当前位置: 仪器信息网 > 行业主题 > >

谐振仪音乐数学原理

仪器信息网谐振仪音乐数学原理专题为您提供2024年最新谐振仪音乐数学原理价格报价、厂家品牌的相关信息, 包括谐振仪音乐数学原理参数、型号等,不管是国产,还是进口品牌的谐振仪音乐数学原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合谐振仪音乐数学原理相关的耗材配件、试剂标物,还有谐振仪音乐数学原理相关的最新资讯、资料,以及谐振仪音乐数学原理相关的解决方案。

谐振仪音乐数学原理相关的资讯

  • 线上开讲:基于XRD数据精修晶体结构模型的数学原理
    晶体结构精修过程,本质上是一个不断调整结构模型参数以使结构模型与XRD数据最为吻合的过程。7月18日,国家纳米科学中心正高级工程师、中国科学院大学物理科学学院岗位教授贺蒙将于第四届X射线衍射技术及应用进展网络研讨会期间分享报告,重点讲述这一过程背后的数学原理,帮助大家通过了解相关数学原理,加深对于结构精修本质的认识,了解单晶结构精修和Rietveld法粉末衍射结构精修的区别,并正确理解各种结构精修残差因子(R因子)的意义。关于第四届X射线衍射技术及应用进展网络研讨会为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2023年7月18日组织召开第四届X射线衍射技术及应用进展网络研讨会,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用领域等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/xrd2023
  • Anal. Chem. 封面|基于谐振式微悬臂梁的热重分析技术
    近日,中科院上海微系统与信息技术研究所李昕欣研究员团队报道了一种基于谐振式微悬臂梁的热重分析技术(简称MEMS TGA)。与国际主流的TGA分析仪器相比,该MEMS TGA技术将毫克级的样品消耗量降至10纳克量级,质量变化分辨率从0.1ug提升至1pg,最高升降温速率从50 °C/min提升至数百°C/s,并进一步突破了现有TGA仪器难以测量强氧化剂/爆炸物的使用限制。该MEMS TGA技术还成功与拉曼光谱等表征技术实现了联用,成功实现了TGA-Raman原位实时同步表征,显著提升扩展了TGA的分析能力。相关研究成果以Thermogravimetric Analysis on a Resonant Microcantilever为题,发表在Analytical Chemistry期刊上,并被选为当期的Supplementary Cover论文(图1)。李昕欣团队的博士生姚方兰和许鹏程副研究员为论文的共同第一作者。图1 该工作被选为Analytical Chemistry当期的Supplementary Cover论文英文原题:Thermogravimetric Analysis on a Resonant Microcantilever通讯作者:李昕欣,中国科学院上海微系统与信息技术研究所作者:Fanglan Yao (姚方兰)#, Pengcheng Xu (许鹏程)#, Hao Jia (贾浩), Xinyu Li (李昕昱), Haitao Yu (于海涛), and Xinxin Li (李昕欣)* 背景介绍热重分析技术主要用来测量物质质量随温度变化的关系,被广泛应用于各种功能材料的研发、优化与质量监控。目前商用的热重分析仪器普遍使用高精度热天平进行称重,并利用高温炉来对样品实现加热;每次测试需要消耗毫克(10-3 g)量级的样品,且无法快速升温,测试效率不高。此外,这类仪器无法测试具有腐蚀性或易爆炸性的样品。在联用方面,商用的热重分析仪器通常需要将待测样品密封在TGA测试腔体中,难以与光谱联用,因而无法在加热过程对样品的结构演变进行实时测量。李昕欣团队的论文报道了一种集成片上加热和测温元件的MEMS谐振微悬臂梁,利用该集成谐振微悬臂梁具有的超灵敏质量测量功能(亚皮克量级),实现了微芯片上的热重分析技术(MEMS TGA,其工作原理如图2所示)。该技术只需要纳克(10-9 g)量级的样品即可进行TGA测试,而且可以在1秒钟内将样品加热至1000℃。图文解读图2 MEMS TGA技术的工作原理示意图该论文选取了两种常用的标准样品Cu2(OH)2CO3(碱式碳酸铜)和Ca2C2O4∙H2O(一水合草酸钙),验证了MEMS TGA技术的优势。如图3所示,当升温速率加快时,传统TGA的热重曲线表现出明显的热滞后效应。而MEMS TGA未表现出明显的热滞后现象,因此可在保证测量精度的情况下更高效地测量样品的热重曲线。图3 标准样品的热重分析结果对比:(a) Cu2(OH)2CO3;(b) Ca2C2O4∙H2O由于MEMS TGA具有皮克(10-12 g)量级的超高质量灵敏度,使得对单颗粒样品的TGA测试成为了可能。本论文利用MEMS TGA技术,首次对直径仅为4微米的单颗粒PS(聚苯乙烯)微球实现了TGA测试。而且在进行TGA测试过程中,同时利用光学显微镜实时观测并记录了PS微球在温度升高过程中的形貌演变(图4)。该技术不仅首次实现了单颗粒的TGA测试,还对TGA的测试过程实现了全程可视化。图4 在显微镜下利用MEMS TGA技术对单颗粒PS微球实现了可视化的热重分析MEMS TGA技术具有更广泛的应用范围,甚至可以测试爆炸物。若使用传统的TGA仪器测试具有爆炸性、腐蚀性或强氧化特性的样品,不仅会损毁TGA仪器,而且具有安全隐患。而MEMS TGA技术每次分析仅需要纳克(10-9 g)量级的痕量样品,消除了该方面的安全隐患,可以对此类危险系数高的样品进行测试。如图5所示,本论文成功利用MEMS TGA技术对强氧化物(高锰酸钾)和爆炸物(TNT炸药)进行了热重分析。图5 MEMS TGA在空气中测得的两种危险化学品的TGA曲线:(a) KMnO4;(b) TNTMEMS TGA与光谱具有很强的联用能力。本论文示意了TGA-Raman同步表征技术:在进行TGA测量的同时,可以将MEMS TGA芯片直接置于Raman光谱的光学镜头下,并将Raman激光束聚焦在样品上。在TGA测量过程中,原位实时采集了材料的拉曼信号,从而实现了TGA-Raman同步表征,其工作原理和部分测试结果如图6所示。图6 TGA-Raman同步表征技术总结/展望综上所述,李昕欣团队提出并开发了一种基于谐振悬臂梁微芯片的材料表征技术——MEMS TGA技术。该技术具有显著的优势:纳克样品量要求、皮克超高质量分辨率、数百°C/s的超快升降温速率、极低的功耗和广泛的应用范围。使用该技术甚至已经可以对单颗粒样品实现TGA测试。该MEMS TGA技术还可以与拉曼光谱仪联用,对样品进行TGA-Raman同步表征。在上述研究基础上,李昕欣团队近期还进一步将该MEMS TGA技术与原位TEM技术进行了联用,在进行气体池 in situ TEM表征的同时,实时原位测试了Ni(OH)2等纳米材料的TGA曲线,首次实现了TGA-TEM的同步表征,该部分工作也于近期发表于Analytical Chemistry (DOI: 10.1021/acs.analchem.2c01051)。作者简介:李昕欣,研究员,国家杰出青年科学基金获得者。长期研究微纳电子机械系统(MEMS/NEMS)和微纳传感器技术,是该领域国际知名的学者和国内的学术带头人之一。有约300篇SCI论文发表在国际重要SCI期刊如Nano Letters, Nat. Comm., Anal. Chem., Nano Today, JMCA, PRL, Small, IEEE EDL, IEEE J-MEMS等。
  • 高性能集成化射频MEMS谐振器件
    table width="633" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="501" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"高性能集成化射频MEMS谐振器件/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中科院半导体研究所/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"杨晋玲/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="172" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"jlyang@semi.ac.cn/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"射频MEMS谐振器件是基于半导体微纳加工技术制备的高性能、集成化硅基时钟器件,具有高性能、低功耗、低成本、可与IC集成等优势。是对石英产品的升级换代,正以120%的年增长率,逐渐取代石英晶体振荡器。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"本项目将在国内首次实现高性能MEMS谐振器、振荡器等射频谐振电子器件的产业化,打破国外公司的技术垄断。我们拥有高频率、高Q值MEMS谐振器件的设计、加工、封装、测试等整套技术,主要的关键技术包括:创新的采用圆盘谐振结构的面内振动模态,实现高频率的谐振输出,降低能量损耗。开发了高成品率的硅基谐振器件微纳加工技术和高可靠性的圆片级封测技术,制备高性能谐振器;利用高增益、低噪声的驱动电路和温度补偿电路构成高稳定性振荡器,开发了射频MEMS器件的小信号测试技术,可实现大规模制备与测试,大幅降低器件成本。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"本项目的创新点包括:国内首次实现具有高频、高Q的特性的MEMS谐振器、振荡器等器件,属于技术创新;高性能的驱动电路设计,提高了振荡器的系统稳定性;MEMS振荡器的高可靠性硅基集成加工,实现高成品率的批量生产,与CMOS工艺兼容等特点,可取代分立的石英晶振产品,集成在功能芯片中作为电路系统的时钟器件。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"由于MEMS谐振器对加工精度的要求很高,加工误差将导致频率的改变,且电极和圆盘之间的间隙也只有几十纳米的量级,普通微加工技术难以实现低成本、批量化的纳米尺度加工。因此,我们采用了牺牲层释放技术,实现纳米间隙的加工。同时采用新型支撑结构和圆盘一次刻蚀,填充的技术,实现了图形的自对准,避免了多次套刻产生的工艺误差。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"本产品具有高频、高Q、可集成、低功耗等特性,MEMS 谐振器和振荡器的整体性能与国外先进水平相当,实现国内首家大规模供货的射频谐振器件公司,可快速进入石英晶振的市场。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"如果把中央处理器芯片比喻为现代电子系统的大脑,那么时钟组件当之无愧是其心脏。一颗健康、稳定、持久的“心脏”,将直接影响到电子系统的功能和可靠性。谐振器件就是电子系统中的频率参考源,即时钟器件,产生固定周期振荡信号的器件。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"每个现代电子产品中都不止一个频率参考源。每年生产的频率参考源器件数以百亿计。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"一般分为石英谐振器、MEMS谐振器和陶瓷谐振器。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"陶瓷谐振器体积大,一般较少使用。石英作为时钟市场的主流技术,一直占据着霸主地位。但受传统制造工艺限制及下游原材料(起振电路和基座)市场的垄断,性价比难以进一步提升。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"MEMS/spanspan style=" line-height:150% font-family:宋体"谐振器具有体积小、成本低、可与电路集成等优点,是未来通信系统的热门研究对象,是石英谐振器的升级换代产品。目前,MEMS的振荡器产品已经广泛应用于消费电子领域,如智能手机、数码相机等,影音设备,如摄录机、机顶盒、音响设备等以及网络和通信领域,如以太网转换器、路由器、基站等电子产品和工业基础电子系统中。MEMS振荡器已经被应用于iphone7手机中作为时钟芯片,全球数以亿计的智能手机出货量,给MEMS振荡器创造了巨大的市场机会。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"a title="一种频率可切换的微机械谐振器及其制备方法"span style=" line-height:150% font-family: 宋体 color:windowtext text-underline:none"一种频率可切换的微机械谐振器及其制备方法/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310750721.X)/span/pp style="text-indent:28px line-height:150%"a title="频率可调的MEMS谐振器"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"频率可调的MEMS/spanspan style=" line-height:150% font-family: 宋体 color:windowtext text-underline:none"谐振器/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310306960.6)/span/pp style="text-indent:28px line-height:150%"a title="频率可切换的微机械谐振器"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"频率可切换的微机械谐振器/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310178457.7)/span/pp style="text-indent:28px line-height:150%"a title="MEMS振荡器"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"MEMS/spanspan style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"振荡器/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310178827.7)/span/pp style="text-indent:28px line-height:150%"a title="一种微机械谐振器及其制作方法"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"一种微机械谐振器及其制作方法/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201310235167.1)/span/pp style="text-indent:28px line-height:150%"a title="用于微机电系统器件的圆片级三维封装方法"span style=" line-height:150% font-family:宋体 color:windowtext text-underline:none"用于微机电系统器件的圆片级三维封装方法/span/aspan style=" line-height:150% font-family:宋体"(申请号CN201110346268.7)/span/p/td/tr/tbody/table
  • 全力打造国内首台超声谐振谱仪——访三亚声演技术顾问汤立国
    2024年7月9日,由中国材料研究学会主办、欧洲材料研究学会联合主办、广东工业大学协办的中国材料大会2024暨第二届世界材料大会在广州白云国际会议中心盛大开幕。本届大会是在加快推进高水平科技自立自强大背景下举办的新材料领域跨学科、跨领域、跨行业的学术交流大会,是中国新材料界学术水平高、涉及领域广、前沿动态新的品牌大会。借此盛会,仪器信息网采访了三亚声演科技有限公司(以下简称“三亚声演”) 技术顾问/厦门大学 教授汤立国。采访中,汤老师详细介绍了公司的主要产品——超声谐振谱仪的功能、应用领域及相较于同类产品的优势,并分享了超声谐振谱技术未来的发展趋势,及基于此技术公司的发展规划等。仪器信息网:本次是贵公司第几次参加中国材料大会?参会感受如何?汤立国:这是我们公司第一次参加中国材料大会仪器展。通过这次大会确实可以了解到行业里面的很多需求,对今后仪器的推广有非常大的作用。仪器信息网:本次贵公司带来了哪些解决方案或新品?主要针对哪些市场?解决了用户的哪些痛点?汤立国:这次带来的主要产品是超声谐振谱仪,目前是国内首款超声谐振谱仪。我们公司是全球第三家能提供超声谐振谱仪的公司,其中一家是美国的洛斯阿拉莫斯国家实验室,另外一家是日本的KK公司。我们公司生产的这款产品与这两家公司相比,产品的软件功能更为全面。这款仪器的主要功能:一是可以定征压电材料所有弹性常数和压电常数,而且在定征过程中只需要单块样品,也是目前全球唯一一款可以对压电晶体所有弹性常数和压电常数进行表征的超声谐振谱仪。除了对压电晶体的材料常数进行表征,这套系统还可以对合金、陶瓷以及其他人工晶体的所有弹性常数进行表征。与传统的材料参数表方法相比,这套系统一方面它只需要单块样品,另外对于各向异性强烈的材料,定征的效率和精度更高,并且可以对压电材料、弹性材料的材料常数随温度的变化特性进行定征。仪器信息网:贵司相关产品的主要热点应用领域有哪些?采取了哪些产品研发计划或市场计划?汤立国:在压电行业和合金行业,在进行材料常数定征时,如定征压电晶体的所有弹性常数和压电常数时,传统方法是采用超声脉冲回波法、电谐振法定征,需要多块尺寸差异显著的样品,由于需要采用多块样品,会导致定征的结果易出现不自洽。我们公司的超声谐振谱仪的优点就在于只需要单块样品就可以实现所有弹性常数和压电常数的表征,因此定征结果更加可靠,而且定征过程更加便捷。除了用于压电材料的定征,在合金行业(如高熵合金)或在功能陶瓷行业,对所有的弹性常数进行表征时,同样这款仪器只需要单块样品,就可以对所有的弹性常数进行高精度的定征。因此这款设备可以为国内压电行业、合金行业或功能陶瓷行业,从材料的制备到应用,都可以起到一个促进作用。仪器信息网:谈谈相关技术或产品未来的发展趋势?未来贵司将有哪些新产品和新技术发展计划?汤立国:超声谐振谱技术,虽然在几十年前就存在了,但是该技术在发展过程中,随着材料行业的发展,就出现了两个比较大的需求:一个是要在高温环境下,对材料参数进行表征,尤其是一些高温的压电晶体,甚至需要在1000℃的高温条件下,对所有的弹性常数、压电常数进行表征;另外还有在极端的环境下,如在航空航天中需要合金或压电材料在低温的情况下,对所有的材料参数进行表征。总之,在高温、低温这两种环境下,对功能材料的材料参数进行表征,是超声谐振谱仪发展的趋势。为了适应这个趋势的发展,目前我们公司开发了一款利用高温的超声换能器,这台设备结合高温超声换能器及高低温箱,可以对晶体或者合金在200℃的高温环境下所有的参数进行表征。目前我们公司还正在跟一些高低温箱的厂家进行深度合作,今年年底的目标是这套系统在500℃甚至更高的温度下实现材料参数的表征。明年打算开发一个低温系统,就是把这套仪器设备和低温的环境相结合,实现压电晶体、功能陶瓷等在-180℃甚至更低的环境下材料参数的表征。仪器信息网:贵司在过去一年中,业绩表现如何?接下来有哪些战略规划或市场规划?汤立国:目前这套系统是刚刚开发完成,还没有进行商业化的推广。下一步的主要任务是在国内的相关行业中,进行这款仪器设备的推广。因为目前这款仪器是国内首款的超声谐振谱仪,相信通过对这套仪器的推广,可以促进国内压电行业、合金行业、功能陶瓷行业的材料表征,为相关的科研人员提供一种全新的国产的表征仪器。
  • 低损多模反谐振空芯光纤研制方面取得新进展
    近期,中国科学院上海光学精密机械研究所单元技术实验室与国科大杭州高等研究院物理与光电工程学院(简称“杭高院物光学院”)胡丽丽教授工作室合作,在低损多模反谐振空芯光纤的研发制备研究中取得重要进展。该研究成果以“Low-loss multi-mode anti-resonant hollow-core fibers”为题发表于美国光学协会期刊《光学快讯》(Optics Express)。   近年来,反谐振空芯光纤因具备宽带、低损的传输特性而广受关注。利用仅有波长量级厚度的负曲率玻璃芯壁,反谐振空芯光纤能将绝大部分光束缚于空气芯中,从而克服了基体材料本征的影响,展示出超低材料损耗、超低色散、超低非线性和极高激光损伤阈值的特性,是未来高效传输超高功率激光以及紫外/中红外极端波长激光的有力备选材料。目前报道的反谐振空芯光纤大多以5至8个包层毛细管设计为主,并利用芯包相位匹配原则实现准单模传输。然而,单模设计在应对高功率、低光束质量激光的传输时很可能造成耦合效率低下和潜在的激光损伤,而低损多模反谐振空芯光纤则有望解决这一问题。目前,该方向研究仍处于起步阶段,有关仿真研究提出的低损多模反谐振空芯光纤结构较为复杂,制备困难,目前尚无具备实用性的低损多模反谐振空芯光纤报道。   在本项研究中,研究人员设计制备了包层区域由18个扇形谐振器组成的反谐振空芯光纤,其中芯径约66 μm而光纤外径约为193 μm。经过截断法测试,所研制的光纤具备近一个倍频程的传输带且平均损耗低于0.5 dB/m,其中1微米附近损耗更低于0.1 dB/m。此外,弯曲半径大于8 cm时在1微米附近因弯曲引发的损耗不超过0.2 dB/m。研究人员进一步使用S2技术来表征23.55米反谐振空芯光纤中的多模传导特性,结合仿真总共鉴定了七种类LP模式成分。此外,研究人员还通过放大相同的设计制备了用于中红外波长传输的多模反谐振空芯光纤,并且传输带可扩展到4μm以上。新型低损多模反谐振空芯光纤的出现为解决劣化光束质量激光(如固体激光器,光参量放大器等)高功率长距离传输提供了可能。图1 所制备空芯光纤的(a)电镜图和(b)(c)传输/损耗性质图2 差分群时延曲线及其中红星标记峰处的模式重建图:(a-i)S2测试结果;(j-t)仿真结果
  • 郭光灿院士领衔 石墨烯纳米谐振器研究取得新突破
    p  记者从中国科技大学获悉,该校郭光灿院士领导的中科院量子信息重点实验室在纳米机电系统(NEMS)方面取得最新进展。该实验室与美国加州大学团队合作,在研究两个石墨烯纳米谐振器的模式耦合过程中,创新性地引入第三个谐振器作为声子腔模,成功地实现了非近邻的模式耦合。相关研究成果发表在近日出版的《自然通讯》上。/pp  纳米谐振器具有尺寸小、稳定性好、品质因子高等优点,是信息存储和操控的优良载体。为了实现不同谐振模式之间的信息传递,需要先实现模式间的可控耦合。近年来,国际上不同研究组针对同一谐振器中的不同谐振模式以及近邻谐振器之间的模式耦合机制进行了深入研究。然而,对于如何实现非近邻的、可调的谐振模式耦合,国际上一直未见相关报道。/pp  针对这一难题,研究组设计和制备了三个串联的石墨烯纳米谐振器,每个谐振器的谐振频率可以通过各自底部的金属电极进行大范围的调节,因此只要设定合适的电极电压就可以实现三个谐振器的共振耦合。研究组首先测量到了两个近邻谐振器之间的模式劈裂,证明了在该串联结构中近邻谐振器可以达到强耦合区间,这为进一步探索第一个和第三个谐振器之间的耦合创造了条件。经过实验探索,研究组发现当把中间谐振器的共振频率调到远高于(或远低于)两端谐振器的共振频率时,两端谐振器之间不能发生模式劈裂,即二者耦合强度非常小 但是当中间谐振器的共振频率逐渐靠近两端谐振器的共振频率时,两端谐振器逐渐产生模式劈裂,且劈裂值逐渐增大。/pp  该实验是首次在纳米谐振器体系中实现谐振模式的非近邻耦合,对于纳米机电谐振器领域的发展具有重要的推动意义,并且为将来在量子区间利用声子模式进行信息的长程传递创造了条件。/ppbr//p
  • 西安光机所在中红外空芯反谐振光纤研究方面取得进展
    近期,西安光机所光子功能材料与器件研究室郭海涛研究员团队在中红外空芯反谐振光纤(HC-ARF)研究方面取得重要进展。科研团队基于自研的硫系玻璃材料研制出一款“七孔接触式”HC-ARF,理论成功预测并通过实验验证光纤在中红外波段存在多个低损耗传输通带,兼具优异的高阶模抑制特性,并且存在进一步降低光纤损耗至0.01 dB/m的空间(比目前实芯阶跃型硫系光纤损耗低1个数量级以上)。相关研究成果发表在Optics Express。论文第一作者为西安光机所博士生张豪,通讯作者为郭海涛研究员。21世纪以后,中红外光纤激光器的功率/脉宽不断突破,但红外光纤材料的本征缺陷也越来越突出,如非线性、色散、光致损伤、材料吸收损耗等,这在传统实芯光纤中很难获得实质性突破,这些特征也就成为了制约中红外光纤技术发展的瓶颈。近年来,基于反谐振效应的HC-ARF因其传输带宽、激光损伤阈值高、传输损耗低和模式纯度高等优异特性而逐渐获得关注。虽然HC-ARF应用领域在不断扩张,但光纤拉制难度也成为了笼罩在研究人员头顶的一朵乌云,实际光纤损耗一直徘徊在几个dB/m水平。诸多国际知名公司或科研机构都在集中力量攻克这一难题,国内也鲜有光纤实际制备的相关报道。该成果团队怀着“解放光纤技术应用中的材料限制”的梦想,开始了对中红外空芯反谐振光纤的探索。他们从实际制备和应用角度出发,基于红外玻璃材料特点,创新性提出“七孔接触式”结构,利用有限元法对光纤的限制损耗、弯曲损耗、材料损耗和高阶模抑制等光纤性能进行理论仿真,基于As40S60硫系玻璃结合堆积拉制法和双路气压控制技术,成功制备出结构复现性良好的HC-ARF。测试数据表明,该光纤具有高阶模式抑制特性和多个低损耗传输通带,在4.79 μm激光波长处损耗仅为1.29 dB/m。此外,研究团队还深入研究了不同工艺参数下光纤结构的演化规律,分析造成额外光纤损耗的关键因素,并对该结构光纤的理论损耗极限进行了预测,为HC-ARF的结构设计和拉制提供理论支撑。图(a)堆积拉制法和双路气压控制技术(b)光纤预制棒 (c)光纤的理论损耗与实测损耗该项研究得到了国家自然科学基金、陕西省自然科学基金、广东省光纤传感与通信技术重点实验室开放基金的资助。光子功能材料与器件研究室的主要研究方向是西安光机所的优秀传统学科,它围绕高科技领域对光子功能材料和器件的需求,开展光子功能玻璃、特种光纤及器件的制备和应用技术研究,建立了“玻璃-光纤-器件”全链条一体化研究平台,研制了覆盖“可见-近红外-中红外-太赫兹”波段的增益、通信、传能及成像光纤和器件,性能优良,是国内特种玻璃、光纤材料研制的优势单位之一。
  • 日本制硅谐振水压计成功用于观测海平面波动
    近日,日本防灾科学技术研究所(NIED)、东京大学地震研究所(ERI)和横河电机株式会社(横河电机)对用于探测早期海啸的新研发的水压计进行了评估。   本次评估中使用的水压计配备了一种新型硅谐振压力传感器,安装在房总半岛附近水深3436m的海底。在本次评估过程中,该压力计成功识别了70MPa压力波动,相当于海平面7厘米的变化。 水压计,配有采用MEMS技术的硅谐振压力传感器。长度261.5毫米(来源:横河电机)   虽然因海啸是罕见的事件很难获得海啸的数据,但评估检测到类似海啸的海平面变化,水压计预计将被用于实际海啸的检测。南海海底地震海啸观测网(N-net)将采用此水压计,观测地震引发海啸所引起的海底水压波动,从而实现较准确的海啸探测,以减轻灾害带来的损失。   NIED、ERI和横河电机已经评估了一种配备MEMS硅谐振压力传感器的水压计的有效性,该传感器用作海底压力观测,能够在发生地震的重大震动期间获取准确数据。鉴于地震期间发生的重大地面运动,本次测试旨在确定测量数据的采集是否会受到水压计振动或其姿态变化的影响。   经证实,姿态变化对水压计的影响小于传统水压计。此外,在重复应用于70 MPa (相当于7,000m水深)的精密测试中,不高于70MPa的0.005%的重复性被证实性能出色。该水压计采用MEMS技术,因此具有每种产品拥有相同质量的优势。   为了评估水压计在实际海底环境中的性能,在日本千叶县房总半岛附近3,436米的深度进行了总计203天的海底观测。由于海啸是一种罕见的现象,获取海啸观测数据通常很困难。然而,在评估工作中观察到, 伴随2022年1月15日汤加火山的爆发,海平面出现了7厘米的波动。进一步的数据分析还证实,水压计能够观察到相当于海平面变化小于1厘米的压力变化。确认的灵敏度表明水压计具有足够的性能来观测实际的海啸。水压计是日本制造的产品,适用于深海作业,具有与世界上任何地方制造的尖端仪器相同的灵敏度。   地震海啸观测网络是减少灾害风险的基础设施的一部分,有助于发展关于灾害风险信息和地震海啸灾害风险研究。NIED负责陆地和海底地震海啸监测(MOWLAS),覆盖日本所有陆地和海域。从2019年开始,NIED一直在开发N-net,一种电缆型海底地震海啸观测系统。N-net将安装在南海海槽的震源区内,该震源区预计会发生地震,但尚未建立观测网络(从高知县近海到日向滩)。   N-net是一个网络系统,可以直接探测地震和海啸,并将信息可靠地传输到陆地,从而实现实时观测。这种新型硅共振水压计在该系统中发挥了重要作用。NIED、ERI和横河电机已经进行了多次测试,以确保这种水压计的可靠性,目的是在南海海槽发生大地震时,尽可能地减轻损失。据悉,横河电机的硅谐振压力传感器采用基于单晶硅谐振器谐振频率随压力变化的传感方法,具有低功耗、紧凑型、高灵敏度、高稳定性和高耐压性的特点。谐振器使用硅半导体制造技术密封在清洁的真空腔中,防止外来颗粒粘附在谐振器上降低其性能。此外,使用石英晶体谐振器的传感器不会因气体解吸而导致性能变化,并且可以实现稳定的测量。自1991年以来,横河电机一直在其工业差压和压力变送器中使用这种传感方法安装压力传感器。
  • 北京航空航天大学研制成功高灵敏度石墨烯MOEMS谐振压力传感器
    由悬浮石墨烯制成的纳米机械谐振器对压力变化表现出高灵敏度。然而,由于受空气阻尼的影响,这些设备在非真空环境中表现出明显的能量损失,以及由于石墨烯的轻微渗透,参考腔内不可避免地出现微弱的气体泄漏。2023年6月12日,北京航空航天大学李成副教授团队在ACS Appl. Mater. Interfaces期刊发表名为“High-Sensitivity Graphene MOEMS Resonant Pressure Sensor”的论文,研究提出了一种利用微电子机械系统技术的新型石墨烯谐振压力传感器,其特点是将多层石墨烯膜密封在真空中,并粘附在带有凹槽的压敏硅膜上。这种方法创新性地采用了间接敏感的方法,在大气中表现出60倍的能量损失,并解决了基底和石墨烯之间长期存在的气体渗透问题。值得注意的是,所提出的传感器表现出1.7Hz/Pa的高压力灵敏度,比硅的同类产品的灵敏度高5倍。此外,全光封装腔结构有助于实现6.9×10-5/Pa的高信噪比和低温度漂移(0.014%/℃)。所提出的方法为使用二维材料作为敏感膜的压力传感器的长期稳定性和能量损失抑制提供了一个很好的解决方案。MOEMS石墨烯谐振压力传感器其特点是通过阳极键合实现10-3Pa的真空封装,大大降低了压力差下基底和石墨烯之间高空气阻尼和气体渗透造成的能量损失。总的来说,所提出的传感器为提高信噪比和实现二维材料谐振传感器的可靠使用提供了一个有前途的解决方案。
  • 一个在实验室搬砖的人,为什么需要诗歌、音乐和绘画?
    p  本文作者 乔纳· 雷尔在哥伦比亚大学主修神经科学。大学时曾在诺贝尔奖获得者神经学家埃里克· 坎德尔的实验室工作过。负责过《连线》、《科学美国人》Mind Matter博客、美国全国公共广播电台的广播实验室(Radiolab)的编辑工作,曾为《纽约客》、《自然》、《种子》、《华盛顿邮报》以及《波士顿环球报》撰过稿。他自己的博客Frontal Cortex也受到极高的赞誉。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/58d3ae17-e0ff-4388-a69c-482e985c0067.jpg" title="图1.png" width="600" height="395" border="0" hspace="0" vspace="0" style="width: 600px height: 395px "//pp  strong黑孔雀,1950/strong/ppstrong  亚历山大· 考尔德/strong/pp  这个动态雕塑是用艺术表现大脑特定区域功能的生动实例,考尔德的这个作品艺术化地预见了一个叫做V5的脑区中的细胞的生理功能。V5区的细胞对于动作和方向有特异性的反应。从远处看,这个动态雕塑的各个部分像大小不同的静止的点,然而当雕塑动起来时,雕塑的每个部分只能引起V5区内一类神经细胞的反应,因为这些神经细胞只对雕塑的这个部分的运动方向敏感。——塞米尔?赛琪(Semir Zeki),神经学家,伦敦大学学院 & #169 Christie’s Images/Corbis/pp  上世纪20年代早期,尼尔斯· 玻尔(丹麦物理学家,因对于原子结构与旧量子论的研究做出的基础性贡献而荣获1922年诺贝尔物理学奖)还在就物质的结构问题苦思不已。之前的物理学家认为,原子的内部结构应该就像一个微型的太阳系,原子核是太阳,电子像行星一样绕着原子核转。这就是关于原子结构的经典理论。/pp  但那时,玻尔已经开始研究电子辐射,他认为只有一个新的模型才能解释他的发现。电子的活动看起来与经典理论格格不入。正如玻尔所言:“到原子这个级别时,只能用诗的语言来表达了。”一般的文字已无法描述他的数据。/pp  玻尔一直痴迷于立体派画作。历史学家亚瑟· 米勒(美国剧作家,玛丽莲· 梦露的第三任丈夫。他以剧作《推销员之死》、《熔炉》而闻名)曾回忆道,玻尔的书房里摆满了抽象静物画,他还乐于向访客阐释他对这种艺术的理解。对于玻尔来说,立体派的魅力在于它将物质的确定性击个粉碎,向人们展示出万事万物中包含的裂隙,让物质的实体性变成一种超现实的暧昧不明。/pp  玻尔非凡的洞察力在于,他相信看不见的电子的世界实际上是立体派的。1923年的时候,德布罗意(法国物理学家。1929年因发现了电子的波动性,以及他对量子理论的研究而获诺贝尔物理学奖)已经证明电子具有波粒二象性。但玻尔坚称,电子所具有的形态取决于人类如何观察它们。也就是说,电子和想象中的“迷你行星”完全不同,它们更像一把被毕加索解构了的吉他,一团由画笔勾勒出的朦胧不明之物,只有在你盯着它看时才能赋予它意义。/pp  一般人很难想象抽象艺术作品能够影响科学史,立体派艺术看起来和现代物理学毫无关系。当我们想到科学过程时,脑海里总会浮现出一些特定的词语,比如客观性、实验、事实等。科学论文常常使用被动语态,这让我们觉得科学描绘的世界是现实世界的完美镜像。然而,绘画作品可以非常深刻,但它们往往都不刻画真实的事物。/pp  以上观点将科学看作是衡量一切事物的唯一标尺,这实际上基于一条未予明说的假设:艺术总是随着时尚潮流循环往复,科学知识则不断线性递增。人们认为科学史的发展应该遵循一条简单的等式,即时间+数据=掌握知识。我们相信,总有一天科学能解决所有的事。/pp  但是科学的实际历程却并不那么简单。我们对“真实”知道的越多(比如量子力学还有神经起源),“真实”的悖论就越发明显。正如小说家弗拉基米尔· 纳博科夫(俄裔美国作家,同时也是文体家、批评家、翻译家、诗人、以及鳞翅目昆虫学家,《洛丽塔》的作者)所言,“一个人科学做得越好,就越发觉得科学玄之又玄。”/pp  我们可以看看物理学史。物理学家曾不止一次认为他们搞清了宇宙是怎么回事。他们总以为,除了一些模糊的细节以外,宇宙的基本结构已经一清二楚了。然而相对论的横空出世将这种天真幻想一举粉碎,从本质上改变了经典理论中时间与空间的关系。接着,海森堡测不准定律出现,量子物理超现实一般地揭开自己的面纱。弦理论学家开始尝试调和从未如此南辕北辙的理论学派,还提出了11维理论。科学家还是搞不懂暗物质。现代物理学家对宇宙增加了这么多了解,但还是有太多搞不明白的地方。最终,一些科学家公开地表示了自我怀疑:人类是否真的有理解宇宙的能力?/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/dd550949-c54b-4e84-9f3c-a2b27ebfbb3e.jpg" title="图2.png" width="600" height="370" border="0" hspace="0" vspace="0" style="width: 600px height: 370px "//pp strong D小调第七交响曲,Op.70,1885/strong/ppstrong  安东宁· 德沃夏克(ANTONÍ N DVO?Á K)/strong/pp  大脑额叶的某个叫布罗德曼44区(Brodmann Area 47)的地方,专门预测口语、符号语言和音乐中按照时间顺序发生的事件。当预测符合实际时,神经回路就得到奖励和加强 当预测与实际不符时,另一个叫做前扣带回的脑区就被激活,并接手处理与预期不符的事件。德沃夏克第七交响曲的尾章,就是对神经回路如管弦乐一般的精妙配合进行艺术探索的佳作。部伟大作品的尾声将听众已经习惯的音乐片段的顺序进行了巧妙的置换,让我们既感受惊讶,又享受到了神经系统的奖赏。而在下一次听到类似音乐的时候,我们就会从片段式的记忆中提取这些感知。——丹尼尔?列维丁,神经科学家,麦吉尔大学/pp  我们再来看一看神经科学。仅仅在几十年前,科学家们就提出了关于“搭桥原理”(the bridging principle)的各式假说。“搭桥原理”是解释神经活动如何创造出“意识”的主观体验的神经事件。他们提出了不同种类的“桥”,从大脑皮层的40赫兹振荡,到微管中的量子相干性,不一而足。这些据称就是能将大脑之“水”酿造成意识之“酒”的生物过程。/pp  然而现在,再也没有人探讨这种所谓的“搭桥原理”了。尽管神经科学在对大脑细节的研究上不断取得重大进展,发现我们不过是由一些激酶和突触的化学活动构成的奇怪回路而已,这些进展却让一个问题变得越来越难以忽视:我们并不能体验到细胞层面的生理细节。真相总是充满讽刺:只有一个现实是科学无法再分解的,那就是我们唯一所知的现实。/pp  现代科学的瓶颈在于,我们无法将所有事情统一起来,产生一个普适的理论。我们的未知之物并没有减少很多,在很多情况下反而增加了。最基础的科学被奥秘所笼罩。并不是我们不知道答案,而是我们不知道该问什么问题。/pp  许多基础科学都遇到过这样的问题,比如物理和神经科学。物理学家研究“现实”的基本构造,即那些定义我们的物质世界的看不见的定律和粒子。神经科学家们研究的是我们对这个世界的感知。为了研究人这种动物,他们将大脑层层剖析。这两种科学向最古老也是最宏大的谜团发出了追问:到底何为万物?我们到底是谁?/pp  在我们揭开谜底之前,科学必须摆脱现有的桎梏。该怎么做呢?我给出的答案很简单:科学需要艺术。我们在实证过程中,需要给艺术家留出一席之地,我们需要重新发现玻尔在立体派绘画中看到的东西。目前科学遇到的限制很明显地说明,科学和艺术之间的割裂,不仅是一个会让鸡尾酒会上的聊天冷场的学术问题,而是一个实用主义的问题,一个会让科学止步不前的问题。如果我们想要得到终极问题的答案,就必须要在科学和艺术间搭起一座桥梁。通过倾听艺术的智慧,科学可以获得更多的灵感,而这恰恰是科学进步之源。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/b7d492c9-7c26-46ab-a628-155ee7c81bcc.jpg" title="图3.png"//pp  strong相对论,1953/strong/ppstrong  莫里茨· 埃舍尔/strong/pp  我相信,理解世界与观察世界之间有很多相似之处,人眼的视错觉可以达到什么程度,是对人脑的认知错觉可以达到什么程度的最精致譬喻。当你第一次看到埃舍尔的《相对论》这幅画时,你不会觉得有什么问题。但是当你细看时,你会突然意识到你看到的东西是不可能存在的。这幅画的每一个部分都是自洽的,然而它们拼凑起来却成为了一个不可能存在的整体。埃舍尔的作品展示的是,我们的大脑能对我们实施高明的骗术——即被我们叫做“现实”的神经魔术秀。——丹尼尔?吉伯(Daniel Gilbert),心理学家,哈佛大学 & #169 2007 The M.C. Escher Company-Holland./pp  自20世纪初登台以来,神经科学成功地做到了与大脑“密不可分”。科学家将我们的知觉还原为一系列独立的神经回路。他们采集了正在“思考”的大脑皮层的图像,计算离子通道的形状,将其拆解到亚原子层面。/pp  虽然我们搜集了这么多关于“物质”的知识,但我们对这些“物质”所创造出来的东西却几乎一无所知。我们知道突触,却不了解自己。实际上,还原论的逻辑暗示,自我意识只是一种精巧的错觉,只是额叶皮层发射神经电信号时附带的反应。机器并没有灵魂,有的只是机械震动。你的大脑包含一千亿个带电细胞,但是其中任何一个都不是你,也对你一无所知。实际上,你根本不存在。大脑只是物质的无穷回归而已,可以还原成一堆冰冷的物理定律。/pp  这种“还原法”的问题在于,它拒绝承认的,恰恰是它应该解决的那个谜。神经科学非常擅长自下而上地拆解人的思维,但剖析自我意识需要的是自上而下的方法。正如小说家理查德?鲍威尔斯(当代美国小说家,创作主题常关照现代科技产生的影响)所言,“如果我们只是通过突触来认识世界,那么我们又是怎么知道突触的呢?”神经科学的吊诡之处在于,它惊人的进步恰恰暴露了其研究范式的局限性,即还原论并不能解释意识的出现。人类的许多体验无法用神经科学的现有方法解释。/pp  人类体验的世界就是艺术的世界。小说家、画家和诗人所采撷的瞬间无法被简化、被解剖、或是能被一个科学术语缩略词的活动所表征。艺术家努力捕捉的是生命的原貌。正如弗吉尼亚· 伍尔夫(现代主义与女性主义的先锋。最知名的小说包括《达洛维夫人》、《到灯塔去》、《雅各的房间》、《奥兰多》等)所言,小说家的任务是“体察平凡的一天中的某条一闪而过的平凡的思想& #823(追溯)看上去无关而支离破碎的表象下的模式,这是每幅画面或每个事件给意识留下的痕迹的模式。”她试图用内心的语言来描述意识。/pp  神经科学还没能领会这种第一人称的视角带来的好处。它所采用的还原论方法不会将“我”置于观察的中心。它还在苦苦思索“感质”(quale,一个描述所有感官现象的哲学用词。最早由20世纪初的美国哲学家Clarence Irving Lewis提出)的问题。像伍尔夫这样的艺术家已经研究了“涌现现象”(emergent phenomena,是一个复杂系统中由简单的构成单元间的互动所造成的复杂现象,为复杂系统重要特征)好几个世纪了,并且收集了大量关于意识之谜的知识。他们构造出了关于人类意识的优美模型,这些模型将生活中的细节精炼成散文和故事情节,成功地表现出人类体验的风貌。这就是这些艺术家的作品长盛不衰的原因——因为这些作品给人的感觉是真实的。而这些作品之所以给人以真实的感觉,是因为它们抓住了“真实”的某个层面,而这却是还原论所欠缺的。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/cc1abafc-df62-4e2e-b1d5-70eee65b6020.jpg" title="图4.png"//pp  strong《岩间圣母》中的天使头像习作,1483年左右/strong/ppstrong  列奥纳多· 达· 芬奇/strong/pp  对我来说,这幅铅笔素描习作是证明科学与艺术相互呼应的绝妙例证。科学和艺术都力求通过简单而经济的方式,来代表与表达某一个对象的内在真实。我创作的等式和图表并不比达芬奇笔下的这位女性更为真实。他的这幅画让我们知道画家能够挣脱画笔的限制而到达的境界。寥寥几笔,这位仙子仿佛要脱纸而出,直视你的灵魂。为了抓住宇宙的本质,我必不能将我的等式和现实混为一谈,自然的真理会从我的等式中升华,从数学中脱壳而出变为有血有肉的生命。——克利福德?约翰逊(Clifford Johnson),物理学家,南加州大学 & #169 Alinari Archives/Corbis/pp  神经科学家如果认真地研究这些艺术创作,就可以更好地理解他们想要解析的事物的整体特征。在你解构什么东西前,最好知道它是怎么整合起来的。从这点上讲,艺术为科学提供了一个蕴藏丰富的数据库,科学从中得以窥见它的盲区。如果神经科学想要了解一些脑皮层术语之外的东西——发现意识的神经连结、发现自我的起源,或者找到主观性存在的细胞,那就必须对于这些高级精神事件有一套深刻的理解,现今的科学方法无法突破这一限制。/pp  神经科学需要新的方法,那种并不是自下而上的,而是能够对精神进行复杂表征的方法。有时候,整体还是用整体的方式来理解比较好。威廉· 詹姆士(美国哲学家与心理学家,美国心理学之父)再次首先意识到了这点。在他那本发表于1890年的巨著《心理学原理》的前八章中,他描述了用第三人称的视角来做研究的实验心理学家的心理。然而到了第九章他笔锋一转,用了“意识流”这个名字来起标题,还“警告”读者:“我们现在开始从心灵内部来研究心理。”/pp  通过这句像现代派小说一样极端的简句,詹姆士试图转换心理学的研究主题。管他知觉也好,突触也好,他不承认任何将精神拆分为基本单元的科学方法。他认为这些科学方法是还原论的,忽视了真正的现实。/pp  然而现代科学并没有沿着詹姆士指引的路走下去。在《心理学原理》发表之后,“新心理学”诞生了。这个严密的学派并不接受詹姆士的含糊其辞的描述,而是要将一切无法被测量的东西从心理学中清除出去。比如,对于体验的研究就从实验室中消失了。/pp  但艺术家们依然用他们的方式来演绎复杂的意识。他们从不因为“体验”这个东西难以表述而回避它。他们一头扎入意识的茫茫大海。在这方面,没有人做得比詹姆斯· 乔伊斯(爱尔兰作家和诗人,20世纪最重要的作家之一。代表作包括《都柏林人》、《一个青年艺术家的画像》、《尤利西斯》以及《芬尼根的守灵夜》)更好了。在《尤利西斯》中,乔伊斯试图把握意识的现在时态。小说并不是通过作者的“上帝视角”,而是通过那些角色“本人”的视角来撰写的。在布鲁姆、史蒂芬还有茉莉(布鲁姆、史蒂芬还有茉莉均为《尤利西斯》中的人物)思考美与死、床上的鸡蛋、还有数字八的时候,我们就在无声地偷听他们的内心自白。用乔伊斯的话来说,这就是“思想的浓汤”,注上标点前的心灵,写在纸上的意识流。《尤利西斯》可以说接过了威廉· 詹姆士的衣钵。/pp  同样地,痴迷于鸦片的塞缪尔· 泰勒· 柯勒律治(英国诗人、文评家,英国浪漫主义文学的奠基人之一。以《古舟子咏》一举成名)早在大脑科学出现前就写下了探讨“思考过程中心灵的自我体验”的诗作。或者拿视觉艺术来说吧,神经科学家塞米尔?赛琪曾经写道:“艺术家(画家)在某种意义上就是神经科学家,他们用他们自己独有的方式来研究大脑。”莫奈的《干草垛》之所以吸引人,原因就在于他对色彩的感知有着独到的理解。波洛克的滴画之所以让我们产生共鸣,是因为它们激活了视觉皮层的一些特定回路。这些画家从相反的角度操纵了大脑,他们发现了能够吸引眼球的视觉规律。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/c181a68f-4f3c-4e56-bc90-0262aa83aacb.jpg" title="图5.png"//pp strong 8号作品,1939-1942/strong/ppstrong  皮特· 蒙德里安/strong/pp  蒙德里安在研究“关于形状的永恒真理”时,直线成为了他的个人标签。他相信直线是所有形状的基本成分。许多年后,生理学家发现了“方向选择性细胞”,那是对直线有选择性反应的细胞,并被认为是形状知觉的基石。当图像与偏好朝向越来越远时,方向选择性细胞的反应就会越来越弱 当图像与偏好朝向正交时,细胞反应完全消失。——塞米尔?赛琪,神经学家,伦敦大学学院 & #169 Kimbell Art Museum/Corbis/pp  当然了,科学对于以上论点的标准反应是:艺术对于科学研究来说太混乱、太不精确了 美学不代表真理,莫奈只是运气好 小说是虚构的,是实证的对立面。如果艺术不能被画成散点图或者压缩成变量的话,根本就不值一提。但是混乱性不正是人类精神的本质吗?我们的内在体验不就是充斥着跳跃性、非逻辑性和无法言说的感觉吗?从这点上说,小说的杂陈性和绘画的抽象性就像一面能反射出我们自己镜子。正如诗评人蓝道· 杰瑞所言,“正是艺术中的矛盾,而非逻辑的、有条理的归纳才能象征我们,我们的世界和我们自己都充满着矛盾。”/pp  任何关于精神的科学模型都不完备,除非它包括了精神中无法被还原的东西。科学当然应该遵从严格的方法论,依赖实验数据和可检验性,但是科学也可以通过额外的“输入”受益。艺术家们带有艺术特色的假设可以启发重要的科学问题。如果科学不能从整体性的角度来研究大脑,科学理论就会和我们对自身的观感脱节。/pp  神经科学自然认为它并没有内在的局限。有一天,会有科学家能够解释人类意识的问题 搭桥原理终会被解答 人类最后会发现,体验问题只是另一个物质问题——这样的科学乐观主义可能是对的,只有时间才能证明。在这儿需要指出,并不是所有科学家都如此乐观。艾弗拉姆· 诺姆· 乔姆斯基(美国哲学家、语言学家、认知学家、逻辑学家、政治评论家。他的生成语法为20世纪理论语言学研究做出重要贡献)曾说,“极有可能某人会猜测,我们从小说中学到的人类生活和个性会比科学心理学中学到的要多。”不管怎么说,想要解开被大卫· 查默斯(澳大利亚哲学家、认知学家,美国文理科学院院士)称为“最难解的意识问题”,就需要一种新的科学方法,一种能够汲取艺术中的智慧的方法。从一方面讲,我们是能创造梦境“东西” 从另一方面讲,我们也只不过是一团“东西”。如果把科学或艺术分开来看,任何一个都无法解决意识的问题,因为真相是多样的。/pp  乍看之下,物理和艺术的距离似乎特别遥远。物理理论是从晦涩的等式和超级超导对撞机的亚原子残骸中提炼出来的。物理理论坚持认为,我们对于现实的直觉实际上是错的,是感觉虚构出来的。艺术家依赖于想象,而现代物理学则超越了想象。就像《哈姆雷特》表达的那样,天底下的东西(暗物质、夸克、黑洞)是无法想象的。如此奇特的宇宙只能被发现,不能被想象。/pp  但是物理学的超现实本质正是艺术家能帮得上忙的地方。科学的确已经发展到人类无法理解的地步了。正如理查德· 费曼(美国物理学家。1965年诺贝尔物理奖得主)所言,“与小说家不同,我们的想象力已经文思枯竭,别说去想象不存在的东西了,就连去理解存在的东西都十分困难。”这就是不能理解两位数维度的弦理论,或是平行宇宙可能性的人类心理的赤裸裸的写照。我们的心智是在一个简单的世界中演化出来的,物质是确定的,时间是向前流动的,世界只有三个维度。而当我们进入与生俱来的直觉之外的领域时,隐喻就变成了救星。这就是现代物理的讽刺所在:一方面人类探寻真相的最根本的形式,另一方面,除了它们的数学表达式以外,人类无法理解这些基本原理。我们理解宇宙的方式只有类比。/pp  因此,物理的历史充满了隐喻的跃进。爱因斯坦在思考运行中的列车时顿悟了相对论。亚瑟· 爱丁顿(英国天体物理学家、数学家,是第一个用英语宣讲相对论的科学家)将宇宙的膨胀比喻为一个充气的气球。詹姆斯· 克拉克· 麦克斯韦(苏格兰数学物理学家。提出了麦克斯韦方程组,实现了物理学自艾萨克· 牛顿后的第二次统一)将磁场看作是空间中的小漩涡,并把它们叫做“涡流”。宇宙大爆炸就像是宇宙中的鞭炮。而被困在宇宙“炼狱”中的薛定谔的猫则阐明了量子力学的悖论。而且,似乎没有软管就很难理解弦理论。/pp  这些科学明喻似乎过分简单了,但是它们的意义非常深远。物理学家、小说家阿兰· 莱特曼(麻省理工学院人文教授,畅销书《爱因斯坦的梦》的作者)写道:“科学中的隐喻不仅仅有教育功能,还能启发科学发现。在做科学研究的时候,就算文字和等式不会有超出字面的引申意义,不去进行物理类比,不在心中画图,不去想象弹跳的球和摇摆的钟摆是不可能的。”隐喻的力量在于它能让科学家具体地想象抽象概念,去理解数学等式之外的含义。总之,我们所知的世界规定了我们思想的世界。/pp  但是一味依赖隐喻也有风险,因为任何隐喻都不完美。如托马斯· 品钦(美国作家,以晦涩复杂的后现代主义小说著称,几度获得诺贝尔文学奖提名)所言,“隐喻既可以把你推近真相,也可以把你推近谎言,取决于你在什么位置。”宇宙的弦或许像一根软管,但它毕竟不是。宇宙也不是气球。当我们把日常语言与理论挂钩时,等式的纯洁性就被玷污了。用类比的方式来思考就如同行走在一条叫“正确性”的钢丝上。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/66ba5755-c2e7-45b4-b589-073f0c13730b.jpg" title="图6.png"//pp strong 街上的夫妇,1887/strong/ppstrong  查尔斯· 安格朗/strong/pp  人类的两眼在水平方向上存在视距偏差。视觉系统利用这点来计算景深。当眼睛盯住一个物体的时候,它的图像在每个视网膜上的位置是一样的。包含许多相似物体的视域会在双眼中留下相似的图像。这些图像有时能被双眼正确匹配,那么人就会看到扁平的画面 有时某只眼中的图像在另一只眼中被错配,那么人就会看到景深不同的画面。我认为印象派和后印象派时期的艺术家搞明白了这点。他们称能够通过营造假的立体视线索来画出空气,这就是一种操纵景深知觉的手法。因此当你用双眼而非单眼观看安格朗的画作时,它们看上去就像是立体的。——玛格丽特?利文斯敦,神经科学家,哈佛大学 & #169 The Bridgeman Art Library/Getty Images/pp  这就是现代物理需要艺术的原因。一旦我们认可了隐喻对科学的重要性,就可以思考如何让这些隐喻变得更好。诗人当然是隐喻高手,他们的艺术力量在于饱含着意象的格律。含糊的感受被他们变成了贴切的形象。20世纪的许多伟大物理学家,如爱因斯坦、费曼、玻尔等,都以思维的浪漫性著称,而这并不是巧合。这些声名显赫的科学家借用他们的隐喻本事来参透别人参不透的东西,所以铁路成了相对论的隐喻,水滴成了原子核的隐喻。诗人可以加速科学进程,帮助科学家将隐喻更新换代。或许我们可以发明比软管更好的隐喻。或许一个明喻就能够解开暗物质之谜。正如弦理论学家布莱恩· 葛林(美国著名的理论物理学家与超弦理论家。《宇宙的琴弦》的作者)所写,艺术能够“撼动我们的感官,让它明白到底什么才是真实的”,倒逼科学想象力的进步。/pp  但是还有一种方法能够让艺术家为宇宙对话带来新鲜元素——他们可以让科学隐喻变得有血有肉。如果一个抽象的等式能够变成实物的话,物理学家就可以从不同的角度来探究数学的意义。拿里查· 塞拉(美国的极简主义雕塑家和录影艺术家,以用金属板组合而成的大型作品闻名)的雕塑来说吧。他的金属迷宫让我们能够亲身参与到物理理论中,让我们可以用全新的方式来想象时空的曼妙曲线。而立体主义中破碎的图形也起到了同样的功能,它们和当时的前沿物理之间产生了卓有成效的对话。毕加索虽然看不懂非欧几里德几何学的等式,但却决意用他的画作来展现关于时空的新思潮。一个世纪后,物理学家还在引用他的支离破碎的静物画来象征现代物理学。抽象艺术让我们对那些费解的思想多少有了些理解。/pp  现在是时候让科学和艺术间的对话变成科学方法的标准配置了。我们的大学可以开设“面向物理学家的诗歌”课。但是为了让我们更好地理解理论的延伸,让科学隐喻超越隐喻的限制也是很有必要的。艺术画廊应摆满能让人联想起令人错愕的弦理论、还有EPR佯谬(爱因斯坦-波多尔斯基-罗森佯谬,以佯谬的形式,针对量子力学的哥本哈根诠释而提出的早期重要批评)的作品。所有的理论物理系都应该请一个常驻艺术家。对普通人来说,现代物理看上去总是太飘渺、太不切实际,它的假设看上去太离奇以至于毫无意义。而艺术则可将物理拉回我们感官所熟知的世界。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/c595bb94-c538-443f-8b3f-41da865d636c.jpg" title="图7.png"//pp strong 悲剧,1903/strong/ppstrong  巴勃罗· 毕加索/strong/pp  长久以来,艺术家就知道色彩和光影是两回事。景深(三维)知觉、运动知觉以及空间组织都是由视觉系统中的子系统来分别控制的。而这三个系统都是“色盲”,只能看到黑白灰。它们是视觉系统中比较原始的部分。在缺乏明暗对比的情况下,一个人是无法分辨景深或者动作的。人们能够看到毕加索的《悲剧》这幅作品的景深的原因是,这幅画除了用色独具匠心之外,明暗也恰到好处。——玛格丽特?利文斯敦,神经科学家,哈佛大学 & #169 Francis G. Mayer/Corbis/pp  艺术家的反馈也可以让神经科学受益。小说家能够在他们的作品中模拟关于意识的最新理论。如果某个理论无法让角色变得生动,那么这个理论就行不通。(比如,伍尔夫就是弗洛伊德理论的早期批评家之一。她批评他的理论把“活生生的人物变成了医学案例”。)画家可以探索最新的视觉皮层理论。舞蹈家可以帮科学家搞清楚身体和情绪之间的联系。通过聆听艺术的智慧,科学和艺术之间可以产生对话,科学甚至可以变成艺术的一支。从另一方面来说,通过艺术对科学理论和想法的诠释,科学可以从全新的角度审视自身。/pp  创造了“二元文化”这个耳熟能详的词汇的小说家查尔斯· 珀西· 斯诺,提出一个解决科学艺术之间分歧的简单方法。他认为,我们需要“第三种文化”,它能够打破科学家和艺术家之间的“交流障碍”。如果能让作家知道热力学第二定律,科学家阅读莎士比亚,那么双方都会从中受益。/pp  现在就有一种这样的第三种文化,但是它和斯诺的构想不一样。斯诺认为第三种文化应基于科学和艺术之间的对话,而现实中的第三种文化却完全变为科学家对公众的演说。如第三种文化奠基者约翰· 布罗克曼所言,“传统意义上的‘科学’已变成‘公众文化’& #823科学只是新闻而已。”当然,摆脱媒体,直接向公众诠释数据的科学家是值得褒扬的。构成第三种文化的许多科学家增长了公众对前沿科学的理解。从达尔文到葛林,从史迪芬· 平克(美国实验心理学家、认知科学家和科普作家。著有多部畅销科普书籍)到爱德华· 奥斯本· 威尔森(美国昆虫学家和生物学家。以他对生态学、进化论和社会生物学的研究而闻名),这些科学家不仅科研做得好,还能写出漂亮的散文。他们给了我们许多启示。/pp  但是科学和艺术之间如何合作呢?我们是否准备永远生活在这种文化断层中?如果我们想要统一人类知识的话,就必须先搞一场新运动,这运动必须超越科学和艺术的界限,将两者联系起来。而这场运动的前提(可能是第四种文化)就是科学和艺术无法独立存在。这场运动的目标就是培养一个正反馈回路,让科学和艺术不断相互促进。科学和艺术不应互相排挤、互相忽视、或者选择性地互相关注,而应对对方起到切实的影响。如此一来,旧世界的智力隔阂就会消失 神经科学会收获新工具,用以解决棘手的意识问题 现代物理则能够优化它的隐喻系统。艺术将会变成科学灵感的泉源。/pp  这场运动能让我们对真理有更广泛的理解。目前,科学被认为是真理的唯一来源。但是那些不能用缩略词还有等式表达的东西却被轻视,被看作是华而不实的虚构作品、科学事实的对立面。/pp  但是科学无法独自解决它提出的宏大问题。通过将两者融合,我们能够通过实用性而非出处来评价我们的知识。这篇小说/实验/诗篇告诉了我们关于自身的什么道理?它是如何让我们理解我们是谁,宇宙又是由什么构成的?它处理的是什么样的难题,它解决了吗?如果我们的心胸足够开阔,那么就能够发现诗歌和画作都能推动实验和理论的进步。艺术会让科学变得更好。/pp  但在这之前,科学和艺术必须纠正一些坏习惯。首先,人文学科必须与科学真诚协作。亨利· 詹姆斯(作家,哥哥是知名心理学家威廉· 詹姆斯)曾将作家视为能包容一切的人。艺术家必须听从这种建议,不要忽略科学对现实的激动人心的刻画。/pp  同时,科学必须意识到,它描绘的现实并不是唯一的。没有任何一种知识能够独断专行。如卡尔· 波普尔(哲学家,美国哲学家巴特利称为“哲学史上第一个非证成批判主义哲学”)所说:“我们必须要摒弃‘知识有终极来源’的想法。我们必须承认,所有的知识都带有人的特征,都掺杂着人类的错误、偏见、梦想和希望。我们能做的就是不断追寻真理,即使真理遥不可及。”人类对于科学真理的探索源远流长、荆棘满路却永不止步。如果我们想要得到终极问题——我们是谁,何为万物——的答案,科学和艺术都是必不可少,相辅相成的。/pp  原文链接:/pp  a href="http://seedmagazine.com/content/article/the_future_of_science_is_art/" _src="http://seedmagazine.com/content/article/the_future_of_science_is_art/"http://seedmagazine.com/content/article/the_future_of_science_is_art//a/p
  • 振动试验中必要的数学和物理基础知识1
    对于初入振动试验行业的技术人员,个人认为以下几点是必须掌握的数学和物理知识:1对数(logax)、2左手定则(F=IBLsinθ)、3右手螺旋定则、4牛顿第二定律(F=ma)、5周期(T)频率(f)角速(ω)、6分贝(dB)、7倍频程(oct)十倍频程(dec)。这些都是高中求学时期所涉及的,是理解振动试验内容需要的最基本的知识点。现罗列如下并进行说明:1 对数(logarithm)1.1 对数的定义如果,ap = x ( a0,且a≠1 ),即a的p次方等于x,那么数p叫做以a为底x的对数(logarithm),记作:p = loga(x)其中,a叫做对数的底数,x叫做真数,p叫做“以a为底x的对数”。对数是对求幂的逆运算,x=ap ⇔ p=loga(x)[条件:a0,a≠1]例:幂运算对数运算32 = 92 = log3 923 = 83 = log2 810-1 = 0.1-1 = log10 0.153 = 1253 = log5 12530 = 10 = log3 11.2 特殊对数① 常用对数(log或lg)底数为10的对数。log x ⇔ log10 x 、lg x⇔ log10 x② 自然对数(lnx)底数为e= 2.71828‥(自然常数)的对数。lnx ⇔ loge x振动试验中使用的基本上都是对数坐标,如果能掌握一些对数运算法则的话,对很多试验内容的理解和计算将达到事半功倍的效果,比如扫频试验、随机试验中的PSD等。对数坐标简单说明:直线坐标下,X轴100,Y轴大概20,但是X轴为1或10的时候,基本上读不到Y轴的数值。但是在对数坐标中,可以读到Y轴的数值为1和4.5。也就是说,对数坐标下,可以正确的显示最大值的1/100或1/1000。这就是振动试验中经常用对数坐标的理由。2 左手法则※定义下图,磁场(B)中的导体通入电流(I),则产生力(F)。F = IBlsinθF:力[N];I:电流[A];l:磁场中导体的长度[m];B:磁感应强度[T];磁场方向和导体的倾斜角度θ[°]。※F、B、I方向的关系※习题上图所示,导线中电流通过时,导线的A部分会朝哪个方向移动?(b)此法则在理解电动型振动试验机原理(动圈线圈中通入交流电后做什么样的运动)有至关重要的作用。3 右手螺旋法则※定义右手螺旋定则便是通电导体电流(I)和磁场(B)的方向的定则。电流如果是按照右手螺旋前进的方向(大拇指指向)直进的话,那么磁场的方向就是右手螺旋回转的方向。此法则在了解振动试验机励磁线圈(通直流电)产生的磁场方向上有很大的帮助。4 牛顿第二定律※定义物体加速度的大小(单位:m/s2)跟作用力(单位:N)成正比,跟物体的质量(单位:kg)成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。加振推力就是通过此定律来计算的。夸张一点的说,振动试验也基本上都是围绕着这个公式进行的。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 拟资助1500万元!2022年度国家自然科学基金专项项目“音乐与脑科学”项目指南
    2022年度国家自然科学基金专项项目“音乐与脑科学”项目指南为推动艺术和科学的跨领域交叉基础研究,国家自然科学基金委员会(以下简称自然科学基金委)交叉科学部拟设立“音乐与脑科学”专项项目,针对音乐脑科学领域的若干核心科学问题,开展多学科交叉研究。欣赏和创作音乐是典型的大脑高级功能,涉及听觉信息加工编码的脑区与其他脑区之间的动态功能联结。通过现代脑科学研究手段,结合音乐的数据结构及其生成规律,探索大脑高级功能和可塑化过程,并揭示音乐治疗的神经活动特征。一、科学目标本专项项目基于音乐的声学特性、音乐要素及其类别的映射关系,通过音乐、声学、脑科学和人工智能等方法,研究音乐基本要素加工和复杂音乐认知行为的神经机理,探究音乐作为高级听觉认知过程区别于普通听觉信息处理的微观神经结构、神经通路和脑区连接层面的核心特征,阐明生理和病理状态下音乐对大脑可塑性的影响及其机制。二、拟资助方向(一)实景音乐环境中大脑动态活动特征研究以沉浸式音乐厅实景实验的神经生理数据为基础,构建音乐大数据量化模型,研究个体和群体在音乐感知、演奏与审美过程中大脑的动态信息传递和神经编码机制,建立相应的神经计算模型。(二)编码音乐基本要素的多尺度神经机理研究通过音乐专家和人工智能筛选音乐节奏、旋律等基本要素,在突触、细胞、神经通路等尺度揭示这些要素的神经编码机制,研究音乐对早期生命和个体生长发育等生理过程中大脑可塑化的影响,为特定功能音乐的设计提供理论基础。(三)个性化音乐治疗及其作用机理研究基于脑科学原理和人工智能的音乐治疗量化技术,研究不同类型音乐和大脑动态功能联结的对应关系及其作用机制,探索睡眠障碍、焦虑和抑郁等症状的音乐干预方案。三、资助期限和资助强度本专项项目资助期限为5年,项目研究期限应填写“2023年1月1日-2027年12月31日”,拟资助1项,直接费用为1500万元。四、申请要求及注意事项(一)申请资格1.具有承担基础研究课题的经历。2.具有高级专业技术职务(职称)。在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项申请规定1.本专项项目从申请开始直到自然科学基金委作出资助与否决定之前,不计入高级专业技术职务(职称)人员申请和承担总数2项的范围;获资助后计入高级专业技术职务(职称)人员申请和承担总数的范围。2.申请人和参与者只能申请或参与申请1项本专项项目。3.申请人同年只能申请1项专项项目中的研究项目。(三)申请注意事项1.申请书报送时间为2022年11月10日-11月14日。2.本专项项目申请书采用在线方式撰写。对申请人具体要求如下:(1)申请人在填报申请书前,应当认真阅读本“专项项目指南”和《2022年度国家自然科学基金项目指南》的相关内容,不符合项目指南和相关要求的申请项目不予受理。(2)本专项项目旨在紧密围绕指南公布的科学目标集中国内优势研究团队进行协同攻关,申请人应针对拟资助研究方向具体阐述拟开展的研究内容、方案及资金预算。同时要求综合运用多学科研究方法开展深入、系统的研究,各研究方向间要有紧密和有机联系,研究内容互补,充分体现项目整体研究与各研究方向的科学目标实现路径,各研究方向间涉及材料、数据和方法的应进行共享。(3)申请人登录科学基金网络信息系统https://grants.nsfc.gov.cn/(没有系统账号的申请人请向依托单位基金管理联系人申请开户),按照撰写提纲及相关要求撰写申请书。(4)申请书中的资助类别选择“专项项目”,亚类说明选择“研究项目”,附注说明选择“科学部综合研究项目”,申请代码选择“T03”。以上选择不准确或未选择的项目申请不予受理。(5)本专项项目的依托单位和合作研究单位数合计不得超过5个。主要参与者必须是项目的实际贡献者。(6)申请书应突出有限目标和重点突破,明确对实现本专项项目总体目标和解决核心科学问题的贡献。如果申请人已经承担与本专项项目相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。(7)专项项目资金管理采用预算制。申请人应当认真阅读《2022年度国家自然科学基金项目指南》申请规定中预算编报要求的内容,根据《国家自然科学基金资助项目资金管理办法》(财教〔2021〕177号)、《国家自然科学基金项目申请书预算表编制说明》的具体要求,认真如实编报项目预算,依托单位要按照有关规定认真进行审核。3.本专项项目实行无纸化申请,申请人完成申请书撰写后,在线提交电子申请书及附件材料。依托单位只需在线确认电子申请书及附件材料,无须报送纸质申请书,但应对本单位申请人所提交申请材料的真实性和完整性进行认真审核,在项目接收工作截止时间前(2022年11月14日16时)通过信息系统逐项确认提交本单位电子申请书及附件材料;在截止时间后24小时内在线提交本单位项目申请清单。项目获批准后,依托单位将申请书的纸质签字盖章页装订在《资助项目计划书》最后,在规定的时间内按要求一并提交。4.本专项项目咨询方式:国家自然科学基金委员会交叉科学部交叉科学三处,联系电话:010-62327096。(四)其他注意事项1.为实现专项总体科学目标,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定。2.为加强项目的学术交流,本项目将不定期地组织相关领域的学术研讨会。获资助的项目负责人必须参加上述学术交流活动,并认真开展学术交流。国家自然科学基金委员会交叉科学部2022年11月1日
  • 振动试验中必要的数学和物理基础知识2
    接上文:振动试验中必要的数学和物理基础知识1。5 周期、频率、角速度※周期T完成一次全振动所需要的时间(单位:秒sec)。※频率f单位时间内完成全振动的次数(单位:赫兹Hz)。※角速度ω表示物体或质点回转速度的量,角度除以时间(单位:rad/s 或 °/s)。360° = 2π (rad)三者之间的计算关系,ω = 2πf,f = 1/T,T * f = 1。※习题6 分贝振动参数(加速度、频率等)大小的比较,通常我们使用倍数来表示,比如频率是原来的10倍,位移是原来的0.5倍。在振动中由于涉及的量级范围比较大,比如频率几赫兹到几万赫兹,加速度几m/s2到几百m/s2,所以基本上采用分贝(dB)的表示方式,比如报警上限+3dB,报警下限-3dB。其实是倍数的另外一种对数表达形式而已,是量度两个相同单位之数量比例的计量单位。※定义1 功率类(功率、能量、加速度平方、PSD等)的分贝定义LdB = 10log(P/P0)P0:基准值 P:现在值2 电压类(电压、电流、加速度、速度、位移等)的分贝定义LdB = 20log(A/A0)A0:基准值 A:现在值※常用分贝和倍数比较表(电压类分贝)分贝倍数分贝倍数0dB10dB10.5dB1.059-0.5dB0.9441dB1.12-1dB0.8922dB1.26-2dB0.7953dB1.41-3dB0.7086dB2-6dB0.510dB3.16-10dB0.31620dB10-20dB0.140dB100-40dB0.01※习题1 加速度增加到3倍,对应的分贝是多少?(9.54dB)2 速度增加到4dB,也就是增加到几倍?速度减少到-4dB,也就是减少到几倍?(1.585倍,0.631倍)7 倍频程、十倍频程在振动试验中,对于两个频率比的表示方式还有倍频程(octave)和十倍频程(decade)的方法。这是两个必须理解的概念,十倍频程相对来说用的比较少。7.1 倍频程(octave)※定义指使用频率f与基准频率f0之比等于2的n次方,即f/f0=2n,则称f为f0的n次倍频程。计算式如下:n = log(f/f0)/lg2或n = log2(f/f0)比如,下限频率100Hz,上限频率2000Hz,通过上面的计算式可以得到100~2000Hz之间约有4.3个倍频程(可以简写成4.3oct)。7.2 十倍频程(decade)※定义指使用频率f与基准频率f0之比等于10的m次方,即f/f0=10m,则称f为f0的m次十倍频程。计算式如下:m = log(f/f0)比如,下限频率100Hz,上限频率2000Hz,通过上面的计算式可以得到100~2000Hz之间约有1.301个十倍频程(可以简写成1.301dec)。※习题1 频率范围10~2000Hz之间有几个倍频程?(7.645oct)2 频率范围10~2000Hz之间有几个十倍频程?(2.301dec)3 推导倍频程(oct)和十倍频程(dec)之间的关系。(1oct=3.322dec)总结:本文只罗列了一些振动试验涉及的最基本的经常出现的数学和物理知识,如果不能理解和应用,在技术交流中会比较困难,需要加倍努力才行。当然,振动试验所涉及的数学和物理知识还是很难很复杂的,比如傅立叶变化、PSD计算等。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 原创仪器研发的三大障碍
    一个好的实验室和研究部门离不开好的设备和仪器,而一台成功仪器设备的研发背后却是实现这台设备的物理原理、数学和自动控制方法等最有力的体现和运用。国内目前自主开发的仪器设备太少了,有分量的就更少了。我们只是一味地在买设备,长此以往,后果不堪设想。每每在实验室里,看到这个国家的设备、那个国家的设备,唯独鲜见我们自己的设备,中国制造怎么就这么难!仅从科学研究和应用的角度来说,是什么阻碍了我们的科学仪器设备的发展和技术进步,笔者试图从三个方面来阐述这个问题,主要包括物理原理、数学和集成电路等。  从物理原理的掌握和运用上来说,这是限制我们深入发展和创新的第一个原因。  举个例子。1986年,诺贝尔物理学奖授予了扫描隧道显微镜STM(scanning tunneling microscopy)研究的几位工作者, 其中之一是瑞士鲁西利康(Ruschlikon)IBM的德国物理学家格尔德宾宁(Gerd Binnig)和瑞士物理学家罗雷尔(Heinrich Rohrer),表彰他们设计出了扫描隧道显微镜。  STM的基本原理就是利用量子力学中的隧道效应,在金属针尖和样品表面形成隧道电流,从而实现了原子的表面成像。但是限于当时的技术条件,样品只能是导电的,还不能在非金属表面上进行成像。然而,随后的发展却更让我们吃惊,一些科学家又相继开发出能够在绝缘衬底上成像的原子力显微镜AFM(atomic force microscopy),它是以硅或氮化硅为针尖与样品表面直接接触(contact mode),施加到样品上的力小到只有几个纳牛(nN),甚至更小。这样,一下子就将测试的样品类型扩展到了几乎所有的被研究的材料表面。随后,人们又开发了多种多样功能类型的表面成像设备。从此,在微米、纳米尺度甚至原子水平上表面特性的研究进入到一个崭新的领域。由此看来,物理原理的掌握和运用实在是一个重要因素。  对数学的理解和运用是第二个主要因素。现代工业绝大部分技术的实施都是以计算机控制为基础,因此,需要对诸如电压等物理模拟量进行数字化,然后计算机才能够进行有效的数据采集,再对数据进行分析,光滑处理,包括滤波分析、时域分析和频谱分析等,最后输出图像等一系列过程。其中,要用到很多数学运算,傅里叶变换(FFT)、拉氏变换(Lplpace)、卷积(convulution)、相关(correlation)和互谱(cross spectrum)等。从这些分析途径中可以对信号进行频率的提取、图像的光滑处理和未来事物发展的预测等。我们每每能够看到一些设备的软件不仅界面做得漂亮,而且其数学处理真是很专业、深入又实用。现在,我们看到国内某些研发部门也都做出了不少有自己特色的软件,但能否持续开发升级坚持下去,仍是一个问题。因此,只有当从数学原理上有了深刻的认识,并应用到设备上,这才能发挥数学真正的作用。  第三个便是集成电路的研发与应用。固体电子学最大的成功是半导体上集成电路的成功研制,集成电路上最大的成功应用是在计算机上的发展,而计算机的发展却是带动整个网络时代发展的主要工具,并极大促进整个工业界在自动控制技术等领域中的应用。因此,集成电路的发展真正代表了一个国家科学技术发展的源动力。集成电路在摩尔定律的驱动下,已经大踏步向前,据说IBM等大公司已经开始向9nm的技术迈进。如果我们不能突破这一瓶颈,将会被越落越远。  这三个方面的问题无疑是制约我们科技发展和进步的主要因素,其中既涉及到软环境又涉及到硬环境。我们可能既不缺乏懂得物理原理的人,也不乏擅长数学的人,也不乏努力工作的技术人才,但是,如果没有一个很好的整合,未来真的将被越落越远。只有开发出自己的设备,才能做出真正的属于自己的科研,才能真正实现中国制造。
  • 用科学仪器试解“达芬奇密码”
    当树木被制成待用的板材,种类和产地就容易成为“达芬奇密码”。  木材识别是木材解剖学和木材科学的重要研究内容之一,主要用在植物分类、珍稀树种保护、合理使用木材、寻找代用材、保护生态环境等方面。作为副产品,木材识别技术的发展也为维护消费者利益,解开家具行业的“达芬奇密码”提供了科学依据。  市场需要破解方法  上海达芬奇家居股份有限公司宣称,在其动辄百万元的家具上,使用了一种叫白杨荆棘根的名贵木材,这种木材只在意大利一个偏僻小镇才有。而据央视《每周质量报告》的调查,这所谓的“名贵木材”只不过是一种高分子的树脂材料、大芯板和密度板。  随着名贵木材资源的越来越紧缺,家具市场上以次充好,用其他材料冒充木材的情况也日渐增多。据家具销售商介绍,目前市场上就有用橡木、水曲柳等纹理接近黑胡桃木的木材,通过染色等手法欺骗消费者,甚至有用纸制材料冒充柚木的情况出现。  如果有一种技术手段,可以简单准确地鉴别木材的种类、产地等情况,相信市场上的“达芬奇密码”就会越来越少,家具行业也会越来越规范。  在国家自然科学基金的资助下,中国林业科学研究院研究员程放、杨忠等人利于微观图像特征、红外光谱等技术对木材进行识别研究。尽管研究者的初衷并非家具鉴定,但木材识别技术的发展,必将为消费者提供一种辨伪识假的工具。  为区分树种提供一种方法  “我们的主要目的是为专家进行树种区分提供一种方法或途径,像辨别达芬奇家具用料、产地之类的问题,目前还做不到。”程放说,“我们作一些微观的木材特征识别研究,有很大局限性。木材是一种生物材料,个体内部结构特征受生长环境、生长位置(阳面或阴面)、气候带,甚至某次灾害天气等影响很大。想做成市场化的检测产品,还有一定难度。”  和文物鉴定有“眼学”与科学仪器分析鉴定相似,木材识别也可分为宏观识别、微观识别和辅助识别。宏观识别是指在肉眼下或借助放大镜,依据所观察到的木材宏观构造特征来识别,一般只能识别出木材大的类别。微观识别是指在显微镜下观察木材细胞组织的微观特征,据此来鉴定木材。由于木材是由许多细胞组成的,微观特征识别更有参考价值。  2002年,在国家自然科学基金的支持下,程放开始对木材特征图像进行识别研究。他们利用木材图像的颜色、灰度、纹理等内容实现树种的相似性匹配检索,提取色调、饱和度、亮度、对比度、二阶角矩、方差和、长行程加重因子、分形维数、小波水平能量比重等特征参数,依据最大相似性数学原理进行识别研究。  “从原理上说,不同种类的木材在显微镜下的微观特征是不同的,我们所做的就是将木材在显微镜下的特征建立一个数据库,用显微镜加摄像头的方式,对要判别的木材和数据库进行比对,如果相似度达到某一范围就认为是同一类。” 程放说。  在国家自然科学基金的资助下,该课题收集整理了562 种阔叶树材横切面的显微特征数字化图像资料。在管孔分布类型的识别研究中,研究者通过试验,使用了一种新的将灰度数学形态学与最大类间方差法相结合的图像分割算法,对识别图像进行多分辨率下的预处理,得到了很好的“粗视”滤波效果。  通过试验设计不同的计算机识别流程,研究人员针对识别目标的特点,经过选取、组合特定的结构元素和形态学运算,以及二值图像的骨架化处理,达到了计算机识别阔叶树材横切面上管孔的三种不同类型以及管孔分布呈现的方向性、火焰形状和树枝交叉形状的研究目标。表明了数学形态学在木材特征图像的分析、识别研究中具有良好的操作灵活性和针对性。为木材特征图像检索技术积累了基础数据。  距应用还有一小步  2009年,中国林业科学研究院木材工业研究所副研究员杨忠申请的国家自然科学基金项目“基于近红外光谱技术的木材识别研究”获准立项。杨忠开始用另一种方法进行木材识别探索。  “木材树种识别的方法很多,有微观图像法、遗传法(DNA标记)、化学法(稳定同位素)和近红外光谱(NIR)技术等。近红外光谱分析技术,是近年来分析化学领域迅猛发展的高新分析技术,在食品、药品、农业等领域已广泛使用。”杨忠说。  近红外光谱分析技术也需要对木材进行光谱分析,并和数据库中的树种信息进行比对。2003年,日本专家利用近红外光谱分析技术识别了8种木材。经过几年努力,中国林科院木材工业研究所也建立了20余种木材的近红外光谱数据库,并申请了红木的近红外光谱识别方法的发明专利。  “红外光谱的方法有它的优点,但也有局限性,对某些树种区分效果不好。”杨忠说,“该技术还需更多的木材标本光谱数据,建立更有代表性的数学模型。这又涉及化学计量学等领域,我们正在选些树种作验证,但还无法识别到种和产地。这项技术将来有进行市场化的前景,但目前还只是基础研究,我们也是作些初步的探索。”  “我们当时挑选了构造特点较突出的几类阔叶材管孔类进行研究。但真正能识别的只是其中的几类。该项目结题后我没再进行这方面的研究。据我所知,国家自然科学基金后来又资助了几个这方面的项目,也都做得不错,但目前计算机自动识别木材还只能区分到类或属。”程放说。
  • 乘风破浪,开拓未来——鼎泰奏响2019新年音乐会
    2018年1月1号,新年的第一天,大雪纷飞中,武汉琴台音乐厅迎来了一千多名热情的观众。由鼎泰精锐主办的“鼎泰2019新年音乐会”在琴台音乐厅隆重举行。来自各大高校、研究院等多个行业的用户代表及行业合作伙伴出席了此次盛会。武汉琴台音乐厅演奏厅音乐厅大厅在新年音乐会奏响之前,鼎泰总裁储涛及公司高层管理人员等一行人接受了媒体代表的采访并给大家送去了新年的祝福。 鼎泰精锐高层媒体:首先,在这里我代表所有受邀嘉宾,感谢我们这次活动的主办方——湖北鼎泰,感谢储涛总裁,也感谢各位,让我们有机会即将享受到一场美妙的视听盛宴,而且是在新年的第一天。在这个特殊的节日里,我们有请储总为大家致欢迎辞。 储涛:首先祝福我们鼎泰的所有用户、老师及各位朋友新年愉快,祝大家在新的一年里万事如意,身体健康,家庭幸福!鼎泰公司的核心价值观是“创新、开拓、合作、共赢”,鼎泰员工的核心价值观是忠诚、团结、自律、自强。 对于仪器市场,我衷心地希望这个市场是由大家共同来开拓,同时,我们也要精耕细作,更精心地维护这个市场。希望在公平、公正的环境下,鼎泰与各合作伙伴、各位同仁共同开拓、共同维护好仪器市场。鼎泰精锐储涛总裁本次的“鼎泰2019新年音乐会”,特别邀请到了德国耶拿爱乐乐团——屹立于欧洲乐坛80余年,古典乐界的“德国战车”,被誉为“来自德国心脏的声音”,被德国古典音乐协会连续三年授予“年度最佳乐团”。指挥克里斯托弗马蒂亚斯穆勒,曾在2000年赢得西班牙国际指挥比赛大奖,被誉为“毫无疑问的当代最有才华和引人注目的指挥之一”,先后两次带领乐团摘取了欧洲著名的ECHO古典音乐大奖。现场曲目热情四溢、轻松愉快,指挥克里斯托弗马蒂亚斯穆勒和各演奏家们倾情投入,一次次将现场的气氛推向高潮。期间,受现场高涨的氛围感染,乐团不但另外返场了小约翰施特劳斯的《闲聊》波尔卡,还有《Rhumba》《Boogie-Woogie》等经典曲目,并且特别给现场观众送去德国版新年祝福,场面热烈、气氛活跃。德国Jenaer Philharmonie爱乐乐团现场曲目1、小约翰施特劳斯:《爱的讯息》快速波尔卡 2、埃米尔.瓦尔德退费尔:《我的梦》圆舞曲3、约瑟夫施特劳斯:《无忧无虑》快速波尔卡4、约瑟夫施特劳斯:《燃烧的爱情》玛祖卡波尔卡5、小约翰施特劳斯:《亲吻》圆舞曲6、弗朗兹莱哈尔:《中国芭蕾》组曲7、圣-桑:狂欢酒宴,选自歌剧《参孙与达利拉》8、小约翰施特劳斯:《激烈的爱情与舞蹈》快速波尔卡9、小约翰施特劳斯:《情歌》圆舞曲10、小约翰施特劳斯:《电闪雷鸣》快速波尔卡11、约瑟夫施特劳斯:《谵妄》圆舞曲12、 奥芬巴赫:《地狱中的奥菲斯》序曲 最后,音乐会在经典的《拉德茨基进行曲》中圆满结束,现场掌声雷动,经久不息。高昂奋进、铿锵有力的旋律带给来宾心灵的震撼,令人久久不能忘怀,也预示着鼎泰在新的一年里将继续乘风波浪,开拓进取!2018已经成为历史,感谢各位用户、朋友和合作伙伴的信任与支持! 新年的一年,鼎泰精锐期待与新、老朋友一起,共同谱写新的乐章
  • 第四届X射线衍射技术及应用进展网络研讨会日程公布,报名进行中!
    X射线衍射技术是通过对物质进行X射线衍射,分析其衍射图谱,获得物质的成分、内部原子或分子的结构或形态等信息的研究手段。物质结构分析尽管可以采用中子衍射、红外光谱、穆斯堡尔谱等方法,但X射线衍射技术是最有效、应用最为广泛的手段,应用范围已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中。为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2023年7月18日组织召开第四届X射线衍射技术及应用进展网络研讨会,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用领域等分享报告。 会议日程 报告嘉宾及报告内容(按报告时间排序)《原位X射线衍射技术及其应用》报告嘉宾:程国峰(中国科学院上海硅酸盐研究所研究员)报告摘要:原位X射线衍射结构表征技术,即在样品上加载温度场、电场、力场、磁场等外场,或在样品发生电催化、电化学、光催化等反应时采集X射线衍射信号,该技术可以应用在粉末衍射仪、单晶衍射仪、高分辨衍射仪、和二维衍射仪上,通过数据分析,就可以得到材料结构信息与温度、力、电、磁等的关系,电化学、电催化等反应的实时结构变化。本报告对原位X射线衍射技术及相关应用进行介绍。《安东帕全自动粉末X射线衍射仪先进技术及其应用介绍》报告嘉宾:郭健宁(安东帕(上海)商贸有限公司 应用工程师)报告摘要:自20世纪50年代以来,安东帕在X射线技术领域持续开展研发,1957年推出全球首台商业化实验室SAXS仪器Kratky camera。安东帕延续SAXS的创新精神,凭借着精密加工技术, 成为非环境XRD附件的市场领导者,有着最广泛的产品组合。后相继推出高亮度光源Primux系列,高精度多层膜光学元件和X射线衍射仪。本次报告介绍安东帕全新的自动化多功能粉末X射线仪- XRDynamic 500。这是一款多功能粉末衍射仪,提供全自动的和真空的光学器件以及自动化仪器和样品校准程序,结合了无与伦比的数据质量和最高的测试效率,使初学者和专家都可以轻松快速地收集高质量地XRD数据。《掠入射X射线衍射原理、测试方法及其应用》报告嘉宾:张吉东(中国科学院长春应用化学研究所研究员)报告摘要:掠入射X射线衍射是一种用于薄膜材料结晶结构表征的高级测试方法,具有可以消除或减小基底信号的影响、增强衍射信号、得到薄膜的三维结晶结构信息等优点,目前被广泛应用于功能薄膜材料的研究中。本报告将介绍掠入射X射线衍射的原理和测试方法以及数据分析方法,并结合其在有机高分子薄膜材料中的典型性结果展示该方法的应用。《布鲁克全新台式XRD-D6 Phaser跨界而来》报告嘉宾:王通(布鲁克(北京)科技有限公司 XRD销售经理)报告摘要:布鲁克全新台式XRD-D6 Phaser,突破了台式XRD的限制,对大型落地式仪器发起挑战,拥有与大型设备相同甚至超过大型设备的信号强度 原位变温测试、薄膜掠入射衍射、薄膜反射率、应力测试、织构测试、毛细管透射、甚至PDF测试这些以前只能在大型仪器上实现的功能,如今D6 Phaser都可以实现!本报告详细介绍了布鲁克新款D6 Phaser台式衍射仪的特点和功能。《XRD研究单晶超导薄膜过热熔化机制》报告嘉宾:饶群力(上海交通大学表面与性能分析平台副主任/研究员)报告摘要:在熔融织构法制备超导块材过程中,需要高质量的超导薄膜作为籽晶。具有高过热熔化能力的超导薄膜是这一制备工艺的关键。通过X射线衍射技术,揭示了过热熔化的微观机制,利用该机制成功制备了世界最大的单晶超导块材。《X射线原理及其应用技术》报告嘉宾:董学光(中铝材料应用研究院高级工程师)报告摘要:本报告主要涉及以下内容:X射线的发现;X射线的产生机制-普通X光;X射线的产生机制-同步辐射X光;X射线衍射应用技术;X射线衍射的核心原理;X射线应用举例;X射线残余应力测试技术难点解析。《基于XRD数据精修晶体结构模型的数学原理》报告嘉宾:贺蒙(国家纳米科学中心正高级工程师)报告摘要:晶体结构精修过程本质上是一个不断调整结构模型参数以使结构模型与XRD数据最为吻合的过程,本报告将讲述这一过程背后的数学原理。通过了解相关数学原理,加深对于结构精修本质的认识,了解单晶结构精修和Rietveld法粉末衍射结构精修的区别,并正确理解各种结构精修残差因子(R因子)的意义。《XRD数据分析--物相鉴定和定量分析》报告嘉宾:徐春华(国际衍射数据中心中国区首席代表)报告摘要:利用粉末X射线衍射仪来分析物相的种类和含量已经成为材料分析的重要手段之一,本报告主要围绕粉末XRD数据的分析展开,包含XRD数据物相分析的来源、物相鉴定方法和定量分析方法的介绍等。《X射线衍射技术在药品研发和申报环节中的应用》报告嘉宾:周丽娜(天津大学化工学院国家工业结晶技术研究中心高级工程师)报告摘要:2020年版药典通用技术方法0451明确指出单晶X射线衍射技术是检测样品成分与分子立体结构的绝对分析方法,它可独立完成对样品化合物的手性或立体异构体分析、及共晶物质成分组成及比例分析(含结晶水或结晶溶剂、药物不同有效成分等)、纯晶型及共晶物分析(分子排列规律变化)等。粉末X射线衍射法适用于对晶态物质或非晶态物质的定性鉴别与定量分析。常用于固体物质的结晶度定性检查、多晶型种类、晶型纯度、共晶组成、晶型稳定性等分析。报告将结合药物申报过程中的具体要求,重点介绍x射线衍射技术在药品申报过程中的应用。《X射线衍射技术的应用要点、常见问题以及解决方法》报告嘉宾:黎爽(北京市科学技术研究院分析测试研究所高级工程师)报告摘要:X射线衍射技术具备无损、便捷、测量精度高等优点,如今已成为研究人员获得材料晶体结构等信息的重要手段,已广泛应用于航空航天、地质、医药研发、新能源、化工等领域。在科研表征过程中,需要根据样品特性以及表征目的进行样品制备、仪器参数设置以及数据分析等相关操作。本次报告主要就X射线衍射技术在表征过程中的应用要点、常见问题以及解决方法进行介绍。 参会指南 1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/xrd2023)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年7月17日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 锐意进取 开创未来——岛津奏响2018新年音乐会
    2018年1月12日晚,岛津新年音乐会如期而来。今年的岛津音乐会以“锐意进取,开创未来”为题,在可容纳1000余人的北京音乐厅举行,由中国歌剧舞剧院交响乐团为大家带来一场听觉盛宴。音乐会现场岛津公司分析测试仪器市场部姜啸龙主持音乐会  众所周知,岛津公司是一家已经创业143年的“老店”,却始终没有停下开拓创新、锐意进取的脚步,公司不断发展壮大早已成为世界知名的科学仪器公司。岛津企业管理(中国)有限公司董事长兼总经理马濑嘉昭先生致欢迎辞  马濑嘉昭先生代表岛津公司对到场嘉宾,以及在过去的一年中给予岛津支持和帮助的用户致以由衷地感谢,并回忆了在刚刚过去的2017年亦即岛津进入中国60周年的日子里岛津中国所发生重要事件。如,启用了新的总部大楼,包括应用支持和用户培训在内的各项功能均获得了进一步的强化 位于北京的质谱中心荣获了德国的设计大奖 中国区的销售额超过了5亿美元,其中诸多重要类别仪器的销售台数超越了日本本土等等。这些也为岛津推动集团全球化、展现中国市场的实力和魅力做好了铺垫。  致辞中,马濑嘉昭先生还讲到:“在这个只有奔跑才可以留在原地的时代,我们每一位都在不断地求新求变,对于岛津来说,我们必须要真正去关注中国的广大客户们正在关注的课题,并真正理解这些课题所需要去解决的社会的课题,这也是岛津143年一直秉承的‘以科学技术为社会做贡献’的原点。不忘初心,不断奋进,让我以们更大的努力为中国乃至人类的科学技术的发展,不断尽绵薄之力。”  岛津公司在每年的新年之际都会举行音乐会以答谢广大用户的支持。该项活动已经成为了岛津公司的一项传统,至今已举办10年之久。每次的新年音乐会,岛津公司都精心挑选乐团,对演奏曲目也进行了精心选配,让各位听众能够在美妙的音乐声中,获得身心愉悦的享受。  此次为大家演奏的中国歌剧舞剧院交响乐团隶属于中国歌剧舞剧院的国家级职业交响乐团,是中国历史最为悠久的交响乐团之一。在此次岛津音乐会上演出了歌剧《鲁斯兰与柳德米拉》序曲、芭蕾舞剧《天鹅湖》组曲选段等曲目。在优美欢快乐曲中,2018年岛津新年音乐会落下了帷幕。音乐会现场
  • 瑞士帝肯(Tecan)精彩亮相中国输血协会第六届输血大会
    瑞士帝肯(Tecan)精彩亮相中国输血协会第六届输血大会&mdash &mdash 保障血液安全 帝肯与您共同努力 中国输血协会第六届输血大会(CSBT 2012)于2012年11月7-11日在广州白云国际会议中心隆重召开。此次大会由中国输血协会主办,广州血液中心承办。来自全国31个省、自治区、直辖市以及港、澳、台地区输血业界的代表,国际输血协会(ISBT)及美国、德国、荷兰、新西兰、新加坡等国与输血医学相关的教育、医疗及全国采供血机构一线以及临床一线的医务人员、参展企业人员等1300余人参加了此次盛会。这次大会围绕&ldquo 献血者招募和献血服务&rdquo 、&ldquo 血液成分制备和血液制品&rdquo 、&ldquo 血液检验&rdquo 、&ldquo 血液免疫学&rdquo 、&ldquo 临床输血和输血不良反应&rdquo 、&ldquo 血液质量和管理&rdquo 六大主题进行探讨和总结,深入分析了新医改框架下采供血服务体系面临的困难和挑战,并探讨应对的策略和措施;同时,总结了近年来我国输血医学的成就与发展,把握输血医学最新发展的动态;利用这次大会平台,汇聚了国内外输血界精英,搭建国际输血医学交流,传递血液新技术信息,进一步促进了我国输血医学研究与实践的创新与发展。 中国输血协会第六届输血大会开幕 作为全球领先的实验室自动化技术引领者-瑞士帝肯(Tecan)盛装出席此次会议,在VIP展厅(中山厅)全面展示了帝肯自动化液体处理、检测线的先进产品,帝肯以包括资深产品专家、市场销售经理,以及一批强有力的经销商们组成的强大阵容,在现场为用户提供全面而细致的产品与技术讲解。 最新产品引起血站用户的广泛兴趣 帝肯集团高管、资深专家与用户深入交流会议期间,瑞士帝肯分别在11月8日和11月9日中午举行了两场精彩纷呈的卫星会。11月8日中午的&ldquo 瑞士帝肯(Tecan)用户会&rdquo 由瑞士帝肯液体自动化软件产品项目团队经理 Jason Meredith先生和帝肯(上海)贸易有限公司资深产品专家张瑜女士,为大家介绍了全自动酶免分析工作站在采供血系统中的应用,探讨目前采供血系统酶免实验可能遇到的一些问题和挑战,以及帝肯全线酶免产品的应对之策,并且重点讲解了如何利用Freedom EVO液体处理平台以应对不同实验室的ELISA检测策略,使得在场的八十余位血站用户们了解了帝肯最先进的自动化高通量ELISA检测应用解决方案。 瑞士帝肯(Tecan)用户会现场11月9日中午,帝肯(上海)贸易有限公司质量管理与法规事务总监吴丹静女士,为大家带来精彩的主题报告&mdash &mdash &ldquo 企业风险管理&mdash &mdash 管理业务中潜在风险的强效措施&rdquo ,重点讲解了加强企业风险管理的重大意义、风险管理框架的设计和实施、以及风险管理的持续性改进,并为大家分享了瑞士帝肯集团在风险管理战略制定、流程与实施、可持续性计划等方面专业的宝贵经验。同时,帝肯还邀请了云南昆明血液中心风险管理项目小组核心成员王珊珊老师为大家介绍了该小组从2011年起启动开展风险管理项目所取得的成绩,并和大家分享了他们在帝肯专业团队的指导下不断探索、持续改进的工作经验。此次研讨会引起了与会代表们的热烈讨论,这并不是他们第一次听到风险管理的概念,但多数人确信这是第一次如此系统、全面地学习风险管理,并从中得到启发。不少参会代表明确表达了建立风险管理系统的意愿,并希望能够得到帝肯公司的建议与帮助。 机构全体系风险管理研讨会引起了与会代表们的热烈讨论 据悉,中国输血协会自成立以来,已召开五届输血大会。这次广州举行的中国输血协会第六届输血大会是全国输血行业最大规模的一次盛会,是对输血界工作和学术最新进展的一次检阅,对推动我国输血事业和保障血液安全工作持续发展,以及对保障人民生命安全和健康具有十分重要的意义。 相关会议视频链接请点击:http://www.51atgc.com/shipinzhuanqu/gongsishipin/2012-11-17/26197.html更多详情,欢迎您联系:帝肯(上海)贸易有限公司Libby ZhuTel: 021 2206 3206 / 010 8511 7823Fax:021 2206 5260 / 010 8511 8461infotecancn@tecan.comwww.tecan.com 关于帝肯瑞士Tecan是全球领先的生命科学与生物制药、法医和临床诊断领域自动化及解决方案供应商。公司成立于1980年,总部设在瑞士Mä nnedorf,分别在瑞士、北美和奥地利设有自己的研发和生产基地,目前公司主要经营的产品有三大类:全自动化液体处理平台 ( Liquid Handling & Robotics )、多功能酶标仪(Multimode Reader)和OEM组件。销售服务网络遍布世界52个国家,客户覆盖制药企业、生物技术公司、科研院所、法医、医院、血站系统和疾病控制中心(CDC)等。其液体处理技术已拥有行业经验32年,在全球处于领先地位,备受世界领先生命科学实验室的青睐。作为原始设备制造商(OEM),Tecan同样在OEM设备和组件开发和生产方面占有世界领先地位。2011年,Tecan创造了3.77亿瑞士法郎(即4.24亿美元;或3.06亿欧元)的销售业绩。Tecan集团的注册股票在瑞士证券交易所交易 (TK: TECN/Reuters: TECZn.S/ ISIN: 12100191)。欲了解更多信息,请浏览公司网站:www.tecan.com。关于帝肯中国瑞士Tecan于2004年在北京开设代表处,正式进驻中国市场。2008年4月在上海浦东成立帝肯(上海)贸易有限公司, 作为Tecan集团在亚太地区(日本及韩国除外)总部,全面负责Tecan集团在中国的所有商业活动,包括销售、市场活动与合作、以及客户支持。帝肯(上海)目前拥有一支专业的售前和售后服务团队,在科研、制药、公安刑侦、医院、血站、CDC和CIQ领域构建了良好的经销和售后服务网络,并以&ldquo 力求比客户期望做的更好&rdquo 的服务理念,给广大的终端用户提供专业的服务。我们致力于成为包括客户在内的所有合作方的首选合作伙伴(Partner of Choice)。
  • 2011年昊诺斯“真心英雄”杯中科院微生物所足球赛在中国音乐学院落下帷幕
    2011年昊诺斯“真心英雄”杯中科院微生物所足球赛在中国音乐学院落下帷幕2011年4月16日,中国音乐学院足球场上,“加油!加油!”伴随着一声声热烈的加油声,2011年昊诺斯“真心英雄”杯中科院微生物所足球赛在这里开始决赛。此次活动由北京昊诺斯科技有限公司冠名赞助,中科院微生物研究所主办,使大家在紧张的学习之余丰富业余生活,锻炼身体,促进相互之间的交流。比赛过程精彩刺激,高潮迭起,赢得了一次又一次的欢呼与喝彩。 北京昊诺斯科技有限公司每年都会以各种形式支持中科院的各种学生活动,这次赞助微生物所的足球赛,更是因为足球比赛所彰显的那种激烈对抗中取胜的精神以及所需要的超强技术战术的控制能力,都与昊诺斯真心英雄活动所倡导的“创新超越,勇争第一”的文化十分契合,为此赛后的颁奖仪式也就成为了“昊诺斯-鼎昊源第二届真心英雄活动”的启动仪式,仪式上昊诺斯-鼎昊源集团的副总经理李晓嘉女士发表了讲话并颁发了冠军的奖品,此举得到了各位老师和学生的交口称赞,在公司和院所之间架起了一座沟通,和谐的桥梁。 北京昊诺斯科技有限公司系致力于为生命科学、生物检测、生物工程、药物研发等领域提供先进的实验室仪器设备及多层次服务的高科技公司。我们代理的国外产品绝大部分是专业领域内的世界一流品牌,主要有:美国赛默飞世尔公司索福,贺利氏品牌离心机、培养箱、生物安全柜、超低温冰箱等各类产品;默克密理博公司纯水、超滤、层析系统、流式细胞仪、完整性测试仪、生物反应器、多功能液相芯片平台;德国QIAGEN荧光定量PCR仪;日本Malcom超微量紫外分光光度系统、全自动核酸提取仪;泰世达系列实验室冻干机等。同时,我们还销售同一集团下属的制造子公司北京鼎昊源科技有限公司生产的多种自产仪器,包括凝胶成像系统,各种小型台式离心机,恒温金属浴,各类振荡器,磁力搅拌器,组织研磨仪,及原位杂交工作站等等.
  • 中国输血协会第六届输血大会瑞士帝肯VIP展厅诚邀您光临
    2012年11月7-11日,中国输血协会第六届输血大会(CSBT 2012)将在广州白云国际会议中心隆重举行。此次大会由中国输血协会主办,广州血液中心承办,将立足当前我国无偿献血发展现状,分析新医改框架下采供血服务体系面临的困难和挑战,探讨应对的策略和措施;同时,总结近年来我国输血医学的成就与发展,把握输血医学最新发展的动态,进一步促进我国输血医学研究与实践的创新与发展。作为全球领先的实验室自动化技术引领者-瑞士帝肯(Tecan)将盛装出席此次会议,诚邀广大输血行业从业者、临床检验的科学家们以及媒体朋友们光临帝肯VIP展厅(广州白云国际会议中心中山厅)。此次Tecan有哪些亮点?不妨先睹为快:Tecan自动化液体处理展区将紧扣&ldquo Automation&rdquo 主题并展出一系列不同尺寸的酶免自动化、前处理分液工作站,并带来最先进的生物样本库整体解决方案。同时,为了进一步改善液体处理过程的质量控制,提升自动化处理过程的可靠性与安全性,此次帝肯还将展出专门用于加样器性能验证套餐- QC Kit。如今,输血机构和血液检测中心都深度依赖各种自动化的处理或检测。而确保这些自动化设备的性能则依赖于对设备的正确维护与质量控制。如何令这些用户能够用最简单便捷的方法,获得最可靠、最准确,并可溯源至包括IS、NIST 等在内的国际标准及规范的质量控制结果,一直是业内关注的问题,QC Kit 的研发应时而生。这套产品主要通过引入美国Artel公司的比率法光密度测量(Ratiometric Photometry&trade )专利技术,能够在15 分钟左右完成一台标准化液体处理设备的质量控制实验与结果分析,从而大大减少了操作人员的负担,也使得质量控制工作能够确实地融入到这些实验室的日常SOP(标准实验流程)中而不会对实际的工作产生时间上或设备上的困扰。Tecan自动化检测展区将围绕&ldquo Detection&rdquo 主题展出微孔板洗板、微孔板读数、条带/芯片处理等多款先进仪器,其中包括:96通道高速洗板机HydroSpeedTM、三合一多功能洗板机HydroFlexTM、性价比最优的光吸收酶标仪InfiniteF50、带彩色触摸屏的光吸收酶标仪SunriseTM、最新分子诊断产品原位杂交仪HS 400 ProTM&mdash 适用于原位杂交、荧光原位杂交等。Tecan将以包括全球产品经理、市场销售人员,以及瑞士总部高管在内的强大阵容亮相CSBT 2012,为用户提供直接的技术和方案的咨询。同时,瑞士Tecan将于2012年11月8日- 9日下午13:00-14:00为参会嘉宾带来两场精彩的卫星会议,有意参加者请与我们联系(请将您的姓名、单位、联系方式发邮件至 infotecancn@tecan.com),我们将会为您保留VIP座位,您将免费获取迷你型无线路由器一份!会议时间:2012年11月8日 中午13:00-14:00会议名称:瑞士帝肯(Tecan)用户会演讲主题:利用Freedom EVO液体处理平台以应对不同实验室的ELISA检测策略 全自动酶免分析工作站在采供血系统中的应用演讲者:瑞士帝肯液体自动化软件产品项目团队经理 Jason Meredith先生 帝肯(上海)贸易有限公司资深产品专家 张瑜女士 会议时间:2012年11月9日 中午13:00-14:00会议名称:机构全体系风险管理研讨会演讲主题:企业风险管理 &ndash 系统化管理企业业务中潜在风险之理论与实践演讲者:瑞士帝肯全球质量管理与法规事务高级副总裁Gü nter Weisshaar先生有关CSBT 2012会议更多详情,请访问http://www.gzbc.org/meeting/。 热忱欢迎新老客户亲临现场体验,相信一定会为您带来满足需求的最佳产品提案!更多详情,欢迎您联系:帝肯(上海)贸易有限公司Libby ZhuTel: 021 2206 3206 / 010 8511 7823Fax:021 2206 5260 / 010 8511 8461infotecancn@tecan.comwww.tecan.com 关于帝肯瑞士Tecan是全球领先的生命科学与生物制药、法医和临床诊断领域自动化及解决方案供应商。公司成立于1980年,总部设在瑞士Mä nnedorf,分别在瑞士、北美和奥地利设有自己的研发和生产基地,目前公司主要经营的产品有三大类:全自动化液体处理平台 ( Liquid Handling & Robotics )、多功能酶标仪(Multimode Reader)和OEM组件。销售服务网络遍布世界52个国家,客户覆盖制药企业、生物技术公司、科研院所、法医、医院、血站系统和疾病控制中心(CDC)等。其液体处理技术已拥有行业经验32年,在全球处于领先地位,备受世界领先生命科学实验室的青睐。作为原始设备制造商(OEM),Tecan同样在OEM设备和组件开发和生产方面占有世界领先地位。2011年,Tecan创造了3.77亿瑞士法郎(即4.24亿美元;或3.06亿欧元)的销售业绩。Tecan集团的注册股票在瑞士证券交易所交易 (TK: TECN/Reuters: TECZn.S/ ISIN: 12100191)。欲了解更多信息,请浏览公司网站:www.tecan.com。关于帝肯中国瑞士Tecan于2004年在北京开设代表处,正式进驻中国市场。2008年4月在上海浦东成立帝肯(上海)贸易有限公司, 作为Tecan集团在亚太地区(日本及韩国除外)总部,全面负责Tecan集团在中国的所有商业活动,包括销售、市场活动与合作、以及客户支持。帝肯(上海)目前拥有一支专业的售前和售后服务团队,在科研、制药、公安刑侦、医院、血站、CDC和CIQ领域构建了良好的经销和售后服务网络,并以&ldquo 力求比客户期望做的更好&rdquo 的服务理念,给广大的终端用户提供专业的服务。我们致力于成为包括客户在内的所有合作方的首选合作伙伴(Partner of Choice)。
  • 2010年岛津新年答谢音乐会在苏州圆满结束
    2010年元月7日,由岛津和苏州普今公司举办的新年答谢音乐会在美丽的苏州科技文化中心大剧院圆满结束,本次音乐答谢会受到众多岛津客户的一致好评。 首先,岛津国际贸易(上海)有限公司古泽宏二总经理代表岛津公司向中国用户致以新年的祝福,他在致词中谈到:&ldquo 刚刚过去的2009年是中国建国60周年这样一个值得纪念的一年,也是中国真正在世界中体现领导力的重要的一年。2010年在上海召开的世博会将会令世界继续聚焦中国。中国在国际社会中发挥领导作用的过程中,积极应对食品安全、节能环保等课题的挑战,势必为实现和谐社会提供重要的推动力。从【日本的岛津】转变为【中国的岛津】,是岛津集团自身转型的目标。今后,岛津集团将不断扩大并强化事业基础,作为中国企业的一份子,为中国的经济发展和社会繁荣尽自己的努力。今年还请诸位一如既往地给予我们支持和帮助。祝愿这新的一年对于在座每一位来宾都是更加精彩的一年。&rdquo 岛津国际贸易(上海)有限公司古泽宏二总经理代表岛津公司向中国用户致以新年的祝福 接着,由欧洲当代杰出的指挥家之一西扎罗&bull 科斯塔亲自执棒,演奏了浪漫的经典圆舞曲《蓝色多瑙河》,一首欢快的《拉德斯基进行曲》完全把观众融入其中。最令中国听众惊喜的是,乐队演奏了气势磅礴的中国曲目《红旗颂》、《北京喜讯到边寨》,熟悉而欢快的旋律与观众经久不息的掌声融汇在一起。音乐会就在返场曲目中圆满闭幕! 2009普今公司作为苏州岛津南区总代理取得了骄人的成绩,我们获得了区域用户的一致好评,上半期获得岛津总部颁发的&ldquo 新代理商进步奖&rdquo 以及岛津技迩颁发的&ldquo 2009最佳业绩奖&rdquo 。圆满完成了年终任务。今后普今公司将一如既往,专业、专注于色谱分析行业,秉承客户至上的宗旨为广大客户服务!再次感谢多年来支持普今公司工作的广大用户! 苏州普今生物科技有限公司 市场部 2010-1-12
  • 第四届X射线衍射技术及应用进展网络研讨会回放视频上线
    2023年7月18日,仪器信息网成功举办了第四届X射线衍射技术及应用进展网络研讨会,依托成熟的网络会议平台,为X射线衍射技术相关研究、应用等人员提供了一个突破时间地域限制的免费学习、交流平台。本次会议,10位业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用等分享报告,吸引超700人报名听会(会议链接)。经征求报告嘉宾意见,其中9个报告将设置视频回放,便于大家温故知新。第四届X射线衍射技术及应用进展网络研讨会(按报告时间排序)报告题目报告嘉宾回放链接原位X射线衍射技术及其应用程国峰(中国科学院上海硅酸盐研究所 研究员)点击查看安东帕全自动粉末X射线衍射仪先进技术及其应用介绍郭健宁(安东帕(上海)商贸有限公司 应用工程师)点击查看掠入射X射线衍射原理、测试方法及其应用张吉东(中国科学院长春应用化学研究所 研究员)点击查看布鲁克全新台式XRD-D6 Phaser跨界而来王通(布鲁克(北京)科技有限公司 XRD销售经理)点击查看XRD研究单晶超导薄膜过热熔化机制饶群力(上海交通大学 表面与性能分析平台副主任/研究员)点击查看X射线原理及其应用技术董学光(中铝材料应用研究院 试验中心主任助理/高级工程师)点击查看基于XRD数据精修晶体结构模型的数学原理贺蒙(国家纳米科学中心 正高级工程师)点击查看XRD数据分析--物相鉴定和定量分析徐春华(国际衍射数据中心 中国区首席代表)点击查看X射线衍射技术在药品研发和申报环节中的应用周丽娜(天津大学化工学院国家工业结晶技术研究中心 高级工程师)点击查看
  • 诺奖巨星、著名核磁共振波谱学家Richard R. Ernst教授逝世
    2021年6月4日,1991年诺贝尔化学奖获得者、苏黎世联邦理工学院(ETH)名誉教授理查德恩斯特(Richard R. Ernst)去世,享年87周岁。Ernst教授首次提出了傅立叶变换核磁共振方法,确立了二维核磁共振的理论基础,后又在发展和应用二维核磁共振方面作出重大贡献,并因此被授予1991年诺贝尔化学奖。由Ernst编写的Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, 1987),已成为全世界核磁共振领域研究者的圣经。该书中文版《一维和二维核磁共振原理》经毛希安老师等译校出版。Ernst于 1933 年出生在瑞士温特图尔,童年时期对音乐兴趣浓厚,13岁时机缘巧合之下在阁楼里发现了一个装满化学品的箱子,从此对化学实验过程的本质产生了浓厚的兴趣,并将其发展成一生的事业。20世纪50年代,他在ETH学习化学工程,并于1962年获得物理化学博士学位。从 1962 年到 1968 年,他供职于知名NMR谱仪公司美国加利福尼亚州的Varian 公司,在著名科学家Weston A. Anderson的提议下,Ernst尝试了一种脉冲激励实验,并于1964年的夏天成功实现了脉冲傅立叶变换NMR(FT-NMR),随后又提出了噪声去耦和许多其它核磁共振方法。1968年,他回到ETH任教,并成立了核磁共振波谱研究小组,以发展液相和固相方法为研究重点。受Jean Jeener教授在1971年Ampere暑期学校中所提设想的启发,Ernst组在1974年实现了第一个二维核磁共振(2D-NMR)实验。2D-NMR与他此前提出的FT-NMR一起,成为现代NMR谱学中最为基础和重要的技术。基于上述两项技术,波谱学家们提出了数以百计的NMR脉冲实验方法,并应用于多个学科领域。Ernst也因此获得了1991年度诺贝尔化学奖。此外,Ernst还发展了其它许多NMR新技术,如化学诱导动态核极化技术(CIDNP)、多量子滤波、多量子谱、全相关谱等等。值得一提的是,Ernst凭以获得诺奖的工作FT-NMR在两度被知名期刊Journal of Chemical Physics拒稿之后,才得以发表在期刊Review of Scientific Instruments(目前影响因子IF为1.587)上,可见优秀的科研成果无论发表在何种期刊终将迸发出闪亮的光彩。自 1976 年起,Ernst担任ETH物理化学正教授;并于 1998 年退休成为名誉教授。Ernst一生获得了诸多著名科学奖项。除了诺贝尔奖,他还获得了许多其他奖项,包括 1991 年的沃尔夫奖和 1985 年的马塞尔贝诺伊斯特奖。他还获得了 17 所高校的荣誉博士学位并任多国科学院院士。自 1998 年以来,德国化学学会 (GDCh) 磁共振光谱分会每年向三位年轻科学家颁发以他的名字命名的奖项。虽然学术成就斐然,Ernst教授谈到自己的工作时却总是很谦虚。在谈到FT-NMR时,他总是说,傅立叶变换是法国的傅立叶首先提出来的,他只是将其引入了核磁共振领域而已。他一直希望自己的研究能从学术界象牙塔,走向更广阔的世界,被广泛地应用,使社会真正受益。 Ernst教授也是中国人民的老朋友,多年来一直与中国多所高校和科研机构保持密切往来,并于1997年、2007年两度到访中国科学院武汉物理与数学研究所(现名中国科学院精密测量科学与技术创新研究院)。他也曾向波谱学界大力推介中国磁共振领域的核心期刊《波谱学杂志》,并在给《波谱学杂志》读者的亲笔信中充分肯定该刊在中国波谱学学科的发展中起到的推动作用。2007年11月6日,Ernst教授在第二次访问中科院武汉物理与数学所期间,受邀作了题为“傅立叶变换在核磁共振中的应用(From Monsieur Fourier to fMRI)的学术演讲,叶朝辉院士主持了演讲会。在报告中有一张人脑的MRI图片,Ernst教授将其左边标识为科学,右边标识为艺术,意即科学和艺术是相通的,每个人都可以将科学和艺术联系起来。他说:“一个人要变得有创造性,一定要有自己的兴趣爱好,一只脚站在科学上,另一只站在艺术上,我们的头脑就能变得富有创造性”。这句话给在场师生留下了难忘印象。谨以此文纪念我们的良师益友Richard R. Ernst教授,您的科学家精神、幽默风趣的人生态度将持续影响着我们。
  • 武汉物理与数学研究所国家大型科学仪器中心正式挂牌
    9月11日,国家科学技术部条件财务司在武汉组织专家对国家科学技术部、中国科学院、湖北省人民政府共建的国家大型科学仪器中心——武汉磁共振中心的建设进行了验收并举行揭牌仪式,同时任命叶朝辉院士为武汉磁共振中心主任。科技部条件财务司巡视员吴波尔、湖北省科技厅副厅长郑春白、中科院基础局副局长刘鸣华、中科院武汉分院院长朱耀忠等领导出席了揭幕仪式。  以陈霖院士为组长的专家组听取了中心依托单位中国科学院武汉物理与数学研究所的工作报告,审阅了有关技术文件,经实地检查、质询和充分讨论,认为:经过两年多的不懈努力和辛勤工作,依托单位圆满完成了“武汉磁共振中心”核心设备—AVANCE III-800 型800MHz核磁共振波谱仪的引进、安装、调试,实现了与原有谱仪资源的优化配置,相关仪器和配套设备运行正常,形成了以800 MHz为核心的一系列磁共振仪器共享平台。武汉磁共振中心建立了合理有效的管理运行机制,有力保证了大型科学仪器设备的开放共享。从2007年9月以来,核心设备800 MHz核磁共振波谱仪运行时间超过4000小时,共享率达47%。在核磁共振技术与方法、代谢组学和蛋白质结构生物学等相关研究领域发挥了支撑作用,取得了显著成效。极大地促进了武汉物理与数学研究所波谱学科的发展,并已形成一支结构合理、富有创新活力的科学研究和技术支撑队伍。专家组认为中心圆满完成了各项建设任务,一致同意通过验收。  科技部条件财务司巡视员吴波尔指出,国家重点实验室和国家大型科学仪器中心是国家创新体系建设中的重要组成部分,前者以学科建设为中心,凝聚相关力量 后者以代表某领域最高水平或具有重大意义的仪器类型为中心,发挥相同领域的仪器作用,为各个领域的研究服务。中科院武汉物理与数学研究所作为波谱与原子分子物理国家重点实验室和武汉磁共振中心的共同依托单位,旨在将两者有机联系起来,充分发挥各自在研究领域和实验手段方面的优势,为国家创新发展作出贡献。
  • 岛津-普今公司新年音乐会报名倒计时
    尊敬的用户,您好!  欢迎您登陆苏州普今公司网站进行2010年新年答谢音乐会的索票注册,同时也非常感谢参加这次由普今公司和所代理的品牌——岛津联合主办的交响音乐会。  2009年是不平凡的一年,我们亲身经历了全球金融危机,感受到了市场的压力,然而就在这样的一个年度里,岛津产品的销售和普今公司的整体销售还是比往年有33%的进步。我们在惊喜取得成绩的时候,明白这都是因为众多的用户对普今公司和岛津产品不遗余力的支持。  2010年,普今公司会对几个方面的工作进行改善。一是售后服务方面,新增加技术工程师三名,现在总数达到八名,建立技术部标准SOP,满足苏、锡、常、通四个城市对色谱光谱的快速有效的售后服务要求 二是继续加强销售工程师的专业培训,更好地为用户提供分析仪器选购支持,举行培训班配合岛津公司推出的新产品,使性价比更高的分析仪器让更多用户接受。加强市场宣传,让用户更简单快速找到我们 三是在苏州建立DEMO实验室,更好地为用户提供分析方面的服务   我们所有的努力为的是减少用户的财务成本和时间成本,从而来成就普今公司在色谱光谱服务商这个行业的领先地位。  欢迎登陆www.sp4s.com报名!
  • 诚驿科技携“Accurion 零震台”亮相2018北京高级视听展
    6月29日由HIFI主办,中国北方规模最大的影音综合展--HAVE 2018北京高级视听展在北京昆泰酒店盛大开幕,百家参展商多个国内外品牌,为上万名观众奉献一幕幕精彩纷呈的视听盛会,展会上汇聚影音演示、精品鉴赏、新品首秀及多位影音专家亲临现场。 北京诚驿恒仪科技有限公司,携德国品牌Accurion零震台i4亮相展会,这就是音频世界最昂贵的顶尖主动减震技术,带您一起享受纯净的音乐! 高科技的终极聆听乐趣 零震台是一种看起来简单的设备。它的精致复杂的金属表面只需要前面板上的一个开关。 LED单独显示其内部动作:超快速控制系统吸收微米范围的振动幅度。近年来,这项技术已成为现代纳米技术应用的重要组成部分。现在,零震台将它引入高端音频世界! 技术原理 零震台包含传感器和执行器,以机械方式彼此连接。在一个快速的模拟控制回路中测量和处理顶板上的振动,控制电动致动器的放大器产生反馈力,以补偿传入的振动。这样就实现了响应时间和稳定时间短以及最高的阻尼性能! 与普通的阻尼系统相比,零震台具有很大的优势。通过使用动态校正功率,脉冲激励可以比任何被动弹簧 - 质量组合的速度快得多。被动系统持续振荡时间较长。此外,所有被动气动隔离系统都受到其共振频率特性的影响。这种低频共振通常在1至4Hz范围内。在这个特定的频率范围内,无源系统最终会放大振动 - 而不是衰减振动! 零震台是Accurion结合了在专门的高科技仪器中的知识为发烧友鉴赏家提供的完美解决方案。 (Accurion silencer主动减震平台)
  • 芬兰百得实验室参加中国输血协会输血医学高层论坛
    芬兰百得实验室参加中国输血协会输血医学高层论坛     芬兰百得实验室将于2010年11月4-7日参加在成都举行的第五届输血大会。  会议介绍  大会立足输血医学的成就与发展,总结近年来中国输血医学在政策管理、科学研究、技术开发、临床应用和信息领域的新进展,就全球输血医学发展的新趋势和新方向、中国输血医学面临的机遇与挑战、输血安全面临的挑战与对策、应急医疗中对输血医学的要求、新医改框架下输血医学服务体系,以及加快我国输血医学学科和教育培训体系建设、加强输血医学领域国际国内多边合作等现实和前瞻性的重大理论与实践问题开展更为深入与广泛的研究和讨论,促进新形势下我国输血医学研究与实践的创新与发展。  本公司展位号:HA27  欢迎相关各界观众亲临指导交流!  体验百得给您带来的精准和轻松!
  • 播放音乐即可驱动! 厦门大学彭兴跃团队开发出低成本新型微流控泵技术
    2021年6月4日,厦门大学彭兴跃教授课题组在2021年第6期《先进材料与技术》杂志(Adv. Mater. Technol. )发表了两篇论文(封底 文章和封底内页 文章),介绍本实验室开发的一种高性能、低成本及低功耗的磁控微泵技术(封底 文章),并运用这一技术设计出了可用手机歌曲播放列表编程控制的微流控培养皿(封底内页 文章)。微流控芯片(也叫芯片实验室)是一种控制微米尺度液体流的芯片,是生命科学、医疗、化学,计算机等各领域所期待的关键技术。由于制造难度、使用难度、成本及性能等许多问题都未得到解决,微流控芯片一直无法广泛应用到生活与研究之中。彭兴跃教授课题组证明了微小振荡器具有稳定的流场,并基于该理论开发了一款结构简、成本低、能耗低、寿命长、运行可靠、适应性强的微流控泵(封底 文章)。彭兴跃教授课题组为该微泵配套研发了音乐编程操作系统,使用者仅需要一个MP3播放器(或者手机等能播放音乐的设备)及一个耳机大小的促动器,通过播放内含程序代码的MP3或WAV格式的歌曲即可驱动微流。该微流控泵在成本、功耗、便利性、使用寿命、生物相容性、尺寸、可靠性、简单性等方面具有显著优势,有望能够用在生命科学、医疗、化学、计算机等领域,如干细胞研究、癌症研究、野外及太空的即时检验(point-of-care testing等)。同时,利用这种微流控泵技术,彭兴跃教授课题组研发了“微流控培养皿”(封底内页 文章),可以精确控制10 mm人工干细胞巢中的4个超慢微循环(40 μm s−1)。这种微流体培养皿只需要一个耳塞大小的促动器,一个MP3播放器和一个小小的磁性微球,就可以产生控制了培养皿的微流,再连接巧妙设置导流环及开口,就得到了稳定的微流循环通路,从而实现在体外细胞或组织培养实验中精密地模拟体内的各种微环境。同时,用这项技术自动化培养胚胎干细胞,只需每两天添加5滴培养基。微流控培养皿是一种易于推广实施及大量生产的技术,将能够极大的推进生物医学的发展。磁控微泵技术研究(封底文章)由厦门大学生命科学学院彭兴跃教授(论文通讯作者和第一作者)、彭凌寒,郭雅新完成,封面页设计为厦门大学艺术学院硕士生韩雪。微流控培养皿研究(封底内页文章)由厦门大学生命科学学院彭兴跃教授(论文通讯作者和第一作者)、郭雅新、彭凌寒、刘绢完成,封面页设计为厦门大学艺术学院硕士生韩雪。封底文章A Highly Programmable Magnetic Micropump 原文链接:https://doi.org/10.1002/admt.202100150 。中文字幕视频摘要链接:https://www.ixigua.com/6960473307963458061 。
  • 给太阳“拍写真”——揭秘太阳X-EUV成像仪
    日前,我国气象卫星风云三号E星首批高精度、多波段太阳图像正式发布,不仅展现出太阳不为人知的“另一面”,通过数据我们更能了解太阳,为更精准、更及时预报空间天气提供有力支撑。一颗散发着金色光晕的球体缓缓转动,沸腾翻滚的表面变幻莫测,仿佛藏着许多奥秘,这就是令人震撼的太阳“写真”。拍摄“写真”的神器,是“黎明星”风云三号E星搭载的太阳X射线-极紫外成像仪(简称X-EUV成像仪)。该成像仪是由中国科学院长春光学精密机械与物理研究所研制。项目负责人陈波介绍,X-EUV成像仪是我国第一台空间太阳望远镜,也是国际上首台具有X射线和极紫外两个波段的太阳成像仪。气象卫星为何要给太阳“拍写真”呢?陈波说,太阳不仅影响地球的天气,也是空间天气的“始作俑者”。空间天气是指日地空间环境的变化。太阳是距离我们最近的一颗恒星,当它“发脾气”时,比如耀斑爆发或日冕物质抛射,都会影响地球的磁场和电离层,可能导致卫星失控、导航失灵、通信故障,甚至影响电网、石油管道等基础设施。“今年开始太阳逐渐进入活动峰年,国家需要及时准确的空间天气预报,这台仪器上线得非常及时。”陈波说。当我们观察太阳时,只能看到可见光波段。X-EUV成像仪可以用X射线和极紫外两个波段监测太阳,并能在两个波段间切换,相比可见光波段,能看到太阳更多细节,更早预报太阳活动,提早预报灾害性空间天气事件。此外,成像仪在太空中运行不受日照、天气、大气等条件影响,可以全天候、连续监测太阳活动变化。X-EUV成像仪还可以进行在轨辐射定标。“比如太阳耀斑,一般仪器只能测得耀斑的相对亮度,就像地震时只知道地震发生但不知道具体震级。X-EUV成像仪利用自带的辐射定标装置,对X射线和极紫外图像进行定标,从而确定耀斑等级。”陈波说,“可见光波段成像仪器的辐射定标技术比较成熟,但对X射线和极紫外波段成像仪器的在轨辐射定标,我国还是第一次。”如何实现在卫星旋转的过程中“镜头”还能对准太阳,稳稳地按“快门”让照片不“虚”,陈波团队着实费了不少周折。“首先需要针对极轨卫星特点,设计成像仪的跟踪、稳像方案,研制具有我国特色的跟踪稳像系统。”陈波说,为了在地面拍摄可见光太阳图像,验证系统功能,团队成员在零下20多摄氏度的冬天进行场外测试,成宿成宿地做实验。“我们计划在风云四号卫星上搭载一个类似的成像仪,而且分辨率更高,波段范围更广。”陈波说。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制