活性药物成分

仪器信息网活性药物成分专题为您整合活性药物成分相关的最新文章,在活性药物成分专题,您不仅可以免费浏览活性药物成分的资讯, 同时您还可以浏览活性药物成分的相关资料、解决方案,参与社区活性药物成分话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

活性药物成分相关的耗材

  • 瑞士万通-Solvotrode新型非水酸碱滴定电极(6.0229.100),适用药物成分测定
    产品简介:在有机溶剂中响应速度快,测定数值稳定;专门的屏蔽设计,避免静电干扰;特殊的活动套管式隔膜,便于清洗;主要技术参数 电极杆材料:玻璃pH范围:0...14温度范围:0...70℃应用领域药物成分测定;根据ASTM和D664,测定总酸(TAN)、总碱(TBN);
  • 氟喹诺酮类药物残留化学发光检测试剂盒
    喹诺酮类(QNS)药物检测试剂盒(化学发光免疫分析法)使用说明书【产品名称】喹诺酮类药物检测试剂盒(化学发光免疫分析法)【包装规格】100T/盒【概述】喹诺酮类(QNS)药物是近20年来迅速发展起来的一类十分重要的广谱抗生素,能抑制细菌DNA螺旋酶,抗菌谱广、高效、低毒、组织穿透力强。已成为兽医临诊和水产养殖中最重要的抗感染药物之一,被大量用于治疗、预防和促生长,由于其耐药性和潜在的致癌性引起广泛的关注。在组织中,恩诺沙星的标示残留物为恩诺沙星和环丙沙星,其中以肝脏组织和肾脏组织中的残留物浓度最高,其次是肌肉和脂肪附着的皮肤组织,恩诺沙星代谢产物环丙沙星(CIF)仍具有生物活性。氧氟沙星(OFL)主要以原形药物的形式存在于组织中;培氟沙星(PEF)在体内代谢率接近100%,而其代谢产物是诺氟沙星(NOR)。【检测原理】试剂盒采用竞争法进行检测,温育结束后,加磁场沉淀,去掉上清液,用清洗液清洗沉淀复合物,并吸干废液,除去未与磁性微粒结合的物质,再将反应杯送入测量室中。仪器自动泵入两种激发液,使复合物产生化学发光信号,通过光电倍增器测量发光强度。仪器自动通过工作曲线计算得出检测结果。【适用范围】可定性、定量检测组织样品中喹诺酮类药物的残留量。【试剂盒性能参数】检测限: 组织——1μg/kg 样本稀释倍数: 组织——2倍精密度: 小于6%交叉反应率: 诺氟沙星… … … … … … … 100%双氟沙星… … … … … … … 220%氟甲喹… … … … … … … … 205%沙拉沙星… … … … … … … 140%达氟沙星… … … … … … … 117%培氟沙星… … … … … … … 132%环丙沙星… … … … … … … 140%氧氟沙星… … … … … … … 130%恩诺沙星… … … … … … … 105%噁喹酸… … … … … … … … 103%单氟沙星… … … … … … … 73.7%依诺沙星… … … … … … … 68%洛美沙星… … … … … … … 65%单诺沙星… … … … … … … 62.4%麻保沙星… … … … … … … 58%奥比沙星… … … … … … … 34%【主要组成】1.试剂组成及成分试剂成分规格1磁性微粒2.5mL2吖啶酯标记物6.25mL3生物素标记物6.25mL2. 校准品校准品规格校准品12 mL/瓶×1校准品22 mL/瓶×1【适用仪器】北京勤邦生物技术有限公司HMC-D3全自动化学发光免疫分析仪【自备的设备】1.旋转蒸发仪/氮气吹干装置2.涡旋仪 3.均质器 4.离心机5.天平:感量0.01g 6.容量瓶:100mL7.聚苯乙烯离心管:50mL 8.洗耳球9.玻璃试管:10mL 10.刻度移液管:10 mL11.微量移液器:单道 20μL~200μL、100μL~1000μL【自备试剂及配液】去离子水正己烷(分析纯)乙腈(分析纯)氢氧化钠(分析纯)配液1:0.1M 氢氧化钠溶液称取 2.0g 氢氧化钠,加入 500mL去离子水溶解混匀。配液2: 样本提取液量取 16mL 0.1M 氢氧化钠溶液(见配液1),加入 84mL无水乙腈中, 混匀。【样本前处理步骤】1.用均质器均质组织样本。2.称取2.0 ± 0.05g均质后的组织样本至50mL聚苯乙烯离心管中;加入 8mL样本提取液(见配液2),用涡旋仪涡动5min,混匀, 3000g 室温(20-25℃/68-77℉) 离心 5min。3.移取2mL上层有机相至10mL洁净干燥玻璃管中,于50-60℃(122-140℉)水浴氮气流下吹干。4.加入1mL正己烷,用涡旋仪涡动2min,再加入1mL复溶液,用涡旋仪涡动 30s, 混匀,3000g室温(0-25℃/68-77℉)离心 5min。5.除去上层有机相, 取下层水相用于分析。【检测方法】1.试剂盒为即用型,不能分开使用。2.使用本试剂盒前请仔细阅读试剂说明书以及全自动化学发光免疫分析仪的使用说明书,按照相关要求进行测定操作。试剂使用时,测定仪会自动搅拌磁性微粒,使其处于悬浮状态,如果想快速进行检测,上机前请手动摇匀磁性微粒。试剂的相关信息可以自动读取,一次读取相关信息即存入测定仪器,不需反复读取。3.定标:通过测定高、低值校准品,将预先定义的主曲线上的每个定标点调整(重新定标)为一个新的、仪器特异的测量水平,即工作曲线。4.定标频率:每天进行一次定标,更换不同批号试剂或者激发液需要重新定标。【注意事项】1.使用前请详细阅读说明书,并将试剂水平摇匀。2.请按照储存方法保存试剂,避免冷冻,冷冻后的试剂质量会发生变化,请勿使用。3.避免试剂接触皮肤、眼睛和粘膜,一旦接触,应立即用清水冲洗接触部位。4.不同试剂盒中各组分不能互换。【储存条件及有效期】1.试剂盒于2~8℃避光未拆封状态下竖直保存,禁止冷冻。2.有效期为12个月,在2~8℃环境下保存时,稳定性可持续至所标示的日期;开瓶后低温避光(2~8℃)可保存1个月。
  • 瑞士万通 NIO 表面活性剂电极 | 6.0507.010
    NIO 表面活性剂电极订货号: 6.0507.010这种表面活性剂电极必须搭配参比电极使用,并且适用于例如:● 水性基质中的非离子表面活性剂滴定● 基于聚氧乙烯加合物的表面活性剂滴定● 滴定含四苯基硼酸钠的活性药物成分技术参数pH 范围0...12上部杆径(mm)12下部杆径(mm)2.5指示电极形式Pin指示电极类型Non-ionic surfactants最大安装长度(mm)123最小浸没深度(mm)20测量范围tensidabh?ngig电极插头Metrohm plug-in head G电极杆材料PVC短时温度范围(°C)0 ... 40磨口套管灵活的磨口套管长时温度范围(°C)0 ... 40

活性药物成分相关的仪器

  • 关于 SCINTOMICSScintomics,于2006年成立,总部位于德国慕尼黑,专业从事放射性药物相关设备与耗材。业务涉及合成模块,放射性药物质控设备、分装设备、医用放射性核素、辐射防护器材及放射性药物生产用耗材等全系列产品。在放射药物诊断、放射性药物治疗、放射性药物制备方面均可提供完整解决方案,并具有丰富经验。提供从耗材到生产到质控到环境监测的一站式供应服务。2020年4月,当时SCI-att从其母公司Scintomics接管了模块业务,GRP模块系列于成为SCI-att的一部分,自2006年以来,Scintomics一直在世界各地的临床设施中为成熟的放射性药物销售和安装全自动生产系统。Scintomics GRP是一种用于放射性药物自动化生产的合成器。通过其模块化设计,可以创建一个完全符合客户需求的合成器。有5种不同的模块可供选择:主模块(带阀1至5)→ 标配→ 1个核反应模块 → 标配 → 1个检测模块 → 标配 → 1个阀门模块→ 可选 →最多5个 分配器模块(注射器驱动)→ 可选 →最多4个标准配置高级配置 不同模块适用范围
    留言咨询
  • 三为科技致力于天然药物活性成分分离纯化应用的制备液相色谱技术的开发,为美国科学仪器公司提供OEM方案, Purifier系列制备液相色谱系统是专门为天然产物、有机合成产物、抗生素、生物制品的领域量身定制的一款分离纯化系统,尤其在中药化学成分分离纯化与合成化合物的分离纯化领域已经得到广泛应用。 Purifier 100 中压制备色谱系统技术特点 *微处理器控制,高速双驱动和平行的泵头具有高速的腔室压力反馈,补偿再填充和溶剂压缩效果,实现在宽动态范围内获得精确高重现的流速。 *采用轮曲线补偿技术有效控制流量脉动,保证最低的基线噪声。 *多点流量校正曲线,保证在全流量范围内的流量精度。 *浮动柱塞设计,保证高压密封圈的使用寿命。 *10个用户程序,可实现流量和梯度编程。 *双波长检测、波长时间程序和停泵扫描——三种测定方式使得基线噪音和漂移降到最低,获得了最高的灵敏度和最低检测限,以及更宽的线性范围。对应各种测定需求,可以同时对主要成分、副产物和杂质进行可靠的定量。 *可快速便捷的更换灯和流通池,氘灯钨灯实现智能切换,确保正常运行时间的最大化。自动收集器特点:?独创的运动原理,直线和旋转运动结合,可最迅速地到这任意收集位置 ?体积、时间、闺值、斜率组合多种收集模式,满足各种收集需要,可设立普通模式、顺序收集和循环收集 ?精确的最小管路设计,减少样品在流通池后扩散带来的收集不准确 ?软件延迟体积的设置,使收集更精准,产品更纯净 ?采用高精度切瓶技术,废液通道独立,切换瓶过程无滴漏 ?分于动和自动两种收集方式,操作简单、方便 ?配套软件可以实时采集多路波长信号,收集信号可任意选择 ?实时显示设备状态、连接和收集瓶位置,收集直观,位置清晰 ?兼容多种收集容器,最多可允许收集瓶: 13--15mm 试管 120 支 ?具有收集容器自识别功能,可防止使用不同型号收集容器时安放错位 ?最大程度的空间利用,设备占用空间小,使用方便。Purifier 100 中压制备色谱系统技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-100.00ml/min(梯度)流速精度±0.5%压力范围0-10MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“FDA 21 CFR Part 11 认证”认证要求更多制备液相色谱/蛋白纯化系统/中压制备色谱近10个型号详见官网流量:50ml、100ml、200ml 1000ml 流通池:半制备池、制备池泵材料:不锈钢泵、peek泵
    留言咨询
  • Yakos65放射性药物屏蔽安全柜AHA-120规格参数:1、符合USP797指南2、空气流量:70%再循环/ 30%耗尽设计。3、工作区清洁度:100级(ISO 5)。4、机柜主体结构:不锈钢#304工作区域。5、双壁不锈钢#304结构。 工作区域周围有负压压力通风系统,以确保最大安全性。W515 * H313 mm前面的55 mm滑动铅玻璃窗护栏。6、符合人体工程学的10度角窗设计,减少长期使用四肢和眼睛疲劳的不适感。7、供应/排气HEPA过滤器:0.3微米(H14级)粒径的效率为99.99%。8、用于固定HEPA过滤器的专利设计。9、可拆卸的单件式工作托盘可以轻松拆下进行清洁。10、安全联锁:紫外灯与窗户,荧光灯和鼓风机互锁。11、窗口报警:当窗口不在20厘米的操作高度时,它将自动发出声光报警。
    留言咨询

活性药物成分相关的试剂

活性药物成分相关的方案

活性药物成分相关的论坛

  • 【求助】手性药物含量测定

    最近在C18色谱柱上做手性药物的质量标准,因为左旋不是有效成分,所以被归为杂质。在定位时发现杂质左旋与有效成分右旋药物的峰是重叠的。但是中国药典和欧洲药典是用C18柱做此药物的含量测定,这样会不会测出的是左旋和右旋的总含量啊,那还准确吗~~http://simg.instrument.com.cn/bbs/images/brow/em09511.gif

  • 纳米技术改善难溶性药物吸收前景光明

    纳米技术改善难溶性药物吸收前景光明  近日,由中国药学会和美国药学科学家协会主办、沈阳药科大学和辽宁省药学会承办的“第二届亚洲阿登制药技术研讨会暨中国药学会药剂专业委员会2010年学术年会”在沈阳召开,会议主题为“难溶药物的剂型策略”。在为期3天的研讨中,与会专家表示,改善难溶性药物的溶解度,促进药物的吸收,提高药物的生物利用度是药剂学领域亟待攻克的难题,而纳米技术这一助推器有助于加速该难题的解决,我国学者应加强相关研究。  溶解度成为制约瓶颈  药物的溶解性是影响药物生物利用度的重要因素之一,难溶性药物因在水中的溶解度小,难以被机体吸收,导致生物利用度较差。随着组合化学、基因技术、高通量筛选技术等在药物研发中的广泛应用,大量具有活性的候选药物被发现。但是,沈阳药科大学崔福德教授表示,由于存在水溶性差的缺陷,四成左右的侯选药物不能上市而限制了其在临床充分发挥疗效。据估计,全球每年约有650亿美元的药品因生物利用度差而造成治疗费用与疗效比例的严重失调。而实际上,许多难溶性药物有着很强的生物活性,在治疗肿瘤、心血管疾病等领域有着良好疗效。因此,如何提高药物的溶解度和吸收率,成为药剂学研究的热点与难点,迫切需要发展新的制剂技术和剂型来解决这一问题。  崔福德介绍,当前,在药剂学研究中提高难溶性药物的溶解度和溶解速率有多种方法,如加入助溶剂、增溶剂和亲水性介质(适用于液体制剂);制成固体分散体和包含物(适用于固体制剂);制成微粒分散系统(适用于液体和固体制剂);还可以采取减少粒径的措施,比如做成药物的纳米结晶(适用于各种剂型)。  “但是这些方法都有一定的局限性。”中国药学会药剂专业委员会主任委员、北京大学药学院张强教授具体分析说,比如成盐类的方法就只适用于一些难溶性弱酸或弱碱类药物,而不适用于所有分子结构的药物;加入助溶剂和亲水性物质的方法,可供选择的溶剂等也是有限的;增溶剂主要是表面活性剂,毒性问题也限制了其使用;包合物同样存在可供选择的品种较少和毒性问题;固体分散体也有老化现象和需要使用大量赋型剂的缺陷;而费用较高和稳定性问题又限制了微粒化方法的使用。  新技术助力难题解决  解决上述问题,纳米技术的应用优势日益显现:纳米化使药物的粒度大大减小,表面积大大增加,水溶性差的药物在纳米载体中可形成较高的局部浓度;药物的黏附性增强,在吸收部位的滞留时间延长;纳米载药系统可以提高药物的透膜能力和稳定性,也有利于提高药物的生物利用度,特别是对于生物药剂学分类体系(BCS)Ⅱ类(低溶解度、高通透性)和Ⅳ类(低溶解度、低通透性)的药物,这一技术越来越受到国内外一些研究机构、制药公司的青睐。  在药剂学领域,一般将制剂中纳米粒子的尺寸界定在1~1000纳米范围,主要包括纳米载体与纳米药物两个方面。纳米载体是指溶解或分散有药物的各种纳米粒,如纳米乳、聚合物纳米粒(纳米囊或纳米球)、脂质纳米粒等;纳米药物则是指直接将原料药物加工成的纳米粒,实质上是微粉化技术、超细粉技术的发展。  张强介绍,纳米乳/微乳是一种由水、油、表面活性剂和一些复合表面活性剂自组装成的粒径小于100纳米的半透明溶液,其易于制备、相对稳定,而且可使大多数水不溶性药物的生物利用度提高显著。自1943年被报道以来,纳米乳/微乳已经得到了广泛的研究,但上市的产品却不多,1995年诺华公司上市了环孢素A的微乳产品,在临床迅速得以推广。现在上市的同类品种还有雷帕霉素自微乳化给药系统。  纳米粒(纳米球或纳米囊)一般是指由天然或合成的高分子材料制成的、粒径在纳米级的固态胶体微粒,可用于包裹亲水性药物,也可包裹疏水性药物,具有在胃肠道中稳定、药物不易被破坏,以及能够调整药物的理化性质、释放和生物学行为等优点。自1976年Birrenbach等人首先提出了纳米粒和纳米囊的概念后,目前以合成高分子材料为聚合物的纳米粒研究得最为广泛。但张强遗憾地表示:“30多年来,这个研究领域没有取得实质性的突破,无论是口服制剂还是注射制剂都没有产品上市。”而天然聚合物的纳米粒所使用的材料包括壳多糖、白蛋白、右旋糖苷、明胶等,其中以口服壳聚糖纳米粒的研究最为广泛。值得一提的是,白蛋白结合紫杉醇纳米粒注射混悬液2005年上市,成为制剂领域的一个重大突破;但口服给药方面仍没有产品面市。  脂质纳米粒是以生物相容性良好的脂质材料为载体,将药物溶解、包裹于脂质核或是吸附于纳米粒表面的新型载药系统。第一代脂质纳米粒是固体脂质纳米粒(SLN),其性质稳定、制备较简便,具有一定的缓释作用,主要适合于难溶性药物的包裹;随后又发展了第二代纳米结构脂质载体(NCL),解决了第一代脂质纳米粒载药量不佳的问题,稳定性也更好。张强谈到,近年来,对脂质纳米粒的研究也相当广泛,特别是第二代脂质纳米粒自1999年开始研究以来,在外用领域如化妆品领域进展很快,开发程度好于脂质体,但至今还没有用于临床的产品。  在表面活性剂和水等附加剂存在下直接将药物粉碎加工成纳米微粒,可以提高药物的吸收或靶向性,特别适合于大剂量的难溶性药物的口服吸收和注射给药,能增加溶出度,提高生物利用度,增加稳定性。此外,它无需载体材料,只有少量的表面活性剂,安全性更高。此类技术分为纳米混悬剂和纳米结晶制备技术。其中,纳米结晶制备技术发展较快,目前已有5种产品利用这种技术生产并在美国上市,包括惠氏公司的Rapamune(西罗莫司)、默克公司的Emend(阿瑞吡坦)、雅培公司的Tricor(非诺贝特)以及Par公司的Megace ES(甲地孕酮)等。

活性药物成分相关的资料

活性药物成分相关的资讯

  • 难溶性药物的溶出度测试系列一:表面活性剂(上)
    前言:溶出是药物吸收和暴露的限速步骤,因此,难溶性药物的体外测试尤其具有挑战性和重要性,需要明确此方法必须能够利用这一特征,通过提供有意义的释放速率的解释,或在某些情况下,解释实际的释放机制,从而提供重要的临床相关信息。 难溶性药物在制剂处方和制造工艺中需要特别注意,如减小颗粒大小的方法以及更复杂的制剂操作和工程技术领域,以提高药物的有效性、增加体内浓度和吸收。有一些新兴课题正在进行深入的探索和理解,特别是诸如溶出方法中的漏槽与非漏槽方面的条件、固态性质的贡献、表面活性剂的化学性质、计算机模拟、剂量倾泻和胶囊属性。 目前,正在开发的口服剂型在水性介质中具有不同水平的溶解度,为了促进具有较低水溶性的药物的溶出测试,管理机构允许使用低浓度的表面活性剂,以提高溶解度。1添加主要目的是提高药物在测试介质中的溶解度以实现漏槽条件,由于正在开发的药物中有很多是难溶性的(统称BCSII类和IV类),尤其要注意在溶出介质中加入表面活性剂,并不是方法开发中增加溶解度的唯一选择。 01表面活性剂“表面活性剂”是“表面活性物质”的一组化学物质的通用术语。表面活性剂分子中存在疏水基团(尾部)和亲水基团(头部),决定了表面活性剂是具有两亲属性(亲水性和疏水性环境的亲和性)的有机化合物。因此,表面活性剂分子同时含有水不溶性(油溶性)和水溶性成分。表面活性剂分子将迁移到水表面,其中不溶性疏水基团可以延伸出大部分水相,或者如果水与油混合,则进入油相,而水溶性头部组保持在水相中。表面活性剂分子的这种排列和聚集起着改变水/空气或水/油界面处水的表面性质的作用(图1)。 02在溶出方法开发中的表面活性剂类型 在溶出方法的开发中,表面活性剂可以通过其离子电荷分为四大类用于筛选目的:• 阴离子:例如十二烷基硫酸钠/月桂基硫酸钠(SLS / SDS)• 阳离子:例如十六烷基三甲基溴化铵(CTAB)• 非离子型:如聚山梨酯20和80,泊洛沙姆• 两性/两性离子:例如卵磷脂,椰油酰胺丙基甜菜碱此外,为了体外评估GIT的性能,可以考虑更复杂的“生物相关的”表面活性剂介质体系。这些制剂模拟人GIT中的禁食(FaSSIF)和进食状态(FeSSIF)环境。2FaSSIF和FeSSIF介质配方可商购。 03溶出介质中的表面活性剂浓度 如上所述,基于表面活性剂的介质的溶解度增加是浓度依赖性的,而较高浓度的表面活性剂会溶解更多的药物,3必须优化表面活性剂浓度以平衡溶解度和漏槽条件与检测制造或稳定性变化方法的区分能力。通常,设定表面活性剂浓度的目标是在溶出介质中使用尽可能少的表面活性剂,以实现所需的漏槽条件和方法的稳健性,同时实现并保持对药品关键质量属性的区分。 在早期的开发过程中可以评估溶解性和漏槽条件,但是在开发的后期阶段,例如在验证方法可靠性以检测配方/工艺中的有意变化的过程中,该方法的区分特征往往被揭示出来。另外,对于基于表面活性剂的溶出介质,应该考虑两个因素:(i)应提供表面活性剂介质系统以确保方法可转移性。表面活性剂的各种来源有时在制备时导致可变的pH。SDS介质尤其如此,因为这种表面活性剂典型地来自乙氧基化中和过程。(ii)在表面活性剂介质中使用的填充剂的pH值需要在添加表面活性剂之前进行调整。当表面活性剂改变电极的表面环境时,所得到的溶液应被认为是表观pH值。 04表面活性剂在溶出介质开发中的应用 当表面活性剂被添加到溶出介质时,亲水端将与水性介质结合,疏水尾部遇到排斥力,有效地寻找与之相联系的替代相。相之间的“推拉”降低了水相内的分子间作用力,由此降低了表面和界面张力。事实上,界面张力的降低是表面活性剂增溶的关键驱动力。想象一下一种药物由于高疏水性而不溶于水或溶出介质的情况。添加表面活性剂并将其溶解在介质中,它作为延伸/线性单体或自缔合球形存在,分布在介质中。表面活性剂浓度的进一步增加将最终产生胶束,多个表面活性剂分子的自缔合产生表面活性剂尾部的疏水核心的新胶体相。发生这种相变的浓度称为临界胶束浓度(CMC)。 在纯水相存在下,溶剂与任何疏水表面的相互作用不是在能量上有利的,导致润湿差和低溶解度。疏水性固体(不溶性药物)与溶解的表面活性剂的疏水性尾部之间的相互作用,降低了润湿和溶解固体所需的能量,从而增加了药物的溶解度。通过随后将溶解的物质分配到表面活性剂胶束的疏水核心中可以进一步提高溶解度。在方法开发中选择最佳的表面活性剂浓度必须考虑胶束的存在与否对体外释放的基本机制的影响。 05表面活性剂对溶解气体的影响 如前所述,溶出介质中表面活性剂的存在改变了介质的表面和界面张力。这导致溶解氧在介质中的溶解度的变化。Fliszar等人4评估了含有表面活性剂的溶出介质中溶解氧的作用。使用含有0.5%SLS,2.0%SLS和0.5%吐温80的含水(不含表面活性剂)介质和溶出介质,研究了几种标准制剂对氧溶解的作用。 在这项研究中,含有表面活性剂的介质的氧含量由于表面张力的降低而被发现为7.5-8.5mg/mL。然而,不含表面活性剂的水性介质更低,为5.5mg/mL。不管所用的脱气方法(在真空下搅拌,加热,超声处理,氦气喷射和膜过滤),一旦脱气完成,所有介质准备重新获得或重新生成。初始氧含量和通气达到平衡的持续时间取决于用于脱气的方法(图2-4)。评估氧含量的增加对其溶解的影响。研究证实,含有表面活性剂的介质在初始时间点没有发现任何结果值(误差范围内)(图5和6)。 此外,已知对溶解氧敏感的化合物(泼尼松)在通气和脱气(换句话说,含氧量)反应中的溶出曲线显示出显著的变化,如图7所示。从这项工作可以得出结论,含表面活性剂的介质迅速恢复其平衡氧含量,并且变化具有最小误差。该研究证实,在实验开始之前,介质中的溶解气体达到平衡是很重要的。 LOGAN将持续分享难溶性药物的溶出度测试系列的相关文献! 参考文献:1. Noory, C., Tran, N., Ouderkirk, L., Shah, V. Steps for development of a dissolution test for sparingly water-soluble drug products. Dissolut.Technol., 2000, 7(1), 16–18. 2. Bhagat, N. B., Yadav, A. B., Mail, S. S., Khutale, R. A., Hajare, A. A., Salunkhe,S. S., Nadaf, S. J. A review on development of biorelevant dissolution medium. J. Drug Deliv. Ther., 2014, 4(2), 140–148. 3. Shah, V. P., Konecny, J. J., Everett, R. L., Mc Cullough, B., Noorizadeh,A. C., Skelly, J. P. In vitro dissolution profile of water-insoluble drug dosage forms in the presence of surfactant. Pharm. Res., 1989, 6(7), 612–618. 4. Fliszar, K. A., Forsyth, R. J., Zhong, L., Martin, G. P. Effects of dissolved gases in surfactant dissolution media. Dissolut. Technol., 2005, 12(3), 6–10.
  • 食品中手性药物残留检测技术取得新进展
    近日,中国热带农业科学院分析测试中心(以下简称中国热科院测试中心)传感与光电检测技术研究团队在食品中手性药物残留高灵敏高选择检测技术研究方面取得新进展。团队引入金属有机框架材料固定手性分子,配合分子印迹膜的协同识别作用,有效解决了手性药物对映体互相干扰的问题,为手性药物的选择性识别和高灵敏检测提供了新的研究思路和方法。该研究成果发表于《食品化学》(Food Chemistry)。随着分子立体异构研究的发展,越来越多只有一个活性对映体的手性药物被商品化,并广泛应用在农畜牧生产中。食品和环境中的手性药物残留对人类和环境的危害风险也随之增大。但是,手性药物中不同对映体间具有微弱差别的镜像对称结构,对其进行分子识别时,相应的对映体往往会产生干扰,从而影响分析的准确度和精度。而目前手性抗生素的分子识别机理研究,主要依赖于单一某种识别技术,无法有效排除非活性对映体的干扰,灵敏度和选择性均无法满足痕量残留分析要求。(A)手性传感器构建过程示意图;(B)手性传感器排除对映体干扰的能力 中国热科院供图针对这一问题,团队以左旋咪唑为研究对象,采用协同增强识别策略构建新型的手性电化学传感器,用于检测食品和环境中痕量左旋咪唑残留,并有效排除右旋咪唑的干扰。首先合成了Cu/Zn-(苯-1,3,5-三羧酸)的有机框架材料(Cu/Zn-BTC)作为分子固定和信号放大单元,然后在Cu/Zn-BTC修饰的玻碳电极上以左旋咪唑为模板制备了MIP(分子识别单元)。采用有机溶剂洗脱左旋咪唑后,传感器上保留有特异性识别左旋咪唑的识别位点,能够高效识别并结合左旋咪唑,从而引起传感器的信号响应。由于该传感器包含了Cu/Zn-BTC和MIP作为双识别元件,对左旋咪唑具有增强的识别能力,有效排除了对映体右旋咪唑等干扰。该手性传感器用于检测鸡肉和其它实际样品中的左旋咪唑检测限达到1.65×10?12 mol/L,优于现有的国标方法。
  • 中国热科院在食品中手性药物残留检测技术研究方面取得新进展
    近日,中国热科院测试中心传感与光电检测技术研究团队在食品中手性药物残留高灵敏高选择检测技术研究方面取得新进展。团队引入金属有机框架材料固定手性分子,配合分子印迹膜的协同识别作用,有效解决了手性药物对映体互相干扰的问题,为手性药物的选择性识别和高灵敏检测提供了新的研究思路和方法。   随着分子立体异构研究的发展,越来越多只有一个活性对映体的手性药物被商品化,并广泛应用在农畜牧生产中。食品和环境中的手性药物残留对人类和环境的危害风险也随之增大。但是,手性药物中不同对映体间具有微弱差别的镜像对称结构,对其进行分子识别时,相应的对映体往往会产生干扰,从而影响分析的准确度和精度。而目前手性抗生素的分子识别机理研究,主要依赖于单一某种识别技术,无法有效排除非活性对映体的干扰,灵敏度和选择性均无法满足痕量残留分析要求。   针对这一问题,团队以左旋咪唑为研究对象,采用协同增强识别策略构建新型的手性电化学传感器,用于检测食品和环境中痕量左旋咪唑残留,并有效排除右旋咪唑的干扰。首先合成了Cu/Zn-(苯-1,3,5-三羧酸)的有机框架材料(Cu/Zn-BTC)作为分子固定和信号放大单元,然后在Cu/Zn-BTC修饰的玻碳电极上以左旋咪唑为模板制备了MIP(分子识别单元)。采用有机溶剂洗脱左旋咪唑后,传感器上保留有特异性识别左旋咪唑的识别位点,能够高效识别并结合左旋咪唑,从而引起传感器的信号响应。由于该传感器包含了Cu/Zn-BTC和MIP作为双识别元件,对左旋咪唑具有增强的识别能力,有效排除了对映体右旋咪唑等干扰。该手性传感器用于检测鸡肉和其它实际样品中的左旋咪唑检测限达到 1.65 × 10?12 mol/L,优于现有的国标方法。   该研究成果以“Monitoring levamisole in food and the environment with high selectivity using an electrochemical chiral sensor comprising an MOF and molecularly imprinted polymer”为题发表于《Food Chemistry》。中国热科院测试中心黎舒怀青年研究员和吴雨薇研究实习员为论文共同第一作者,王明月研究员和徐志研究员为论文共同通讯作者。该研究海南省重点研发计划、国家现代农业产业技术体系等项目资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制