火焰校准操作

仪器信息网火焰校准操作专题为您整合火焰校准操作相关的最新文章,在火焰校准操作专题,您不仅可以免费浏览火焰校准操作的资讯, 同时您还可以浏览火焰校准操作的相关资料、解决方案,参与社区火焰校准操作话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

火焰校准操作相关的耗材

火焰校准操作相关的仪器

  • 火焰温度校准装置 400-860-5168转2839
    一、产品介绍:温度校准装置原理:1、标准要求测温铜块 20mm火焰的:重量(打孔前):1.76±0.01g直径:5.50mm±0.01 2、125mm火焰的:重量(打孔前):10±0.01g直径:9.00mm±0.013、热电耦 Φ 0.5mm K 型,进口绝缘式耐高温铠装热电偶铠装套耐热 1100 ℃ ( 优于标准 1050 ℃ )4、20mm火焰从100度升到700度时间为:44±2S5、125mm火焰从100度升到700度时间为:54±2S6、火焰温度校准工作全在触屏上操作完成二、技术参数:1、温度表:1s ~ 999.9s( 数显可预置 )2、时间表:1s ~ 999.9s( 数显可预置 )3、 进口热电偶: K 型进口绝缘式耐高温铠装热电偶,0~1000°≤范围内连续可 调,测温精度±10°C;4、 水平垂直燃烧试验仪使用:配φ5.5mm,1.76±0.01g或φ9mm,10.00±0.05g 标准铜头;
    留言咨询
  • 火焰光度计 400-860-5168转1705
    仪器简介:BWB火焰光度计 (火焰分光光度计)—— 技术领先100年!尽管人们知晓火焰光度计的工作原理已有100多年历史,但是BWB公司仍带来了21世纪全新火焰光度法技术,随着XP的诞生,分析样品和运行校准都要比以往任何时候更加可靠、准确和简便。BWB 火焰光度计是款采用先进技术的高质量、高性能仪器,能够在明显缩短分析时间的同时提高准确性和稳定性。BWB 火焰光度计是第一和唯一一款包含内置空压机的仪器,标配包含运行所需附件,客户需做的仅仅是……连接气源! 性能特点:- Na、K、Li、Ca、四种滤光片任意搭配,可同时检测、显示多种元素含量,也可根据需要选择显示。- 两点或多点校准以及多离子校准模式,仪器可保存校准曲线,校准可校正- 校准单位可选:ppm,mg/l,meq/l,mmol/l,分辨率可选- 熄火检测和自动关机功能,使用安全- 开机时自动诊断功能,诊断显示- 内置静音空压机,也可切换备用外接空气源接口- 带RS232和USB数据接口,可外接电脑控制,提供维护警报来进行循环;- 进样速率:3.0-5.5ml/min- 重现性:在100ppm或者更低的浓度时,超过10分钟的时间内连续20次取样的变化系数1%(仪器稳定后)- 检测范围(多点校准):Na:0.1-1000ppm;K:0.05-1000ppm;Li:0.1-1000ppm;Ca:2.5-1000ppm;- 检测限:Na:0.02ppm;K:0.02ppm;Li:0.05ppm;Ca:1.0ppm;- 时间稳定性:少于15秒(当样品被送入火焰燃烧后)- 漂移性:≤1%(当仪器稳定30分钟后)- 干扰性:Na/K/Li = 0.5%(样品浓度100ppm)- 参数测量数量:仪器显示READ(读数)模式时,可显示5种元素,从高到低连续显示- FP-PC软件:图形数字化显示,可编辑存储操作者、样品相关信息,用户可以根据需要选择数据结果打印,最多可一次输出10个数据的报告结果,GLP报告格式,自动存档和网络共享- 可用丙烷、丁烷、液化石油气或天然气气源- 符合CE认证标准- 提供全套中、英文操作维护说明书- 提供全套中文解说操作视频-提供全套产品应用指南应用范围 -矿石,岩石,硅酸盐中的钠钾的测量 -土壤中钾含量的测定-水泥中的碱金属分析 -土壤中可交换反应的钠离子的测定 -玻璃中钾钠的测定 -燃油中钠的测定-硫酸盐中钠的测定-啤酒中钙的测定-生物学液体中钙的测量 -牛奶中钙的分析和评估 -饼干,点心中含钙量的测定-肥料中的钾的测定-植物性饲料中钾的测定 -原生松树油中钠的含量测定 -包含有树脂的混合物中的钾的测定 -油脂中锂的测定 -钡的火焰光度测定 -钙的火焰光度测定 -果汁中钠钾钙含量的测定 -稻草,麦秸中钾钠含量的火焰光度测定
    留言咨询
  • AA6810火焰-石墨炉原子吸收光谱仪介绍上海奥析科技有限公司是一家生产、开发原子吸收光谱仪的公司,由从事原子吸收数十年工作经验产品工程师和应用工程师组成,人员来源于原安捷伦原子吸收团队。公司现主要产品为:原子吸收光谱仪AA-6810系列产品。包括6810F火焰、6810火焰快速多元素分析仪、6810石墨炉等,目前6810型号是在原先安捷仑的4510的基础上优化升级部分性能而成的。主要特点: u 6灯灯塔,并可多灯同时预热;u 分辨率【光谱带宽0.2nm时能分开锰双线(279.5和279.8)20%】;u 六档狭缝自动切换0.1、0.2、0.4、0.7、1.0、2.0; u 软件升级免费;u 体积小,自动化程度高;u 自吸收扣背景,氘灯扣背景。全自动气体控制:采用二进制代码控制数个电磁阀“开启"和“关闭"的气体流量控制,能自动完成空气/乙炔、笑气/乙炔的安全点火、熄火和切换,结构可靠,故障率极低。能自动优化助燃气与燃气流量比,能始终如一地保持二者的最佳恒定比值,并实施全自动的监控,从而确保火焰法的高灵敏度与良好的重现性。光学稳定性:一体化的悬浮式避震光学平台设计,光学系统抗震能力增强,由温度变化造成的机械变形对光学系统的影响减少,即使长期使用光信号依然能保持稳定。安全性: u 空气、乙炔、笑气压力不足报警u 高灵敏度火焰探头实时监测火焰状态u 燃烧器插入连锁确保火焰安全u 电源中断,自动切断燃气可选配附件:u 石墨炉系统u 自动进样器u 氢化物发生器二、技术指标主机波长范围 190~900nm6灯灯塔 多元素分析时不需要更换灯波长重复性 ±0.1nm波长准确性 全波段±0.2nm吸光度范围 0–2.5ABS分辨率 光谱带宽0.2nm时能分开锰双线(279.5和279.8)且谷峰能量比20%光谱带宽(6档、4档可选) 0.1nm,0.2nm,0.4nm,0.7,1.0,2.0nm静态基线漂移 ≤0.002ABS/30min(Cu)重量 80kg尺寸 500*450*430(mm)光栅数 1800条/mmD2背景扣除方式 背景信号1ABS时,扣除背景能力≥50倍自吸收背景扣除方式电源 220V AC火焰系统空气–乙炔火焰燃烧头 100mm点火动态基线漂移 ≤0.004ABS/30min(Cu)灵敏度(Cu)特征浓度 ≤0.025ug/ml/1%精密度 相对标准偏差 ≤0.5%(Cu,吸光度0.8ABS)(检出限Cu≤0.004ug/ml)安全系统 压力不足、电源中断、异常熄火、燃烧头不匹配时自动切断燃气
    留言咨询

火焰校准操作相关的方案

火焰校准操作相关的论坛

  • 火焰操作步骤错误 灯出现问题了??

    火焰法的操作步骤错了会导致阴极灯不亮吗各位老师 我用的是国产 WFX-130A 在做火焰法测定锌时,现在电脑上设定好要求,在点击完成的时候,把压缩机和那个氩气开开后,还没等阴极灯校准好马上就点火了,结果导致阴极灯不亮了,请问这是什么原因啊 急求!!!谢谢

火焰校准操作相关的资料

火焰校准操作相关的资讯

  • 小奥课堂:pH校准标准操作程序 (SOP)
    pH校准标准操作程序(SOP)的目的是为常规校准步骤提供一个方法,以保证pH测试的精度。 推荐设备pH计pH电极和温度电极磁力搅拌器和搅拌子50毫升的烧杯和200毫升的废液杯pH 4.01 缓冲液或同等缓冲液pH 7.00缓冲液或同等缓冲液pH 10.01 缓冲液或同等缓冲液表面皿或封口膜去离子水或者超纯水校准频率至少要在使用仪器进行测量前的当天进行校准。在一天测量结束时进行校准后检查,以确定仪器是否偏离校准。 pH校准和测试建议1. 根据样品的pH值选择合适缓冲液标准液,样品的pH值应该在选择的缓冲液值之间。如果样品的pH值未知,则需要三种标准品进行校准:一种接近于7pH值,一种至少低于5 pH值的缓冲液,另一种至少高于9pH值的缓冲液,如果样品的pH值不在选择的校准溶液范围内,那么需要重新选择合适的校准溶液。2. 如果电极是可填充的,请在校准和测量过程中打开填充孔,以确保填充液通大气。电极内部的填充液液位必须比缓冲液或样品液位至少高出两厘米。3. 在校准/测试缓冲液或样品之间,用去离子水冲洗,并用滤纸吸去多余的水。然后再放入下一个缓冲液或样品。不要摩擦或擦拭电极玻璃球泡,减少极化引起的误差。4. 请勿重复使用缓冲溶液,也不要将使用过的缓冲溶液倒回到原来的存储容器中。5. 用磁力搅拌器适度匀速地搅拌缓冲液或者样品。电极的准备根据电极用户指南或说明书中的说明准备pH电极。校准之前,将电极存放在pH电极保存液中。 校准缓冲液准备1.在校准之前,将约30 mL的pH 10.01缓冲液倒入50 mL的烧杯中,并用表面皿或封口膜覆盖烧杯。2.在校准之前,将约30 mL的pH 7.00缓冲液倒入50 mL的烧杯中,并用表面皿或封口膜覆盖烧杯。3.在校准之前,将约30 mL的pH 4.01缓冲液倒入50 mL的烧杯中,并用表面皿或封口膜覆盖烧杯。4.再分别将约30 mL的pH 10.01、7.00和4.01缓冲液倒入单独的50 mL烧杯中。在校准过程中,将这三个烧杯中的缓冲液作为润洗液。5.pH读数与温度有关,让所有缓冲液达到并保持在相同的温度。 校准1. pH读数与温度有关,让所有缓冲液放至环境温度。如果缓冲液温度不在25°C,建议进行温度补偿。使用NIST标准温度传感器测量缓冲液的温度,然后将温度手动输入到仪表中,或使用温度传感器将缓冲液的温度自动传输到仪表。2.按照上述“校准缓冲液准备”部分所述准备的pH 10.01缓冲液,pH 7.00缓冲液和pH 4.01缓冲液,取下校准烧杯的表面皿或者封口膜。3.首先用去离子水冲洗pH电极,然后在pH 10.01缓冲液润洗烧杯中润洗电极。请确保在废液杯中用去离子水冲洗电极,以防止缓冲液污染。切勿在用于校准的缓冲液烧杯中润洗电极。4.将电极放入pH 10.01缓冲液校准烧杯中,使电极头和液接界完全浸入缓冲液中,并以适中的速率搅拌缓冲液。5.在仪表上开始校准步骤。6.等待在pH 10.01缓冲液中的读数稳定。如果手动输入了缓冲液的温度或使用了自动温度补偿的温度电极,仪表能自动识别缓冲液,显示温度补偿后的pH值。如果仪表无法自动识别缓冲液,请查看表1输入对应温度的pH缓冲液的值。7.仪表自动识别正确的缓冲液值后,准备下一个校准点。8.首先用去离子水冲洗pH电极,然后在pH 7.00缓冲液润洗烧杯中润洗电极。确保在废液杯中用去离子水冲洗电极,以防止缓冲液污染。切勿在用于校准的缓冲液烧杯中润洗电极。9.将电极放入pH 7.00缓冲液校准烧杯中,使电极头和液接界完全浸入缓冲液中,并以适中的速率搅拌缓冲液。10.等待在pH 7.00缓冲液中的读数稳定。如果手动输入了缓冲液的温度或使用了自动温度补偿的温度电极,仪表应自动识别缓冲液,显示温度补偿后后的pH值。如果仪表无法自动识别缓冲液,请查看表1输入对应温度的pH缓冲液的值。11. 仪表自动识别正确的缓冲液值后,准备下一个校准点。12.首先用去离子水冲洗pH电极,然后在pH 4.01缓冲液润洗烧杯中润洗电极。确保在废液杯中用去离子水冲洗电极,以防止缓冲液污染。切勿在用于校准的缓冲液烧杯中润洗电极。13.将电极放入pH 4.01缓冲液校准烧杯中,使电极头和液接界完全浸入缓冲液中,并以适中的速率搅拌缓冲液。14.等待在pH 4.01缓冲液中的读数稳定。如果手动输入了缓冲液的温度或使用了自动温度补偿的温度电极,仪表应自动识别缓冲液,显示温度补偿后后的pH值。如果仪表无法自动识别缓冲液,请查看表1输入对应温度的pH缓冲液的值。15.仪表自动识别正确的缓冲液值后,操作仪表进行校准结果保存并结束校准。16.用去离子水冲洗pH电极,然后存放好电极。* 注意:至少用两种缓冲溶液每天进行电极斜率测试,斜率应为95%至102%。 校准验证1.使用与校准相同的缓冲液,或按照“校准缓冲液准备”部分中的说明准备新鲜的缓冲液。打开校准验证烧杯。2.首先用去离子水冲洗pH电极,然后在pH 10.01缓冲液润洗烧杯中润洗电极。确保在废液杯中用去离子水冲洗电极,以防止缓冲液污染。切勿在用于校准验证的缓冲液烧杯中润洗电极。3.将电极放入pH 10.01缓冲液校准验证烧杯中,使电极头和液接界完全浸入缓冲液中,并以适中的速率搅拌缓冲液。4.在仪表上按键读数。5.等待读数稳定,然后记录缓冲液的pH和温度。6.用pH 7.00缓冲液重复步骤2至5,然后再用pH 4.01缓冲液进行测试。7.将记录的缓冲液的pH和温度值与表1中列出的值进行比较。8.用去离子水冲洗pH电极,然后将电极存放在pH电极存储溶液中,直到准备好进行测量为止。
  • 微电子超纯水应用中总有机碳TOC监测的操作、校准和自动归零的指导
    在微电子超纯水(UPW)应用中,水系统中的总有机碳(TOC)浓度极低,通常为亚ppb级。本文介绍如何优化微电子超纯水应用中的在线TOC分析,包括操作步骤指导。Sievers等厂商生产的分析仪,检测限均在0.02至0.03 ppb之间。典型的超纯水系统的TOC浓度在0.2至0.4 ppb之间,或者说仅比分析仪的检测限高一个数量级。当要测量的TOC浓度非常接近分析仪的检测限时,我们可以优化分析仪的性能以获得理想的测量结果,但此时的校准方法必需有别于测量高TOC时所采用的校准方法。硬件选择Sievers专门为微电子应用设计了两款TOC分析仪 — Sievers M9e和M500e。虽然这两款分析仪有着相似的低浓度测量性能,但Sievers M9e使用酸剂和氧化剂,因而能测量2.5 ppm(2.5 ppm是Sievers M500e的测量上限)以上的TOC值,还能测量高IC值,或测量pH不是中性的水样。酸剂和氧化剂会向样品中引入痕量有机物,本文稍后介绍对此的空白校正程序。如果不是特别需要使用酸剂和氧化剂,我们建议您在应用中使用Sievers M500e分析仪。Sievers M500e有两种配置可供选择 —“集成在线取样器(iOS,Integrated On-line Sampler)”和“不锈钢取样块(Stainless Steel Sample Block)”。iOS可以进行在线测量,并能在不切断样品连接的情况下将吸样样品或参考标样送入分析仪,非常便捷。iOS对校准和确认校准特别有用。由于后面提到的原因,对于测量低ppb和亚ppb的TOC分析仪来说,传统的校准意义不大。因此,我们建议在低ppb和亚ppb应用中使用配置不锈钢取样块的Sievers M500e。取样块不仅能降低仪器成本,而且能形成更适合低ppb和亚ppb应用的封闭式取样系统。校准和自动归零影响分析仪校准的两个因素是“增益(gain)”和“偏移(offset)”。“增益”影响校准曲线的斜率,“偏移”影响校准曲线通过零点的位置。这两种因素对仪器分析性能的影响力的大小取决于超纯水系统的TOC浓度和分析仪的测量范围之间的关系。超纯水系统的TOC浓度越接近分析仪的检测限(或接近于零),自动归零在优化分析仪性能时所起的作用就越大,而校准的作用就越小(见图1)。图1:TOC校准可以用低ppb或亚ppb TOC校准标样来校准要测量的范围吗?用于制备校准标样的样瓶,即便经过最严格的清洁,认证的TOC都仅低于10 ppb,因此无法用于制备亚ppb校准标样。此外,样瓶和校准标样的制备过程会给标样带来TOC误差(通常会增加几个ppb的TOC),因此校准标样仅在称重误差和测量误差可以忽略不计的几百ppb以上的范围有效。当分析仪在校准点附近工作时,调整上述浓度(如1 ppm校准)下的校准(增益)会对报告结果的准确性产生正面影响,但当分析仪在低于校准点几个数量级的浓度(接近于零)下工作时,调整校准就对报告结果的影响非常小。从图1中可以看出,将校准曲线移至最坏情况的校准上限或下限时,对亚ppb下的仪器响应没有影响。TOC自动归零在低浓度下,改变零点或“偏移”对仪器性能的影响最大,最能保证测量的可靠性,最有利于“仪器到仪器”的一致性(见图2)。图2:TOC自动归零Sievers M9e和M500e用自动归零(Auto-Zero)来确保分析仪在没有TOC的情况下报告为零。分析仪的手册对自动归零有详细的说明。自动归零非常有用,能够帮助优化分析仪的低TOC测量性能,并有利于达到“仪器到仪器”的一致性。Sievers M9e和M500e的TOC自动归零策略在漂洗新安装的分析仪或进行维护工作时,分析仪的零点都会受影响。水系统的特性(例如水系统中的无机碳含量)也会对零点产生较小影响。因此,我们建议进行以下自动归零过程,以保持分析仪的最佳性能:在安装新分析仪后的漂洗期间,应每天运行自动归零,运行一周左右。在第一周之后到第一个月结束前,每周运行一次自动归零。在第一个月之后,每月运行一次自动归零,并保持此运行频率,因为预计以后不会有明显变化。在进行日常维护(包括更换紫外灯、样品管、去离子树脂盒等)之后,应漂洗分析仪一整天,然后进行自动归零。此时无需进行校准。如果此时进行校准,校准虽没有坏处,但也没有好处,还会延长预防性维护后(post-PM,post-Preventative Maintenance)的漂洗时间,因为系统需要时间从接触ppm浓度的校准标样后恢复过来。在进行初次预防性维护后的自动归零之后,可以在一周后重复运行自动归零程序,然后恢复到典型的每月自动归零常规操作。如果将分析仪移动到新位置,应在读数稳定后运行自动归零。与日常维护一样,可以在一周后再次运行自动归零,然后恢复典型的每月自动归零常规操作。如果进行了重要的维修工作(即更换主要部件),应在维修后进行校准,以确保分析仪的基本性能不变。对于配置了不锈钢取样块的分析仪,可以临时安装iOS以便进行校准。Sievers维修技术人员都经过培训,具备执行此项服务的能力。Sievers M9e和M500e分析仪的电导率自动归零Sievers M9e和M500e也具有电导率自动归零功能。TC和IC通道的温度和电导池只接触到含有少量CO2的去离子水,因而无需针对电导率的增加而进行校准。随着时间推移,当离子污染物从电导池浸出时,电导池的偏移就会发生变化。电导率自动归零校准任务能够调整TC和IC池的偏移。与TOC自动归零不同,电导率自动归零无需经常进行。我们建议在诊断负TOC值时运行电导率自动归零。只可由技术支持或现场服务工程师来运行电导率自动归零。Sievers M9eTOC分析仪试剂空白不使用试剂的Sievers M500e专用于测量亚ppb级的TOC值。Sievers M9e常用于高TOC应用,包括需要添加氧化剂来测量ppm级的TOC应用,或需要酸化样品和去除IC的高浓度无机碳的系统监测。在有些应用中,样品的TOC很低,但电导率或IC很高,这时就需要使用Sievers M9e的功能来进行理想的TOC测量。超纯水应用无需使用氧化剂,本文讨论的操作程序只适用于酸剂。Sievers M9e使用电子级酸剂,但电子级酸剂也会向样品中引入痕量的有机污染物,这些有机物对低浓度读数的影响虽小,但仍不可忽视。Sievers M9e(固件1.06及更高版本)带有自动酸剂空白(Reagent Blank)程序,能测量酸剂实际产生的有机污染物的量,并根据所选流量来应用偏移量,从而将有机污染物从报告的TOC值中扣除。各个酸剂盒所产生的痕量有机污染物稍有不同,每次在安装新酸剂盒后,都需要运行试剂空白程序。◆ ◆ ◆联系我们,了解更多!
  • 青岛众瑞亮相生物安全柜等新冠病毒检测相关核心仪器设备操作及校准规范培训班
    11月16日至20日,由中国计量科学研究院主办,深圳中国计量科学研究院技术创新研究院协办,青岛众瑞智能仪器有限公司等承办的“生物安全柜等新冠病毒检测相关核心仪器设备操作及校准规范培训班”在深圳顺利举办,来自全国各地40余家计量院所、第三方计量检测机构的80多人参加此次培训班,会议取得圆满成功! 此次培训班采用“理论 实操”相结合的方式进行,邀请行业大师、标准主要起草人等对JJF1815-2020《II级生物安全柜标准规范》、JJF1817-2020《核酸分析仪校准规范》、JJF1838-2020《遗传分析仪校准规范》、JJF1527-2015《聚合酶链反应分析仪校准规范》等4项规范进行详细解读,并通过实操培训加深学习效果,让参会人员“学有所得,学有所成”。隋志伟JJF1815-2020《II级生物安全柜标准规范》主要起草人董莲华JJF1817-2020《核酸分析仪校准规范》主要起草人高运华JJF1838-2020《遗传分析仪校准规范》JJF1527-2015《聚合酶链反应分析仪校准规范》主要起草人 理论培训环节,计量事业部产品经理李强针对培训期间学员提出的问题专门就“II级生物安全柜校准仪器选型及注意事项”进行详细阐述,分析不同校准设备之间的区别,让大家在设备选型过程中结合自身需要进行选择。李强丨青岛众瑞智能仪器有限公司计量事业部产品经理 此外众瑞仪器携全套生物安全柜校准设备到现场进行演示和实操培训,在实操环节一对一教学,让每个学员都可以亲自动手操作仪器,并在现场对生物安全柜进行检测,取得良好的示范效果。 众瑞计量事业部秉承“让懂技术的人服务懂技术你”的宗旨,以技术为桥梁,搭建与用户之间的共赢关系,积极推动双方的深层次合作,用心服务客户,用心做好仪器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制