固态降水

仪器信息网固态降水专题为您整合固态降水相关的最新文章,在固态降水专题,您不仅可以免费浏览固态降水的资讯, 同时您还可以浏览固态降水的相关资料、解决方案,参与社区固态降水话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

固态降水相关的耗材

  • ZJC系列智能降水采样器
    ZJC系列智能降水采样器 主要特点 1.主机控制部分采用先进的嵌入式系统,性能好,功能全,具有看门狗功能,确保仪器高可靠性。 2.产品结构件全部采用不锈钢材料制作,能长年经受日晒雨淋; 3.酸雨桶盖采用四联杆传动机构,接到降水信息后会自动作弧线运动,能准确平稳地将酸雨桶罩在盖的海绵体内,保证采雨桶的密封性,从而确保刮风时采雨桶的清洁无尘埃; 4.分单、双桶型式,双桶分干尘降和湿尘降; 5.灵敏度高,并可调开关盖延迟时间; 6.能自动贮存、查询200条降雨信息(降雨启始时间和持续时间); 7.仪器控制部分的显示屏采用背光液晶字符显示,使露天工作的采样器在光线较暗和强日光照射下均能清晰地显示即时信息。 备注:双桶四连杆、全不锈钢,可查询200条降水信息,带雨量计量功能(集雨桶内径¢400)
  • 固态参比电极
    固态参比电极    型号:GD型系列 特点及指标   工业用固态参比电极采用全封闭式,以高分子聚合物为基体,配以特种填料构成导电隔膜,从根本上改变了以往各种参比电极所沿用的液接方式。本系列电极的主要特点:结实可靠,可耐较高温度、压力,耐腐蚀和磨损,抗表面结垢,维护方便。 主要指标   与饱和甘汞电极电势差:(-45± 5)mV(GD-6)/(-56± 5)mV(GD-4)   使用温度:&le 80℃(GD-6);&le 130℃(GD-4)   使用压力:10MPa   pH值范围:0~12   电极内阻:&le 15 k&Omega (GD-6),&le 100 k&Omega (GD-4) 应用范围   GD型系列工业用固态参比电极,与指示电极(如玻璃电极、锑电极、白金电极)配套测量pH值或氧化还原电势值。既适用于低离子强度介质(如高纯水)、有机介质(如煤油)及黏稠介质(如化妆品)体系,又适用于高温高压体系,例如:抗菌素发酵罐、地热水、高温腐蚀介质、深海测量、油井勘探等。   本产品获国家发明专利,并获1991年北京国际博览会金奖。
  • 固态热解石墨平台,10/包
    每批石墨管都经过质量检测以确保其满足严格的污染、灵敏度、精确度、电阻和使用寿命等性能指标要求。 当您进行常规分析,并且希望低背景样品能获得最佳检测限时可使用间隔管。这同样适用于测定有机溶剂或易扩散到整个石墨管因而可能降低精度的低粘度样品。 Omega 平台管易于使用,同时具备优异的原子化效果:该集成平台可确保完美的热效应,产生高密度原子云,以便获得良好的信噪比和最佳检测限。 固态热解平台与石墨管的结合可提供比旧方法更好的一致性,并提供最佳的平台效应。这确保了在分析具有高背景或高干扰的样品时获得最佳性能。需要操作员有更高的操作技巧才能获得最佳结果。 高纯石墨减少痕量杂质的杂散吸收并且提高信噪比。 每一根管都经过手工检测其结果的重现性和可靠性 可减少重复检测而提高效率

固态降水相关的仪器

  • 技术特点- OTT Pluvio2 L称重式降水传感器符合WMO 306 No.8雨量测量标准- 不受外界气候影响- 称重法测量- 可测量任何固态/液态及混合降水- 无机械装置,维护量低,没有翻斗式雨量计的维护问题 - OTT Pluvio2 L称重雨量计可测量任何类型的降雨- 可采集一年四季的数据资料- 安装简单方便,免维护- 终生校正的称重系统,不需要定期校准- 尤其适用于暴雨/降雪测量- 实时雨强范围高达1800 mm/h- OTT Pluvio2 L称重雨量计自带加热装置,在大雪及霜冻等极端恶劣条件下也可以正常工作- 自带风力补偿- 温度范围为-40°~ 60°- 可采用太阳能供电,可用于野外测量- 两种规格分别用于湿润及干旱地区- USB接口进行设置,简单方便- RS485、SDI12及脉冲输出,灵活多用 测量原理OTT Pluvio2 L称重式降水传感器使用高精度的电子称重原理进行全类型降水量测量。高精度的重量传感器可同时计量降雨强度,内部的电子平衡系统也可高精度地计量出雨水的蒸发量(0.01 mm)。该称重雨量计配有倒虹吸式自动排水系统和加热装置,不受外部天气变化的影响。太阳能供电或12V 电池供电即可正常工作,低功耗。冬天,可在雨量桶中添加防冻液以测量降雪,雪落在雨量桶中直接融化不会堆积及结冰。仪器自带风力补偿及降水侦测功能,及时在强风地区也可正常使用,另有防风盾配件可更好的适应西北等风沙较大的地区。应用范围OTT Pluvio2 L称重式降水传感器适用于雨量站、暴雨多发地和降雪监测技术指标常规测量方法称重法测量类型固态、液态以及固液混合降水集雨面积200/400 cm2体积(深度)1500/750 mm测量数据实时降水强度 (mm/h )实时累计降水量 (mm )、非实时累计降水量 (mm)*总累计降水量 (mm)*实时采样桶容量 (mm )、非实时采样桶容量 (mm)压力传感元件温度、加热状态范围和精度实时降水强度6.00至1800.00 mm/h非实时降水强度强3.00至1800.00 mm/h实时/非实时累计降水量0.01至1800.00 mm温度-40至+60℃分辨率0.01 mm,0.01 mm/h精度+/- 0.1 mm采集间隔1~60 mins电气供电电压10至28 VDC功率180 mW/15 mA @ 12V环形加热选项24 VDC/50 Watt构造尺寸高750 mm/直径450 mm重量15 kg(空桶)材质外壳不锈钢,铝,采样桶聚乙烯通讯USB接口用于设置仪器输出接口SDI-12 、RS485、脉冲输出环境操作温度-40至+60 ℃储藏温度-50至+70 ℃相对湿度0至100% RH防护等级外壳IP 54,防盐雾;压力单元 IP67;电子线路 IP64订购指南名称货号中文描述OTT Pluiov2 称重法雨量计70.020.000.9.0集雨面积200cm2,收集雨量1500mm;不含加热装置70.020.001.9.0集雨面积200cm2,收集雨量1500mm;含加热装置70.020.020.9.0集雨面积400cm2,收集雨量750mm;不含加热装置
    留言咨询
  • 详细介绍产品简介 ZR-3901型全自动降水采样器用于对干湿沉降物进行采样,可以实现自动采样、自动记录采样数据等功能。适用于环保、卫生、劳动、安监、军事、科研、教育等部门对大气降水的常规监测。执行标准GB 13580.1-13580.13 大气降水采样和分析方法-系列标准HJ/T 174-2005 降雨自动采样器技术要求及检测方法技术特点感雨传感器灵敏度可调,并具有自动加热功能;开关盖机构采用四连杆结构,稳定性高;整机采用优质不锈钢材质,可保障在海边盐雾环境下长期工作;高亮度显示屏,可在(-40~70)℃环境中正常工作;具备漏电保护功能,确保操作人员安全;具有掉电数据保护功能;具备防雷击保护功能;具备融雪功能,用于采集降雪样品;主机柜具有自动加热功能(选配);具备恒温箱储存样品,储藏温度可以(3~5)℃任意设定(选配)。
    留言咨询
  • LC-03型激光降水粒子成像仪采用线形光电阵列探测成像技术,可准确测量云层当中尺度范围介于100~6220m的降水粒子、固态晶体粒子的分布,并能实时成像。主要适用于气象指挥检测、云水资源考察研究,以及云微物理学研究。原理LC-03型激光降水粒子成像仪采用线形光电阵列探测成像技术,可准确测量云层当中尺度范围介于100~6220m的降水粒子、固态晶体粒子的分布,并能实时成像。与其他产品相比优势准确测量云层当中尺度范围介于100~6220m的降水粒子、固态晶体粒子的分布,并能实时成像。应用领域:主要适用于气象指挥检测、云水资源考察研究,以及云微物理学研究产品特点:准确测量云层当中尺度范围介于100~6220m的降水粒子、固态晶体粒子的分布,并能实时成像。技术参数测量范围100-6200m测量分辨率100m取样频率1Hz(数据),不同步(图像)粒子谱粒子二维图像、谱分布数据、数浓度、体浓度以及含水量曲线采样长度300mm数据传输RS-485 2W,115200Baud Rate工作飞行高度10Km工作飞行速度10-200m/s工作温度-40-+40℃工作湿度0-100%工作电压28Vdc,含除防冰功率设备重量15 Kg设备尺寸85cm(长)×20cm(直径)
    留言咨询

固态降水相关的方案

固态降水相关的论坛

  • 固态发酵的分类知识

    版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://cnfjgc.blogbus.com/logs/68539628.html 一、传统固态发酵与现代固态发酵 虽然固态发酵与液态发酵相比,具有它独特的优势,但也存在着许多不足。特别是传统固态发酵是发酵工业中古老而又落后工艺的代名词。甚至,在发酵工程或生化工程的教科书中,也很少提到固态发酵。现代发酵技术的关键条件是纯种大规模集约化培养.随着科学技术发展和可持续发展的影响,国内外逐步重视对固态发酵的研究开发,已取得了很大进展。因此,依据固态发酵过程中是否能实现限定微生物纯种培养,分为传统固态发酵与现代固态发酵。现代固态发酵是为了充分发挥固态发酵的优势,针对传统固态发酵存在的问题,使之适应现代生物技术的发展而进行的,可以实现限定微生物的纯种大规模培养。 二、固态发酵的形式 1.按微生物的情况和形成的产品条件不同分类 固态发酵可以以许多不同的形式进行,按照使用的微生物的情况和形成的产品条件不同,固态发酵可分为自然富集固态发酵、强化微生物混合固态发酵、限定微生物混合固态发酵和单菌固态纯种发酵。 自然富集固态发酵是指利用自然界中的微生物,由不断演替的微生物进行的富集混合发酵过程。典型的例子是传统酒曲和酱油、腌莱、烟草发酵、茶叶发酵、青贮、堆肥等。它不需要人工接种微生物,其所需发酵的微生物主要依赖于当地空气和物料中的自然微生物区系,多种微生物演替成最适于生长代谢或共生协作的小生态环境。其微生物富集区系不仅与当地空气和物料中的自然微生物区系有关,而且与小生态环境自然变化密切相关。 强化微生物混合固态发酵是指在自然富集固态发酵的基础上,根据人们部分掌握的微生物代谢机制,人为强化接种微生物茵系不明确的富集培养物或特定微生物培养物所进行的混合发酵过程。强化微生物混合固态发酵除应用于沼气发酵、白酒发酵作用外,在石油采收、湿法冶金、食品发酵等领域同样显示其优势。人们在长期的科学研究和生产实践中却不断发现,不少生命活动及其效应是借助于两种以上的生物在同一环境中的共同作用下进行的,甚至是单独不能或只能微弱进行的。例如废物的处理,纤维索和本质素的降解,甲烷的产生和利用等。自然界的微生物没有一种是单独存在的,单靠纯培养很难反映它们的真实活动情况。因此,强化微生物混合固态发酵微生物资源具有非常广阔的应用前景。 限定微生物混合固态发酵是在对微生物相互作用和群落认识的基础上,接种混合培养的微生物是已知和确定的,通常使用两种或两种以上经过分离纯化的微生物纯种,同时或先后接种同一灭过茵的培养基中,在无污染条件下进行的固态发酵过程。人类对微生物的利用经历过天然混合培养到纯种培养两个阶段,纯培养技术使得研究者摆脱了多种微生物共存的复杂局面,能够不受干扰地对单一目的菌株进行研究,从而丰富了人们对微生物形态结构、生理和遗传特性的认识。但是,在长期的实验和生产实践中,人们不断地发现很多重要生化过程是单株微生物不能完成或只能微弱地进行的,必须依靠两种或多种微生物共同培养完成。虽然微生物混合培养在很多领域中的作用已得到充分肯定,部分成果己成功应用于实践,但对大多混合菌体系中菌间相互关系和作用机制的研究尚不够深入。因此,目前对于具有协同作用关系的菌株筛选和组合还是一个随机过程的,缺乏有效的理论指导,而且对于已经应用的混合培养体系也不能有效地协调菌间的关系,使其达最佳生态水平,发挥最大效应。这严重地阻碍了混合菌培养的发展和应用。因此,如果从生理、代谢和遗传角度对混合茵间关系和协同作用机制进行深入研究,对混合菌培养的理论和应用都将有巨大的突破。随着混合菌培养在各方面应用研究的深入,人们不再满足于传统的反应模式,已开始引人一些新兴的生物工程技术,使该领域的研究更具活力。采用固定化细胞技术固定混合菌可使反应系统多次使用,降低成本,增加效率,在实际应用中很有意义。利用细胞融合技术和基因工程技术由具有互生或共生关系的微生物构建工程菌,可使工程菌既具有混合培养的功能,又拥有纯培养菌株营养要求单一、生理代谢稳定、易于调控等优点,也是极有前景的研究方向。 单菌固态纯种发酵是在纯培养基础上建立起来的,对于选育良种、保持生理活性和代谢过程中的稳定起很大作用。它对于扩大固态发酵的应用范围和潜力的发挥起到非常重要作用,同时,也是固态发酵一个重要方向。 2.按固态发酵固相的性质分类 根据固态发酵固相的性质,可以把固态发酵分为两种类型。一种是以农作物(如麸皮、豆饼等)为底物的固态发酵方式。这些底物既是固态发酵过程中的固相组成部分,又为微生物生长提供营养,在这里可以称这种发酵为传统固态发酵方式(或固体底物基质固态发酵)。另一种固态发酵方式是以惰性固态载体为固态发酵过程令的固相,微生物生长的营养是吸附在载体上的培养液,称这种发酵方式为惰性载体吸附固态发酵。 同体底物基质固态发酵利用的培养基是既充当固相,又为微生物生长提供营养的初级农作物产物,如麸皮、马铃薯、谷子、豆饼以及其他含淀粉和纤维素的农作物产品。第二种固态发酵采用的固体是惰性载体,这些载体可以是天然的,也可以是人工分成的。这些载体材料有珍珠岩、聚氨酯泡沫体、蔗糖渣和聚苯乙烯等。 固体底物基质固态发酵的一个主要的不足之处就是碳源是它们的结构组成部分,在微生物发酵生长过程中,培养基被分解了,底物容易结块,孔隙率也降低,结果底物的外形和物理特性都发生了变化,降低了发酵过程中的传质和传热。例如,麦片在发酵过程中由于淀粉的降解和水的挥发,会导致固体底物变形结块,结果使传质和传热受到影响。而具有稳定结构的固态载体充当固态发酵的固相可以克服这一缺点,从而更有利于微生物的生长和产物产量的增加。例如,采用聚氨酯泡沫体为载体吸附固态发酵核酸酶P1时,产量和活力分别比采用麸皮固态发酵提高9倍和4倍。 另外,惰性载体吸附固态发酵与固体底物基质固态发酵相比,还具有产物提取简便的优点。可以很容易地从惰性载体中提取到胞外产物,而且所得到的产物含有较少的杂质,载体还可以重复使用。例如,利用聚苯乙烯作为载体,以肋生弧茵产生L-谷氨酰胺酶时,产物比采用麦麸粉固态发酵时得到的产物黏性要低。另外,前者的产物不含蛋白质污染物,而后者含有多余的淀粉酶和纤维素酶等。 与固体底物基质固态发酵相比,惰性载体吸附固态发酵还具有其他很多优点,如:能够对培养基营养成分进行合适的调节;容易了解产物中的各成分并进行分析,从而有利于发酵过程的控制以及动力学研究与模型建立等。

  • 固态电容和电解电容有何区别?如何看固态电容正负极?

    一、固体电容和电解电容的区别   固态电容器的全称是固态铝电解电容器,与普通电容器(即液态铝电解电容器)最大的区别是不同的介电材料,液态铝电容器介电材料是电解质,固态电容器的介电材料是导电高分子。一些更好的高端点板使用固态电容。众所周知的板爆浆是电解电容器的杰作。这是因为主板长期使用期间,由于过热,电解质受热膨胀,编解码器过热超过沸点一定程度时,会产生爆炸性纸浆,电解质和氧化铝在主机通电时会产生爆炸性纸浆。固态电容器可以完全放弃这些缺陷,具有环境保护、低电阻、长寿命的特点。   关于如何区分固态电容和电解电容的提示,如果电解电容顶部有“K”或“10”和“T”等形状的压痕槽,则表示是电解电容。否则是实体电容,但这种方法只能应用于识别大多数实体电容。如果是重要的应用程序,请仔细检查。固态电容和电解电容没有好坏之分,都有各自的优缺点,所以大家只要合理应用就行了。   固体电容器使用导电高分子产品作为介电材料,所以这种材料不与氧化铝起作用,I/O扩展器通电后不会发生爆炸现象。同时,由于是固体产品,当然没有因热膨胀而爆裂的情况。固态电容器具有环保、低阻抗、高低温稳定性、高模式和高可靠性等优良功能,是目前电解电容器产品中最高的产品。由于固态电容特性远优于液态铝电容,固态电容达到260度,具有良好的导电性、频率特性和寿命,适用于低压、大电流应用。主要应用于薄DVD、投影仪和工业计算机等数码产品,最近也广泛应用于计算机主板产品。   在电气性能方面,固态电容和普通电解电容各有优点。电子最大的优点是不使用液体电解质。这样,受热时不容易发生“膨胀”、“破裂”等现象,寿命长,热稳定性好,适合高频工作环境。后者价格便宜,容量大,内压高。区分固态电容和电解电容的简单方法是检查电容顶部是否有“K”或“”形凹槽。固态电容器没有凹槽,电解电容器在顶部有一个开口槽,防止加热后因膨胀而爆炸。与目前常用的普通液体铝电容相比,固体铝电解电容器的物理区别在于使用的导电高分子电介质材料是固体而不是液体,串行器/解串器如果长期不通电,这种材料不会与氧化铝起作用。开机后,不会像普通液体铝电容器那样容易开机或开机时发生爆炸或爆炸的现象。二、固体电容如何看待正极和负极。   固体电容器形成阳极内部表面非常薄的氧化铝层,在电解电容器中充当电介质。具有优良的介电常数E和单向特性。与电解质接触时,该氧化膜具有良好的单向绝缘特性。电介质这一特性决定了一般电解量的单向极性应用。   固体电容器可以用脚判断,长的是阳极,短的是阴极。电容器身上有半色漆的是阴极。固体电解或液体电容器一词是指该阴极的材料。使用电解质作为阴极的优点是电容很大。但是电解质在高温环境下容易挥发和泄漏,对寿命和稳定性有很大影响。固态电容器使用功能性导电高分子作为介电材料,如果长期不使用,不会产生电爆炸的现象。此外,低温下电解质离子移动缓慢,因此无法获得适当的特性和功能,而固体电容器与液体电解质相比,具有环境保护、低阻抗、高温稳定、耐橡胶尼波及、高可靠性等优良特性。 [b]创芯为电子[/b]为不同规模的企业提供电子元器件采购的平台。主要产品包括电源管理芯片、处理器及微控制器、接口芯片、放大器、存储器 、逻辑器件、数据转换芯片、[url=https://www.szcxwdz.com][b]电容[/b][/url]、[url=https://www.szcxwdz.com][b]二极管[/b][/url]、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,还可免费供样!

固态降水相关的资料

固态降水相关的资讯

  • 大气降水氢氧稳定同位素测试方法
    一、研究背景与意义大气降水作为内陆水循环的重要水分输入项,其形成过程中,伴随着地表蒸发、植物蒸腾以及水汽凝结等平衡分馏或动力分馏过程,使降水中的氢氧稳定同位素组成有不同的特征。因此降水氢氧稳定同位素常被视为良好的示踪剂,被广泛应用于水汽源地示踪、古气候重建、蒸发量及局地水汽再循环的估算等研究。降水氢氧稳定同位素的研究始于上世纪五十年代,以国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素观测网(Global Network of Isotopes in Precipitation, GNIP)为标志,开始了全球性的降水氢氧稳定同位素的长期监测;随后研究者们在国家、区域或单站点尺度上也开展了大气降水氢氧稳定同位素的监测,这些观测数据促进了我们对于复杂水循环过程的认识。因此,高时间和空间分辨率的降水氢氧稳定同位素的监测是一项非常重要的工作。二、测量原理降水氢氧稳定同位素组成的测定采用的是基于光腔衰荡光谱(Cavity Ring-Down Spectrospecopy, CRDS)技术的Picarro高精度水同位素分析仪。同其它光谱技术相同,CRDS技术也是基于气态分子独特的红外吸收光谱来量化稳定同位素组成的方法,但不同于其它光谱技术基于吸收强度的测量,CRDS技术是基于时间的测量,其测量结果对激光源本身的变动不敏感,从而可以保证仪器的噪声更小,且精度更高。Picarro高精度水同位素分析仪的光腔采用三镜片小光腔(体积约35 ml,长度约为25 cm)的设计,可以保证更快的腔室内气体更新速率,使仪器的响应时间更快;同时小光腔的设计可以实现对光腔内温度和压强的控制(温度:± 0.005 ℃;压强:±0.0002 大气压),使仪器具有更好的漂移性能。光腔内采用高反射率镜面可以有效的减少由于激光透射所引起激光强度的减弱,从而可以使激光穿过的更大的气体厚度,即更大的有效长光程( 10公里),从而使仪器拥有更低的检测下限。三、仪器介绍基于CRDS技术的Picarro高精度水同位素分析仪可以用于液态水样品中稳定氢氧同位素比率(δ2H,δ17O和δ18O)的测量,如降水、河水、湖水、地下水、冰川水、土壤水和植物水等液态水。仪器的典型精度:δ2H: <0.1‰,δ17O: <0.025‰,δ18O: <0.025‰;测量速度:每9分钟可以完成一针测量,每天可以完成160针(即27个样品)的测量;测量范围:满足同位素标记的重氘样品测量,δ2H的测量上限≥50000‰(或≥8500ppm);取样温度:0-50 ℃;样品体积:<2 μL/针(可调)。四、取样方法根据国际原子能机构和世界气象组织的要求,采用标准雨量器进行降水样品的收集。如需测定月尺度上的降水氢氧稳定同位素组成,可在室内准备一个足够大的容器,每次降水后,将在室外通过雨量器收集到的降水倒入该容器,低温密封保存,每个月的最后一天取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。如需测定降水事件尺度上的降水稳定氢氧稳定同位素,则在每次降水后取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。各观测点收集的降水样品可寄送至北京松盛华嘉检测技术有限公司使用基于CRDS技术的Picarro高精度水同位素分析仪进行集中测试。五、公司介绍北京松盛华嘉检测技术有限公司,为北京理加联合科技有限公司的全资子公司,致力于为用户提供更高质量的稳定同位素样品测试服务。已先后为中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院西北生态环境资源研究院、中国林业科学研究院林业研究所、中国科学院植物研究所、中国科学院遗传与发育生物学研究所和中国水利水电科学研究院等近百家单位提供快速、精确的稳定同位素测试服务和技术咨询服务。北京松盛华嘉检测技术有限公司拥有专业的测试团队,提供快速、精确的测试服务,可以为您提供及时的数据测样服务,助力您科研成果的尽快发布。
  • 硫酸盐气溶胶污染或导致中亚干旱区夏季降水增加
    南亚和东亚的人为硫酸盐气溶胶污染导致中亚干旱区夏季降水增加的机制示意图论文作者供图包括中亚五国和我国新疆的亚洲中部干旱区,称为“中亚干旱区”,常年干旱少雨,是地球上最大的非地带性干旱区之一,也属于水资源和生态系统最脆弱的地区。据研究文献报道和依据多种观测资料显示,中亚干旱区特别是我国新疆地区在过去几十年来呈现出显著的变湿趋势。但这一变湿趋势的影响因素和驱动机制至今尚不完全清楚。最近,中国科学院地球环境研究所气候模拟团队解小宁研究员等联合美国、欧洲及日本的科学家,通过基于降水驱动和响应模式比较计划(PDRMIP)进行多模式模拟研究。他们的研究结果表明,南亚和东亚的人为硫酸盐气溶胶污染会导致中亚干旱区夏季降水特别是对流性降水和极端降水显著增加。“由此可以解释中亚干旱区的显著变湿趋势。” 解小宁讲述,“南亚和东亚污染地区的硫酸盐气溶胶浓度升高,通过快反应过程降低了亚洲中纬度地区大气温度,从而引发对流层高层亚洲西风急流向赤道方向移动。”“我们又通过水汽收支分析发现,西风急流南移有利于来自低纬度的水汽供应增多及水汽在中亚干旱区的汇聚。” 解小宁进一步说明,“与此相反,吸收性黑碳气溶胶会使得亚洲西风急流向北移动,而导致中亚干旱区夏季降水有所减少,这可能会部分地抵消硫酸盐气溶胶的气候效应。”上述研究成果发表于《通讯-地球与环境》( Communications Earth & Environment)。该研究领域的专家认为,这一研究结果也表明中亚干旱区降水异常与南亚和东亚地区人为气溶胶排放之间存在遥相关,突出了人为气溶胶对大气环流和水循环影响的远程效应,并指出我国西北地区气候变化除了受到全球温室气体排放的影响,还依赖于南亚和东亚污染区的气溶胶排放,也为准确预估我国西北地区未来气候变化提供了新的线索。据悉,该研究得到国家自然科学基金重大项目 (41991254)和中国科学院战略性先导科技专项 (XDB40030100)等项目的共同资助。
  • LI-2100 | 水汽来源复杂性对内陆山区降水稳定同位素海拔效应的影响
    祁连山脉位于青藏高原北部、河西走廊南侧,由多条平行的山脉组成,呈西北向东南延伸。石羊河流域上游是重点研究区域,海拔西南高、东北低,发源于祁连山脉北坡的冷龙岭,流经青藏高原,由西南向东北流动。该地区年降水量200~700 mm,月平均降水量24~51 mm,属于大陆性高山气候,受东亚季风、高原季风和西风影响。不同海拔对气候影响显著,山区年平均气温低于6℃,随海拔升高而降低。相对湿度随海拔增加而增加,反映了多种水汽来源的影响。图1 西北地区北麓的位置,(a)研究区采样点位置,图(a)左上:研究区水分来源(箭头大小表示重要性);(b)山区采样点位置;(c)祁连山北坡降水量与气温月平均变化。来自西北师范大学的研究团队在祁连山北坡6个采样点共采集降水样品863个,其中雪样出现在冬季(1月、2月、12月),雨样出现在3月至11月,采样期间共采集雪样61个、雨样802个(表1)。在研究区5个采样点共采集地表水(河水)样品372个,在研究区5个采样点共采集植物水样品92个,采样时间为2016年10月至2020年9月。每次降水事件后,用雨量计采集降雨样品并立即放入50 ml聚乙烯采样瓶中,同时记录降水量,最后用封口膜盖紧封口并冷藏保存。地表水样品每次采集后也立即密封冷藏。同时利用自动气象观测仪器记录气温、降水、相对湿度、大气压等气象要素。分析时,植物水由LI-2100 全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取。δ2H和δ18O测定在西北师范大学同位素实验室进行,每个水样和同位素标准样品连续进样6次。表1 采样点基本信息 通过对2016年10月至2020年9月降水稳定同位素分析,确定祁连山水线(LMWL)为:δ² H = (7.78±0.05)δ¹ ⁸ O+ (10.97±0.52) (R² =0.97, n=863, p0.05)。其斜率小于大气水线,截距大于大气水线,反映欧亚大陆的地理气候特征,气候干旱,高海拔干冷。此外,祁连山北坡低水分线斜率呈现月变化:4月、5月和9月斜率分别为6.92、6.93和6.66,春秋季地表蒸发明显;夏季(6-8月)斜率为7.32、7.26和7.31,降水增多,蒸发减少;10月至次年3月斜率均大于7.5(图2),气温低,降水少。海拔降低导致斜率和截距减小(图3)。在西营(M4)和武威(M6),降水同位素出现突变。西营(M4)的异常因水库增加湿度,武威(M6)则因人类活动和水源集中。图2 研究区内各月份及不同采样点的LMWL。(a–l)表示1至12月祁连山带北坡LMWL,(m–r)表示研究区内各采样点的LMWL。图3 研究区域内各月当地大气降水线 (LMWL) 的斜率和截距 (a) 和不同采样点 (b) 的比较。图4 不同月份的祁连山带北坡原始后向轨迹聚类分析。图中百分比值代表来自各个方向的气团对研究区域的水汽贡献比例。图5 气象水文过程对祁连山北坡降水稳定同位素海拔效应的影响。(a)降水稳定同位素海拔效应的月变化,图中连线表示海拔梯度及误差的月变化。(b)降水中循环水比例及相对湿度的月变化。(c)降水量和气温的月平均变化。(d)雨滴蒸发残留率的月变化。石羊河上游位于青藏高原北部的祁连山北坡,降水除受当地气象水文过程影响外,还受到平流水汽的影响。祁连山北坡当地大气降水线(LMWL)为:δ2H =(7.78±0.05)δ18O +(10.97±0.52)(R2 = 0.97,n = 863,p 0.05),表明夏半年当地大气降水线的斜率小于冬半年。祁连山北坡降水稳定同位素的海拔效应在各季节的变化顺序为冬季秋季春季夏季,表明海拔效应受当地气象水文过程的显著影响。研究区水汽主要来源于四个方向:西部、东北部、东南部和高原南部。来自东北和东南方向的水分具有较短的传输路径和较慢的速度,而来自西北和西南方向的水分具有较长的迁移路径和较快的速度。降水中稳定同位素的海拔效应变化在很大程度上取决于水分方向和气团特征,表现为四种不同的情况:1、平流水分垂直于山脉,气团迁移速度较慢,加剧了海拔效应。2、当平流水分(主要来源)与山脉方向平行,气团移动距离长且速度快时,海拔效应变得不那么明显。3、尽管平流水分占主导地位,但相当一部分地表蒸发水会削弱观察到的海拔效应。4、主要来源是平流水分,表现为沿斜坡向下的反向气流,在研究区域引入了反海拔现象。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制