲不对称,则会引入直流成分电流而引起故障。(10)串联谐振逆变器起动容易,适用于频繁起动工作的场合;而并联谐振逆变器需附加起动电路,起动较为困难。(11)串联谐振逆变器的感应加热线圈与逆变电源(包括槽路电容器)的距离远时,对输出功率的影响较小。而对并联谐振逆变器来说,感应加热线圈应尽量靠近电源(特别是槽路电容器),否则功率输出和效率都会大幅度降低。并联谐振逆变器和串联谐振逆变器(通称并联或串联变频电源)各有其自己的技术特点和应用领域。从工业加热应用的角度,并联谐振逆变器广泛应用于熔炼、保温、透热、感应加热热处理等各种领域,其功率可以从几千瓦到上万千瓦。串联谐振逆变器广泛应用于熔炼—保温的一拖二炉组以及高Q值高频率的感应加热场合,其功率可以从几千瓦到几千千瓦。目前我国工业上采用的变频电源90%以上属并联谐振变频电源。

  • 变频串联谐振找不到谐振点如何解决?

    变频串联谐振耐压试验装置也称调频串并联谐振电缆耐压试验装置。广泛应用于电力、冶金、石油、化工等行业,适用于大容量、高电压的电容性试品,如发机电、变压器、GIS、高压交联电缆、电容器、套管等的交接试验和预防性试验。  通过长期市场调研以及经验积累,我们发现:现场使用变频串联谐振耐压试验装置时,客户常常会遇到这样或者那样的“故障”或技术困惑,因此,我们将一些解答整理出来给大家查阅。今天,我们先讲一讲变频串联谐振“找不到谐振点”是什么问题?如何解决变频串联谐振“找不到谐振点?  一旦发现变频[url=https://www.wh-huayi.com/]串联谐振[/url]“找不到谐振点”请不要急于确定就是设备出现故障了,检查是不是有下列情况:  1、 接线有误。  2、 输出开关未开,   3、做GIS时PT二次回路未打开   4、试品Q值太低   5、起始激励功率太低   6、试验回路有短路现象   7、找频范围不对   解决方法是:  1、退出试验状态,关闭输出开关   2、检查、纠正错误接线接线   3、调高起始功率(∠30%)   4、用兆欧表测量试品绝缘。看被试品是否符合绝缘要求  5、重新设置找频范围  6、调整起始激励功率   7、确认输出开关

  • 详解谐振过电压

    电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。一、谐振过电压产生原因  电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式单相故障可引起谐振过电压;运维人员操作或事故处理方法不当亦会产生谐振过电压;另外设计选型、参数不匹配也是谐振过电压产生原因。二、谐振过电压分类1线性谐振过电压  谐振回路由不带铁芯的电感元件(如输电线路的电感、变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。2 铁磁谐振过电压  谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。3 参数谐振过电压  由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Kd~Kq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。三、谐振过电压特点1线性谐振过电压  1) 参与谐振的各电气参量均为线性。  2) 谐振发生在电网自振频率与电源频率相等或相近时。  3) 多为空载线路不对称接地故障的谐振、消弧线圈补偿网络的谐振和某些传递过电压的谐振等。2铁磁谐振过电压  1) 与电容组成谐振回路的电感参数作周期性变化,变化频率一般为电源频率的偶数倍。  2) 谐振所需能量由改变电感参数的原动机供给,它不仅可以补偿回路中电阻的损耗,并且使回路的储能愈积愈多,保证了谐振的发展。  3) 谐振过电压和电流理论上能趋于无限大。但是由于实际上常受电感磁饱和的影响,使回路自动偏离谐振条件,使过电压不致无限增大。3参数谐振过电压  1) 谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。  2) 谐振频率可以等于电源频率(基波共振),也可为其简单分数(分次谐波共振)或简单倍数(高次谐波共振)。  3) 在一定的情况下可自激产生,但大多需要有外部激发条件。回路中事先经历过足够强烈的过渡过程的冲击扰动。  4) 在一定的回路损耗电阻的情况下,其幅值主要受到非线性电感本身严重饱和的限制。四、限制谐振过电压的主要措施有  (1) 提高开关动作的同期性:由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。  (2) 在并联高压电抗器中性点加装小电抗:用这个措施可以阻断非全相运行时工频电压传递及串联谐振。  (3) 破坏发电机产生自励磁的条件,防止参数谐振过电压。  (4) 严格执行调度规程:在运行方式上和倒闸操作过程中,防止断路器断口电容器与空载母线及母线PT构成串联谐振回路,以防止因谐振过电压损坏设备。  (5) 避免操作过电压:在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振时,应立即合上带断口电容器的断路器,切除回路电容,终止谐振,防止隐患发展形成事故。  (6) 中性接地点:增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由东而发生母线铁磁谐振过电压。  (7) 继电保护:针对具体事故发生的情况,如在变电站母线发生单相接地,母差保护动作,母联开关跳闸后,如果主变开关先于线路开关动作,将不会引发谐振。

谐振仪音乐数学原理相关的耗材

  • 反谐振空芯光纤ARF
    反谐振空芯光纤ARF反谐振空芯光纤ARF(Anti-Résonnant Hollow Core Fiber)中的光信号在由单环反谐振管元件包围的空芯中传播。指导基于由围绕空心的非接触管构成的薄玻璃膜的反共振。引导功率与周围二氧化硅的极低重叠,小于 2 × 10^-5,添加到模式有效区域,赋予这种光纤设计记录材料非线性。产品特性:- 高伤害阈值- 近乎单模制导- 传输频段中的超低色散典型应用:- 低延迟数据传输- 充气增强现实空芯光纤激光器- 分子示踪、气体检测- 皮秒和亚皮秒光脉冲的高功率传输反谐振空芯光纤ARF参数规格:型号ARF-40-240ARF-33-160ARF-45-240ARF-40-230ARF-120-400优化为750nm1064nm1550nm2μm3μm光学参数衰减(dB/km)50@750 nm50@1064 nm35@1550 nm80@2μm70@3μm传输带宽(nm)(100 dB/km)700 – 9151000 - 13501450 - 17501600 - 22002900 – 3150模场直径(μm)29@750nm26@1064nm37@1550nm33.5@2μm90@3μm色散(ps/nm/km)0.8@750nm~2@1064nm~1@1550nm~2@2μm0.8@3μm模式与核心重叠 99.99 %数值孔径~0.02~ 0.03HOM抑制(dB)N.A10(3m)10(5m)25(3m)N.A。3 dB弯曲损耗半径(cm)4+/-1@750nm4+/-1@1064nm6+/-1@1550nm8+/-1@2μm11+/-1@3μm物理/材料参数光纤材料空心芯径(μm)38 +/- 233 +/- 246 +/- 240 +/- 2119 +/- 2包层直径(μm)71 +/- 366 +/- 399 +/- 3105 +/- 3233 +/- 3纤维直径(μm)242 +/- 5160 +/- 5239 +/- 5230 +/- 5404 +/- 5涂层外径(μm)398 +/- 10325 +/- 10395 +/- 10340 +/- 10492 +/- 10涂层类型双涂层高指数丙烯酸酯反谐振空芯光纤ARF典型衰减和色散:
  • 微波同轴辐射器谐振腔
    同轴辐射器、谐振腔,材质:铜或铜合金,主要部件全部镀银
  • TVS-HCF-700系列反谐振光纤
    产品说明 TVS-HCF-700系列反谐振空芯光纤以大芯径和大尺寸包层为结构特点,光纤包层由单圈具有超薄壁厚的毛细管组成,传输的光谱范围覆盖700~1000 nm,具有准单模传输、低损耗、低非线性、低色散、高激光器损伤阈值的特点。 产品应用飞秒激光器、激光加工、通讯领域、生物医学成像 产品优势宽光谱范围:700-1000 nm低色散:1± 0.5 ps / nm / km @800 nm准单模传输、低损耗、低非线性、高激光损伤阈值定制化:可根据用户需求定制不同传输波长、芯径的反谐振光纤 反谐振光纤技术参数参数单位数值纤芯直径μm25光纤直径μm134波长范围nm700 ~ 1000色散@800 nmps / nm / km1 ± 0.5损耗@800 nmdB / km<100 产品性能 波长对应衰减图 输出光斑示意图

谐振仪音乐数学原理相关的资料

谐振仪音乐数学原理相关的资讯

  • 线上开讲:基于XRD数据精修晶体结构模型的数学原理
    晶体结构精修过程,本质上是一个不断调整结构模型参数以使结构模型与XRD数据最为吻合的过程。7月18日,国家纳米科学中心正高级工程师、中国科学院大学物理科学学院岗位教授贺蒙将于第四届X射线衍射技术及应用进展网络研讨会期间分享报告,重点讲述这一过程背后的数学原理,帮助大家通过了解相关数学原理,加深对于结构精修本质的认识,了解单晶结构精修和Rietveld法粉末衍射结构精修的区别,并正确理解各种结构精修残差因子(R因子)的意义。关于第四届X射线衍射技术及应用进展网络研讨会为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2023年7月18日组织召开第四届X射线衍射技术及应用进展网络研讨会,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用领域等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/xrd2023
  • Anal. Chem. 封面|基于谐振式微悬臂梁的热重分析技术
    近日,中科院上海微系统与信息技术研究所李昕欣研究员团队报道了一种基于谐振式微悬臂梁的热重分析技术(简称MEMS TGA)。与国际主流的TGA分析仪器相比,该MEMS TGA技术将毫克级的样品消耗量降至10纳克量级,质量变化分辨率从0.1ug提升至1pg,最高升降温速率从50 °C/min提升至数百°C/s,并进一步突破了现有TGA仪器难以测量强氧化剂/爆炸物的使用限制。该MEMS TGA技术还成功与拉曼光谱等表征技术实现了联用,成功实现了TGA-Raman原位实时同步表征,显著提升扩展了TGA的分析能力。相关研究成果以Thermogravimetric Analysis on a Resonant Microcantilever为题,发表在Analytical Chemistry期刊上,并被选为当期的Supplementary Cover论文(图1)。李昕欣团队的博士生姚方兰和许鹏程副研究员为论文的共同第一作者。图1 该工作被选为Analytical Chemistry当期的Supplementary Cover论文英文原题:Thermogravimetric Analysis on a Resonant Microcantilever通讯作者:李昕欣,中国科学院上海微系统与信息技术研究所作者:Fanglan Yao (姚方兰)#, Pengcheng Xu (许鹏程)#, Hao Jia (贾浩), Xinyu Li (李昕昱), Haitao Yu (于海涛), and Xinxin Li (李昕欣)* 背景介绍热重分析技术主要用来测量物质质量随温度变化的关系,被广泛应用于各种功能材料的研发、优化与质量监控。目前商用的热重分析仪器普遍使用高精度热天平进行称重,并利用高温炉来对样品实现加热;每次测试需要消耗毫克(10-3 g)量级的样品,且无法快速升温,测试效率不高。此外,这类仪器无法测试具有腐蚀性或易爆炸性的样品。在联用方面,商用的热重分析仪器通常需要将待测样品密封在TGA测试腔体中,难以与光谱联用,因而无法在加热过程对样品的结构演变进行实时测量。李昕欣团队的论文报道了一种集成片上加热和测温元件的MEMS谐振微悬臂梁,利用该集成谐振微悬臂梁具有的超灵敏质量测量功能(亚皮克量级),实现了微芯片上的热重分析技术(MEMS TGA,其工作原理如图2所示)。该技术只需要纳克(10-9 g)量级的样品即可进行TGA测试,而且可以在1秒钟内将样品加热至1000℃。图文解读图2 MEMS TGA技术的工作原理示意图该论文选取了两种常用的标准样品Cu2(OH)2CO3(碱式碳酸铜)和Ca2C2O4∙H2O(一水合草酸钙),验证了MEMS TGA技术的优势。如图3所示,当升温速率加快时,传统TGA的热重曲线表现出明显的热滞后效应。而MEMS TGA未表现出明显的热滞后现象,因此可在保证测量精度的情况下更高效地测量样品的热重曲线。图3 标准样品的热重分析结果对比:(a) Cu2(OH)2CO3;(b) Ca2C2O4∙H2O由于MEMS TGA具有皮克(10-12 g)量级的超高质量灵敏度,使得对单颗粒样品的TGA测试成为了可能。本论文利用MEMS TGA技术,首次对直径仅为4微米的单颗粒PS(聚苯乙烯)微球实现了TGA测试。而且在进行TGA测试过程中,同时利用光学显微镜实时观测并记录了PS微球在温度升高过程中的形貌演变(图4)。该技术不仅首次实现了单颗粒的TGA测试,还对TGA的测试过程实现了全程可视化。图4 在显微镜下利用MEMS TGA技术对单颗粒PS微球实现了可视化的热重分析MEMS TGA技术具有更广泛的应用范围,甚至可以测试爆炸物。若使用传统的TGA仪器测试具有爆炸性、腐蚀性或强氧化特性的样品,不仅会损毁TGA仪器,而且具有安全隐患。而MEMS TGA技术每次分析仅需要纳克(10-9 g)量级的痕量样品,消除了该方面的安全隐患,可以对此类危险系数高的样品进行测试。如图5所示,本论文成功利用MEMS TGA技术对强氧化物(高锰酸钾)和爆炸物(TNT炸药)进行了热重分析。图5 MEMS TGA在空气中测得的两种危险化学品的TGA曲线:(a) KMnO4;(b) TNTMEMS TGA与光谱具有很强的联用能力。本论文示意了TGA-Raman同步表征技术:在进行TGA测量的同时,可以将MEMS TGA芯片直接置于Raman光谱的光学镜头下,并将Raman激光束聚焦在样品上。在TGA测量过程中,原位实时采集了材料的拉曼信号,从而实现了TGA-Raman同步表征,其工作原理和部分测试结果如图6所示。图6 TGA-Raman同步表征技术总结/展望综上所述,李昕欣团队提出并开发了一种基于谐振悬臂梁微芯片的材料表征技术——MEMS TGA技术。该技术具有显著的优势:纳克样品量要求、皮克超高质量分辨率、数百°C/s的超快升降温速率、极低的功耗和广泛的应用范围。使用该技术甚至已经可以对单颗粒样品实现TGA测试。该MEMS TGA技术还可以与拉曼光谱仪联用,对样品进行TGA-Raman同步表征。在上述研究基础上,李昕欣团队近期还进一步将该MEMS TGA技术与原位TEM技术进行了联用,在进行气体池 in situ TEM表征的同时,实时原位测试了Ni(OH)2等纳米材料的TGA曲线,首次实现了TGA-TEM的同步表征,该部分工作也于近期发表于Analytical Chemistry (DOI: 10.1021/acs.analchem.2c01051)。作者简介:李昕欣,研究员,国家杰出青年科学基金获得者。长期研究微纳电子机械系统(MEMS/NEMS)和微纳传感器技术,是该领域国际知名的学者和国内的学术带头人之一。有约300篇SCI论文发表在国际重要SCI期刊如Nano Letters, Nat. Comm., Anal. Chem., Nano Today, JMCA, PRL, Small, IEEE EDL, IEEE J-MEMS等。
  • 高性能集成化射频MEMS谐振器件
    table width="633" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="501" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"高性能集成化射频MEMS谐振器件/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中科院半导体研究所/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"杨晋玲/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="172" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"jlyang@semi.ac.cn/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"射频MEMS谐振器件是基于半导体微纳加工技术制备的高性能、集成化硅基时钟器件,具有高性能、低功耗、低成本、可与IC集成等优势。是对石英产品的升级换代,正以120%的年增长率,逐渐取代石英晶体振荡器。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"本项目将在国内首次实现高性能MEMS谐振器、振荡器等射频谐振电子器件的产业化,打破国外公司的技术垄断。我们拥有高频率、高Q值MEMS谐振器件的设计、加工、封装、测试等整套技术,主要的关键技术包括:创新的采用圆盘谐振结构的面内振动模态,实现高频率的谐振输出,降低能量损耗。开发了高成品率的硅基谐振器件微纳加工技术和高可靠性的圆片级封测技术,制备高性能谐振器;利用高增益、低噪声的驱动电路和温度补偿电路构成高稳定性振荡器,开发了射频MEMS器件的小信号测试技术,可实现大规模制备与测试,大幅降低器件成本。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"本项目的创新点包括:国内首次实现具有高频、高Q的特性的MEMS谐振器、振荡器等器件,属于技术创新;高性能的驱动电路设计,提高了振荡器的系统稳定性;MEMS振荡器的高可靠性硅基集成加工,实现高成品率的批量生产,与CMOS工艺兼容等特点,可取代分立的石英晶振产品,集成在功能芯片中作为电路系统的时钟器件。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"由于MEMS谐振器对加工精度的要求很高,加工误差将导致频率的改变,且电极和圆盘之间的间隙也只有几十纳米的量级,普通微加工技术难以实现低成本、批量化的纳米尺度加工。因此,我们采用了牺牲层释放技术,实现纳米间隙的加工。同时采用新型支撑结构和圆盘一次刻蚀,填充的技术,实现了图形的自对准,避免了多次套刻产生的工艺误差。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"本产品具有高频、高Q、可集成、低功耗等特性,MEMS 谐振器和振荡器的整体性能与国外先进水平相当,实现国内首家大规模供货的射频谐振器件公司,可快速进入石英晶振的市场。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"如果把中央处理器芯片比喻为现代电子系统的大脑,那么时钟组件当之无愧是其心脏。一颗健康、稳定、持久的“心脏”,将直接影响到电子系统的功能和可靠性。谐振器件就是电子系统中的频率参考源,即时钟器件,产生固定周期振荡信号的器件。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"每个现代电子产品中都不止一个频率参考源。每年生产的频率参考源器件数以百亿计。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"一般分为石英谐振器、MEMS谐振器和陶瓷谐振器。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"陶瓷谐振器体积大,一般较少使用。石英作为时钟市场的主流技术,一直占据着霸主地位。但受传统制造工艺限制及下游原材料(起振电路和基座)市场的垄断,性价比难以进一步提升。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"MEMS/spanspan style=" line-height:150% font-family:宋体"谐振器具有体积小、成本低、可与电路集成等优点,是未来通信系统的热门研究对象,是石英谐振器的升级换代产品。目前,MEMS的振荡器产品已经广泛应用于消费电子领域,如智能手机、数码相机等,影音设备,如摄录机、机顶盒、音响设备等以及网络和通信领域,如以太网转换器、路由器、基站等电子产品和工业基础电子系统中。MEMS振荡器已经被应用于iphone7手机中作为时钟芯片,全球数以亿计的智能手机出货量,给MEMS振荡器创造了巨大的市场机会。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"a title="一种频率可切换的微机械谐振器及其制备方法"span style=" line-height:150% font-family: 宋体 color:windowtext text-underline:none"一种频率可切换的微机械谐振器及其制备方法/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310750721.X)/span/pp style="text-indent:28px line-height:150%"a title="频率可调的MEMS谐振器"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"频率可调的MEMS/spanspan style=" line-height:150% font-family: 宋体 color:windowtext text-underline:none"谐振器/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310306960.6)/span/pp style="text-indent:28px line-height:150%"a title="频率可切换的微机械谐振器"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"频率可切换的微机械谐振器/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310178457.7)/span/pp style="text-indent:28px line-height:150%"a title="MEMS振荡器"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"MEMS/spanspan style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"振荡器/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310178827.7)/span/pp style="text-indent:28px line-height:150%"a title="一种微机械谐振器及其制作方法"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"一种微机械谐振器及其制作方法/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310235167.1)/span/pp style="text-indent:28px line-height:150%"a title="用于微机电系统器件的圆片级三维封装方法"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"用于微机电系统器件的圆片级三维封装方法/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201110346268.7)/span/p/td/tr/tbody/table
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制