超导材料检测

仪器信息网超导材料检测专题为您提供2024年最新超导材料检测价格报价、厂家品牌的相关信息, 包括超导材料检测参数、型号等,不管是国产,还是进口品牌的超导材料检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超导材料检测相关的耗材配件、试剂标物,还有超导材料检测相关的最新资讯、资料,以及超导材料检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超导材料检测相关的仪器

  • 随着超导涂层和设备技术发展了进20年的经验积累,THEVA具备了超导材料和设备生产的先进技术。THEVA在该领域投资研发超过10年并于2012年与领域专家和Bayerische Beteiligungsgesellschaft公司强强联合。THEVA一直专注于工业应用领域的生产和研发需求拓展了包括超导带材生产、超导带材检测等多个领域。自1996年成立至今,德国总部THEVA已将业务拓展到了美国、俄罗斯、亚洲全球多个地区,用户遍布各地。 TAPESTAR™ 是由THEVA公司开发的针对超导带材进行检测的小型化设备。该设备能够快速、高分辨地检测超导带材,通过非接触式测量方法连续对超导带材的临界电流进行检测,测量精度能够达到毫米量。通过测量能够检测到超导带材的缺陷及均匀性。该测量方法能够用来检测一代和二代超导带材,也可用于对于接触式测量而言无法测量的层压或有缘层的超导带材。该TAPESTAR™ 有两个版本。TAPESTAR™ XL适合在生产环境中的质量控制和产品的进货检验。较小的版本TAPESTAR™ 是理想的实验室使用设备。两个版本都可以定制各种不同的带材宽度。TAPESTAR™ 产品特点◎ 快速从轮到轮,高分辨能力, 测量超导带材的临界电流 (一代或者二代高温超导带材)◎ 液氮温度下的非接触技术台式小型化设计并集成了液氮杜瓦 ◎ 带材加热避免水汽潮湿◎ 带材传动装置集成有应力控制和稳定速率控制 ◎ 控制模块系统集成有DSP处理芯片◎ 用户可用笔记本或选配电脑操作和处理数据◎ 专有windows系统下的控制和查看软件技术参数Tape Drive传输速率0-55m/h测量速率0-55m/h带材应力5N引导带连接仅在测试带材背部小弯曲直径100mmStorage coil dimensions and mounting大绕行线圈外径200mm小绕行线圈内径20mm大带材总重量5kg轮毂直径10mm大芯体宽度20mmHTS tape specs大带材厚度200μm大带材宽度12+0.4mm临界电流测量范围50~400AMeasurement specs并排传感器数量7轴向精度(@55m/h)0.5mm横向分辨率0.6mm (4mmTape)1.5mm (10mm Tape)磁场范围0-40mT校准样品实际测量精度测量范围±3% (min.15A)General requirement电力220V 50Hz 250W液氮Liquid nitrogen @0.05MPa环境温度5~35℃相对湿度10~90%(仅限室内使用)安装选址避免震动Dimensions占地面积750mm X 710mm高860mm重量98kgTAPESTAR™ XLTAPESTAR™ XL是适合在生产环境中的质量控制和产品的进货检验,相对台式小型化型号拥有更大的轮盘和更大的带材存储尺寸和测量长度,此外测量速率更快,能够测量的临界电流也更高。产品特点◎ 快速从轮到轮,高分辨能力, 测量超导带材的临界电流 (一代或者二代高温超导带材)◎ 液氮杜瓦集成在测量柜中◎ 带材加热避免水汽潮湿 ◎ 带材传动装置集成有应力控制和稳定速率控制 ◎ 控制模块系统集成有工业电脑 ◎ 用户使用触摸面板和自带键盘进行操作TAPESTAR™ XL技术参数Tape Drive传输速率0-750m/h测量速率0-200m/h带材应力5-11N引导带连接正反面均可小弯曲直径100mmStorage coil dimensions and mounting大绕行线圈外径800mm小绕行线圈内径200mm大带材总重量50kg轮毂直径3inch大芯体宽度20mmHTS tape specs大带材厚度200μm大带材宽度12+0.4mm临界电流测量范围50~1000AMeasurement specs并排传感器数量21轴向精度(@55m/h)1mm横向分辨率0.6mm磁场范围0-120mT校准样品实际测量精度测量范围±3% (min.15A)General requirement电力400V 三相 50Hz 3kW液氮Liquid nitrogen @0.05MPa环境温度5~35℃相对湿度10~90% (仅限室内使用)安装选址避免震动Dimensions占地面积2630mm X 880mm高1550mm重量475kg
    留言咨询
  • 日本藤仓(Fujikura)公司成立于1885年,产品覆盖光通信、电子材料、汽车电装、电力系统等行业。藤仓公司从二十世纪九十年代初就开始研发第二代稀土系高温超导线材,历时30多年,在高温超导线材的发展过程中做出了许多开创性的工作。包括开发了离子束辅助沉积法(IBAD)和热壁式脉冲激光沉积法(Hot-Wall PLD)等高温超导线材制备中的关键技术并创造了高温超导线材长度和临界电流的多次世界。其生产的超导线材品质和性能一直处于世界前列,特别在线材的机械性能和临界电流均一性等指标上有显著优势。稀土系高温超导线材藤仓公司生产的稀土系高温超导线材由多层结构组成,包括基底层(哈氏合金)、缓冲层(Al2O3/Y2O3/MgO/CeO2)、超导层(REBCO,RE为Gd、Eu、Sm等稀土元素)、保护层(Ag)和稳定层(Cu),线材外由聚酰亚胺涂层保护。主要应用于磁约束受控核聚变、核磁共振成像、超导磁悬浮、超导电机、超导电缆、粒子加速器等领域。 产品特点:临界电流大,Ic≥550A/12mm @77K,S.F.低温强磁场性能优异,Ic≥950A/10mm @4.2K,24T临界电流分布均一性好 线材长度可超过1km小弯曲半径低至5mm产品指标:*1 无铜稳定层,只有银保护层的规格只能提供12mm的宽度,建议用于电流引线和低热传导应用。*2 无人工钉扎的规格适用于高温超导等一般用途。*3 建议在低温和强磁场应用中使用带人工钉扎的规格。 *4 Ic@20K、5T为参考值,实际性能与测试条件相关。*5 可根据客户需求定制镀铜厚度,5 μm、10 μm、40 μm等。
    留言咨询
  • 俄罗斯Scontel公司(Superconducting Nanotechnology)是世界著名的超导探测器制造厂商,以生产超快响应速度、超高灵敏度的超导探测器而闻名,其超导单光子探测器()可覆盖可见光和近红外。产品介绍:Sconel公司生产的超导单光子探测系统基于光纤耦合的NbN超导材料,提供多独立通道(最多至4通道)。由于超导探测器需要低温环境,Scontel公司提供两种制冷系统:Type 1:无制冷剂系统,此制冷系统不需要循环液氦制冷,适用于那些希望避免操作液氦制冷的用户。此系统的优势在于只用供电就可以进行制冷,并且可以连续工作几个月。Type 2:内置标准杜瓦瓶液氦制冷装置。系统关键参数:时间抖动:≤50ps暗计数率:≤10cps计数率:≥100MHz (停止时间≤10ns)通道数:1-4原始输出电压:≤150mV输出电压信号模式:TTL,ECL,LVDS产品优点:无寄生脉冲光纤耦合 无偏差可连续操作产品应用:单光子探测器普遍应用于通信、量子信息、荧光和拉曼光谱学领域,特别是量子信息技术和微光技术最关键的器件之一。超导单光子探测技术是基于NbN超导材料的单光子探测技术,其量子效率、暗计数率和计数率远高于传统的单光子探测器,它们的出现势必给单光子测量相关科学带来巨大的影响。瞬渺科技(香港)有限公司Rayscience Optoelectronic Innovation Co., Ltd 地址:上海市闵行区都会路2338号总部一号21号5楼电话: ,传真:E-mail: Web:
    留言咨询

超导材料检测相关的方案

超导材料检测相关的论坛

  • 【前沿科技】临界高温超导材料具有金属特性

    科学网2007年6月8日讯 高温超导研究的一个终极目标就是要找到在常温下具有超导特性的材料。如果能够实现,人类将在多个领域广泛受益。最近,科学家又朝着这个目标迈进了一步。他们发现,临界高温超导材料具有类似金属的特性。这一成果有望加深科学家对于超导现象和整个超导理论的理解。相关论文发表在5月31日的《自然》杂志上。1911年,利用液氦的低温,科学在-269°C时发现了超导电性现象。具有超导特性的物体自身电阻为零,而且磁场不能穿过。不过,超导现象只能在极低的温度下发生,这大大限制了它在能量传输和医学成像等方面的应用。 1987年,研究人员得到了所谓的“高温超导材料”,它们的临界温度高于77K(-196°C)。这与常温相比还是很低的,到目前为止,高温超导材料的临界温度纪录是138K(-135°C)。高温超导材料的发现大大激发了科学家进一步寻找常温超导材料的热情,不过,由于受一些基础性问题的困扰,相关研究屡屡受挫,其中很重要的一个问题就是超导材料中的电子运动。 在最新的研究中,来自法国国家科学研究中心(CNRS)脉冲磁场国家实验室(National Laboratory for Pulsed Magnetic Fields)的研究人员与加拿大Sherbrooke大学的科学家一道,观测到了临界高温超导体的“量子振动”。他们在极低的温度下(1.5K—4.2K),将实验样品置于62特斯拉(地磁场强度的100万倍)的超强磁场之中,结果发现,磁场破坏了样品的超导状态,而恢复到常态的样本由于受磁场的影响,表现出了电阻的振动。鉴于这种振动正是金属的特性,研究人员认为,他们所研究的临界高温超导样品中电子的运动方式与一般金属类似。 研究人员为了这个结论,足足等了20年。它无疑将加深人们对于临界高温超导电性的认识,此外,新的发现也有助于一些超导理论脱颖而出,为构建新的理论打下坚实的基础。

  • 物理所铜氧化物材料超导能隙和赝能隙性质研究取得进展

    铜氧化物材料中的超导电性自1986年发现以来,其超导机制就一直是人们关心的中心问题。这类材料的一个普遍特性是在超导转变温度TC以上很宽的温度范围内有赝能隙及费米弧的存在,而对这些现象的正确理解是寻找超导配对机理的重要方面。目前通过角分辩光电子谱(ARPES)和扫描隧道显微镜(STM)等重要的谱学手段得到的对赝能隙与超导能隙的认识尚不一致,主要存在着两种不同的观点:一是单能隙或预配对观点,即赝能隙起源于超导预配对,另一则是两能隙观点,即赝能隙的起源与超导电性无关。 对于经典BCS超导体的研究,Giaever的平面型隧道结曾发挥了重要作用。通过隧道谱,人们可以方便地确定超导能隙、电子态密度、准粒子寿命以及导致配对的电声相互作用(有效声子谱)等重要参数。Bi2Sr2CaCu2O8+δ本征约瑟夫森结是目前质量最好的铜氧化物材料的平面型隧道结,此类结是以晶体内的CuO2双层作为电极、BiO/SrO作为隧道势垒层所形成(见图一中的插图),因此可以避免所有外在的实验不确定因素,提供各种稳定、重复的温度依赖的测量,但早期利用此类隧道结进行的研究受到了自热效应的影响,以致测量的本征隧道谱出现严重的变形。 最近,中科院物理研究所/北京凝聚态物理国家实验室(筹)赵士平研究组和王楠林研究组、顾长志研究组合作,优化了Bi2Sr2CaCu2O8+δ本征约瑟夫森结表面层的接触并将结的面积减小到深亚微米尺度,从而成功解决了自热效应,获得了多种掺杂的Bi2Sr2CaCu2O8+δ材料在全温区的本征隧道谱(图一)。采用隧道实验中常用的处理方法对这些隧道谱的分析发现,在T* 温度赝能隙出现后,随着温度的降低,超导能隙会在某个温度Tc0开始打开,其中Tc0明显高于超导转变温度Tc,而超导能隙随温度的变化与d-波BCS能隙规律完全符合。这些结果也得到了零压电导随温度的变化规律的证实。分析给出了超导态与赝隙态的基本参数(图二),同时表明在动量空间赝能隙主导反节点区域,而超导能隙主导节点区域。随着温度下降到Tc0,超导配对首先出现在节点附近的费米弧上,到了Tc以下,超导配对由节点区逐渐扩展到反节点区,最后在远远低于Tc时形成全费米面的d波超导能隙。计算也得到了超导相由于准粒子和库柏对的有限寿命所导致的费米弧,其中弧长对温度显示了常见的线性依赖关系。 这些结果为高Tc超导电性的探索提供了新的实验事实 【详见Sci. Rep. 2, 248(2012)】。 上述研究得到国家自然科学基金委、科技部和中国科学院相关项目的资助。http://www.cas.cn/ky/kyjz/201205/W020120517361959073689.png图一、不同掺杂的Bi2Sr2CaCu2O8+δ超导体的本征电子隧道谱,插图为晶体内部隧道结的形成情况。http://www.cas.cn/ky/kyjz/201205/W020120517361959086333.png图二、超导和赝隙态的(a)特征温度和(b)能隙随掺杂的变化,插图为2Δs/kTc0值。http://www.cas.cn/images/fj.gifEnergy gaps in Bi2Sr2CaCu2O8+δ cuprate superconductors

  • 超导材料LK-99烧结过程中真空和气氛环境准确控制的解决方案

    超导材料LK-99烧结过程中真空和气氛环境准确控制的解决方案

    [size=16px][color=#990000][b]摘要:根据近期LK-99超导材料研究报道,我们分析此材料制备采用了真空烧结工艺。由于目前大部分复现研究所用的真空烧结技术和设备都非常简陋,使得LK-99的复现性很差。为此我们提出了真空度准确控制解决方案,其目的第一是实现烧结初期真空度线性控制避免粉体材料出现扬尘以及烧结过程中的真空度稳定,第二是多通道进气的控制以实现烧结结束前的快速冷却和提供不同的烧结气氛,第三是为后续致密化和大尺寸制备提供支撑。[/b][/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]1. 背景介绍[/b][/color][/size][size=16px] 随着近期韩国科学家提出LK-99超导材料可在常压室温下出现超导现象,国内外对此作出了积极的响应,广泛开展了制备LK-99材料和超导现象复现的工作,但绝大多数都以失败告终。通过对各种报道的分析,我们发现LK-99材料的制备过程中存在以下两方面的工艺特点:[/size][size=16px] (1)根据韩国科学家的报道,他们在超导材料制备中采用了固态合成工艺(synthesized using the solid-state method),且工艺条件为10-3Pa的高真空和接近一千度的高温环境,制备出的LK-99材料为晶体结构。由此可见,高真空和高温是制备过程的必要条件,此制备工艺与真空烧结工艺非常相似,那么很多在常压高温炉里制备出的材料自然无法复现LK-99超导现象。[/size][size=16px] (2)在韩国科学家的最新报道中给出了更详细的LK-99材料制备细节,要求在材料制备的最后阶段需打破高温炉石英管放入氧气,摇动样品使氧气能与硫更充分结合,减少或者清除硫杂质,同时提高氧元素占比,更有利于材料晶体的稳定性。尽管打破石英管(也有报道提到是石英管偶然出现裂纹)显着烧结设备十分简陋甚至不专业,但这更加突显出整个烧结过程是一个标准的真空烧结工艺,最后阶段加入氧气除了清除杂质作用外,更是一个真空烧结工艺中必须的快速冷却工序。[/size][size=16px] 根据上述所报道的制备工艺,可以大致分析出LK-99超导材料制备是真空烧结工艺,整个烧结工艺中除了温度之外,关键是对真空度和气氛的控制,这在后续致密化和大尺寸LK-99超导材料制备中尤为重要。为此,有客户针对LK-99超导材料的复现制备,明确提出了真空烧结炉升级改造的技术指标,具体内容如下:[/size][size=16px] (1)真空度控制范围:5×10-4Pa~0.1MPa。[/size][size=16px] (2)进气通道:4路。[/size][size=16px] (3)控制方式:5×10-4Pa~1kPa范围定点控制,1kPa~0.1MPa程序控制。[/size][size=16px] (4)控制精度:采用电容真空计时为±1%,采用皮拉尼计时为±20%。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 针对上述客户提出的LK-99超导材料真空烧结炉技术指标,本文提出的解决方案基于动态平衡法实现全量程的真空度准确控制,整个真空度控制系统结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=LK-99超导材料真空烧结炉真空度控制系统结构示意图,650,265]https://ng1.17img.cn/bbsfiles/images/2023/08/202308091718134629_330_3221506_3.jpg!w690x282.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 用于LK-99超导材料的真空烧结炉真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 图1所示的真空度控制系统主要由四部分组成:进气混气装置、真空泵排气装置、真空度测量装置、低真空进气调节装置和高真空进气调节装置,详细说明如下:[/size][size=16px] (1)在进气混气装置中,布置了四路进气通道,每路气体由气体质量流量控制器(图1中并未绘出)进行控制并形成设计配比,具有一定配比的混合气体进入混气罐后成为工作气体,使烧结炉内在此气氛环境下对材料进行烧结。[/size][size=16px] (2)在真空泵排气装置中,配置了干泵和分子泵,为管式真空烧结炉提供不同的真空源。[/size][size=16px] (3)在真空度测量装置中,配备电容规和皮拉尼计以满足不同真空度范围的测量,在低真空区间采用电容规,在高真空区间采用皮拉尼计。如果对真空度控制精度要求不高,可仅采用一只皮拉尼计来覆盖整个真空度范围的测量。 [/size][size=16px] (4)在低真空进气调节装置中,包含了手动减压阀、电动针阀、低真空度控制器和电动球阀。手动减压阀是将进气控制在一个较低的压力水平上避免进气流量波动的影响。低真空控制器根据电容真空计(或皮拉尼计)采集信号,分别调节电动针阀和电动球阀的开度来实现真空度的定点控制和程序控制。在低真空(如1kPa~101kPa)范围内必须进行真空度的程序控制,必须使烧结炉内的气压线性缓慢减小,以避免LK-99超导材料在烧结初期由于气压突变产生粉末扬尘现象,在气压低于1kPa后,可以采用定点控制方式。[/size][size=16px] (5)在高真空进气调节装置中,包含了压力调节器、微流量阀、电动针阀和高真空度控制器。在进行高真空度控制时,电动球阀和排气装置需要全部开启,仅靠调节进气端的微小流量变化来实现高真空度控制。在微小流量的调节过程中,高真空控制器根据真空计采集信号和设定值之差,驱动压力调节器和电动针阀进行压力和流量变化,最终与排气流量达到平衡而达到恒定。[/size][size=16px] 在烧结炉真空度控制中,还存在相应的温度控制以及材料放气等因素,这些都会影响真空度的控制精度和稳定性。因此在本文的解决方案中,相关部件的配置需要具有以下特性:[/size][size=16px] (1)在真空度测量过程中,皮拉尼计输出的电信号与真空度呈指数关系,因此为了准确进行高真空度的测量和控制,高真空度控制器必须具有输入信号分段线性化处理功能。[/size][size=16px] (2)真空度控制系统中的所有阀门和调节器,都必须具有较快的响应速度,所配的电动针阀、电动球阀以及压力调节器,都具有一秒以内的开闭调节速度。较快的响应速度,一方面是为了实现真空度的准确控制,避免温度波动等其他因素对控制稳定性的影响,另一方面主要是可以实现烧结炉的快速充气,以对LK-99超导材料进行快速冷却。[/size][size=16px] (3)真空度控制器需具有PID自整定功能和通讯接口,并配置有计算机软件,通过计算机可直接对控制器参数进行设置和驱动控制器执行真空度控制过程,可使真空控制系统很快与现有的真空烧结炉对接并开始烧结试验,无需进行复杂的控制程序编写,更是消除了控制器按键上繁复的手动操作。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过本解决方案的真空度控制系统,可在全量程范围内实现真空度的准确控制,整个解决方案表现出以下特点:[/size][size=16px] (1)真空度的准确控制,保证了烧结过程中环境条件的稳定性和重复性,避免了真空环境变化对材料烧结的影响。[/size][size=16px] (2)烧结超期的真空度程序控制,避免了粉体材料在气压突变时带来的扬尘现象,有效保证了烧结材料整体质量等相关性能的稳定性。[/size][size=16px] (3)多通道进气气体的配比控制和混合功能,结合相应的真空度控制,为超导材料烧结工艺的进一步探索提供了便利条件。[/size][size=16px] 总之,通过本解决方案,可使LK-99超导材料的制备工艺水平得到保证和提高,并为后续致密化和大尺寸LK-99超导材料的指标提供了工艺保障。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

超导材料检测相关的耗材

  • 超导体与金属复合材料Bi-2212高温超导体
    主要用途布鲁克EST产品的功率是同类铜线的100倍以上,专为电磁和电力应用而设计。为了向客户提供优化和量身定制的解决方案,我们正在与Bi-2212线材高温超导解决方案合作。高电流密度和优异的机械性能在4至77K温度范围内的所有磁场中提供超导性能。FeaturesWith more than 25 years of experience in the field of High Temperature Superconducting wires (HTS), our interdisciplinary teams are working on new high tech solutions for tomorrow’s challenges. Our focus is HTS wire solutions for ultra high field applications, enabling new insights in research as well as HTS solutions for new applications in electrical industry and healthcare.Benefits Bruker EST products are able to carry more than 100 times the power of comparable copper wire and are designed with magnet and electric power applications in mind. To provide our customers with optimized and tailored solutions, we are working with Bi-2212 wire HTS solutions. High current densities along with excellent mechanical properties deliver unmatched superconducting performance in all magnetic fields in the temperature range from 4 to 77 k.
  • 超低暗计数(< 0.01cps)超导单光子探测器
    超低暗计数(0.01cps)超导单光子探测器所属类别: ? 探测器/光子计数器 ? 单光子计数器 所属品牌:俄罗斯Scontel公司 产品简介超低暗计数(0.01cps)超导单光子探测器 超低暗计数超导单光子探测器 ----最低暗计数低于0.01cps,是量子密钥分发应用的最理想选择! 俄罗斯SCONTEL公司作为世界领先的超导单光子探测器制造商,其开发出的超低暗计数超导纳米线单光子探测器彻底颠覆了常规超导单光子探测器的技术指标,最低暗计数低于0.01cps,是量子密钥分发单光子探测的理想选择。超低暗计数单光子探测器,超导单光子探测器, SSPD, 超导单光子计数器, 俄罗斯Scontel公司, Superconducting Nanotechnology,红外单光子计数器,高灵敏度单光子计数器;超导纳米线单光子探测器,SNSPD,超导纳米线,低温超导单光子探测器 超导纳米线单光子探测器应用: 超导纳米线单光子探测器技术优势:光量子计算 超低暗计数:0.01cps光子相关性测量 高探测频率:100MHz-500MHz量子密码 超高时间分辨率: 25ps-45ps自由空间通信 死时间: 2ns-10ns激光雷达 超宽探测范围:600nm~1700nm时间分辨荧光寿命测量 无后脉冲单量子点/单分子荧光特性 1~4通道可选皮秒级集成电路检测分析 全程服务支持光学断层摄影 超低暗计数超导纳米线单光子探测器的冷却系统有两种类型: a.外接低温液氦杜瓦瓶 b.闭合循环冷藏室 相关产品 超高量子效率超导单光子探测器(65%@500~1700nm) 纠缠光子对发生器(纠缠光子源) 超导单光子探测器(SSPD) 400~1700nm 时间相关单光子计数器(TCSPC)
  • 石墨烯材料及其他新型低维材料检测表征服务
    泰州石墨烯研究检测平台是泰州市政府与泰州巨纳新能源有限公司共同成立的国内 石墨烯性能测试与结构表征的综合性研究及检测机构。平台目前建有近千平方米的检测洁净室,拥有高分辨拉曼光谱仪、原子力显微镜、三维共聚焦显微镜、电子束曝光系统、近场光学显微镜等国际先进的新材料性能检测及结构表征设备。平台致力于在石墨烯等高新碳材料以及新型低维材料(如各类二维材料、量子点)等领域提供全面专业的检测及表征服务。泰州石墨烯研究检测平台相关检测服务:微区形貌表征:表面洁净度、平整性、层数或厚度判定、均匀性分析等原子结构表征:原子缺陷、层间堆垛方式、电子能带结构等光学性能表征:紫外到红外波段透射、反射、吸收性能等成分检测及分析:元素含量与比率、官能团分析等电学、力学、热学、电化学性能表征等各种定制研究检测服务(如二维材料的光电响应测试)等 检测项目检测内容描述二维材料光电响应测试二维材料的光电响应测试定制化分析实验方案协助制定、数据分析整体解决方案原子力显微镜(AFM)检测石墨烯层数/厚度,尺寸,AFM图像光学显微分析石墨烯层数/厚度,尺寸,对比度分析,光学显微图片荧光显微分析发光样品显微图片3D显微分析石墨烯均匀性,表面起伏度,表面残余物检测拉曼(Raman)光谱分析(单谱) 石墨烯洁净度,层数,掺杂浓度,缺陷含量等拉曼(Raman)光谱分析 (单谱+成像)石墨烯洁净度,层数,掺杂浓度,缺陷含量等扫描电子显微镜(SEM)检测样品微观形貌(分辨率10nm)超高分辨场发射扫描电镜检测获取显微形貌、元素组成及分布信息生物型透射电镜获取显微形貌,适合对分辨率不高但是衬度要求高的高分子、生物型样品透射电子显微镜(TEM)检测获取显微形貌截面离子束抛光用离子束抛光,去除表面应力层,适合复杂样品的EBSD的采集,以及截面样品的SEM观察离子束平面研磨高分辨透射电子显微镜(TEM)检测样品高分辨形貌(分辨率1nm),衍射图(结晶度,晶格取向等)低真空场超高分辨场发射扫描电镜检测获取显微形貌、元素组成及分布信息 变温光学显微镜获取样品的显微形貌,具有明场、暗场、偏光、微分干涉等模式电子背散射衍射—STEM检测获取微观取向信息,可用于晶粒度、晶界、织构、应力等分析X射线光电子能谱(XPS)表面元素含量及化学价态(氧含量分析,成键态),结晶性能等紫外可见吸收光谱分析200-3300nm薄膜、溶液的透射率,吸收率等红外光谱分析(FTIR)红外波段透射(350-7800cm-1),有机物官能团分析等X射线荧光光谱分析元素的定量和半定量分析直读光谱分析获取样品的成分灰分测试获取样品的灰分能谱仪分析获取样品的元素成分和分布,微区域元素的定性和半定量分析等离子体发射光谱元素分析分析样品中无机元素的准确成分及定量辉光放电质谱分析H以外的所有元素,包括常用分析方法难以测定的C,N,O,P,S等轻元素超低检测限,大多数元素的检测限为0.1~0.001ug/G碳硫元素分析C 和 S 的比例元素分析C H O N S 的比例元素分析同位素质谱元素分析:C、N、S 百分含量 同位素质谱:13C、15N含量离子色谱-阴离子阴离子含量分析电感耦合等离子体质谱痕迹量元素测定电子探针 元素定性分析、定量分析X射线衍射分析结晶度、晶粒大小、层间距等显微红外分析微区样品红外光谱采集液相色谱分析样品有机物质的含量圆二色光谱分析液相色谱质谱联用分析 样品有机物质的含量及具体成分气相色谱易挥发的有机物质的含量气相色谱-质谱联用易挥发的有机物质的具体成分核磁共振分析氢谱、碳谱石墨烯薄膜热传导性能测试石墨烯热导率热重分析测试材料的质量随温度的变化,可用于分析构成的比例热差分析测定样品在程序控制温度下产生的热效应,可分析融点、成分构成、热性能、相转变、结晶动力学等信息同步热分析测量样品的热流、转变温度和重量变化三种信息力学性能测试 (氧化石墨烯纸/薄膜等)拉伸应力、拉伸强度、扯断强度、剪切剥离力、杨氏模量等电阻测试(薄膜样品)薄膜面电阻等比表面积测试(BET)测试样品比表面积椭圆偏振分析平板材料或者薄膜的折射率、反射率、膜厚、吸收系数测定电学性能测试(Transport)迁移率,掺杂浓度等纳米粒度分析纳米粒径的分布微米粒度分析微米粒度的分布PH值测试测量PH值

超导材料检测相关的资料

超导材料检测相关的资讯

  • 铁基高温超导材料研究取得重要进展
    近日,中国科学技术大学合肥微尺度物质科学国家实验室王征飞教授与美国犹他大学刘锋教授,清华大学薛其坤院士、马旭村研究员,中科院物理所周兴江研究员合作,首次发现了铁基高温超导材料中的一种新型一维拓扑边界态,该成果在线发表于《自然—材料》杂志。  自然界中至今还没有发现拓扑超导材料,如何设计寻找拓扑超导材料已成为研究人员关注的焦点。以往的研究思路是借助外延生长将拓扑材料放置在超导材料上或将超导材料放置在拓扑材料上,通过邻近效应实现拓扑超导体。但这种复合材料对于生长工艺的要求十分苛刻,阻碍了拓扑超导材料研究的发展。  研究人员以新型高温超导材料FeSe/SrTiO3为研究对象,结合理论计算、扫描隧道显微镜和角分辨光电子能谱,系统地研究了其反铁磁电子构型,并在实空间观测到自旋—轨道耦合所打开的拓扑能隙中一种新型一维拓扑边界态的存在。该研究工作揭示了FeSe/SrTiO3中同时存在的超导与拓扑两种特性,为探索单一材料高温拓扑超导体和马约拉纳费米子开辟了新途径。同时该工作也有助于进一步理解FeSe/SrTiO3的高温超导机制,对于推动铁基高温超导材料的机理研究具有重要意义。
  • 高效原位磁检测技术揭示高压下材料相变!
    【研究背景】高压金刚石砧细胞(DAC)是一种重要的实验工具,广泛应用于材料科学、高温超导性及磁性等领域。其通过施加巨大的压力,能够创造出新型物质状态,并有效调节材料的物理和化学性质。然而,传统的高压磁测量技术存在灵敏度不足、空间分辨率低等问题,使得在兆巴压力下探测材料的磁性特征变得困难。因此,如何在极端条件下实现高效的磁性检测成为当前材料研究中的一项重大挑战。近日,来自中国科学技术大学杜江峰院士团队中的Ya Wang、王禹等人在高压磁测量领域取得了新进展。该团队通过调节氮-空位中心(NV中心)所承受的单轴应力,设计出了一种在兆巴压力下实现原位磁检测的新技术。这项新技术不仅提高了磁检测灵敏度,还具备亚微米级的空间分辨率,能够有效捕捉高压下材料的磁场和磁畴演变。利用这一新型原位磁检测技术,研究团队成功观察到了Fe3O4的宏观磁相变现象。在兆巴压力范围内,Fe3O4从铁磁性(α-Fe3O4)转变为弱铁磁性(β-Fe3O4),最终演变为顺磁性(γ-Fe3O4)。这一发现不仅为作者理解高压条件下的磁性演变提供了直接证据,还揭示了在复杂因素(如自旋交叉、改变的磁相互作用和结构相变)影响下,材料磁性变化的机制。【仪器解读】本文通过氮-空位中心(NV中心)原理,具体来说,利用其在兆巴压力环境下的量子传感特性,首次研发了高灵敏度的原位磁测量仪器,从而表征并发现了在极端压力下磁铁矿(Fe3O4)磁性的变化,最终揭示了其在高压环境下从铁磁性(α-Fe3O4)转变为弱铁磁性(β-Fe3O4)并最终转化为顺磁性(γ-Fe3O4)的过程。这一研究不仅突破了传统磁测量技术在高压下的限制,也为理解材料在极端条件下的磁性演变提供了新的视角。本文针对高压下材料磁性演变现象,通过直接观察磁场和磁畴的演化,得到了在兆巴压力范围内,磁铁矿在不同压力条件下的宏观磁性转变,进而挖掘了电子自旋、磁相互作用和晶体结构等复杂因素对材料磁性演变的影响。在此基础上,通过光学读出和微波辐射控制等表征手段,结合量子传感技术,着重研究了不同压力下磁铁矿的局部磁性演化。本研究还探讨了NV中心在复杂应力环境中的性能变化,通过调节沿氮-空位轴的单轴应力,显著提高了在130 GPa条件下的磁检测灵敏度。这一进展使作者能够克服样品的不均匀性问题,揭示了在微米和纳米尺度上局部磁性的演变。这种技术不仅适用于传统磁性材料的研究,还为高温超导材料(如超氢化物)的原位检测提供了新的可能。通过本文的研究,作者为在兆巴压力下的高温超导材料磁性研究奠定了基础,推动了使用NV中心的量子传感器在高压物理中的应用,为探索高温超导现象和其他相关材料的物理特性提供了新工具。作者期待未来在高压研究领域的进一步应用,促进对超导材料和复杂磁性材料的理解与探索。金刚石砧细胞(DAC)中氮-空位中心(NV中心)的示意图参考文献:Wang, M., Wang, Y., Liu, Z. et al. Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in diamond anvil cell. Nat Commun 15, 8843 (2024). https://doi.org/10.1038/s41467-024-52272-y
  • 世界精英聚京城,共话超导论“英雄”——第十二届国际超导材料与机理大会(M2S-2018)在京举办
    2018年8月20日至8月24日,来自全球超导界的科研工作者们齐聚北京参加了十二届国际超导材料与机理及高温超导体学术会议(M2S-2018)。自1997年北京举办了五届国际超导材料与机理大会以来,超导大会时隔二十年再次来到中国。回二十年,不变的是我们的科研热情,不同的是我们的科研成果。二十年间我们的科学家栉风沐雨不改初心,二十年间我国的科学研究硕果累累人才辈出!本次大会还举行了代表超导领域高荣誉的三大奖项颁奖仪式。卡末林昂内斯奖:日本京都大学的Yuji Matsuda和加拿大施尔布鲁克大学的Louis Taillefer凭借在非常规超导体超导性质研究方面的突出贡献而获此殊荣。马蒂亚斯奖:该奖项花落日本大阪大学Katsuya Shimizu,以表彰他在非超导元素中发现高压下29 K的超导电性。巴丁奖:由于在非常规和多带超导领域以及超导量子涨落方面持续做出的理论贡献,美国明尼苏达大学的Andrey V. Chubukov、美国海军实验室的Igor Mazin和美国斯坦福大学的Sebastian Doniach享了该奖项。无论功勋的科学大家,风华正茂的青年才俊,还是年轻有为的明日之星,一千三百余人齐聚一堂分享新的科研成果,探讨超导领域未来的发展方向。为期五天的学术会议共计数百场报告,让全球的科研人员享受了一场科研的饕餮盛宴。Quantum Design作为超导应用的典范、科研仪器的行业翘楚,在大会上展出了包括新产品OptiCool在内的几十种产品。Quantum Design的工程师在现场接受了各国参会人员的产品与技术咨询。Quantum Design工程师为参会代表介绍产品性能 Quantum Design全球销售总监Daniel Polancic先生发表讲话 赵忠贤院士(中)、董晓莉研究员(左)与Daniel Polancic先生亲切交谈 Quantum Design全球销售总监Daniel Polancic先生出席了本次会议并在大会晚宴上发表讲话,讲述了Quantum Design与超导领域的不解之缘和深厚感情。Quantum Design起源于超导,服务于科研。正如伟人所说,科学技术是生产力,自从台SQUID诞生以来Quantum Design的测量设备大的促进了全球科研的发展。无论是高精度测量还是智能化控制,科研工作者无不享受着先进科研仪器带来的便利。Quantum Design成立三十年来时刻保持着积进取的态度,不忘初心砥砺前行。从开始的兢兢业业到现在的精益求精,Quantum Design始终是全球科学家的科研伙伴。通过本次超导盛会,Quantum Design向广大科学家展示了在仪器领域取得的丰硕成果,也希望能够更好地服务于大家。这是一次超导的盛会,更是一次智慧的盛会。我们期待着这次超导大会的举行能够让更多的科研工作者迸发出智慧的火花,让我国的科研事业再上新台阶。在此,我们也感谢国内外超导科研工作者对Quantum Design的信任和支持。相关产品及链接:1、 超全开放强磁场低温光学研究平台—OptiCool:https://www.instrument.com.cn/netshow/C283786.htm2、 多功能振动样品磁强计—VersaLab :https://www.instrument.com.cn/netshow/C19330.htm3、 超精细多功能无液氦低温光学恒温器:https://www.instrument.com.cn/netshow/C122418.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制