交联结构

仪器信息网交联结构专题为您整合交联结构相关的最新文章,在交联结构专题,您不仅可以免费浏览交联结构的资讯, 同时您还可以浏览交联结构的相关资料、解决方案,参与社区交联结构话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

交联结构相关的耗材

  • Phoenix photonics 全光纤结构可调波片
    全光纤结构可调波片产品介绍:全光纤结构可调波片:筱晓光子全光纤结构的可调波片是一种小巧的,容易操作的全光纤结构的器件,可以在很宽的波长范围内工作.通过对器件引脚注入电流进行控制和改变器件内部的线性双折射,从而改变输入的偏振态.全光纤结构的可调波片可以在整个邦加球(Poincare Sphere)循环内改变光的输入偏振态.筱晓光子公司针对不同的应用领域提供了两种结构的全光纤可调波片:? 单模光纤输入,单模光纤输出型? 保偏光纤输入,保偏光纤输出型(集成光纤偏振器)产品特点:? 全光纤结构? 简单电流控制? Full cycle of Poincare Sphere? 低插入损耗? 高回波损耗应用领域:? 光纤传感领域? 偏振态扫描? 偏振控制? 器件测试? 光纤偏振仪单模光纤型可调波片这种光纤波片可以提供完整的邦加球(Poincare Sphere)循环,输出光纤产生的偏振态范围和输入偏振态相关. 如下图所示:保偏光纤型可调波片这种结构的光纤波片包含了一个光纤偏振器,偏振器被集成在波片的前端,并且和输入保偏光纤的慢轴对准.该光纤偏振器的作用是用来”净化”输入的线性偏振态,输出为保偏光纤.这种器件使得输出的偏振态能够覆盖整个大邦加球循环(the great circle on the Poincare sphere),输出光纤的偏振态可以被改变为左旋圆偏振(left circular),右旋圆偏振(right circular),和正交线性偏振态(orthogonal linear states). 如下图所示:技术指标的说明:1. 器件可以在整个波长范围内工作,长波长工作时需要较大的电流.2. 保偏光纤型器件的插入损耗是假定输入偏振态光轴对准的插入损耗,不包括连接器.封装尺寸:所有器件的封转尺寸相同,但是可能有细微差别.订货信息:说明: 不是所有类型的器件都可以有下列的所有选择,请您在购买前与我们的销售人员联系以便确保您的需求能够得到满足.
  • 微结构加工服务 激光微加工 微结构激光刻蚀
    上海屹持光电技术有限公司专业提供各种微纳结构加工服务典型案例: FIB加工微纳结构 紫外光刻微纳结构单晶硅反应离子刻蚀图片 ICP刻蚀微纳结构纳米压印点线图微流控细胞打印EBL 刻写微纳阵列FIB用于器件电极沉积激光直写图案激光直写器件微纳结构加工主要设备1,电子束曝光系统;2,聚焦离子束/ 扫描电子显微镜双束系统;3,双面对准接触式紫外光刻机;4,单面对准紫外光刻机;5,金属高密度等离子体刻蚀机;6,硅刻蚀高密度等离子体刻蚀机;7,反应等离子体刻蚀机;8,纳米压印机。
  • 不分流衬管,鹅颈结构
    5支装,硅烷化去活,不分流衬管,鹅颈结构,99 mm × 5.0 mm × 3.4 mm(L × O.D. × I.D.),适用于Shimadzu (14, 15A, and 16)及 SPL-14 进样头

交联结构相关的仪器

  • 透明质酸钠水凝胶的交联度分析仪透明质酸钠水凝胶的交联度 交联度是指水凝胶中聚合物链之间的连接点数量,它直接影响水凝胶的机械强度、稳定性和生物降解性。通过精确控制交联度,可以获得具有特定物理性能的水凝胶,以满足不同的应用需求。 LF-NMR在水凝胶分析中的应用 通过LF-NMR技术,研究人员能够深入理解水凝胶内部结构与宏观性能之间的关系。例如,通过分析水凝胶的T2谱,可以获得关于水凝胶中水分动态的信息,进而推断其孔隙结构和分子间相互作用。透明质酸钠水凝胶的交联度分析仪测试原理:高分子聚合物内的溶剂部分流动性最强,衰减最慢;非交联段具有一定的分子运动特性,衰减相对较慢;而交联段所受束缚程度大,分子运动特性小,衰减较快。相比传统的SE或CPMG序列采集的不同,采用MSE-CPMG新序列采集时,通过施加组合脉冲使得核磁共振信号在死时间范围内来回反转从而尽量维持原始的核磁共振信号强度,以此实现更加短的弛豫信息采集,交联度的测试准确性进一步提高。核磁共振变温分析仪基本参数产品型号:VTMR20-010V、VTMR20-010V-I磁体类型:永磁体磁场强度:0.5±0.05T样品控温范围:室温到130℃(标配)高配变温模块:-100℃到200℃(选配)成像功能(选配)产品特点2min完成测试,高灵敏度;在线、无损、快速的技术;无需试剂,可重复实验;橡胶、弹性体、无机材料分析。产品应用定量检测&bull 软硬段比例&bull 玻璃态转变温度&bull 活化能&bull 水分相态&bull 交联度过程控制&bull 相变过程性能研究&bull 颗粒-聚合物相容性&bull 颗粒表面改性程度&bull 材料吸附性能评价&bull 聚合物竞争性吸附&bull 亲疏水性表征&bull 分散性能应用案例
    留言咨询
  • 概述JZ-EVA-JLD2000交联度测试仪包括:萃取装置、通风柜、排风装置以及其他附件。1.1作用:JZ-EVA-JLD2000交联度测试仪用作光伏组件封装的EVA交联、聚乙烯(PE)交联、聚乙烯绝缘电线电缆(XLPE)交联、天然高分子离子交联及高分子结晶度等其他材料的测试,检测其柔韧性、耐冲击性、弹性、光学透明性、低温绕曲性、黏着性、耐环境应力开裂性、耐候性、耐化学药品性、热密封性。1.3试验原理:本方法是通过测定产品的凝胶含量来确定交联度,将试样在选定的溶剂中按规定时间进行萃取并称量其萃取前后的质量,以经萃取而未被溶解的剩余物所占的质量百分数(即凝胶含量)作为试样的交联度。二.交联度测试仪分项介绍2.1萃取装置2.1.1加热装置2.1.1.1主要指标内芯直径:177mm容量:500ml加热功率:500W温度范围:室温~200℃电源:220V±10℅ 50/60HZ2.1.1.2加热系统采用耐高温无碱玻璃纤维做绝缘材料,将镍络材料的电阻丝密封在绝缘层内编制成半球形内热式加热器2.1.1.3控制系统控制器:高精度LED数显P.I.D+SSR。微电脑集成控制器精度范围:设定精度:温度±0.1℃;指示精度:温度±0.2℃;2.1.2烧瓶(进行1~2只样品测定以500mL为宜;如进行2~3只样品测定以1000mL 为宜;如进行数只但不超过6只则以2000mL的烧瓶较为适用)名称:三口圆底烧瓶材质:石英玻璃规格:500ml/24*5mm误差:±1ml耐高温:600~800℃高透明2.1.3回流冷凝管(球形)材质:石英玻璃规格:H400mm*24.24mm2.2电子天平量程(g):0~100最小称量(g):1/10000可读性(g):0.0001重复性(g):±0.0002线性误差(g):±0.0002操作温度范围(℃):5-35℃秤盘尺寸(mm):¢ 90电源:220V±10℅ 50/60HZ2.3干燥装置2.3.1真空干燥箱2.3.1.1重要指标规格:300*300*275mm 深X宽X高温度范围(℃):RT+10~180℃温度波动度(℃):±0.5℃真空度(pa): 133时间范围:0~9999H 可调电源电压:AC220V±10℅ 50/60HZ 安装功率:300W2.3.1.2箱体结构及材质真空干燥箱外形为卧式,工作室材料采用不锈钢板或优质钢板,形状为方形。外箱体采用08F优质钢板喷塑制成,内胆采用SUS304优质不锈钢板数控加工而成超细玻璃棉充填中间隔热层。箱门采用双层钢化玻璃门。工作室与外门之间装有模压成型的耐热硅橡胶密封圈,以保证箱门与工作室的密封,大幅度提高箱体的真空度。样品隔板采用二块不锈钢网板。加热器采用电热管直接置于工作室底部所有的控制操作件,仪表,阀门,手柄都安装在箱体左侧面板上,使用方便,控温仪设定温度和现实温度均为数字显示,带有跟踪报警功能,具有控温准确,精度高等优点,2.3.2干燥皿直径:¢ 180mm干燥剂:蓝色硅胶变色干燥剂2.4通风柜全钢结构台面为12mm厚进口贴面理化板,双面粘压,24小时高温定型框架采用国产实质优质板材焊接而成,经酸洗,磷化处理,外部环氧树脂高压静电粉末喷涂,颜色为浅灰色透明视窗:钢化玻璃,高度可任意调整位置内置照明:采用LED光源,功率30W整体尺寸:850*1500*2350mm(DxWxH)2.5排风装置2.5.1内置排风机,防腐防爆耐高温功率:0.25KW转速:1450排风速度:≥10.1m/s排风量:≥1650m³ /h噪音:≤65db2.5.2采用口径250mm,复合伸缩排风软管,具有耐高温,不易老化等特点且易于安装2.6其他仪器附件2.6.1磨口塞或软木塞与五口烧瓶瓶口及玻璃冷凝器口尺寸标配。2.6.2不锈钢网材质:不锈钢丝编制工艺:平纹编制目数:120目丝径:0.08mm2.6.3支架名称:支架规格:跨距0—600mm材质:J1102型铸铁烤漆2.6.4附件:镊子、剪刀、老虎钳、防毒面具、细铁丝。三. 使用条件3.1安装场地地面平整,通风良好;周围无强烈振动;无阳光直接照射或其它热源直接辐射;周围无强烈气流,当周围空气需强烈流动时,气流不应直接吹到产品上;周围无强电磁场影响;周围无易燃、易爆、腐蚀性物质和粉尘;设备周围留有适当的使用及维护空间3.2使用条件单相220±5%,50±0.5Hz; 保护地线接地电阻小于4Ω;用户在安装现场为设备配置相应容量的独立空气开关供本设备使用;在设备附近应配置用于设备溢流水排出的地漏。3.3环境条件温度:5℃~35℃; 相对湿度:≤85%;气压:86kPa~106kPa。 四.随机资料产品操作维修说明书产品零件手册装箱清单产品合格证
    留言咨询
  • EVA交联度测试系统一、作用原理EVA类胶粘剂,在应用工艺中由于加热粘接固化,部分EVA交联成凝胶。用溶剂来萃取样品中未交联部分,从而得以进行交联度的测定二、技术参数2.1型号:SST-EVA-JLD2.2规格:D850*W1550*H2350(mm)2.3电源:单相三线制AC220±10%,50/60Hz2.4安装功率:约2.5KW三、分项配置3.1通风柜:3.1.1采用三段式排风结构、有效地排出有害气体3.1.2流线形手把,手把与玻璃之间留有空隙由于空气在台面上的流动是旋转的,从面保证有效地的进气3.1.3设置视窗防落销,万一钢丝绳脱落玻璃视窗意外落下,有了防落销就会接住,防止碰伤人员3.1.4玻璃视窗采用钢化玻璃,即使玻璃意外撞坏或爆炸,不会出现伤人意外。3.1.5通风柜上部设置通风孔,即使玻璃视窗关闭也能进入空气,避免产生更大负压3.2仪器:3.2.1大口圆底烧瓶及塞子。用磨口或软木塞连接。如进行1~2只样品测定以500mL为宜;如进行2~3只样品测定以1000mL 为宜;如进行数只但不超过6只则以2000mL的烧瓶较为适用3.2.2加热套或恒温油槽,要求热容量足以加沸溶剂(沸点为135~144℃)3.2.3回流冷凝管,带磨口或以软木塞和烧瓶连接,冷凝管磨口尺寸与圆底烧瓶的磨口尺寸一致,长度适当3.2.4支架和夹子,用于固定烧瓶和冷凝管3.2.5真空干燥箱(RT~180℃),附带能产生0.87MPa真空度的真空源3.2.6 120目不锈钢网3.2.7精度为1/10000的托盘电子分析天平3.3试剂:3.3.1A.R溶剂,分析纯或化学纯3.3.2抗氧化剂3.3.3变色干燥剂
    留言咨询

交联结构相关的方案

  • 超声与微波协同作用对转谷氨酰胺酶交联的乳清蛋白结构和功能特性的影响
    在本研究中,超声(400W,U)、微波加热(75°C,15分钟,M)和超声的协同作用在此基础上,我们对分离乳清蛋白(WPI)进行了微波加热(UM)预处理,以研究和比较它们对转谷氨酰胺酶(TGase)诱导的WPI的结构、理化和功能特性的影响。从尺寸排除色谱法的结果可以看出,三种物理预处理方法都能促进TG酶交联WPI中聚合物的形成,其聚合物数量按U、UM和M预处理的顺序增加。在三种物理方法中,M预处理对TG酶诱导的W P I 的结构和功能特性影响最大。此外,与TG酶诱导的WPI,M处理的TPI(M-WPI-TGase)的 -螺旋和β - 转 角 被减少了。7.86%和2.93%,而其β-sheet和不规则卷曲则增加了15.37%和7.23%。M-WPI-TGase的Zeta电位、乳化稳定性和发泡稳定性分别提高了7.8%、59.27%和28.95%。本实验表明,M是一种比U、UM对WPI更有效的预处理方法。这可以促进其与TG酶的反应并改善其功能特性。
  • 光伏组件封装用EVA胶膜交联度的测试
    太阳能电池主要由“护卫”——钢化玻璃、“黏合剂”——EVA(聚乙烯-聚醋酸乙烯酯共聚物)胶膜、“中枢结构”——晶体硅电池片,以及起密封防水等作用的背板组成。其中,充当“黏合剂”角色的EVA胶膜在太阳能电池结构中的作用不可或缺。 EVA是一种热熔胶,即在常温下,EVA是固体,没有粘性,透光性差。当把EVA加热到一定温度时,EVA会熔化粘结在与它接触的物体上。用于太阳能电池封装的EVA是专门设计的热固性热熔胶,即在加热熔融的同时会发生交联反应。当温度较低时,交联反应发生的速度很缓慢,完成固化所需要的时间较长,反之需要的时间就比较短。因此要选择适宜的层压温度,使EVA在熔融中获得流动性,同时发生固化反应。随着反应的进行,交联度增加,EVA失去流动性,起到封装的作用。那么EVA胶膜的交联度测试就显得非常重要。
  • 用户评价︱抗体糖链结构快速分析的新工具
    抗体糖链结构直接关系到抗体生物活性以及在血液循环中的稳定性,是抗体药物的一个重要关键质量属性。从抗体的开发阶段到临床评价阶段,需要确认糖链结构有无变化,并最大程度降低发生副作用的可能性,以确保供应安全、高品质的药物。目前为止,有许多标准分析方法可以准确解析抗体药物的糖链结构。一般来说,分解纯化抗体、将糖链酶切下来并衍生化,然后经多步骤纯化处理后进行UHPLC或HPLC-MS分析是最常用的方法。虽然这些步骤可实现自动化处理,但操作仍需要耗费相当长的时间。因此,分析人员需要一种更简单、快捷并且更可靠、准确的分析方法。此篇资料是对欧洲抗体生物类似药研发公司Mabion S.A. 研发部项目负责人的采访,阐述了该公司在抗体聚糖分析中面临的挑战与应对策略。

交联结构相关的论坛

  • 基于迈克尔加成含哌嗪结构的交联聚合物制备及其与金属离子络合的功能研究

    【序号】:1【作者】: 刘家麟【题名】:基于迈克尔加成含哌嗪结构的交联聚合物制备及其与金属离子络合的功能研究【期刊】:北京化工大学【年、卷、期、起止页码】:2022【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1022005132.nh&uniplatform=NZKPT&v=hxJv3NMhuDHY-jj4l0AX3Nzwz8LzS540BpAmeGTIX14YK0KG0XqVG210VP0so7Kz

  • 交联聚乙烯塑料的凝胶率或是交联度的方法

    [em53] 不知道谁能帮我想办法用什么办法才能检测交联聚乙烯塑料的凝胶率或是交联度的方法,国外的也行!据我所知:ASTM D2765-01标准 辐射化学实验方法里也有一种方法可是我都得不到呀,不知有谁能帮我呀

交联结构相关的资料

交联结构相关的资讯

  • 破译蛋白质结构的秘诀:利用富含炔基的羧基选择性交联剂增加交联覆盖率
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章,Alkynyl -Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures,该文章的通讯作者是中国科学院大连化学物理研究所的赵群和张丽华研究员。化学交联结合质谱技术 (CXMS) 的交联覆盖范围对于决定其破译蛋白质的结构的能力具有重要意义。目前,交联质谱技术中最常用的交联剂的类型为针对赖氨酸侧链的N-羟基琥珀酰亚胺 (NHS) 酯基交联剂。然而,此种交联剂存在一定的局限性,尤其是对于含有赖氨酸数目较少的蛋白质;其他类型的氨基酸残基,如羧基等,也可以进行交联反应,以补充赖氨酸残基的局限性并提高 CXMS 的交联覆盖率,然而,羧基的低固有化学反应活性损害了羧基选择性交联剂在复杂样品中的应用。鉴于此,本文开发了三种具有不同反应基团(如酰肼、氨基和氨氧基)的富含炔基的羧基选择性交联剂,以此提高针对酸性残基的交联效率并实现复杂样品的深入交联分析。文章要点:(1)本工作系统地评估了三种交联剂的交联效率,给出了氨基功能化交联剂 BAP 的最佳反应性。此外,结合BAP交联剂于高效的交联富集策略对大肠杆菌裂解物进行交联分析。在 ≤1% 的错误发现率 (FDR) 下,共鉴定出 392 种蛋白质中涉及到的 1291 个 D/E-D/E 交联。(2) 研究结果显示,BAP 与赖氨酸靶向交联剂具有明显的结构互补性,这提高了CXMS 进行蛋白质结构解析的能力。本工作是羧基选择性交联剂首次实现全细胞裂解物的全蛋白质组交联分析。总的来说,这项工作不仅扩展了一个针对酸性残基的十分具有前途的 CXMS 工具包,同时还为提高羧基选择性交联剂的性能提供了有价值的指导。图1 三种交联剂BHP、BAP和BOP的化学性质。(A) 三功能交联剂的化学结构:两个反应性基团用红色表示,一个可修饰的手柄用橙色表示。三种交联剂的Cα原子之间的最大距离约束利用软件Chem3D 19.0计算得出。(B) 利用软件pLink 2.0分析三种交联剂与蛋白质进行交联质谱实验的MS/MS谱。(C) 三种交联剂的反应效率直方图。(D) 酰胺化反应的机理。图2 三种交联剂BHP、BAP和BOP在BSA蛋白质、六蛋白混合物和E. coli 70S ribosome结构分析中的性能。(A) 三种交联剂与BSA的反应中鉴定出的交联的维恩图。(B) 交联的Cα−Cα 距离分布的直方图,通过映射到BSA的晶体结构来验证。(C) BSA中交联残基分布的二维 (2D) 热图。颜色插入表示交联的距离分布。(D) 六蛋白混合物的环形二维交联图。黑线表示蛋白质内的交联,红线表示蛋白质间的交联。(E) 将交联映射到TXN2 (UniProtID:Q99757,PDB:1W4V)、CA2 (UniProtID:P00921,PDB:6SKS)和E. coli 70S ribosome (PDB:5KCS)的X射线晶体结构上,由BAP(红线)和BSP(黄线)鉴定。图3 基于BAP的交联平台,用于大肠杆菌裂解液的全蛋白质组分析,包括蛋白质复合物交联、点击化学、链霉亲和素富集、分馏和LC-MS/MS分析。图4 通过BAP对大肠杆菌裂解液的全蛋白质组分析。(A)富集前后鉴定的谱图数目的比较。黑色和红色分别对应于常规肽和交联肽的谱图。(B)将由BAP(红线)和BSP(黄线)鉴定的交联映射到蛋白质的X射线晶体结构上。(C)将交联映射到由BAP专门鉴定的蛋白质的X射线晶体结构上。 (D)使用Xplor-NIH软件包对hns (UniProtID:P0ACFID) 和grcA (UniProt ID:P68066) 的AF2预测结构进行细化。用BAP和BSP鉴定出的交联分别用红色和黄色标记。在本工作中,作者开发并表征了三种新的可富集的羧基选择性交联剂,它们具有不同的反应基团酰肼、氨基和氨基氧基。其中,氨基功能化交联剂 BAP 对于所有不同复杂度的蛋白质样品均表现出最佳的交联反应活性和鉴定覆盖率。此外,BAP扩展到大肠杆菌裂解液的交联分析与高效的交联富集相结合。本工作首次使用羧基选择性交联剂,以实现全细胞裂解液的全蛋白质组范围内的交联分析。因此,以上所有结果表明,本工作开发的 BAP 是一个很有前途的工具包,可以提高蛋白质结构分析的交联覆盖率。此外,本项工作还可以为提高羧基选择性交联剂的性能提供有价值的指导。参考文献:Gao H, Zhao Q, Gong Z, et al. Alkynyl-Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures [published online ahead of print, 2022 Aug 29]. Anal Chem.2022 10.1021/acs.analchem.2c02205. doi:10.1021/acs.analchem.2c02205
  • 交联质谱与冷冻电镜技术联用前沿解析:推动结构生物学进入新时代
    p  近来,结构生物学领域发现了研究蛋白质机构和相互作用的两种非常互补的分析技术——交联质谱(XL-MS)技术和荣获诺贝尔奖的冷冻电镜(cryo-EM)技术,两种技术被结合应用于蛋白质机构和相互作用的研究中。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/201906/uepic/1db47922-dd4e-4a74-9689-d8dc5825a5c3.jpg" title="1.jpg" alt="1.jpg" width="450" height="253" border="0" vspace="0"//pp  作为一对“强大”的技术,XL-MS和cryo-EM在结合运用中在共同弥补着各自的缺点不足。当cryo-EM图像中分子区域定义不太清晰明确时,XL-MS就会介入,提供关于特定氨基酸残基关键信息,从而可以识别蛋白质并准确推断蛋白质结构。以下,让我们详细探讨一下这两种技术的发展情况,以及它们如何共同推动结构蛋白质组学领域进入一个新的时代。/pp  span style="font-size: 18px "strong蛋白质结构:“组装机器的计划蓝图”/strong/span/pp  蛋白质及其复合物是生物细胞的生物“主力”,调节着细胞功能不可或缺的过程,如细胞生长、细胞死亡以及细胞生命周期的各个阶段。/pp  “我喜欢将蛋白质结构与组装机器的蓝图进行比较,”荷兰格罗宁根大学高分辨率cryo-EM实验室助理教授Cristina Paulino在最近的一次采访中谈到,“虽然遗传学和生物化学有助于理解蛋白质的生理作用,但结构生物学揭示了这些纳米机器的外观以及它们的连接方式。”/pp  因此,对这种“连接方式”的了解为科学家们提供了修复、设计和复制蛋白质,或潜在地阻断蛋白质功能的机会——蛋白质组学的应用,预计将成为个性化医学和现代药理学不可或缺的组成部分。/pp  span style="font-size: 18px "strong关于XL-MS技术应用/strong/span/pp  生物学的一个基本原理是蛋白质由氨基酸残基通过肽键连接形成多肽。除了肽键外,还存在非共价键,如范德华力、静电和疏水相互作用。在结构生物学中,这些键很难检测到,在原子水平上研究蛋白质结构时增加了额外的复杂性。在过去的十年中,蛋白质组学领域见证了MS技术逐渐增加丰富的一系列令人深刻的技术,其中。XL-MS技术是已证明对结构蛋白质组学不可或缺的技术之一。[1]/pp  图1总结了典型XL-MS的工作流程,其中,蛋白质(或其邻近)之间的非共价键相互作用(或接近它们)通过用交联试剂溶解天然蛋白质转化为人工共价键。由于赖氨酸残基的广泛存在、在水溶液中的稳定性和高反应活性,赖氨酸残基的伯胺基团或蛋白质的N-末端是交联剂的常见靶标。最常用的是同位功能交联剂包括辛二酸二琥珀酰胺(DSS)和辛二酸(磺基琥珀酰亚胺基)。[2]在交联阶段之后,蛋白质被蛋白酶加工成肽段。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/05df0100-7766-418e-b884-48a3df737aec.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图1:通用XL-MS工作流程。图片来源:乌得勒支大学Heck实验室Richard Scheltema/span/pp  “随后通过MS测量混合物进行鉴定——在大多数情况下,可以指定交联中涉及的氨基酸,用间隔臂的长度和两侧链的长度定义的距离进行约束” 乌特勒支大学Heck实验室Richard Scheltema博士解释说,“这些距离限制提供了关于蛋白质如何折叠(两种来自相同蛋白质的肽段)或蛋白质相互作用的有价值的信息,以及这种相互作用的界面位于何处(两种来自不同的蛋白质肽段)。”/pp  通常情况下,XL-MS实现的结构分辨率在15-50埃米,其分辨率无法与X射线晶体学、核磁共振(NMR)光谱学、cryo-EM等其他结构生物学技术的分辨率相匹敌。因此,这些技术必须相互补充使用。[3]/pp  span style="font-size: 18px "strongcryo-EM:提供的进一步解决方案/strong/span/pp  冷冻电镜(cryo-EM)是由透射电镜(TEM)发展而来的,它通过二维(2D)图像投影来确定三维(3D)结构,同时保持样品的完整性和结构接近原始状态。这是通过研究玻璃化状态下的样品来实现的。在玻璃化状态下,样品的薄片迅速浸入液态乙烷溶液中,低温保存并保护其免受TEM内的真空和辐射损伤。[4]Paulino也进一步讨论了cryo-EM与其他结构生物学技术相比的优势。/ppscript src="https://p.bokecc.com/player?vid=2D0A61DE3EBDEABB9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptbr//ppimg src="https://img1.17img.cn/17img/images/201906/uepic/df940b25-54db-4467-9ea6-bf2efb791961.jpg" title="0.jpg" alt="0.jpg" style="max-width: 100% max-height: 100% "/br//pp  近年来,cryo-EM技术已经取得了长足的进步,这意味着许多样品现在可以用近原子分辨率(通常为3-5埃)进行分析。[5]不幸的是,在这个分辨率范围内,科学家们仍然难以区分和表征蛋白质复合物中所有氨基酸侧链,这意味着重新构建模型是一项复杂的任务。“cryo-EM的使用正在大幅增加,从这项技术记录的蛋白质结构轮廓来看,很难确定哪些蛋白质相互关联,以及它们在整个结构中是如何排列的。而这就是XL-MS介入的地方。/pp  XL-MS中的交联数据描述了肽段中两个特定氨基酸残基之间的最大距离。将提出的蛋白质结构模型及其结构域插入由cryo-EM重构获得的三维体中,并整合交联数据,以验证蛋白质复合物内特定肽的位置和方向。/pp  将蛋白质整合到三维体中是一项艰巨而复杂的任务,需要对所涉及的蛋白质复合物及其子成分有透彻的理解。因此,Sali团队开发了集成建模平台(IMP),这是一个希望将XL-MS和cryo-EM结合起来的研究人员的通用工作流程平台。/pp  span style="font-size: 18px "strongXL-MS和cryo-EM在结构生物学中被配合应用/strong/span/pp  最近,Henry等人确定了载脂蛋白E4(ApoE4)的活性结构和结合机制。ApoE4与阿尔茨海默病(AD)和心血管疾病(CVD)有关,是载脂蛋白(ApoE)的脂质化同种型,ApoE是一种蛋白质,通过充当细胞表面受体的配体,促进富含胆固醇的脂蛋白的内化。采用结合XL-MS,cryo-EM和生物信息学建模工具的混合方法,Henry等表明ApoE4存在于两种不同的确证中,指向依赖于调节其受体结合区可及性的激活机制。作者指出,这些发现可能对于解释蛋白质在AD和CVD中的作用以及随后潜在治疗方法的发展具有重要价值。[6]/pp  Schmidt和Urlaub在2017年全面综述中概述了类似的令人印象深刻的研究,包括Lü hrmann和Stark组对剪接体的结构表征。/pp  2019年1月,荷兰科学研究组织(NWO)向一个名为“细胞中蛋白质社会行为的监测和可视化”的项目拨款160万欧元的资助,其中XL-MS和cryo-EM技术以及其他分子方法,被综合使用。项目可视化了蛋白质之间的相互作用,该项目的主要研究人员包括Albert Heck、John van der Oost、Alexandre Bonvin、Friedrich Foerster和Scheltema等人。/pp  “在这个项目中,我们的目标是使用(一种cryo-EM的专门应用),在选定的一组嗜热菌中不偏倚地发现所有的蛋白质复合物。在这里,XL-MS被用来提供识别复合物内蛋白质的身份、空间顺序(通常不能直接从断层扫描数据中得到答案),以及结构模型来填补最终的空白。” Scheltema说,“之所以选择嗜热菌,是因为这些微生物是具有生物化学用途的蛋白质复合物的潜在宝库。”/pp  span style="font-size: 18px "strong重新定义限制,继续前进/strong/span/pp  总之,XL-MS和cryo-EM为结构蛋白组学领域提供了巨大的发展潜力。然而,每种技术都面临着自己的局限性,必须克服这些局限性才能形成完美的配合使用。/pp  “Cryo-EM不断重新定义其局限性,但我们仍然面临着一些挑战,”Paulino评论道,“对于X射线晶体学来说,获得完全可操作和维护的同步加速器束流线基本上是免费的,而cryo-EM的高成本和操作显微镜所需要的专业知识水平便成为一个障碍。” 在一定程度上(但并非全部),政府实施对Cryo-EM设备的补贴政策的解决了这一问题。/pp  “冷冻断层扫描提供了一种相对较低分辨率的蛋白质复合物视图,直接解释很困难。” Scheltema补充说,“另一方面,来自XL-MS的数据提供了解决方案中包含所有空间信息的视图。然而,我认为将这两者联系起来是最大的挑战,因为XL-MS提供了样本中所有蛋白质的信息, 这需要以某种方式过滤掉由断层扫描揭示的复合物内的蛋白质。”/pp  strong参考文献/strong/pp  1. Rappsilber, Juri. 2011. The Beginning of a Beautiful Friendship: Cross-Linking/Mass Spectrometry and Modelling of Proteins and Multi-Protein Complexes. Journal of Structural Biology. https://doi.org/10.1016/j.jsb.2010.10.014./pp  2. Yu and Huang. 2017. Cross-Linking Mass Spectrometry (XL-MS): An Emerging Technology for Interactomics and Structural Biology. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.7b04431./pp  3. Schmidt and Urlaub. 2017. Combining Cryo-Electron Microscopy (Cryo-EM) and Cross-Linking Mass Spectrometry (CX-MS) for Structural Elucidation of Large Protein Assemblies. Current Opinion in Structural Biology. https://doi.org/10.1016/j.sbi.2017.10.005./pp  4. Murata and Wolf. 2019. Cryo-Electron Microscopy for Structural Analysis of Dynamic Biological Macromolecules. Biochimica et Biophysica Acta (BBA). https://doi.org/10.1016/j.bbagen.2017.07.020./pp  5. Lyumkis. 2019. Challenges and Opportunities in Cryo-EM Single-Particle Analysis. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.REV118.005602./pp  6. Henry N., et al. 2019. Lipidated apolipoprotein E4 structure and its receptor binding mechanism determined by a combined cross-linking coupled to mass spectrometry and molecular dynamics approach. Plos Computer Biology. doi: 10.1371/journal.pcbi.1006165./p
  • 大连化物所利用原位化学交联—质谱技术解码细胞中蛋白质动态结构
    近日,大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组(1810组)赵群研究员和张丽华研究员等人与中国科学院精密测量科学技术创新研究院龚洲副研究员合作,提出了利用原位化学交联—质谱技术(in vivo XL-MS),解码细胞中蛋白质动态结构的策略。该策略将AlphaFold2的结构作为先验信息,结合in vivo XL-MS数据与多种结构计算方法评估结构与交联信息的匹配度,重构了细胞内多种蛋白质,尤其是多结构域蛋白质和固有无序蛋白质(intrinsically disordered protein,IDP)的原位动态结构。为深入研究蛋白质在细胞微环境中发挥功能的分子机制提供技术支撑。活细胞内蛋白质的原位动态结构对于揭示其生物学功能至关重要。随着深度学习算法助力蛋白质结构预测的发展迭代,AlphaFold2实现了对蛋白质结构的全面预测,然而该方法对柔性区域的结构预测仍面临挑战。近年来,in vivo XL-MS以高通量、高灵敏,且对蛋白质纯度要求低等优势,在解析活细胞内蛋白质的原位动态结构方面展示出重要潜力。张丽华团队一直致力于in vivo XL-MS新技术研究,实现了蛋白质原位构象和相互作用的规模化解析(Anal. Chem.,2020;Anal. Chem.,2022;Anal. Chem.,2022;Anal. Chem.,2022;Anal. Chem.,2023;Angew. Chem. Int. Ed.,2023;Nat. Commun.,2023)。   本工作中,针对多结构域蛋白质,研究团队提出了将结构域作为整体,利用结构域间的XL-MS数据对细胞内蛋白质动态结构建模,实现了三种多结构域蛋白质——钙调蛋白、hnRNP A1和hnRNP D0在细胞内的动态结构表征。此外,针对IDP,研究团队提出了两种互补的结构表征策略:一是将XL-MS信息直接转换为距离约束用于IDP的结构计算,二是首先使用全原子分子动力学模拟进行无偏采样,然后基于XL-MS数据对采样结构进行评估和筛选。利用这两种策略,研究团队解码了高迁移率组蛋白HMG-I/Y和HMG-17在细胞内的动态系综构象。   上述成果以“Decoding Protein Dynamics in Cells Using Chemical Cross-Linking and Hierarchical Analysis”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)。该工作的第一作者是1810组博士研究生张蓓蓉。该工作得到了国家重点研发计划、国家自然科学基金、中国科学院青促会等项目的资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制