当前位置: 仪器信息网 > 行业主题 > >

交联结构

仪器信息网交联结构专题为您整合交联结构相关的最新文章,在交联结构专题,您不仅可以免费浏览交联结构的资讯, 同时您还可以浏览交联结构的相关资料、解决方案,参与社区交联结构话题讨论。

交联结构相关的资讯

  • 破译蛋白质结构的秘诀:利用富含炔基的羧基选择性交联剂增加交联覆盖率
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章,Alkynyl -Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures,该文章的通讯作者是中国科学院大连化学物理研究所的赵群和张丽华研究员。化学交联结合质谱技术 (CXMS) 的交联覆盖范围对于决定其破译蛋白质的结构的能力具有重要意义。目前,交联质谱技术中最常用的交联剂的类型为针对赖氨酸侧链的N-羟基琥珀酰亚胺 (NHS) 酯基交联剂。然而,此种交联剂存在一定的局限性,尤其是对于含有赖氨酸数目较少的蛋白质;其他类型的氨基酸残基,如羧基等,也可以进行交联反应,以补充赖氨酸残基的局限性并提高 CXMS 的交联覆盖率,然而,羧基的低固有化学反应活性损害了羧基选择性交联剂在复杂样品中的应用。鉴于此,本文开发了三种具有不同反应基团(如酰肼、氨基和氨氧基)的富含炔基的羧基选择性交联剂,以此提高针对酸性残基的交联效率并实现复杂样品的深入交联分析。文章要点:(1)本工作系统地评估了三种交联剂的交联效率,给出了氨基功能化交联剂 BAP 的最佳反应性。此外,结合BAP交联剂于高效的交联富集策略对大肠杆菌裂解物进行交联分析。在 ≤1% 的错误发现率 (FDR) 下,共鉴定出 392 种蛋白质中涉及到的 1291 个 D/E-D/E 交联。(2) 研究结果显示,BAP 与赖氨酸靶向交联剂具有明显的结构互补性,这提高了CXMS 进行蛋白质结构解析的能力。本工作是羧基选择性交联剂首次实现全细胞裂解物的全蛋白质组交联分析。总的来说,这项工作不仅扩展了一个针对酸性残基的十分具有前途的 CXMS 工具包,同时还为提高羧基选择性交联剂的性能提供了有价值的指导。图1 三种交联剂BHP、BAP和BOP的化学性质。(A) 三功能交联剂的化学结构:两个反应性基团用红色表示,一个可修饰的手柄用橙色表示。三种交联剂的Cα原子之间的最大距离约束利用软件Chem3D 19.0计算得出。(B) 利用软件pLink 2.0分析三种交联剂与蛋白质进行交联质谱实验的MS/MS谱。(C) 三种交联剂的反应效率直方图。(D) 酰胺化反应的机理。图2 三种交联剂BHP、BAP和BOP在BSA蛋白质、六蛋白混合物和E. coli 70S ribosome结构分析中的性能。(A) 三种交联剂与BSA的反应中鉴定出的交联的维恩图。(B) 交联的Cα−Cα 距离分布的直方图,通过映射到BSA的晶体结构来验证。(C) BSA中交联残基分布的二维 (2D) 热图。颜色插入表示交联的距离分布。(D) 六蛋白混合物的环形二维交联图。黑线表示蛋白质内的交联,红线表示蛋白质间的交联。(E) 将交联映射到TXN2 (UniProtID:Q99757,PDB:1W4V)、CA2 (UniProtID:P00921,PDB:6SKS)和E. coli 70S ribosome (PDB:5KCS)的X射线晶体结构上,由BAP(红线)和BSP(黄线)鉴定。图3 基于BAP的交联平台,用于大肠杆菌裂解液的全蛋白质组分析,包括蛋白质复合物交联、点击化学、链霉亲和素富集、分馏和LC-MS/MS分析。图4 通过BAP对大肠杆菌裂解液的全蛋白质组分析。(A)富集前后鉴定的谱图数目的比较。黑色和红色分别对应于常规肽和交联肽的谱图。(B)将由BAP(红线)和BSP(黄线)鉴定的交联映射到蛋白质的X射线晶体结构上。(C)将交联映射到由BAP专门鉴定的蛋白质的X射线晶体结构上。 (D)使用Xplor-NIH软件包对hns (UniProtID:P0ACFID) 和grcA (UniProt ID:P68066) 的AF2预测结构进行细化。用BAP和BSP鉴定出的交联分别用红色和黄色标记。在本工作中,作者开发并表征了三种新的可富集的羧基选择性交联剂,它们具有不同的反应基团酰肼、氨基和氨基氧基。其中,氨基功能化交联剂 BAP 对于所有不同复杂度的蛋白质样品均表现出最佳的交联反应活性和鉴定覆盖率。此外,BAP扩展到大肠杆菌裂解液的交联分析与高效的交联富集相结合。本工作首次使用羧基选择性交联剂,以实现全细胞裂解液的全蛋白质组范围内的交联分析。因此,以上所有结果表明,本工作开发的 BAP 是一个很有前途的工具包,可以提高蛋白质结构分析的交联覆盖率。此外,本项工作还可以为提高羧基选择性交联剂的性能提供有价值的指导。参考文献:Gao H, Zhao Q, Gong Z, et al. Alkynyl-Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures [published online ahead of print, 2022 Aug 29]. Anal Chem.2022 10.1021/acs.analchem.2c02205. doi:10.1021/acs.analchem.2c02205
  • 交联质谱与冷冻电镜技术联用前沿解析:推动结构生物学进入新时代
    p  近来,结构生物学领域发现了研究蛋白质机构和相互作用的两种非常互补的分析技术——交联质谱(XL-MS)技术和荣获诺贝尔奖的冷冻电镜(cryo-EM)技术,两种技术被结合应用于蛋白质机构和相互作用的研究中。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/201906/uepic/1db47922-dd4e-4a74-9689-d8dc5825a5c3.jpg" title="1.jpg" alt="1.jpg" width="450" height="253" border="0" vspace="0"//pp  作为一对“强大”的技术,XL-MS和cryo-EM在结合运用中在共同弥补着各自的缺点不足。当cryo-EM图像中分子区域定义不太清晰明确时,XL-MS就会介入,提供关于特定氨基酸残基关键信息,从而可以识别蛋白质并准确推断蛋白质结构。以下,让我们详细探讨一下这两种技术的发展情况,以及它们如何共同推动结构蛋白质组学领域进入一个新的时代。/pp  span style="font-size: 18px "strong蛋白质结构:“组装机器的计划蓝图”/strong/span/pp  蛋白质及其复合物是生物细胞的生物“主力”,调节着细胞功能不可或缺的过程,如细胞生长、细胞死亡以及细胞生命周期的各个阶段。/pp  “我喜欢将蛋白质结构与组装机器的蓝图进行比较,”荷兰格罗宁根大学高分辨率cryo-EM实验室助理教授Cristina Paulino在最近的一次采访中谈到,“虽然遗传学和生物化学有助于理解蛋白质的生理作用,但结构生物学揭示了这些纳米机器的外观以及它们的连接方式。”/pp  因此,对这种“连接方式”的了解为科学家们提供了修复、设计和复制蛋白质,或潜在地阻断蛋白质功能的机会——蛋白质组学的应用,预计将成为个性化医学和现代药理学不可或缺的组成部分。/pp  span style="font-size: 18px "strong关于XL-MS技术应用/strong/span/pp  生物学的一个基本原理是蛋白质由氨基酸残基通过肽键连接形成多肽。除了肽键外,还存在非共价键,如范德华力、静电和疏水相互作用。在结构生物学中,这些键很难检测到,在原子水平上研究蛋白质结构时增加了额外的复杂性。在过去的十年中,蛋白质组学领域见证了MS技术逐渐增加丰富的一系列令人深刻的技术,其中。XL-MS技术是已证明对结构蛋白质组学不可或缺的技术之一。[1]/pp  图1总结了典型XL-MS的工作流程,其中,蛋白质(或其邻近)之间的非共价键相互作用(或接近它们)通过用交联试剂溶解天然蛋白质转化为人工共价键。由于赖氨酸残基的广泛存在、在水溶液中的稳定性和高反应活性,赖氨酸残基的伯胺基团或蛋白质的N-末端是交联剂的常见靶标。最常用的是同位功能交联剂包括辛二酸二琥珀酰胺(DSS)和辛二酸(磺基琥珀酰亚胺基)。[2]在交联阶段之后,蛋白质被蛋白酶加工成肽段。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/05df0100-7766-418e-b884-48a3df737aec.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图1:通用XL-MS工作流程。图片来源:乌得勒支大学Heck实验室Richard Scheltema/span/pp  “随后通过MS测量混合物进行鉴定——在大多数情况下,可以指定交联中涉及的氨基酸,用间隔臂的长度和两侧链的长度定义的距离进行约束” 乌特勒支大学Heck实验室Richard Scheltema博士解释说,“这些距离限制提供了关于蛋白质如何折叠(两种来自相同蛋白质的肽段)或蛋白质相互作用的有价值的信息,以及这种相互作用的界面位于何处(两种来自不同的蛋白质肽段)。”/pp  通常情况下,XL-MS实现的结构分辨率在15-50埃米,其分辨率无法与X射线晶体学、核磁共振(NMR)光谱学、cryo-EM等其他结构生物学技术的分辨率相匹敌。因此,这些技术必须相互补充使用。[3]/pp  span style="font-size: 18px "strongcryo-EM:提供的进一步解决方案/strong/span/pp  冷冻电镜(cryo-EM)是由透射电镜(TEM)发展而来的,它通过二维(2D)图像投影来确定三维(3D)结构,同时保持样品的完整性和结构接近原始状态。这是通过研究玻璃化状态下的样品来实现的。在玻璃化状态下,样品的薄片迅速浸入液态乙烷溶液中,低温保存并保护其免受TEM内的真空和辐射损伤。[4]Paulino也进一步讨论了cryo-EM与其他结构生物学技术相比的优势。/ppscript src="https://p.bokecc.com/player?vid=2D0A61DE3EBDEABB9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptbr//ppimg src="https://img1.17img.cn/17img/images/201906/uepic/df940b25-54db-4467-9ea6-bf2efb791961.jpg" title="0.jpg" alt="0.jpg" style="max-width: 100% max-height: 100% "/br//pp  近年来,cryo-EM技术已经取得了长足的进步,这意味着许多样品现在可以用近原子分辨率(通常为3-5埃)进行分析。[5]不幸的是,在这个分辨率范围内,科学家们仍然难以区分和表征蛋白质复合物中所有氨基酸侧链,这意味着重新构建模型是一项复杂的任务。“cryo-EM的使用正在大幅增加,从这项技术记录的蛋白质结构轮廓来看,很难确定哪些蛋白质相互关联,以及它们在整个结构中是如何排列的。而这就是XL-MS介入的地方。/pp  XL-MS中的交联数据描述了肽段中两个特定氨基酸残基之间的最大距离。将提出的蛋白质结构模型及其结构域插入由cryo-EM重构获得的三维体中,并整合交联数据,以验证蛋白质复合物内特定肽的位置和方向。/pp  将蛋白质整合到三维体中是一项艰巨而复杂的任务,需要对所涉及的蛋白质复合物及其子成分有透彻的理解。因此,Sali团队开发了集成建模平台(IMP),这是一个希望将XL-MS和cryo-EM结合起来的研究人员的通用工作流程平台。/pp  span style="font-size: 18px "strongXL-MS和cryo-EM在结构生物学中被配合应用/strong/span/pp  最近,Henry等人确定了载脂蛋白E4(ApoE4)的活性结构和结合机制。ApoE4与阿尔茨海默病(AD)和心血管疾病(CVD)有关,是载脂蛋白(ApoE)的脂质化同种型,ApoE是一种蛋白质,通过充当细胞表面受体的配体,促进富含胆固醇的脂蛋白的内化。采用结合XL-MS,cryo-EM和生物信息学建模工具的混合方法,Henry等表明ApoE4存在于两种不同的确证中,指向依赖于调节其受体结合区可及性的激活机制。作者指出,这些发现可能对于解释蛋白质在AD和CVD中的作用以及随后潜在治疗方法的发展具有重要价值。[6]/pp  Schmidt和Urlaub在2017年全面综述中概述了类似的令人印象深刻的研究,包括Lü hrmann和Stark组对剪接体的结构表征。/pp  2019年1月,荷兰科学研究组织(NWO)向一个名为“细胞中蛋白质社会行为的监测和可视化”的项目拨款160万欧元的资助,其中XL-MS和cryo-EM技术以及其他分子方法,被综合使用。项目可视化了蛋白质之间的相互作用,该项目的主要研究人员包括Albert Heck、John van der Oost、Alexandre Bonvin、Friedrich Foerster和Scheltema等人。/pp  “在这个项目中,我们的目标是使用(一种cryo-EM的专门应用),在选定的一组嗜热菌中不偏倚地发现所有的蛋白质复合物。在这里,XL-MS被用来提供识别复合物内蛋白质的身份、空间顺序(通常不能直接从断层扫描数据中得到答案),以及结构模型来填补最终的空白。” Scheltema说,“之所以选择嗜热菌,是因为这些微生物是具有生物化学用途的蛋白质复合物的潜在宝库。”/pp  span style="font-size: 18px "strong重新定义限制,继续前进/strong/span/pp  总之,XL-MS和cryo-EM为结构蛋白组学领域提供了巨大的发展潜力。然而,每种技术都面临着自己的局限性,必须克服这些局限性才能形成完美的配合使用。/pp  “Cryo-EM不断重新定义其局限性,但我们仍然面临着一些挑战,”Paulino评论道,“对于X射线晶体学来说,获得完全可操作和维护的同步加速器束流线基本上是免费的,而cryo-EM的高成本和操作显微镜所需要的专业知识水平便成为一个障碍。” 在一定程度上(但并非全部),政府实施对Cryo-EM设备的补贴政策的解决了这一问题。/pp  “冷冻断层扫描提供了一种相对较低分辨率的蛋白质复合物视图,直接解释很困难。” Scheltema补充说,“另一方面,来自XL-MS的数据提供了解决方案中包含所有空间信息的视图。然而,我认为将这两者联系起来是最大的挑战,因为XL-MS提供了样本中所有蛋白质的信息, 这需要以某种方式过滤掉由断层扫描揭示的复合物内的蛋白质。”/pp  strong参考文献/strong/pp  1. Rappsilber, Juri. 2011. The Beginning of a Beautiful Friendship: Cross-Linking/Mass Spectrometry and Modelling of Proteins and Multi-Protein Complexes. Journal of Structural Biology. https://doi.org/10.1016/j.jsb.2010.10.014./pp  2. Yu and Huang. 2017. Cross-Linking Mass Spectrometry (XL-MS): An Emerging Technology for Interactomics and Structural Biology. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.7b04431./pp  3. Schmidt and Urlaub. 2017. Combining Cryo-Electron Microscopy (Cryo-EM) and Cross-Linking Mass Spectrometry (CX-MS) for Structural Elucidation of Large Protein Assemblies. Current Opinion in Structural Biology. https://doi.org/10.1016/j.sbi.2017.10.005./pp  4. Murata and Wolf. 2019. Cryo-Electron Microscopy for Structural Analysis of Dynamic Biological Macromolecules. Biochimica et Biophysica Acta (BBA). https://doi.org/10.1016/j.bbagen.2017.07.020./pp  5. Lyumkis. 2019. Challenges and Opportunities in Cryo-EM Single-Particle Analysis. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.REV118.005602./pp  6. Henry N., et al. 2019. Lipidated apolipoprotein E4 structure and its receptor binding mechanism determined by a combined cross-linking coupled to mass spectrometry and molecular dynamics approach. Plos Computer Biology. doi: 10.1371/journal.pcbi.1006165./p
  • 大连化物所利用原位化学交联—质谱技术解码细胞中蛋白质动态结构
    近日,大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组(1810组)赵群研究员和张丽华研究员等人与中国科学院精密测量科学技术创新研究院龚洲副研究员合作,提出了利用原位化学交联—质谱技术(in vivo XL-MS),解码细胞中蛋白质动态结构的策略。该策略将AlphaFold2的结构作为先验信息,结合in vivo XL-MS数据与多种结构计算方法评估结构与交联信息的匹配度,重构了细胞内多种蛋白质,尤其是多结构域蛋白质和固有无序蛋白质(intrinsically disordered protein,IDP)的原位动态结构。为深入研究蛋白质在细胞微环境中发挥功能的分子机制提供技术支撑。活细胞内蛋白质的原位动态结构对于揭示其生物学功能至关重要。随着深度学习算法助力蛋白质结构预测的发展迭代,AlphaFold2实现了对蛋白质结构的全面预测,然而该方法对柔性区域的结构预测仍面临挑战。近年来,in vivo XL-MS以高通量、高灵敏,且对蛋白质纯度要求低等优势,在解析活细胞内蛋白质的原位动态结构方面展示出重要潜力。张丽华团队一直致力于in vivo XL-MS新技术研究,实现了蛋白质原位构象和相互作用的规模化解析(Anal. Chem.,2020;Anal. Chem.,2022;Anal. Chem.,2022;Anal. Chem.,2022;Anal. Chem.,2023;Angew. Chem. Int. Ed.,2023;Nat. Commun.,2023)。   本工作中,针对多结构域蛋白质,研究团队提出了将结构域作为整体,利用结构域间的XL-MS数据对细胞内蛋白质动态结构建模,实现了三种多结构域蛋白质——钙调蛋白、hnRNP A1和hnRNP D0在细胞内的动态结构表征。此外,针对IDP,研究团队提出了两种互补的结构表征策略:一是将XL-MS信息直接转换为距离约束用于IDP的结构计算,二是首先使用全原子分子动力学模拟进行无偏采样,然后基于XL-MS数据对采样结构进行评估和筛选。利用这两种策略,研究团队解码了高迁移率组蛋白HMG-I/Y和HMG-17在细胞内的动态系综构象。   上述成果以“Decoding Protein Dynamics in Cells Using Chemical Cross-Linking and Hierarchical Analysis”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)。该工作的第一作者是1810组博士研究生张蓓蓉。该工作得到了国家重点研发计划、国家自然科学基金、中国科学院青促会等项目的资助。
  • 俞书宏院士团队与吴恒安教授团队发现河蚌铰链脆性成分中的抗疲劳结构
    脆性材料作为结构或功能部件被广泛应用于航空航天、电子器件和组织工程等领域。由于人工脆性材料对微裂纹和不易察觉的缺陷很敏感,在长时间的循环载荷作用下,材料很容易累积损伤产生疲劳裂纹,进而存在失效的风险。随着可折叠穿戴设备的发展,对具有高疲劳抗性的可变形功能材料的需求日益凸显。通过模仿典型的生物矿物材料如珍珠母、骨骼等的结构设计可以提升脆性材料疲劳抗性,但这常依赖于疲劳裂纹扩展过程中增韧行为,然而一旦裂纹开始扩展,就会对器件的性能产生不可逆的影响,因此寻找并开发新的耐疲劳结构模型对未来可变形功能材料的设计制备具有重要的科学意义和应用价值。中国科学技术大学俞书宏院士团队和吴恒安教授团队成功揭示了双壳纲褶纹冠蚌铰链内的可变形生物矿物硬组织的耐疲劳机制,提出了一种多尺度结构设计与成分固有特性相结合的耐疲劳设计新策略,为未来耐疲劳结构材料的合理创制发展提供了新的见解。研究成果以“Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata”为题,于6月23日发表在国际顶尖学术期刊《Science》上。审稿人评价称:“这份手稿展示了一个非常有趣的工作”、“这是一份令人兴奋的稿件。它集成了诸多表征技术来理解双壳纲铰链组织的显著疲劳抗性”、“这无疑激发了对生物复合材料的进一步研究,以设计抗疲劳性能增强的新材料”。同期《Science》观点栏目(Perspectives)以“A bendable biological ceramic”为题发表了评述(Science 2023, 380, 1216-1218),评述称“通过整合不同尺度的原理——从铰链的整体结构到单个晶体的原子结构——孟等人揭示了大自然如何主要从脆性成分中创造出抗疲劳、可弯曲、有弹性的结构。这些跨尺度原理要求在最精细的尺度上精确,而软体动物如此精确地沉积壳的细胞和分子机制是一个正在探索的领域”;“匹配生物精细控制对于对生物启发材料感兴趣的人类工程师来说是一个特别的挑战,正如开发模仿珍珠质强度和韧性的复合材料所面临的困难所证明的那样”;“尽管孟等人研究的力学性能与这种特殊生物体的需求相匹配,这些原理如何在更广泛的系统范围内得到完善,这是令人兴奋的前景。”论文共同第一作者为中国科学技术大学合肥微尺度物质科学国家研究中心博士研究生孟祥森,近代力学系周立川博士(现就职于合肥工业大学)、化学系刘蕾博士。我校俞书宏院士、吴恒安教授和茅瓅波副研究员为论文通讯作者。双壳纲动物褶纹冠蚌(Cristaria plicata)又称鸡冠蚌,是一种常见的淡水蚌类。为了满足生存需求(滤食、运动等),其外壳在一生中需要进行数十万次的开合运动,而连接两片外壳的铰链部位也会经历反复的受压和变形,表现出优异的耐疲劳性能。本工作中,研究人员揭示了铰链部位中的折扇形矿物硬组织所蕴含的跨尺度耐疲劳设计原理。从计算机断层扫描图(CT)和剖面光学照片可以看出,铰链可以分为两个不同的区域:外韧带(OL)和折扇形矿物硬组织(FFR)(图1,A和B)。研究人员首先观察了这两个区域在双壳开合过程中的运动行为(图1,D和E),并结合有限元分析(FEA),明晰了不同区域所承担的力学角色。在闭合过程中,OL发生拉伸,承担主要的周向应力并储存大部分弹性应变能;FFR区域在周向弯曲变形,并在受限的径向变形下提供强有力的径向支撑用以固定OL(图1,F到H)。图1(A)褶纹冠蚌和截面照片;(B)铰链切片照片和CT重构图;(C)在正常开合和过载状态下的疲劳测试结果;(D)开合前后铰链各区域形状变化及其轮廓图;(E)有限元模型对应的开合前后的铰链各区域形状变化及其轮廓图;(F)铰链有限元分析模型示意图;(G)开合状态下铰链各区域周向应力分布;(H)开合状态下铰链各区域径向应力分布。研究人员对FFR在不同尺度上的观察发现,其具有跨尺度多级结构特征。在宏观尺度上,FFR的扇形外形能使其在OL和外壳之间实现有效的载荷传递。进一步的深入观察发现,FFR由弹性有机基质和嵌入其中的脆性文石纳米线组成。文石纳米线直径约为100-200纳米,线的长轴方向在形貌上和扇形的径向方向一致,在晶体学上纳米线沿002晶向取向(图2,A到H)。考虑到文石晶体在002晶向的压缩模量远大于其他晶向,这种微观形貌和晶体学取向上的一致性意味着FFR能有效地为OL的拉伸提供支撑(图2,I和J)。这一结果也通过压缩力学和FEA模拟进行了进一步的验证。此外,FEA模拟结果显示,这种微米尺度上的软硬复合微观结构在压缩、拉伸、剪切三种受力状态下能够进行协调变形,在这个过程中有机基质承担了大部分的压缩和剪切应变,极大地减少了材料内部的应力集中,从而避免了文石纳米线侧向断裂,降低了FFR发生疲劳损伤的可能性。图2(A)FFR在纵向上的自然断面扫描图;(B)FFR在横向上的自然断面扫描图;(C和D)FFR脱钙处理之后的扫描图;(E和F)文石纳米线中的孪晶结构透射电子显微图片;(G和H)文石纳米线沿长度方向上的晶体学特征;(I和J)整个FFR中纳米线在形貌上和晶体学上的取向分析示意图。从FFR的横截面观察,文石纳米线呈近似六边形,研究人员通过高分辨透射电子显微镜也在纳米线中发现了纳米孪晶结构,考虑到文石纳米线沿002方向生长,这一结构可能与文石晶体Pmcn空间群易形成(110)孪晶界密切相关。这种沿纳米线纵向方向的孪晶结构的存在,在纳米尺度上大大强化了纳米线抗弯曲断裂的能力(图2,E和F)。与典型的天然硬质生物矿物材料(如骨骼、牙釉质)以及人工材料(如金属、水凝胶)等相比,FFR所展现的特殊之处在于它能在承担较大周向变形的同时,保持长时间的结构功能的稳定。这项研究从宏观到微纳米尺度上揭示了FFR的跨尺度多级结构设计原则(图3)。图3 典型生物和人工结构材料的耐疲劳设计机制。FFR中所具备的跨尺度结构特征使其在可变形能力上明显优于典型的生物矿物如牙釉质和骨骼,与常见的人工弹性体材料相比,FFR也一定程度保持了其高硬度和刚度。这项研究揭示了含脆性基元的生物矿物材料在较大形变下的耐疲劳设计新机制,填补了国际上含脆性组元的仿生耐疲劳材料设计的空白,所提出的整合跨尺度结构特征与功能特性的设计策略,能够在不同尺度上充分发挥每种成分的固有特性,从而实现材料整体性能的优化。这种兼顾变形性和耐疲劳性的跨尺度设计原则有望为未来功能材料的仿生设计和创制提供崭新思路。该研究得到了国家重点研发计划、新基石科学基金会、国家自然科学基金重点项目和中国科学院青促会等项目的资助支持。
  • 成果:AlphaFold2改进版与交联质谱技术预测蛋白质结构进展
    大家好,本周为大家分享一篇发表在Nature Biotechnology上的文章,Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning,该文章的通讯作者是德国柏林工业大学的Juri Rappsilber教授和机器人与生物学实验室的Oliver Brock团队。  由谷歌公司旗下的DeepMind团队所开发的AlphaFold2对于蛋白质结构的准确预测是一项巨大的成就,其对生命科学的影响仍然在显现。虽然AlphaFold2可以从一级序列预测准确的蛋白质结构,但对于发生构象变化或已知同源序列很少的蛋白质仍然存在挑战。  本文介绍了AlphaLink,AlphaFold2算法的一个改进版本,它将实验距离约束信息合并到其网络架构中,通过使用稀疏的实验约束作为锚点,提高了AlphaFold2在预测具有挑战性的目标方面的性能。文章通过使用非典型氨基酸光亮氨酸(Photo-L),通过交联质谱获得细胞内残基-残基接触的信息,并通过实验证实了这一点。  AlphaLink可以根据所提供的距离约束来预测蛋白质的不同构象,证明了实验数据在推动蛋白质结构预测方面的价值。该研究提出的用于集成蛋白质结构预测数据的抗噪声框架为从细胞内数据准确表征蛋白质结构开辟了新道路。  AlphaFold2基于静态输入数据预测静态模型,它在两个信息源上进行了训练,即蛋白质数据库(PDB)和多序列比对(MSA)中的蛋白质结构。这种方法受到了那些进化信息不足的目标的挑战,从而产生了不太可信或错误的预测。此外,X射线衍射分析的蛋白结构不能很好地反映结构的灵活性、多种构象和动态相互作用,而在溶液(理想状态下是在细胞内)中观察到的蛋白质的结构约束可以帮助解决这些问题。因此,在 AlphaFold2框架中添加这样的限制,可以引导预测在特定条件下发生的原位结构状态。  交联质谱(XL-MS)能够提供距离约束,可用于蛋白质结构预测。特别是,光反应氨基酸(Photo-AA)很容易被原核细胞和真核细胞结合,这为探索蛋白质的原位构象提供了可能性。此外,Photo-AA交联产生了相对紧密的距离限制,与共同进化接触良好对齐,这是大多数蛋白质结构预测方法的基础,包括AlphaFold2。  在本文中,作者介绍了AlphaLink,这是一种结构预测方法,它将Photo-AA交联的实验数据直接集成到AlphaFold2体系结构中(图1)。AlphaLink使用深度学习来合并共同进化关系的距离空间和交联数据,充分利用了数据的互补性。作者证明了AlphaLink可以利用嘈杂的实验接触来改善对模拟和真实实验数据上具有挑战性的目标的预测,从而将预测转向蛋白质的原位构象(图2)。为了测试AlphaLink,作者用光亮氨酸进行了大规模的交联质谱研究,文章表明,即使是稀疏交联的质谱数据也可以将预测锚定到特定的构象状态,从而打开了通过混合实验/深度学习方法探测动力学的可能性(图3)。该研究还进一步将 AlphaLink扩展到任意距离约束,引入了将距离约束编码为图表的二次表征(图4、5)。  AlphaLink:通过OpenFold将交联技术集成到AlphaFold2中  图 1. AlphaLink中的信息流程  集成photo-AA交联实现对具有挑战性靶点的抗噪声预测    图 2. AlphaLink与AlphaFold2的性能比较  Photo-L作为原位结构探针  图 3. 在大肠杆菌中的原位photo-L交联质谱  利用原位photo-L数据进行构造预测  图 4. 利用大肠杆菌膜部分的细胞内photo-L交联质谱数据的结构预测  原位探测构象动力学  图 5. Photo-AA数据,指导特定构象状态的预测  综上所述,本文的研究结果表明,AlphaLink成功地通过深度学习、利用实验距离约束来改善蛋白质结构的预测。文章提出了一个基于Photo-AA交联质谱的工作流程,提供了类接触距离信息,并获得了细胞内第一个大规模的Photo-AA交联质谱数据集。然后,文章在AlphaLink中实现了基于Photo-AA的蛋白质结构预测。本文的方法利用一系列通用接触,以显式距离约束或双图表示,以引导OpenFold管道走向与实验数据一致的结构。因此,本文概述的工作流程为混合实验辅助人工智能预测蛋白质结构提供了一个总体框架,直接在原位研究蛋白质的结构与功能之间的关系,而不需要任何基因操作。  撰稿:聂旻涵编辑:李惠琳  原文:Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Stahl, Kolja et al. “Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning.” Nature biotechnology, 10.1038/s41587-023-01704-z. 20 Mar. 2023, doi:10.1038/s41587-023-01704-z.
  • 一种膜渗透的、固定化金属亲和色谱富集的交联试剂用于推进体内交联质谱分析
    大家好,本周为大家分享一篇发表在Angew. Chem. Int. Ed.上的文章,A Membrane-Permeable and Immobilized Metal Affinity Chromatography (IMAC) - Enrichable Cross-Linking Reagent to Advance In Vivo Cross-Linking Mass Spectrometry,该文章的通讯作者是德国莱布尼茨分子药理学研究所的Fan Liu教授。交联质谱 (XL-MS) 已被用于在全蛋白质组范围内表征蛋白质的结构和蛋白间相互作用。目前,由于能够穿透完整细胞的交联试剂和富集交联肽的策略的缺乏,体内交联质谱研究的深度远远落后于细胞裂解液的现有应用。为了解决以上限制,本文开发了一种含膦酸盐的交联剂-tBu PhoX,它能够有效地渗透各种生物膜,并且可以通过常规的固定化金属离子亲和色谱 (IMAC) 进行稳定富集。 文章建立了一个基于 tBu-PhoX 的体内 XL-MS 分析流程,在完整的人类细胞中实现了较高的交联识别数目,并大大缩短了分析时间。总的来说,本文开发的交联剂和 XL-MS 分析流程为生命系统的全面交联质谱表征铺平了道路。细胞蛋白质组通过广泛的非共价相互作用网络进行组织,表征蛋白质-蛋白质相互作用 (PPIs) 对于了解细胞的调节机制至关重要。交联质谱 (XL-MS) 是系统研究细胞 PPIs 的一种强有力的方法,在 XL-MS 中,天然蛋白质接触通过交联剂共价捕获,交联剂是一种由间隔臂和两个对特定氨基酸侧链具有反应性的官能团组成的有机小分子,交联样品经过蛋白酶水解后,可以通过基于质谱的肽测序来定位氨基酸之间的交联。由于交联剂具有确定的最大长度,检测到的交联揭示了蛋白质内部或蛋白质之间的氨基酸的最大距离。以上这些信息提供了对蛋白质构象、结构和相互作用网络的见解。虽然最初仅限于纯化的蛋白质组装,但如今 XL-MS 已经可以应用于复杂的生物系统——这是通过开发先进的交联搜索引擎、样品制备策略和交联剂设计而实现的。特别是,已进行的几项全蛋白质组范围的 XL-MS 研究表明,可以通过使用可富集的交联剂来改进交联产物的鉴定,例如,通过添加生物素或叠氮化物/炔烃标记,使得消化混合物中的交联肽段能够基于亲和纯化或点击化学富集。最近,一种基于膦酸的交联剂 PhoX 被引入作为现有生物素或叠氮化物/炔烃标记试剂的高效和特异性替代品。PhoX 可通过固定化金属离子亲和色谱 (IMAC) 实现交联富集,这是一种非常快速和稳健的富集策略。 然而,尽管 PhoX 已被证明可用于从细胞裂解液中进行交联鉴定,但它无法渗透细胞膜,因此不适合体内的 XL-MS检测。基于以上讨论,本文开发了交联剂 tBu-PhoX ,其中,膦酸羟基被叔丁基保护以掩盖负电荷(图 1)。为了检测 tBu-PhoX 的膜通透性,文章交联了各种膜封闭的生物系统,包括人 HEK293T 细胞、从小鼠心脏分离的线粒体和革兰氏阳性枯草芽孢杆菌,并在 SDS-PAGE 上监测了蛋白质条带的变化(图 2)。在SDS-PAGE中,观察到在交联剂浓度为0.5和1.0mM时,蛋白质向更高分子量的浓度依赖性迁移,这表明了有效的膜渗透和交联。相比之下,将 PhoX 应用于完整的 HEK293T 细胞将产生与非交联对照相同的条带模式。图1 tBu-PhoX交联剂图2 PhoX或tBu-PhoX交联HEK293T细胞的SDS-PAGE在证明了 tBu-PhoX 可渗透各种生物膜系统后,文章接下来开发了一种基于 tBu-PhoX 的体内 XL-MS 工作流程,相比于之前的全蛋白质组 XL-MS 策略,该工作流程提高了样品处理和交联富集的速度和效率(图 3)。首先,按照标准蛋白质消化方案将交联蛋白质消化成肽;其次,使用 IMAC 珠对消化混合物进行预清除步骤以去除内源性修饰(特别是磷酸化);第三,预清除的消化混合物(从 IMAC 流出)在稀释三氟乙酸 (TFA) 溶液中孵育以去除叔丁基并暴露膦酸基团以进行二次 IMAC 富集。第四,使用标准 IMAC 程序丰富交联产物,最后通过 LC-MS 分析以进行交联产物鉴定。图3 与tBu-PhoX进行体内交联和后续样品处理的工作流程接下来,文章优化了体内 XL-MS 工作流程的几个分析参数,以最大限度地提高交联检测的效率。首先,通过使用 IMAC 珠预清除评估了去除磷酸肽的效率;之后,使用 tBu-PhoX 交联完整的 HEK293T 细胞,经酶切成肽后,并应用预清除 IMAC 步骤去除内源性磷酸肽。在去保护步骤之后,利用 IMAC 富集交联,并通过单次 120 min LC-MS 运行测量富集的样品。通过测量 IMAC 洗脱液中磷酸肽和交联产物的数量,发现第二个 IMAC 中只有数百条磷酸肽,而预清除 IMAC 中有 4,128 条磷酸肽,这突出了通过预清除 IMAC 步骤去除磷酸肽的效率。此外,与单阶段 IMAC 结果相比,使用预清除 IMAC 的工作流程鉴定了 22% 以上的交联(1165 对 952 交联),证明了该两阶段工作流程去除干扰修饰肽的好处(图 4A)。其次,文章在肽水平上研究了膦酸盐去保护的功效。使用 tBu-PhoX 制备了体内交联的 HEK293T 样品,并分析了在不同的酸度(TFA 浓度)和孵育时间下,去保护后交联的数量如何变化。结果显示,不同浓度的 TFA 下获得了相似数量的交联。为简化处理(即在接下来的IMAC富集步骤中保持相对较低的样品体积),选择 0.5% TFA 的去保护条件,持续两个小时(图 4B,C)。第三,文章测试了 Orbitrap Tribrid 质谱仪的不同采集参数如何影响交联识别,即在高场非对称波形离子迁移率质谱法 (FAIMS) 中应用的电荷态选择和补偿电压 (CVs)。当考虑电荷状态 +3 和更高时,确定了最多数量的 tBu-PhoX 交联肽(图 4D)。图4 样品处理和LC-MS参数的优化文章将优化参数后的体内 XL-MS 工作流程应用于完整的 HEK293T 细胞。使用 180 min的 LC 梯度和优化后的分析参数,文章从体内 tBu-PhoX 交联的 HEK293T 细胞中获得了 9,547 个交联(图 5A)。基因本体分析表明,交联蛋白参与了广泛的分子功能、生物过程和细胞成分,表明 tBu-PhoX 可以揭示所有细胞区域的 PPIs(图 5A)。另外,文章还考察了完整细胞的体内 XL-MS 是否捕获了与细胞裂解液的 XL-MS 不同的 PPIs。为了验证这一点,从 HEK293T 细胞中制备 tBu-PhoX 交联裂解液,并使用与体内 XL-MS 实验相同的工作流程处理样品。 结果显示,从五个 SEC 部分中确定了 9,393 个交联。这表明 tBu-PhoX 允许以类似的效率进行裂解和体内 XL-MS。比较本文的体内和裂解数据表明,在体内 XL-MS 实验中,蛋白质间交联的数量更高,从而产生了更加相互关联的 PPI 网络(图 5B,C)。这种效应可以通过细胞环境的拥挤来解释,其中蛋白质紧密堆积并参与多种相互作用,这些相互作用被细胞裂解和稀释部分破坏。文章在 8 种选定蛋白质复合物的已知 3D 结构上可视化了 145 个体内检测到的交联(图 5C),另外,还观察到 96.6% 的交联在 35 Å 的最大距离限制内(图 5D),表明此 XL-MS 工作流程对内源性蛋白质复合物的体内结构分析的适用性。最后,文章比较了 tBu-PhoX 与 PhoX 在表征细胞裂解液的 PPI 网络方面的性能。使用与上述 tBu-PhoX 裂解液交联实验相同的交联条件从 HEK293T 细胞制备 PhoX 交联裂解液。为了去除内源性磷酸肽,在单阶段 IMAC 富集之前,用碱性磷酸酶处理消化的肽两小时。使用与 tBu-PhoX 相同的 LC-MS 方法进行 LC-MS 分析。该实验产生了 2,117 个交联,与使用 tBu-PhoX 识别的交联数量(1,942 个交联)相比略高。然而,基于 PhoX 的 XL-MS 流程需要更长的样品制备时间,因为需要进行碱性磷酸酶再处理和之后的额外脱盐步骤。行体内交联综上所述,本文开发并应用了一种新型的、可富集的、用于体内 XL-MS 的膜渗透交联剂 tBu-PhoX。在广泛使用的交联条件下(交联剂浓度为 1-5 mM),tBu-PhoX能够有效地穿透各种生物膜,为完整的细胞器和活细胞提供交联的机会。tBu-PhoX上的叔丁基基团使得高效的两阶段IMAC样品制备方案成为可能;首先,使交联剂对 IMAC 呈惰性,以促进基于 IMAC 快速而彻底地提取不需要的磷酸化肽,然后,通过去除叔丁基暴露膦酸基团,从而有效地二次 IMAC 富集交联剂修饰的肽。通过随后的 SEC 分馏,可以进一步富集交联肽段以进行 LC-MS 分析。XL-MS 在表征生命系统中的蛋白质结构和相互作用方面发挥着越来越重要的作用。为了促进这一发展,迫切需要有效的体内 XL-MS 方法。文章报告的体内 XL-MS 工作流程满足了这一需求,提供了与之前基于裂解液的 XL-MS 研究类似的交联识别能力,但需要的测量时间不到之前报告的十分之一。这一结果突出表明,本文开发并应用的 tBu-PhoX 交联剂和集成样品制备流程为推进体内相互作用组学和结构生物学提供了一种非常有前景的化学方法。
  • 上海比朗BLUV07-II紫外交联仪 新品上市
    上海比朗仪器有限公司生产产品有:小型喷雾干燥机、无菌均质器、光化学反应仪、超声波细胞粉碎机、紫外交联仪、分子杂交仪、分液漏斗振荡器、氙灯光源、 超声波清洗机、索氏提取器、制冰机、低温冷却液循环泵、高速组织捣碎机、低温恒温循环器、高低温循环器、高温循环器、电热恒温鼓风干燥箱、电热恒温水槽、 水浴恒温振荡器、恒温金属浴、恒温器、回旋振荡器等等。  BLUV07-II紫外交联仪是一种多用途的254mm紫外辐射系统,主要用于将核酸交联于膜上。还可用于琼脂糖凝胶中DNA的切割、RecA突变筛选、嘧啶二聚体产生的部分限制性内切酶消化、UA灭菌消除PCR污染等。在紫外灭菌、聚合物紫外处理等方面也有应用价值。BLUV07-II紫外交联仪  紫外交联仪参数及应用,现在紫外交联仪分为3种波长的:254nm 312(302)nm 365nm 一长寿命滤光片,312 nm和365 nm下可终身使用,254 nm下,寿命为3000小时。对于312nm波长的紫外交联仪,312nm紫外光是目前EB/DNA复合凝胶电泳荧光显色的最佳光源,因为它灵敏度高且能产生了最大的荧光量。  与254nm波长紫外线相比,312nm能把光损伤,光切割及光二聚体作用的程度降至最低,应用如:克隆和染色体作图。另外,312nm波长紫外线过于暴晒而老化,从而保护UV传输装置的原有性能。  紫外交联:为使核甘酸固定在膜上,传统方法是将膜置于真空烘箱中在80℃下烘2小时,而在紫外光下照射几秒即可 信号强度的提高,紫外照射可使杂交信号比传统烘烤法提高5~10倍  紫外用途:琼脂糖凝胶中DNA的切割,RecA突变筛选,胸腺二聚体产生的部分限制性内切酶消化,UV 灭菌消除PCR污染。  紫外交联仪操作方法:将紫外交联仪设备水平放在工作台上。确保有足够的空间,在前面开门。插入电源线的母头到交联剂。插头插入正确接地的电源插座中。(交联剂的正确的工作电压是产品信息的标签上找到。注:对于230V型号,或那些需要特殊的电源线连接器,确保男性的连接器或插头已经正确的配置已正确连接电源线。)打开ON / OFF开关到ON的位置。(注:当交联剂的默认转向上次使用的紫外线曝光设置)。最后的紫外线照射的设置将显示在LED上。其中最后一个函数设置将会在发光显示面板上的红点(S)上指出。将您的样品进入会议厅的要求曝光。
  • 宁波材料所以“微交联法”创制高弹性铁电材料
    8月4日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在《科学》(Science)上,发表了题为Intrinsically elastic polymer ferroelectric by precise slight crosslinking的研究文章。该研究提出了铁电材料的本征弹性化方法,即采用微交联法使铁电聚合物从线性结构转变为网络状结构,通过精准调控交联密度在实现弹性化的同时,降低结构改变对材料结晶性能的影响,开创性地同时将弹性与铁电性赋予同一材料。基于此,该研究创制了一种兼具弹性与铁电性,且具有较好的耐机械疲劳和铁电疲劳性能的弹性铁电聚合物。铁电材料是功能材料,通常是指在一定温度范围内具有自发极化且极化方向可随外加电场改变进行翻转或重新定向的晶体材料,其核心为自发极化。极化是极性矢量,由于晶胞中原子构型使得正负电荷重心沿该方向发生相对位移,形成电偶极矩,使得整个晶体在该方向上呈现极性,这个方向称为特殊极性方向。这对晶体的点群对称性施加了限制,在32个晶体点群中只有10个具有特殊极性方向,即1(C1)、2(C2)、m(Cs)、mm2(C2v)、4(C4)、4mm(C4v)、3(C3)、3m(C3v)、6(C6)、6mm(C6v)。只有属于这些点群的晶体才具有自发极化,即铁电材料必为晶体材料。这种特殊的晶体点群赋予了铁电材料诸多性能,使其在数据存储和处理、传感和能量转换以及非线性光学和光电器件等方面有诸多应用。而晶体在受到应力时能够产生的弹性回复是极小的,通常小于2%,这是传统铁电材料多表现为脆性(无机)或塑性(有机)的原因。可穿戴设备、柔弹性电子和智能感知等领域的快速发展,对于使用的材料提出了越来越高的要求即需要在复杂形变下依旧保持稳定的性能。电子器件使用的材料根据导电性可分为导体、半导体和绝缘材料,而导体和半导体目前已实现弹性化。而铁电材料作为绝缘材料中性能最丰富的功能材料之一,目前尚未实现弹性化,这限制了铁电材料在柔弹性电子等领域的应用。铁电材料的铁电性主要来源于其结晶区,但晶体本身几乎不具备弹性,因而铁电性和弹性难以在同一种材料中兼顾。铁电材料的弹性化方法通常有三种——结构工程、共混和本征弹性化。通过结构工程制备的样品只能在预应变值范围内进行形变,需要复杂的制造技术且难以降低器件尺寸。在采用无机铁电材料与弹性体共混方式制备的复合材料中,无机铁电材料的铁电畴杂乱无章,需要经过有效极化后才能表现出铁电性。由于无机铁电与弹性体的电阻率相差较大,在极化过程中电场主要施加在电阻率更大的弹性体中,导致弹性体相的电击穿和电机械击穿。因此,本征弹性化可能是铁电材料弹性化的唯一途径。本征弹性化能够促进材料的发展,使其具备可大规模溶液制备的能力、提高设备密度和材料的耐疲劳性等。有机铁电材料包括有机小分子铁电材料和以PVDF(聚偏氟乙烯)为代表的聚合物铁电材料。铁电聚合物的铁电性主要来源于分子链两侧由极性相差较大的原子或基团形成由一侧指向另一侧的偶极子。铁电聚合物的特点是具有高柔韧性、易于制造成复杂形状、机械坚固性和极性活性。聚合物中的铁电性是20世纪70年代在聚偏氟乙烯中发现的,是电能、机械能和热能之间有效交叉耦合的平台。因此,兼具铁电性和柔韧性的铁电聚合物可能是铁电弹性化的最佳候选对象。在过去几年,化学交联法在导体和半导体的本征弹性化过程中取得了显著进展。由于强的铁电响应需要高的结晶度,而好的弹性回复需要低的结晶度,因此传统的化学交联方法很难同时兼顾铁电响应和弹性回复。为此,该团队提出了“弹性铁电材料”的概念,设计了精确的“微交联法”在铁电聚合物中建立网络结构。选择聚(偏氟乙烯-三氟乙烯)(P(VDF-TrFE),55/45mol%)作为反应基体材料,选择带有软而长链的聚氧化乙烯二胺(PEG-diamine)作为交联剂材料,使用低交联密度(1%~2%)赋予线性铁电聚合材料弹性的同时保持较高的结晶度。研究表明,交联后的铁电薄膜结晶相以β相为主,结晶均匀分散在聚合物交联网络中。在受力时,网络状结构能够均匀地将外力分散并且更多地承受应力,避免结晶区受到破坏。实验结果显示,交联后铁电薄膜在70%的应变下依旧具有较好的铁电响应,剩余极化约4.5μC/cm2并在拉伸过程中能够保持稳定,且具有较好的耐机械和铁电翻转疲劳性,提高了可靠性和使用寿命,拓展了使用范围。可见,“微交联法”是实现铁电弹性化行之有效的方法。该方法利用简单的化学反应实现了铁电性与弹性的良好匹配,为铁电材料弹性化提供了新思路。未来,研究团队将扩展此类方法,探索微交联法对于材料弹性化研究的普适性,并对制备的弹性铁电材料在可穿戴电子设备以及能量转换和存储、介电驱动等方面的应用进行探索。研究工作得到卢嘉锡国际合作团队项目、国家自然科学基金、浙江省钱江人才计划和浙江省尖兵领雁项目等的支持。铁电材料专家、东南大学教授熊仁根受邀在同期《科学》PERSPECTIVE专栏发表评论文章,认为这是突破性的工作,开辟了“弹性铁电”这一全新学科,并展望了弹性铁电材料可能的应用场景和未来的发展方向。图1. 弹性铁电的概念和合成策略示意图图2. 应变下弹性铁电的铁电响应。A为全弹性器件;B、C为全弹性器件在0%和70%的应变;D为在1kHz下0~70%应变下的P-E回滞曲线;E为不同应变下的名义Pmax、Pr和Ec和校正后的真实Pr。实验表明交联铁电薄膜在不同拉伸应变下均具有稳定的铁电响应。
  • 大连化物所开发出基于糖苷键的质谱可碎裂型交联剂
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组研究员张丽华团队,研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。   作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能,其中,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。化学交联技术(Chemical cross-linking mass spectrometry,CXMS),尤其是原位化学交联质谱技术(in-vivo CXMS)具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。然而,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。   本工作基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯(TDS)。该交联剂较目前已报道的可透膜型化学交联剂,展示了更优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。在此基础上,低能量的糖苷键-高能量的肽键的质谱选择性碎裂模式,可将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,降低了交联肽段谱图分析的复杂性,提高了交联肽段的鉴定效率与准确度。该团队从Hela细胞中鉴定到对应于3500对以上交联肽段的1453个蛋白质的构象以及843对蛋白质间的相互作用信息,实现了活细胞中蛋白质复合物的原位交联与规模化分析,为活细胞中蛋白质功能的调控提供了重要的技术支撑和关键的互作位点信息。   近年来,张丽华团队致力于原位化学交联质谱新技术研究,通过开发一系列新型多功能型化学交联剂,并系统建立深度覆盖的化学交联分析方法等,不断提升原位化学交联技术对于蛋白质复合物原位动态构象的深度捕获和精准分析能力。目前,该团队研制了多种类型的具有不同富集基团、正交反应活性基团的可透膜交联剂,并发展了相应的原位快速交联方法,低丰度交联位点的高效酶解和富集方法,以及基于化学交联距离约束的蛋白质原位构象和相互作用解析方法等,为蛋白质复合物功能状态下原位构象的规模化精准解析提供了关键技术支撑。   相关研究成果以A Glycosidic-Bond-Based Mass-Spectrometry-Cleavable Cross-linker Enables In vivo Cross-linking for Protein Complex Analysis为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。
  • 汇集结构质谱尖兵,开拓蛋白质结构生物学的新天地——第十四届质谱网络会议报告推荐
    随着生命科学研究的深入开展,科学界对解析复杂生物大分子结构以揭示生命现象的渴望日益增加。在各种结构生物学技术快速发展的背景下,结构质谱技术凭借其独特的优势,日益成为连接静态结构与动态功能、实现从分子到细胞的跨尺度研究的重要手段。在12月12-15日即将召开的“第十四届质谱网络会(iCMS 2023)”同期,特别新增了“结构质谱新方法”主题专场,来自全国的顶尖科学家团队将汇聚一堂,围绕氢/重氢交换质谱、化学交联质谱、原位质谱等前沿技术,报告他们在蛋白质结构生物学研究中的最新进展。本次主题会议的召开,恰逢结构质谱技术发展的重要机遇,必将推动该领域技术的重要突破及交叉创新,开启生命科学研究的新篇章。热忱欢迎质谱界的科技工作者报名参会交流、了解前沿动态、开拓合作视野。部分报告预告如下,点击报名  》》》会议主持人:中山大学 教授 李惠琳中山大学药学院教授,博士生导师。主要从事生物质谱新技术的开发及应用,侧重于(1)开发整合结构质谱技术(包括native top-down MS, HDX-MS, CX-MS等),用于药物作用分子机制及蛋白复合物结构研究;(2)Middle-down/top-down蛋白质组学新技术的开发及应用。共发表SCI收录论文40篇,其中第一作者或通讯作者15篇,主要发表在Nat. Chem.、Anal. Chem.等期刊;2014年获得American Society of Mass Spectrometry Postdoctoral Career Development Award;2019年入选“珠江人才计划”青年拔尖人才;主持国家自然科学基金项目3项。报告人:香港理工大学 教授 姚钟平报告题目:氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象复旦大学学士及硕士,香港科技大学博士,香港理工大学应用生物及化学科技学系教授。长期从事质谱、分析化学、化学生物学、组学的交叉学科研究,主要发展和应用质谱技术解决化学、生物、食品安全、信息科学等领域的基础和应用问题,在Nature Communications, PNAS, JACS等期刊发表论文100多篇。现任香港研究资助局专家委员会委员、深圳市中药药学及分子药理学重点实验室副主任、中国化学会有机分析专业委员会委员、Frontiers in Chemistry副主编以及Analytica Chimica Acta, Rapid Communications in Mass Spectrometry,《中国质谱学报》,《分析测试学报》等期刊编委。会上,姚钟平教授将作主题为《氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象》的报告。利用氢氘交换质谱(HDX-MS)并结合原态离子迁移质谱(Native IM-MS)以及分子动态(MD)模拟,发现不同亚型的A型β-内酰胺酶在几个主要的结构域存在显著的动态构象差异。进一步研究了A型β-内酰胺酶与抑制蛋白结合界面的动态结构变化,结果揭示了H10区域是一个可调节β-内酰胺酶抑制作用的别构部位。报告人:浙江大学 研究员 周默为报告题目:非变性质谱剖析异质性蛋白复合体结构和功能信息浙江大学首位“求是实验岗”研究员,分析化学专业,长期从事前沿生物质谱技术和仪器的开发工作。2008年本科毕业于武汉大学,2013年博士毕业于美国俄亥俄州立大学,之后两站博士后分别在美国FDA和西北太平洋国家实验室PNNL。2018年成为PNNL的研究员开展独立研究,培养多名博士后和学生。2023年加入浙江大学。截至目前共发表60余篇学术论文,代表作包括在Angewandte Chemie, Nature Communications, Analytical Chemistry等期刊的论文。现任自上而下蛋白组协会(Consortium for Top Down Proteomics)的青年委员会主席,曾担任美国质谱协会(ASMS)的出版委员会委员、短课程讲师、评审委员等学术任职,努力推动新分析测试技术的开发和跨学科领域的应用研究。本次会议中,周默为研究员将为介绍题为《非变性质谱剖析异质性蛋白复合体结构和功能信息》的报告。精准表征生物大分子的微观结构对各类生物工程、生物医药领域的研究至关重要。由于大部分质谱检测到的分子量范围有限,在分析之前生物大分子需要先被剪切为分子量更小的片段。但是剪切和碎片化的过程中会丢失一些关键的结构信息。前沿质谱技术提高了仪器的分子量上限,使非变性条件“自上而下”研究完整的生物大分子更加容易。我将以具体案例,阐述自上而下非变性质谱技术在异质性蛋白质复合体结构和功能解析中的贡献,以及与其他方法的互补性。报告人:北京大学 研究员 王冠博报告题目:生物样本中蛋白高级结构的质谱分析北京大学生物医学前沿创新中心研究员。北京大学学士,美国马萨诸塞大学博士,曾于荷兰乌特勒支大学暨荷兰蛋白组学中心从事博士后研究;曾任南京师范大学教授、博士生导师。主要从事免疫反应相关蛋白质的高级结构及相互作用研究,以生物质谱为核心工具,结合新型分析设备研发,应用于生物物理学、蛋白质药物分析等领域。长年与国际药企合作研发新型药物表征技术并应用于新药研发。获国际国内授权专利,出版《Mass Spectrometry in Biopharmaceutical Analysis》等专著、译著、合著多部。任中国生物化学与分子生物学会蛋白质组学专业分会委员、国际学术组织Consortium for Top-Down Proteomics青委会委员。本次会议中,王冠博研究员将围绕生物样本中蛋白高级结构的质谱分析主题分享报告。生物质谱已成为蛋白质多次结构表征的重要工具。为将蛋白结构质谱技术的应用拓展至生物样本乃至临床样本中,我们针对背景基质复杂、糖基化等修饰异质性高、超大分子量颗粒结构层次多样等问题,以非变性质谱等质谱手段为核心工具开发了一系列组合策略,提供生物样本乃至临床样本中的蛋白高级结构和相互作用关系信息。报告人:中国科学院大连化学物理研究所 研究员 王方军报告题目:高能紫外激光解离-串联质谱仪器研发和应用2011年于中科院大连化物所获博士学位,师从邹汉法研究员。研究工作致力于生物大分子质谱新仪器、新方法及其在生命健康领域的应用研究,搭建了世界首台50-150 nm可调波长极紫外激光超快解离-串联质谱;提出了位点光解离碎片产率和原位化学标记效率定量表征蛋白质结构变化的两种质谱分析新原理,实现亚微克蛋白质复合物序列和结构变化单氨基酸位点分辨表征;发展了蛋白质-纳米材料界面相互作用精细结构的质谱分析新方法等。在Nat. Protoc.,J. Am. Chem. Soc.,Cell Chem. Biol.,Chem. Sci.,Anal. Chem.等期刊发表论文130余篇,他引5000余次。本次会议中,王方军研究员将分享题为《高能紫外激光解离-串联质谱仪器研发和应用》的报告。高能/真空紫外激光解离是表征生物大分子序列和动态结构的前沿结构质谱表征技术,但相关仪器和理论都亟待发展。报告人将介绍近年来自主研发的皮秒脉冲极紫外激光解离装置和蛋白质原位光化学标记仪器的原理、主要参数、与商品化质谱对比、及在蛋白质瞬态结构表征、蛋白-蛋白识别和相互作用机制分析等方面的应用情况。报告人:中国科学院大连化学物理研究所 研究员 赵群报告题目:活细胞内蛋白质原位构象和相互作用规模化解析新方法研究中国科学院大连化学物理研究所研究员,博士生导师。本科毕业于西北大学化学基地班。同年进入大连化学物理研究所攻读博士学位,师从张玉奎院士和张丽华研究员,2014年获得理学博士学位。毕业后留所工作至今,主要从事蛋白质组定性定量及相互作用分析新技术研究,共发表学术论文62篇,其中近五年以通讯/第一作者(含共同)在Nat. Commun., Angew. Chem. Int. Ed.,Anal. Chem.等SCI期刊发表论文23篇;已获20项发明专利授权。作为课题负责人承担国家重点研发计划,作为项目负责人承担国家自然科学基金面上基金等,2023年获国家自然科学基金优秀青年基金支持;2018年入选大连市科技之星,2020年入选中国科学院青年促进会会员,2023年获中国化学会菁青化学新锐奖;兼任《色谱》青年编委、中国化工学会理事、中国蛋白质组学会青年委员、中科院青促会沈阳分会委员等。本次会议中,赵群研究员将围绕题为《活细胞内蛋白质原位构象和相互作用规模化解析新方法研究》的报告。作为生命活动的执行者,蛋白质通过相互作用形成复合体等形式行使其特定的生物学功能。不同于细胞外的离体环境,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合体的结构和功能起着至关重要的作用。因此,实现细胞内蛋白质相互作用的精准解析对于深入研究其生物学功能,进而理解生命现象本质具有重要意义。近年来,化学交联质谱技术已逐渐成为蛋白质复合物解析的重要手段。它是利用化学交联剂将空间距离足够接近的蛋白质内/间的氨基酸以共价键连接起来,再利用质谱对交联肽段进行鉴定,进而实现蛋白质相互作用的组成、界面和位点的解析。现有化学交联技术主要用于解析体外表达纯化的或细胞裂解液中的蛋白质复合物,而在细胞内蛋白质复合物的原位构像解析方面仍处于起步阶段。 针对上述问题,我们团队发展了一系列新型高生物兼容性的可透膜多功能化学交联剂,实现了活细胞内蛋白质复合物构像的原位交联捕获;建立了多种高选择性的低丰度交联肽段的富集方法和高可信度的交联肽段鉴定方法,显著提高了原位交联信息的鉴定灵敏度、覆盖度和准确度;进而,通过靶向富集特定亚细胞器内的交联蛋白质复合物,实现了亚细胞器空间分辨的蛋白质相互作用精准解析;在上述基础上,利用基于化学交联距离约束的分子动力学技术获得了蛋白质复合物的动态系综构像,实现了活细胞微环境下蛋白质复合物组成、相互作用界面及作用位点的规模化精准解析,为规模化地揭示蛋白质复合物功能状态下的结构调控机制提供了重要的技术支撑。为了分享质谱技术及应用的最新进展,促进各相关单位的交流与合作, 仪器信息网与北美华人质谱学会(CASMS)将于2023年12月12-15日联合举办第十四届质谱网络会议(iCMS2023)  。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/iCMS2023/ (点击下图去报名)》》》
  • 使用MaxLynx精确、高覆盖率地鉴定化学交联肽段
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章,Accurate and Automated High-Coverage Identification of Chemically Cross-Linked Peptides with MaxLynx,该文章的通讯作者是德国马普所的 Jürgen Cox 教授。交联质谱 (XL-MS) 能够提供有关蛋白质三维 (3D) 结构及蛋白质间相互作用 (PPIs) 的丰富信息。本文介绍了 MaxLynx ,一种集成到 MaxQuant 环境中的,用于 XL-MS 的计算蛋白质组学工作流程,它同时适用于质谱不可断裂和质谱可断裂的交联剂。此前,已经推广了 Andromeda 肽段数据库搜索引擎[1],以有效地进行蛋白质组学鉴定。在此基础上,对于不可断裂的交联肽,本文应用了一种新的双肽 Andromeda 评分,这是计算效率高的 N 平方搜索引擎的基础;对于质谱可断裂的交联剂,MaxLynx将标志峰得分与碎裂产物上的传统 Andromeda 得分相结合。此外,文章通过优化 MaxQuant 3D 峰值检测,以更加准确地鉴定交联产物。在合成肽的基准数据集上,MaxLynx在以上两种类型的交联剂上的数据和黑腹果蝇细胞断裂物的交联蛋白质组数据集上均优于所有其他测试软件。该工作流程还支持离子淌度增强的质谱数据。MaxLynx可在https://www.maxquant.org/.上免费获得。XL-MS 肽段鉴定算法可以根据其支持的交联剂的类型进行细分,如质谱可断裂 (MS-cleavable) 交联剂和质谱不可断裂 (noncleavable) 交联剂的检索算法。质谱不可断裂的交联剂在质谱分析期间保持了它的完整性,而质谱可断裂的交联剂由于其不稳定键而容易发生断裂。由于 N 平方问题[2,3],质谱不可断裂的交联剂通常应用于较小的蛋白质或蛋白质复合物,而质谱可断裂的交联剂可以实现在整个蛋白质组范围内 XL-MS 的应用。本文使用了由质谱不可断裂的交联剂和质谱可断裂的交联剂获得的交联合成肽数据集评估了MaxLynx,并将其性能与市面上的其他几个软件进行了比较。结果显示,在 1% 的错误发现率 (FDR) 下,MaxLynx 在质谱不可断裂的交联剂和质谱可断裂的交联剂数据集上的表现都优于其他软件。此外,文章还进行了一项复杂的全蛋白质组研究,并将其与 MeroX 已发表的结果进行了比较。结果显示,MaxLynx再次报告了更多的 CSM 以及更多独特的交联肽段。MaxLynx 工作流程MaxLynx 的算法在保留了大部分 MaxQuant 工作流程的基础上,加入了针对交联肽段的检索功能(图 1a)。此外,新颖的峰值优化功能(图 1b)可以改善由于噪声而导致的交联肽段的错误识别。根据所应用的交联剂是否为质谱可断裂或质谱不可断裂,使用两个专门的搜索引擎中的一个来进行检索(图 1c)。图1 MaxLynx的工作流程(a)MaxLynx主要算法步骤的简化框图。灰色的步骤与常规肽检索MaxQuant的工作流程保持不变,而蓝色的步骤是为交联搜索而新开发的。(b)新添加的峰值优化功能,目的是“修复”由于噪音而没有很好地鉴定的峰。(c)质谱可断裂或质谱不可断裂交联剂的检索模式。质谱不可断裂的交联肽段检索MaxLynx 为质谱不可断裂的交联肽段生成一个完整的搜索空间,并在其中执行详尽的搜索。第一步是根据 Andromeda 搜索设置生成初始肽,然后通过组合所有推定的肽来构建搜索空间。交联空间构建后的第二个主要步骤是 MS/MS 交联搜索,即将实验 MS/MS 谱图的前体质量与索引质量进行比较,当索引质量等于一定容差内的实验前体质量时,将生成理论交联肽谱。质谱可断裂的交联肽段检索在质谱分析过程中,可断裂的交联剂经过碎片化,将产生两个带有部分交联剂的肽段(图 1c)。两个肽中较长的用希腊字母 α 表示,较短的用 β 表示。因此,可断裂的交联剂通常会在质谱中生成具有特定质量差异(Δm)的特征双峰信号,也称为特征峰。在 MaxLynx 中,连续应用了三种方法来检测特征峰,即 ①严格质量差法、 ②最高强度法,和 ③放宽标准的质量差法。对于 MS/MS 谱图中的两对特征峰,严格质量差方法取决于观察同一条肽上断裂的交联剂剩余部分的长和短版本之间的质量差异(Δm)。最高强度方法检查 MS/MS 谱图中最高强度的峰是否可以解释为特征峰之一,而无需存在其他特征峰。在具有宽松标准的质量差方法中,只需要一对特征峰。在严格的质量差方法中,目标是找到所有四个特征峰,为此,该算法循环遍历 MS/MS 谱图中大于用户可定义的最小质量的所有峰,并假设它是具有较短交联剂残基的β -肽 (βs) 。然后,检查是否存在剩余相应的三个特征峰,它们分别是具有较长交联剂残基的 β -肽 (βl) 和两种形式的较长肽 ( αs 和 αl ),其质量由下式给出:其中 mp 为交联肽段的前体离子质量。严格的质量差异法的一个缺点是必须观察到四个特征峰。然而,并非所有这些都存在于谱中。此外,还可能存在同源二聚体肽,这意味谱图中仅存在有两个特征峰。为了克服这个问题,该算法实施了第二步,即根据最高强度峰选定特征峰。只要严格的质量差异法找不到解决方案,就会执行此操作。这里的假设是,特征峰属于最强峰。对于每个最强峰,假设它携带较长或较短的交联剂残基。如果上述两种方法都没有找到 MS/MS 谱图的候选肽解释,则算法将使用放宽标准的质量差异法进行第三轮,即只要找到具有特征质量差异的一对峰即可。合成交联肽库的基准测试本文重新分析了几个公开可用的数据集。对于质谱不可断裂的交联剂数据集,与其他算法相比,MaxLynx 在 FDR = 1% 时报告的 CSM 数量最多,平均有 852 个正确和 12 个错误 CSM(图 2)。同时,MaxLynx 报告的独特交联肽段的数量也多于其他软件(平均 230 个)。在质谱可断裂的交联剂数据集上,与其他搜索引擎(MeroX、XlinkX)相比, MaxLynx 报告在 FDR = 1% 时正确交联的数量最多,其中有 185 个正确的和 3 个不正确的独特交联肽段(图 3)。图2 MaxLynx与其他交联搜索引擎在质谱不可断裂的交联剂数据集上的比较(a)显示CSM的数量(b)显示FDR=1%的独特交联肽段的数量。图3 MaxLynx与其他交联搜索引擎在质谱可断裂的交联剂数据集上的比较(a)和(b)分别显示了FDR = 1 % 时的DSBU和DSSO数据集的独特交联肽段的数量。蛋白质组范围内的MS-可断裂交联剂数据的基准测试接下来,本文评估了 MaxLynx 分析大规模蛋白质组范围的交联数据集的能力。为此,文章重新分析了与 DBSU 交联的黑腹果蝇胚胎提取物的 PRIDE 数据集 PXD012546,并与已发表的结果进行了比较。在 FDR = 1% 时, MaxLynx 报告了总共 48,019 个 CSM 和 9035 个独特交联肽段,超过了 MeroX 最初报告的数量,在使用相同设置的情况下。虽然鉴定结果的三次生物学重复之间的重现性是 20%(图 4a),但正如 Götze 等所指出的,这种观察的原因可归因于实验和生物学条件[4]。接下来,文章考察了 MaxLynx 和 MeroX 软件之间重叠的独特交联肽段的数量,并观察到大约 42% 的独特交联肽段在这两者之间同时存在(图 4b)。图4 在大规模蛋白质组全交联搜索中,三次生物学重复的独特交联肽段的重叠(a)大规模交联试验分三次重复进行,并显示了绝对值和百分比。(b)比较了MaxLynx和MeroX的独特交联肽段的总数。离子淌度增强数据文章还考察了 CCS 值如何作为不同类型的交联产物的分子质量的函数(图 5)。结果所示,与线性肽相比,交联肽往往具有更高的 CCS 值以及更高的电荷状态和更高的质量。图5 timsTOF数据集的CCS值,CCS值与分子质量相对应针对DSBU的结果(a)。针对DSSO的结果(b)。重新处理中等大小的蛋白质复合物数据集最后,文章重新分析了一个中等大小的复杂数据集(PXD013947),结果表明,MaxLynx在此数据集上的表现依然很好。MaxLynx和pLink2的CMS数分别为2542和2335,独特交联肽段总数分别为315和287。从这些独特的交联中,MaxLynx报告了120个蛋白间的交联,而pLink报告了94个。独特交联肽段之间的重叠程度为60%。综上所述,MaxLynx 是一种新的 XL-MS 计算工作流程,已集成到 MaxQuant 软件中。本文展示了 MaxLynx 在 FDR = 1% 时优于检索质谱不可断裂的交联剂和质谱可断裂的交联剂数据集的其他软件。同时,它也适用于具有离子迁移淌度增强的数据集。除此之外,MaxLynx的成功还归于新添加的峰值优化功能。虽然,三次生物学重复之间的交联重叠百分比尚不理想,但这可以通过更好的采集策略和进一步的实验优化来克服,例如引入交联肽的匹配运行,以及对此类样本应用数据独立采集的方法。参考文献(1)Cox, J. Neuhauser, N. Michalski, A. Scheltema, R. A. Olsen, J. V. Mann, M. J. Proteome Res. 2011, 10, 1794−1805.(2)Liu, F. Heck, A. J. Curr. Opin. Struct. Biol. 2015, 35, 100−108.(3)Maes, E. Dyer, J. M. McKerchar, H. J. Deb-Choudhury, S. Clerens, S. Expert Rev. Proteomics 2017, 14, 917−929.(4)Götze, M. Iacobucci, C. Ihling, C. H. Sinz, A. Anal. Chem. 2019, 91, 10236−10244.
  • 对于人类蛋白质相互作用网络的结构解析
    大家好,本周为大家分享一篇发表在Nat. Struct.上的文章,Towards a structurally resolved human protein interaction network,该文章的通讯作者是瑞典斯德哥尔摩大学的Petras Kundrotas、Arne Elofsson和欧洲分子生物学实验室的Pedro Beltrao。蛋白质-蛋白质相互作用(PPIs)的表征对于理解形成功能单位的蛋白质组和细胞生物学研究的基础是至关重要的。同时,蛋白质复合物的结构表征是理解蛋白质的功能机制、研究突变的影响和研究细胞调控过程的关键步骤。最近,基于神经网络的方法已经被证明了准确预测单个蛋白质和蛋白质复合物的结构的能力;然而,其在大规模预测人类复杂结构中的应用尚未得到有效测试。在此,本文测试了应用AlphaFold2在预测人类蛋白质相互作用结构上的潜力和局限性,并通过实验提示了界面残基中潜在的调节机制。除此之外,本文还提供了使用预测的二元复合物来构建高阶组装的案例,以此拓展了对于人类细胞生物学的理解。人类蛋白质相互作用的结构预测本文基于AlphaFold2的FoldDock管道对65484对来源于HuRI与hu.MAP V.2.0数据库中实验测定的PPIs的结构进行预测。文章合并了一个pDockQ分数,该分数可以根据置信度对模型进行排序。结果显示,已知相互作用蛋白的pDockQ往往高于随机集;对于hu.MAP数据集显示出平均比HuRI数据集更高的可信度,这表明,高可信度模型集中在具有高亲和力和直接相互作用的蛋白质相互作用区域。实验表明,AlphaFold2可以预测大型复合物中直接相互作用的蛋白对的结构(图1)。图1 | AlphaFold2复合物预测在大规模人类PPIs数据集上的应用影响预测置信度的特征如图1a所示,相较于HuRI和hu. MAP数据库中的蛋白质对,出现在蛋白质数据库(PDB)中的蛋白质对更加富集于高分模型部分。为了更好地理解这种差异,本文首先研究了一个由大型(10链)异质蛋白复合物构建的额外数据集。通过实验,结果显示直接相互作用对与间接相互作用对之间pDockQ分数的差异是显著的,这表明与间接相互作用对相比,即使直接相互作用对是大型复合体的一部分,也往往能够被预测。除此之外,由于HuRI数据库中的许多蛋白质间相互作用很可能是短暂的,而AlphaFold2无法可靠地预测这种相互作用(图2)。图2 | 影响预测置信度的蛋白质和相互作用特征:不同数据集的分析预测的复合物结构在化学交联上的验证化学交联结合质谱分析是一种识别蛋白质对中邻近的活性残基的方法,可以用来帮助确定可能的蛋白质界面。为了确定预测的复合物结构是否满足这种正交空间约束,本文获取了528对具有预测模型的蛋白质对的残基对的交联集合。在此章节中,文章提供了多个案例证明了化学交联验证的有效性(图3)。图3 | 对于预测复合物模型的化学交联支持复合物界面上与疾病相关的错义突变与人类疾病相关的错义突变可以通过多种机制改变蛋白质的功能,包括破坏蛋白质的稳定性、变构调节酶活性和改变PPIs。为了确定预测结构的有效性,本文汇编了一组位于界面残基上的突变,这些突变之前曾被实验测试过对于相应相互作用的影响。文章使用FoldX预测突变时结合亲和力的变化,并观察到破坏相互作用的突变强烈影响了结合的稳定性;另外,本文就在一系列生物学功能中具有界面疾病突变的蛋白质网络簇进行了举例说明(图4)。图4 | 蛋白质复合物界面残基的疾病突变蛋白质复合物界面的磷酸化调节蛋白质磷酸化可以通过改变修饰残基的大小和电荷来调节结合亲和力来调节蛋白质的相互作用,将磷酸化位点定位到蛋白质界面可以为它们在控制蛋白质相互作用中的功能作用产生机制假说。本文使用了最近对人类磷酸化蛋白质组26的鉴定,在高置信度模型中鉴定出了界面残基上的4,145个独特的磷酸化位点。实验表明,某些界面可能受到特定激酶和条件的协调调控。虽然不是所有界面上的磷酸位点都可能调节结合亲和力,但这一分析为特定扰动后的相互作用的潜在协调调控提供了假设(图5)。图5 | 界面残基上磷酸化位点的协同调控来自二元蛋白质相互作用的高阶组装蛋白质既能够同时与多个伙伴相互作用组成更大的蛋白复合物,又能够在时间和空间上分离。这也反映在文章的结构特征网络中,即蛋白质可以在群体中被发现,如蛋白质相互作用全局网络视图所示(图6)。由于使用AlphaFold2预测更大的复合物组装可能受到计算需求的限制,文章测试了蛋白质对的结构是否可以迭代结构上对齐。文章在上述网络中覆盖的一组小的复合物上测试了这一过程,并将一个实验确定的结构与预测的模型进行对齐,展示了该过程的潜力和局限性。受测试例子的鼓励,本文定义了一个自动化过程,通过迭代对齐生成更大的模型。总之,文章发现可以迭代地对齐相互作用的蛋白质对的结构来构建更大的组装,但同时也发现了目前限制这一过程的问题。图6 | 对高阶组装的蛋白质复合物的预测结论本文通过一系列的实验评估了应用AlphaFold2预测已知人类PPIs的复杂结构的潜力与局限性。分析结果表明,由亲和纯化、共分馏和互补的方法组合支撑的蛋白质相互作用能够产生更高置信度的模型。文章证明,可以使用模型指标(如pDockQ评分)对高置信度模型进行排序,为大规模PPIs和稳定复合物的详细研究提供支持;而来自交联质谱实验的数据为进一步验证这些预测提供了理想的资源。除此之外,本文用疾病突变和磷酸化数据证明了蛋白质界面的结构模型对于理解分子机制以及突变和翻译后修饰的影响至关重要;最后,文章提出了从预测的二元配合物出发构建更大的组件结构模型的想法。后续仍需要更多的工作来确定确切的化学计量学,设计方法和评分系统来构建如此更大的复杂组件,以及预测具有弱和瞬态相互作用的蛋白质之间的相互作用。参考文献(1) Burke DF, Bryant P, Barrio-Hernandez I, et al. Towards a structurally resolved human protein interaction network [published online ahead of print, 2023 Jan 23]. Nat Struct Mol Biol. 2023 10.1038/s41594-022-00910-8. doi:10.1038/s41594-022-00910-8
  • 实验室仪器紫外交联仪“特惠节”对折优惠
    11月8日-11月11日,上海比朗(BILON)&ldquo 特惠节&rdquo 即将拉开华丽大幕。此次活动以&ldquo 只为正品买单&rdquo 为口号,在四天的持续活动中,比朗将携上百款实验室仪器,向广大用户提供小型喷雾干燥机、无菌均质器、紫外交联仪、分液漏斗振荡器、超声波清洗机制冰机、高速组织捣碎机、电热恒温水槽、水浴恒温振荡器等上百种种高品质商品,并通过满赠、直减等方式回馈广大消费者。  作为比朗五月最给力的品牌让利活动之一,&ldquo 特惠节&rdquo 将从11月8日到11月11日,旨在为用户打造一个&ldquo 天天低价&rdquo 的&ldquo 扮靓月&rdquo 。此次&ldquo 特惠节&rdquo ,共将推出四波精彩纷呈的主题活动,相信一定会让消费者惊喜不断。  秉持&ldquo 用户为先&rdquo 的经营理念,&ldquo 上海比朗仪器制造有限公司&rdquo 一直致力于为消费者提供正品、低价的产品,创造更安全、更放心、更便捷的购物体验。截至目前,我公司产品先后在中科院、农科院、医科院等高等研究院所以及北京大学、上海交通大学、复旦大学、浙江大学、香港中文大学、香港理工大学等大专院校的国家重点实验室选用,并在上海张江药谷、苏州纳米科技园、泰州医药高新技术园区等都有广泛的应用。  比朗厂商直供占比高达60%,在业内保持领先地位。这体现了各知名品牌对上海比朗与实力的认可,也为消费者放心购买产品提供了最为有力的品质保障。  BILON品牌,用心服务  国内销售部:021-5296 5776  国外销售部:021-5296 5967  链接:http://www.bilonhwq.com/了解上海比朗仪器
  • 俞书宏院士团队和吴恒安教授团队成功揭示淡水河蚌铰链中可变形硬组织耐疲劳机制
    脆性材料作为结构或功能部件被广泛应用于航空航天、电子器件和组织工程等领域。由于人工脆性材料对微裂纹和不易察觉的缺陷很敏感,在长时间的循环载荷作用下,材料很容易累积损伤产生疲劳裂纹,进而存在失效的风险。随着可折叠穿戴设备的发展,对具有高疲劳抗性的可变形功能材料的需求日益凸显。通过模仿典型的生物矿物材料如珍珠母、骨骼等的结构设计可以提升脆性材料疲劳抗性,但这常依赖于疲劳裂纹扩展过程中增韧行为,然而一旦裂纹开始扩展,就会对器件的性能产生不可逆的影响,因此寻找并开发新的耐疲劳结构模型对未来可变形功能材料的设计制备具有重要的科学意义和应用价值。中国科学技术大学俞书宏院士团队和吴恒安教授团队成功揭示了双壳纲褶纹冠蚌铰链内的可变形生物矿物硬组织的耐疲劳机制,提出了一种多尺度结构设计与成分固有特性相结合的耐疲劳设计新策略,为未来耐疲劳结构材料的合理创制发展提供了新的见解。研究成果以“Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata”为题,于6月23日发表在国际顶尖学术期刊《Science》上。审稿人评价称:“这份手稿展示了一个非常有趣的工作”、“这是一份令人兴奋的稿件。它集成了诸多表征技术来理解双壳纲铰链组织的显著疲劳抗性”、“这无疑激发了对生物复合材料的进一步研究,以设计抗疲劳性能增强的新材料”。同期《Science》观点栏目(Perspectives)以“A bendable biological ceramic”为题发表了评述(Science 2023, 380, 1216-1218),评述称“通过整合不同尺度的原理——从铰链的整体结构到单个晶体的原子结构——孟等人揭示了大自然如何主要从脆性成分中创造出抗疲劳、可弯曲、有弹性的结构。这些跨尺度原理要求在最精细的尺度上精确,而软体动物如此精确地沉积壳的细胞和分子机制是一个正在探索的领域”;“匹配生物精细控制对于对生物启发材料感兴趣的人类工程师来说是一个特别的挑战,正如开发模仿珍珠质强度和韧性的复合材料所面临的困难所证明的那样”;“尽管孟等人研究的力学性能与这种特殊生物体的需求相匹配,这些原理如何在更广泛的系统范围内得到完善,这是令人兴奋的前景。”论文共同第一作者为中国科学技术大学合肥微尺度物质科学国家研究中心博士研究生孟祥森,近代力学系周立川博士(现就职于合肥工业大学)、化学系刘蕾博士。我校俞书宏院士、吴恒安教授和茅瓅波副研究员为论文通讯作者。双壳纲动物褶纹冠蚌(Cristaria plicata)又称鸡冠蚌,是一种常见的淡水蚌类。为了满足生存需求(滤食、运动等),其外壳在一生中需要进行数十万次的开合运动,而连接两片外壳的铰链部位也会经历反复的受压和变形,表现出优异的耐疲劳性能。本工作中,研究人员揭示了铰链部位中的折扇形矿物硬组织所蕴含的跨尺度耐疲劳设计原理。从计算机断层扫描图(CT)和剖面光学照片可以看出,铰链可以分为两个不同的区域:外韧带(OL)和折扇形矿物硬组织(FFR)(图1,A和B)。研究人员首先观察了这两个区域在双壳开合过程中的运动行为(图1,D和E),并结合有限元分析(FEA),明晰了不同区域所承担的力学角色。在闭合过程中,OL发生拉伸,承担主要的周向应力并储存大部分弹性应变能;FFR区域在周向弯曲变形,并在受限的径向变形下提供强有力的径向支撑用以固定OL(图1,F到H)。图1(A)褶纹冠蚌和截面照片;(B)铰链切片照片和CT重构图;(C)在正常开合和过载状态下的疲劳测试结果;(D)开合前后铰链各区域形状变化及其轮廓图;(E)有限元模型对应的开合前后的铰链各区域形状变化及其轮廓图;(F)铰链有限元分析模型示意图;(G)开合状态下铰链各区域周向应力分布;(H)开合状态下铰链各区域径向应力分布。研究人员对FFR在不同尺度上的观察发现,其具有跨尺度多级结构特征。在宏观尺度上,FFR的扇形外形能使其在OL和外壳之间实现有效的载荷传递。进一步的深入观察发现,FFR由弹性有机基质和嵌入其中的脆性文石纳米线组成。文石纳米线直径约为100-200纳米,线的长轴方向在形貌上和扇形的径向方向一致,在晶体学上纳米线沿002晶向取向(图2,A到H)。考虑到文石晶体在002晶向的压缩模量远大于其他晶向,这种微观形貌和晶体学取向上的一致性意味着FFR能有效地为OL的拉伸提供支撑(图2,I和J)。这一结果也通过压缩力学和FEA模拟进行了进一步的验证。此外,FEA模拟结果显示,这种微米尺度上的软硬复合微观结构在压缩、拉伸、剪切三种受力状态下能够进行协调变形,在这个过程中有机基质承担了大部分的压缩和剪切应变,极大地减少了材料内部的应力集中,从而避免了文石纳米线侧向断裂,降低了FFR发生疲劳损伤的可能性。图2(A)FFR在纵向上的自然断面扫描图;(B)FFR在横向上的自然断面扫描图;(C和D)FFR脱钙处理之后的扫描图;(E和F)文石纳米线中的孪晶结构透射电子显微图片;(G和H)文石纳米线沿长度方向上的晶体学特征;(I和J)整个FFR中纳米线在形貌上和晶体学上的取向分析示意图。从FFR的横截面观察,文石纳米线呈近似六边形,研究人员通过高分辨透射电子显微镜也在纳米线中发现了纳米孪晶结构,考虑到文石纳米线沿002方向生长,这一结构可能与文石晶体Pmcn空间群易形成(110)孪晶界密切相关。这种沿纳米线纵向方向的孪晶结构的存在,在纳米尺度上大大强化了纳米线抗弯曲断裂的能力(图2,E和F)。与典型的天然硬质生物矿物材料(如骨骼、牙釉质)以及人工材料(如金属、水凝胶)等相比,FFR所展现的特殊之处在于它能在承担较大周向变形的同时,保持长时间的结构功能的稳定。这项研究从宏观到微纳米尺度上揭示了FFR的跨尺度多级结构设计原则(图3)。图3 典型生物和人工结构材料的耐疲劳设计机制。FFR中所具备的跨尺度结构特征使其在可变形能力上明显优于典型的生物矿物如牙釉质和骨骼,与常见的人工弹性体材料相比,FFR也一定程度保持了其高硬度和刚度。这项研究揭示了含脆性基元的生物矿物材料在较大形变下的耐疲劳设计新机制,填补了国际上含脆性组元的仿生耐疲劳材料设计的空白,所提出的整合跨尺度结构特征与功能特性的设计策略,能够在不同尺度上充分发挥每种成分的固有特性,从而实现材料整体性能的优化。这种兼顾变形性和耐疲劳性的跨尺度设计原则有望为未来功能材料的仿生设计和创制提供崭新思路。该研究得到了国家重点研发计划、新基石科学基金会、国家自然科学基金重点项目和中国科学院青促会等项目的资助支持。论文链接:https://www.science.org/doi/10.1126/science.ade2038Featured by Science Perspectives:https://www.science.org/doi/10.1126/science.adi5939
  • 上海比朗新品紫外交联仪 2013隆重推出
    上海比朗仪器BLUV07-II紫外交联仪是一种多用途的254mm紫外辐射系统,主要用于将核酸交联于膜上。还可用于琼脂糖凝胶中DNA的切割、RecA突变筛选、嘧啶二聚体产生的部分限制性内切酶消化、UA灭菌消除PCR污染等。在紫外灭菌、聚合物紫外处理等方面也有应用价值。2013年初又推出新品,产品品质更加稳定可靠。产品核心电子元件都采用国外进口,来自日本,欧美等国家。  为使核苷酸固定在杂交膜上,传统的方法是将膜置于80℃真空烘箱中烘2小时,而比朗紫外交联仪上仅需在254nm紫外光下照射几秒钟即可。紫外照射可使杂交信号比传统烘烤法提高5-10倍。由于紫外交联仪配置了一种紫外能量程序设计系统(Joules/c㎡),即其中的时间积分仪连续检测紫外光的照射。当能量吸收值达到设定值时,照射将自动停止。所以不管紫外光源强弱与否、时间差异与否,照射循环均有很好的重复性。  紫外交联仪主要特点:  ①为使核苷酸固定在杂交膜上,传统的方式是将膜于80℃真空烘箱中烘2小时,而在紫外交联仪上仅需在254nm紫外光下照射几秒种即可。  ②紫外照射可使杂交信号比传统烘烤法提高5-10倍。  ③由于紫外交联仪配置了一种紫外能量程序设计系统(Joules/cm2),即其中的时间积分仪连续检测紫外光的照射。当能量吸收值达到设定值时,照射将自动停止。所以不管紫外光源强弱与否、时间差异与否,照射循环均有很好的重复性。  ④关机信息不丢失,中文液晶屏显示。  ⑤可触摸键盘,UV遮挡视窗。  ⑥不锈钢紫外曝光室。  紫外交联仪技术指标:  ●UV波长:254nm(根据用户需求另配,254nm 312nm, 365nm灯)  ●曝光时间测量范围:0-999.9(分钟),功率60W  ●UA光源:5个10W灯管 关机信息不丢失  ●9个曝光能量设定并可保存 汗化液晶屏显示  ●9个曝光时间设定并可保存 可触摸键盘  ●UV曝光能量手动设置 UV遮挡视窗  ●UV曝光时间手动设置 大型不锈钢紫外曝光机  ●外部尺寸:360mm× 340mm× 310mm  ●曝光室尺寸:长340mm× 宽260mm× 高150mm上海比朗仪器始终贯彻&ldquo 质量是企业的生命力&rdquo 这一方针,引进国外先进技术,打造一流品牌,追求客户满意,提供优良服务。欢迎新老客户莅临订购。更多紫外交联仪产品信息:http://www.bilon.cc
  • 中国科大在提升3D打印水凝胶结构分辨率研究方面取得重要进展
    墨水直写3D打印是一种应用广泛的增材制造技术,该方法依赖的墨水成分选择空间大并且制造成本相对低廉。然而,墨水直写方法受制于低打印分辨率,在打印高分辨率的三维结构方面十分困难。水凝胶是一个高度溶胀的高分子网络,失水时可以产生巨大的体积变化,利用三维水凝胶结构的体积收缩来制造微型结构是一个可选的方案。此外,墨水直写方法在打印具有复杂悬空结构时同样面临着挑战,常用的策略是后期将目标材料灌入打印的牺牲模板中来间接制造复杂三维结构。最近的研究工作集中在光固化牺牲模板上,但是去除这些模板一般需要高温处理或有毒溶剂,极大地限制了可灌注的目标材料种类。   近日,中国科大俞书宏院士团队报道了一种提升墨水直写3D打印技术分辨率的方法,该方法是基于一种可打印水凝胶(卡波姆凝胶)的可控收缩特性。研究人员通过引入分子链间的共价键交联赋予了水凝胶干燥后均匀收缩的特性,3D打印水凝胶结构的体积可收缩至原先的0.5%,提升了墨水直写3D打印技术的制造分辨率。此外,研究人员利用该水凝胶体系预先打印牺牲模板,而非将目标材料墨水直接纳入打印墨水体系,无需对目标墨水的流变性能进行重新设计,拓展了可制造材料的种类。该研究成果以“Controlled desiccationof preprinted hydrogel scaffolds toward complex 3D microarchitectures”为题发表在Advanced Materials上。我校博士生崔晨为论文的第一作者,俞书宏院士和高怀岭教授为通讯作者。   为了提高墨水直写3D打印技术的打印复杂度和打印分辨率,研究人员利用具有可控收缩特性的水凝胶微粒作为牺牲模板的墨水,打印的水凝胶牺牲模板在受控干燥后体积收缩了99.5%(图1g),成功制造了具有亚毫米分辨率的复杂三维结构(以双螺旋结构为例)。研究表明,水凝胶中的分子间共价交联是实现水凝胶均匀收缩的关键因素之一。研究人员测试了多种交联方式的水凝胶,验证了该策略的普适性。图1 可控收缩水凝胶通过墨水直写3D打印制备牺牲模板,打印结构经过自然干燥,在保持原先结构的前提下体 积大大减小,由此提升了制造分辨率   为了进一步研究牺牲模板中孔道的几何各向异性对收缩均匀性的影响,研究人员分别打印了具有水平和竖直圆柱形孔道的支架。水平和竖直孔道截面的重叠系数分别为0.94和0.95,表明了孔道结构收缩前后的高形状保持率和水凝胶支架在三维空间的均匀收缩(图2a)。为了探索水凝胶的最大收缩倍数,使用氢氧化钠中和的卡波姆凝胶分别实现了在水平方向上5.95倍、在竖直方向上5.32倍的均匀收缩(图2b)。   研究人员进一步设计了一个具有三维导电通路的逻辑电路和磁性微型机器人作为概念验证。可控收缩的3D打印水凝胶在干燥后构成了微电路支架,注入的液态金属EGaIn构成了内部的导电通路。Micro LED被固定在立方体电路的五个表面上,通过连接底部不同的触点对,Micro LED会被依次点亮(图2g)。利用可控收缩的3D打印水凝胶作为牺牲模板还制造了特征尺寸为90微米的磁性微型机器人。在可控磁场的作用下,该微型机器人具有良好的旋转和运动功能。 图2 水凝胶牺牲支架中孔道的几何各向异性对均匀收缩的影响及制造的三维电路器件   研究人员利用可打印水凝胶的可控收缩特性提升了墨水直写3D打印技术的制造分辨率和结构复杂度。未来,水凝胶辅助3D打印方法将为解决三维微纳制造的经济性和灵活性问题提供新的思路。   该工作受到国家重点研发计划、国家自然科学基金、安徽省高校协同创新项目、中央高校基本科研专项资金等资助。
  • 姜小姐采购紫外交联仪 比朗对该产品详细解答
    昨日,来这南京的江小姐须采购紫外交联仪到本公司进行了解,本公司技术顾问张先生对器做了详细解答。  &ldquo 你们公司紫外交联仪有什么用途么&rdquo 江小姐问道,&ldquo 我们公司BLUV07-II紫外交联仪是一种多用途的254mm紫外辐射系统,主要用于将核酸交联于膜上。还可用于琼脂糖凝胶中DNA的切割、RecA突变筛选、嘧啶二聚体产生的部分限制性内切酶消化、UA灭菌消除PCR污染等。在紫外灭菌、聚合物紫外处理等方面也有应用价值。&rdquo 张技术员回答道。  紫外交联仪有了解过,大部分都一样,你们公司的产品也是如此吧,江小姐问到。技术张笑着说起,紫外交联仪仪器特点:为使核苷酸固定在杂交膜上,传统的方式是将膜于80℃真空烘箱中烘2小时,而在紫外交联仪上仅需在254nm紫外光下照射几秒种即可,紫外照射可使杂交信号比传统烘烤法提高5-10倍。  由于紫外交联仪配置了一种紫外能量程序设计系统(Joules/cm2),即其中的时间积分仪连续检测紫外光的照射。当能量吸收值达到设定值时,照射将自动停止。所以不管紫外光源强弱与否、时间差异与否,照射循环均有很好的重复性。  还有,关机信息不丢失,中文液晶屏显示,可触摸键盘,UV遮挡视窗,不锈钢紫外曝光室。  听到张技术顾问这样详细的介绍,江小姐对本公司紫外交联仪很满意,订购8台,并且已经提前支付货款,今日进行发货。上海市闵行区北松公路588号16号楼仓储中心、联系电话:021-52965776
  • 南洋理工大学Hu Xiao教授课题组《Adv. Eng. Mater》:高精度3D打印聚合物衍生高强度陶瓷:前驱体分子结构的影响
    增材制造又称3D打印是一项新兴技术,其为制造高度复杂的三维几何形状产品提供了灵活和快速的平台。3D打印在诸如航空航天、能源、机械超材料和生物医学工程等领域的应用有独特的优势。立体光刻技术是一种最早和最广泛使用的增材制造技术,微立体光刻技术(PµSL)用紫外线光束在光敏树脂表面有选择地固化,投射出的图案能够以微米级的高分辨率制造复杂的三维结构。一方面,由于3D打印产品潜在的广泛应用,开发适用于高分辨率立体光刻技术的新型光敏树脂和预聚物有巨大的需求。另一方面,陶瓷材料广泛应用于各个领域,但传统的加工陶瓷的方法诸如铸造和压力成型等只限于相对简单的几何形状;聚合物陶瓷前驱体结合增材制造技术方法提供了有效的途径制备复杂形状的陶瓷产品,打印的陶瓷前驱体经烧结热处理可转换成复杂立体结构的陶瓷制品。近期,新加坡南洋理工大学Prof. Hu Xiao团队提出了一种简单而有效的方法即通过改变前驱体分子结构制备可3D打印的陶瓷前驱体聚合物的方法。该团队利用新型微立体光刻打印机(nanoArch S140,摩方精密BMF)实现了基于硫醇-烯点击化学的SiOC前驱体的高精度3D打印(图一)。打印的样品在1000℃热解后转化的SiOC陶瓷具有高保真度。由四硫醇(4T)配方转化的SiOC陶瓷样品展现出优异的机械强度,超过了基于三硫醇(3T)的和目前文献报道的其它SiOC陶瓷前驱体聚合物。图 1.用面投影微立体光刻技术(PμSL)打印陶瓷前驱体聚合物示意图众所周知,材料的机械性能依赖于其分子结构和交联网络。均匀和高度交联网络的材料可以表现出更好的机械性能。化合物4T拥有四个硫醇基团, 因此可在硫醇-烯点击聚合中形成更密集和更均匀的交联结构,其产生的均匀和高度交联的结构有可能使陶瓷前驱体聚合物热解后形成规则和更密集的SiOC陶瓷,从而增强机械性能。图2中所示结果符合这一推断,在相同的热解温度下4T衍生样品的抗压强度为337 MPa,比3T衍生样品的抗压强度高出两倍多。4T衍生的陶瓷样品的抗压强度也高于文献报道的其它陶瓷前驱体聚合物衍生的SiOC样品。图 2.PμSL打印制备样品的力学性能相较于线性硫醇化合物强烈的令人厌恶的气味,本工作所采用的多支链硫醇气味低。而且得到的光敏陶瓷前驱体在BMF PµSL打印机上可实现高精度3D打印(图3)。图 3. 摩方精密的S140所打印的陶瓷前驱体和转化的陶瓷样品本工作提出的方法操作简单,通过合理选择单体硫醇-烯前驱体配方即可达到优化最终产物性能的目的,这不仅适用于高力学强度SiOC陶瓷的3D打印,也可以适用于其它高性能聚合物衍生的陶瓷的制备。这个工作以“High Precision 3D Printing of High Strength Polymer Derived Ceramics: Impact of Precursor’s Molecular Structure”为题发表在《Advanced Engineering Materials》期刊上。
  • 生物物理所重大进展:90S核糖体前体冷冻电镜结构获解析
    核糖体是由RNA和大量蛋白质构成的大型分子机器,负责地球上所有生物的蛋白质合成。在真核生物中,核糖体组装是个非常复杂的过程。核糖体在成熟过程中需要和大量的组装因子暂时结合,形成了一系列核糖体前体复合物。小亚基核糖体在组装过程中形成两个主要的中间体:早期的90S和晚期的pre-40S前体。90S前体是个巨大的复合物,除了含有核糖体RNA和蛋白质组分,还含有约50个非核糖体蛋白质和U3 snoRNA,分子量高达5百万道尔顿。  中国科学院生物物理研究所叶克穷实验室利用冷冻电镜和单颗粒重构技术获得了出芽酵母90S核糖体前体的3个电子密度图,其中最好的密度图的整体分辨率达到4.5埃。研究人员利用已知的晶体结构、从头建模和化学交联质谱数据构建了接近完整的90S结构模型。  90S的结构显示新生核糖体小亚基折叠形成多个分离的亚结构,并和大量组装因子结合。核糖体前体RNA的5' 间隔区域、U3 snoRNA和大量组装因子形成巨大的基座,支撑新生核糖体的结构。结构还揭示了U3 snoRNA和核糖体前体RNA结合的新颖方式。该结构对理解核糖体小亚基的早期组装原理和组装因子的功能具有里程碑的意义。  报道该工作的论文Molecular architecture of the 90S small subunit pre-ribosome 于2月28日在eLife 杂志在线发表。  叶克穷是该论文的通信作者,孙奇、朱星、奇佳和安卫东是共同第一作者。合作者董梦秋和谭丹以及叶克穷课题组多位研究人员对该研究也有重要的贡献。中科院生物成像中心为该研究提供关键的冷冻电镜研究设备和技术支持。该研究得到了国家自然科学基金委、中科院战略性先导科技专项(B类)、科技部和北京市政府的资助。  文章链接 90S核糖体前体的冷冻电镜结构
  • 使用 CRIMP 2.0 对交联肽进行高灵敏度蛋白质组规模的搜索
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,High-Sensitivity Proteome-Scale Searches for Crosslinked Peptides Using CRIMP 2.0,该文章的通讯作者是卡尔加里大学的David C. Schriemer教授。  交联质谱(XL-MS)是一种在蛋白质空间中生成点对点的距离测量值的有价值的技术。然而,基于细胞的XL-MS实验需要高效的软件来灵敏及错误率可控地检测交联肽。已经有许多算法通过过滤策略,在进行交联搜索之前达到缩减数据库的大小的效果,但也有人担心使用这些策略可能会降低灵敏度。  本文提出了一种新的评分方法,使用快速预搜索方法和受计算机视觉算法启发的概念来解析来自其他冲突反应产物的交联。对几个精选的交联数据集的搜索显示了很高的交联检测率,即使是最复杂的蛋白质组水平的搜索(使用不可断裂或可断裂的交联剂)也可以在传统的台式计算机上高效地完成。通过在评分方程中包含组成项,蛋白质−蛋白相互作用的检测增加了两倍。该组合功能可在软件Mass Spec Studio中作为CRIMP 2.0提供。  CRIMP 2.0 集成了改进的库缩减引擎和新的评分算法,可解决所有类别命中(例如游离肽、单链和交联)的谱图冲突。文章中修订后的误差估计方法考虑了在其他搜索工具中大多被忽略的跨类别的谱图冲突,并支持检测蛋白质-蛋白质相互作用的新方法。本文证明了库缩减策略确实可以提供高灵敏度,并支持不可断裂和可断裂实验类型的全蛋白质组分析,并且只需使用很少的计算资源。  图1 概述了搜索MS2数据集以寻找肽交联证据的典型方法的示意图。单通道方法从假定的交联肽的前体质量开始,并通过一个涉及α肽质量、β肽质量和交联剂质量的简单的三项加和来限制数据库搜索。然后,在MS2谱图中搜索组合。双通道方法由MS2谱图开始并结束:首先,在MS2数据中发现了候选α和β肽,此时,前体质量才用于限制组合,以便对MS2数据进行更详尽的搜索。  图2 使用Beveridge等人研究的DSS交联剂的复制数据集测试交联灵敏度。以(A)为5%和(B)为1%的计算FDR值对Cas9数据库进行了分析。分段Cas9数据库的结果在(C)为5%和(D)为1% FDR,显示为蛋白内和蛋白间搜索结果。使用多个添加的数据库显示诱饵数据库的效果,并注意到蛋白质的复杂性。真实的%FDR展示为标注数字。  图3 使用 DSSO 作为交联试剂和阶梯式HCD MS2 方法进行数据采集的平均交联肽段数目。上述算法的所有结果均来自添加了 CRIMP 2.0 的 Matzinger 等人,预期 FDR 为 1%(成对的左条),并使用分数后截止显示校正结果以达到实验验证的 FDR 1%(成对的右条)。  图4 合成肽基准数据集2中检测到的 PPI 数量,来自Matzinger 等人的研究。  蓝色条表示以估计的 5% FDR 进行的搜索,橙色条表示以估计的 1% FDR 进行的搜索。检索基准中的所有三组数据,并在搜索数据库中使用指示数量的蛋白质来探索诱饵的影响。真实的%FDR展示为标注数字。  图4 使用两种交联试剂交联大肠杆菌蛋白质组的 PPI 搜索结果。大肠杆菌蛋白质组使用两种交联试剂。(A)以目标5%FDR进行的搜索和(B)以目标1%FDR进行的搜索。结果基于Lenz等人研究中建立的近似PPI数据库,使用成分知情PPI评分方法。图底部的百分比显示了基于库组成的计算出的 FDR 值。  本文的结果表明,双通道数据库简化方法可以返回复杂样品中交联组成的灵敏测量。控制数据库限制的程度允许用户调整搜索速度以满足实验的需要,而不会引起对极大的灵敏度损失,因为对搜索参数的依赖性是适度且可预测的。通过对关键搜索词(如N,Eα和Eβ)进行细微的调整,即使是人类蛋白质组和密集的数小时LC - MS / MS运行也可以在一天或更短的时间内在一台台式计算机上进行处理,例如本研究中使用的那样。对于高度复杂的系统,蛮力穷举方法可能被证明不如双通道方法敏感。数据库的不必要扩展可能会产生嘈杂的搜索,就像蛋白质组学搜索使用过多的变量修改进行参数化时所做的那样。CRIMP允许对可裂解和不可裂解的交联剂进行强健的搜索,而不可裂解试剂在原位应用中应得到更多关注。这些试剂更容易合成,并且在这种规模上显然是互补的。此外,这些试剂产生跨肽片段离子,这可能是验证命中值的必要条件,特别是在探索相互作用由翻译后修饰定义的高度复杂状态时。总而言之,本文提出的 CRIMP 2.0 提供了此类活动所需的灵敏度和搜索速度。  撰稿: 聂旻涵编辑: 李惠琳  原文: High-Sensitivity Proteome-Scale Searches for Crosslinked Peptides Using CRIMP 2.0  参考文献  1. Crowder DA, Sarpe V, Amaral BC, Brodie NI, Michael ARM, Schriemer DC. High-Sensitivity Proteome-Scale Searches for Crosslinked Peptides Using CRIMP 2.0. Anal Chem. 2023 95(15):6425-6432. doi:10.1021/acs.analchem.3c00329
  • 麦克仪器给力科学研究-用于脂化生物柴油合成中游离酸的超高交联聚苯乙烯磺酸催化剂
    随着美国麦克仪器的市场份额的逐步壮大,美国麦克仪器已经成为行业科学研究必备仪器,日前英国哈德斯菲尔德大学教授发表了一篇题为&ldquo 用于脂化生物柴油合成中游离脂肪酸的超高交联聚苯乙烯磺酸催化剂 &rdquo 学术文章,已经被Applied Catalysis B: Environmental(115&ndash 116 (2012) 261&ndash 268)收录,在该项研究中,美国麦克仪器ASAP 2020与DVS Advantage仪器成为表征催化剂最强有力的工具,为其研究提供了最具可信度的分析结果。以下列举该文章的摘要以及链接供参考:链接:http://www.sciencedirect.com/science/article/pii/S0926337311006102标题:Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis摘要: New sulphonic acid catalysts supported on hypercrosslinked polystyrene have been studied in the esterification of oleic acid with methanol and in the rearrangement of &alpha -pinene to camphene and limonenes. The catalysts have been characterised in terms of specific surface areas and porosities, affinities for water and for cylcohexane vapours, and both concentrations and strengths of acid sites. They have been compared with conventional macroporous polystyrene sulphonic acids (Amberlysts 15 and 35) and SAC-13, a composite between Nafion and silica. The results show that the hypercrosslinked polystyrene sulphonic acids, despite exhibiting relatively low concentrations of acid sites and acid site strengths below those of Amberlysts 15 and 35, are very much more catalytically active than conventional resins in reactions such as the esterification in which high acid site strengths are not required. It is thought that this is due to the highly accessible acid sites throughout the catalyst particles. Reusability studies are reported and it appears that the temperature at which the catalyst is used is important in controlling and minimising catalyst deactivation. 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • 清华大学重大成果:酵母核糖体组装前体的高分辨冷冻电镜结构
    核糖体是一种广泛存在于细胞中的分子机器。所有生物,包括微小的细菌直至人类个体,都依赖核糖体对各种各样的蛋白质进行生物合成。作为一个分子量巨大的复合物,核糖体本身是如何在细胞中由多条RNA链及超过70种蛋白分子装配而成?这一问题已困扰相关领域科学家近30年。  核糖体自身是一个由核糖核酸(RNA)和蛋白质组成的超大复合物(半径20纳米),其三维结构和分子机制的研究一直是生命科学基础研究中的重要方向。2009年的诺贝尔化学奖即授予了首次解析出细菌核糖体原子分辨率的三位结构生物学家。  真核细胞核糖体装配过程是个高度复杂的动态过程,有超过300种不同功能的辅助装配因子(蛋白质或者RNA)参与其中。然而绝大多数装配因子的结构及其行使功能的分子机理完全未知。此外,核糖体的组装与细胞的生长调控通路密切相关,某些装配因子的遗传突变会导致核糖体生物生成的失调,引起一系列的人类遗传性疾病(称为ribosomopathies)。某些特定的装配因子(例如eIF6)不正常表达也在多种人类癌症细胞中被发现。因此,针对核糖体装配过程的研究不仅具有重要的科学意义,还具有潜在的临床应用潜力。  图1酵母核糖体大亚基组装中间体的3.08埃冷冻电镜结构。a,3.08 埃冷冻电镜密度图,核糖体蛋白颜色为米色,核糖体RNA颜色为灰色。b,19个装配因子的原子模型。  清华大学生命科学学院高宁研究组自2009年一直致力于研究各种生物的核糖体装配过程。2013年,高宁研究组和美国卡内基梅隆大学的约翰伍尔福德(John L. Woolford Jr)教授研究组携手合作,利用清华大学的高端冷冻电镜平台,以真核生物酵母菌为材料,开展真核核糖体的装配研究工作。2015年,合作研究获得重大突破,课题组得到了酵母细胞核内的一系列组成上和结构上不同的核糖体60S亚基前体复合物的冷冻电镜结构。其中一种状态的三维结构分辨率达到3.08埃,其核心部分的分辨率可达2.8埃,是国际在核糖体组装研究领域迄今为止分辨率最高的结构。基于这一冷冻电镜结构,课题组确定了超过20种不同装配因子在核糖体60S前体上的结合位置,并获得了19种装配因子的原子模型。课题组所提供的丰富结构信息为详细阐释真核核糖体装配过程中的多种装配因子功能和分子机制提供了重要基础。  2016年5月25日,报道这一重大突破的研究论文在线发表于《自然》(Nature)期刊,题目为《细胞核内的核糖体组装前体结构揭示了装配熟因子的功能多样性》(Diverse roles of assembly factors revealed by structures of late nuclear pre-60S particles)。高宁研究员和卡内基梅隆大学约翰伍尔福德(John L. Woolford Jr)教授为论文共同通讯作者,清华大学生命学院2013级博士生吴姗为第一作者。北京生命科学研究所董梦秋教授及谭丹博士提供了化学偶联交联质谱数据。论文中冷冻电镜数据收集和处理工作获得了国家蛋白质科学(北京)设施清华大学冷冻电镜平台及高性能计算平台支持。课题组得到了中国科技部、国家自然科学基金委、清华大学自主科研、北京高精尖结构生物学中心的经费支持。  论文链接
  • 北京化工大学汪晓东教授AFM:基于相变材料的“三明治”结构新型红外隐身材料
    热红外隐身材料可通过降低表面红外发射率或温度,实现目标物体的红外隐身功能。然而,随着红外探测仪器的精准度不断提高,对红外隐身材料的要求也越来越高,通过降低红外发射率或表面温度的单一调控方式已无法满足高温物体的红外隐身需求。近日,北京化工大学材料学院汪晓东教授团队报道了一种基于MXene膜、交联聚酰亚胺气凝胶及其与赤藓糖醇复合的三明治结构功能复合材料,将低发射率、热温调控、隔热相结合,实现了高温目标物体的长效红外隐身。该研究成果以“Long-Term Infrared Stealth by Sandwich-Like Phase-Change Composites at Elevated Temperatures via Synergistic Emissivity and Thermal Regulation”为题发表在国际学术期刊《Advanced Functional Materials》。该论文的第一作者为北京化工大学材料学院硕士生敬建伟,通讯作者为刘欢副教授和汪晓东教授。该课题得到了中央高校基本科研基金和国家自然科学基金的资助。在此三明治结构复合体系中,最下层为各向异性聚酰亚胺气凝胶层,其特殊的层状堆叠结构和极低的热导率,可隔绝高温物体大部分热量的传输;中间层为气凝胶相变复合材料层,利用赤藓糖醇的高显热和潜热吸收,保证复合体系的动态温度调节能力;最上层为MXene膜,其在3~5 μm和8~14 μm两个大气窗口波长范围内的平均发射率分别仅为0.315和0.253,为体系表面提供了极低的红外发射率。图1 三明治结构复合材料示意图及MXene膜的制备流程与性能最下层的聚酰亚胺复合气凝胶为多层状堆叠的微观结构,有利于平行通道方向上的热量传递,阻碍垂直于通道方向的传热(导热率低于43.5 mWm-1K-1),进而提升隔热效果。气凝胶高的孔隙率(大于88%)和耐高温稳定性(热分解温度高于500 ℃),为其在高温隔热领域的长期应用提供了保障。图2 聚酰亚胺气凝胶的基本特性中间层的聚酰亚胺气凝胶/赤藓糖醇相变复合材料的过冷度大,且具有较高的熔融焓(315 J/g以上),能够在高温下吸收大量热量,在极低温度下予以释放。相变复合复合材料高过冷和高焓值的特性恰好与高温热伪装应用相契合。热红外成像结果显示,低发射率有助于高温物体表面保持稳定的低热辐射温度;气凝胶阻碍了热量向外扩散与传递;相变复合材料有效减缓了表面温度的快速升高。图3 聚酰亚胺气凝胶相变复合材料的基本特性及红外隐身性能三明治结构复合材料在250、300、350、400和450 ℃的热台上加热2.5小时,其表面的红外探测温度仅为38.6、43.2、49.7、53.7和66.1 ℃,显著降低了高温目标的热辐射温度。此外,MXene膜在X-波段的总电磁屏蔽效能为65.58 dB,约72.3% 的入射电磁波通过MXene膜时被衰减,赋予三明治结构复合材料优异的电磁干扰屏蔽性能。此项研究为实现高温目标物的长效红外隐身提供了一种有效的途径。图4 三明治结构复合材料的高温红外隐身及电磁屏蔽性能原文链接:https://doi.org/10.100 2 /adfm.202309269
  • 乌得勒支大学和布鲁克合作开发4D结构蛋白组学方法
    近日,布鲁克宣布与 Utrecht University(乌得勒支大学,荷兰)合作,共同推进质谱技术在蛋白质3-D结构与相互作用方面的研究工作。乌得勒支大学的Albert Heck实验室在蛋白质组学、用质谱研究蛋白质结构和相互作用方面,具有20多年的丰富经验,在国际上一直遥遥领先。在Richard Scheltema博士加入乌得勒支大学后,领导一个科研小组集中围绕蛋白质组学结构和相互作用的交联质谱(XL-MS)展开研究。Albert Heck和Richard Scheltema的研究小组附属于乌得勒支大学附属的科学学院,工作重心是基于质谱的先进蛋白质组学技术的开发和应用,并以其基于质谱的结构生物学、天然质谱的开拓性方法和交联质谱方面的专业知识而闻名。该小组负责协调欧洲蛋白质组学研究基础设施,并领导荷兰X-Omics计划(www.x-omics.nl)的蛋白质组学核心。布鲁克和乌得勒支大学的合作聚焦于将捕集离子淌度(TIMS)和同步累积连续碎裂(PASEF)的优势与化学交联质谱(XL-MS)技术相结合,进一步拓展4D-蛋白质组学的应用,将timsTOF Pro质谱系统独特的大规模、精准CCS测定的优势应用于结构生物学研究中。该突破性的研究成果刚刚在《Molecular and Cellular Proteomics》上发表,题目为《Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry》1。布鲁克计划将这项研究成果商业化,形成基于XL-MS进行蛋白质结构和相互作用研究的完整解决方案。该方案通过将Heck和Scheltema开发的新颖、可富集的PhoX交联剂2与timsTOF Pro质谱平台上高通量与高灵敏度的PASEF方法相结合,可以发现更多的交联产物,从而得到有关蛋白质结构和相互作用的更多信息。先进的分析软件也是关键,相较典型的鸟枪法蛋白质组学实验,XL-MS获得了更复杂也更丰富的数据信息。Scheltema正致力于开发创新的 XlinkX 软件能够处理TIMS/PASEF数据,并将其提供给timsTOF Pro的用户群。乌得勒支大学Albert Heck教授表示:“我们很高兴同布鲁克合作进一步开发XL-MS的工作流,利用PASEF的快速、独特的大规模精确CCS数据来增强XL-MS中的交联检测。我们很开心在MCP上发表初步成果,并期待着XL-MS的进一步发展。同时我们对利用timsTOF Pro离子淌度分离和CCS值在糖蛋白组学和Top-Down蛋白质组学中的应用也很感兴趣。”乌得勒支大学 Albert Heck布鲁克蛋白质组学副总裁Gary Kruppa博士说:“2001年,我在桑迪亚国家实验室亲身参与了早期XL-MS的相关概念性的工作,我相信Heck团队所取得的研究进展将能够使timsTOF Pro应用于结构生物学研究变成更常规的方法。我们和乌得勒支大学的合作将使XL-MS在结构及相互作用蛋白质组应用得到更快推广。”乌得勒支大学Richard Scheltema教授表示:“我们团队打算通过基于对CCS值的测定和利用,来设置数据采集时的PASEF离子选择界线,从而增强XL-MS工作流程。我们在使用 XlinkX 软件分析XL-MS数据并获得生物信息学方面有了重大进展3,4。我们很高兴因timsTOF Pro采用开放的数据格式架构,XlinkX 开发的代码能将大规模并准确测定的CCS值用于交联肽的鉴定,从而进一步提升了错误发现率(FDR)的计算。”乌得勒支大学 Richard Scheltema参考文献:Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry. Steigenberger B, Van den Toorn H, Bijl E, Greisch JF, R?ther O, Lubeck M, Pieters RJ, Heck AJR, Scheltema RA., Mol Cell Proteomics, 2020 Jul 21:mcp.RA120.002094. doi:10.1074/mcp.RA120.002094. Online ahead of print.PhoX: An IMAC-Enrichable Cross-Linking Reagent. Steigenberger B, Pieters RJ, Heck AJR, Scheltema RA. ACSCent Sci. 2019 Sep 25 5(9): 1514-1522.Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Liu F, Rijkers DT, Post H, Heck AJ. Nat Methods. 2015 Dec 12(12):1179-84. doi:10.1038/nmeth.3603Klykov, O., Steigenberger, B., Pekta?, S. et al. Efficient and robust proteome-wide approaches for cross-linking mass spectrometry. Nat Protoc 2018 Dec 13,2964–2990. https://doi.org/10.1038/s41596-018-0074-x
  • “蛋白质动态学新技术”成功解析蛋白复合体结构
    近日,中国科学院武汉物理与数学研究所研究员唐淳课题组利用基于973重大科学研究计划“蛋白质动态学研究的新技术新方法”建立的研究技术,协助华中农业大学教授殷平课题组首次解析了N6腺嘌呤甲基转移酶METTL3-METTL14蛋白复合体结构,该研究成果发表于《自然》杂志。  该工作揭示了RNA N6腺嘌呤甲基化修饰过程中的结构基础,是表观遗传学领域的一项重大突破。唐淳、武汉物数所副研究员龚洲和博士后刘主参与该项目,利用课题组发展的新技术新方法,通过结合小角X光散射与计算机模拟的手段,为该蛋白复合体的结构解析提供了研究方法上的帮助。  经过近3年的努力,唐淳课题组发展、建立了包括核磁共振波谱、小角X光散射、化学交联质谱分析、单分子荧光检测和成像等技术在内的多种生物物理化学手段,并开发相应的整合计算方法,用于蛋白质动态结构及其转换过程的研究。课题组除了完成自身的科研项目外,积极开展广泛的合作与交流,与国内外同行共享研究技术和方法。目前,得益于“蛋白质动态学研究的新技术新方法”项目的实施,课题组已助力多个重要蛋白质结构的解析,取得了一系列的研究成果,研究成果发表于《自然—化学生物学》、eLife 等国际一流杂志。
  • 南开大学李功玉:我的质谱前十年,从“菜鸟球员”到“菜鸟教练”的奇妙之旅
    从收到中科大黄光明老师转发的贺老师邀请邮件至今,已过去数月有余。很遗憾没能赶上盛大的CNCP-2020《十年回顾》。思考了很久,也拜读了多篇优秀的CNCPer回顾文章,今天总算在南开园,敲下了《我的质谱前十年》这样一个平淡而真实的题目。一直在想是否用《我的质谱前半生》为题会更有吸引力。2012-2022,从中科大起步,踏入质谱分析的科研殿堂,我用了将近十年的时间,勉强完成了从一个质谱“菜鸟球员”(质谱分析方向的一年级研究生)到“菜鸟教练”(质谱分析方向的特聘研究员)的艰难转身。然而,时至今日,在CNCP中我仍然是一名初学者,每天都在继续学习蛋白质组学及相关技术,争取成为一名合格的CNCPer。很荣幸能成为第三代CNCPer一员,也特别感谢贺老师和黄老师给予这样宝贵的平台与机会,我也得以从繁杂的课题组事务中偷得片刻闲暇,在2022年11月的某个傍晚晚饭过后,关上办公室透着微光的玻璃门,放下《视频会议中///请勿扰》的警示牌,随手开了一瓶“82年”的可乐,开始回顾这十年的点点滴滴与细细碎碎。这篇波澜不惊的流水账,期待能给大家茶余饭后带来些许谈资笑料,足矣。如能给年轻的CNCPer学生朋友们带来些许借鉴或者经验教训,也是我内心深处最大的满足啦。  梦起中科大:初识基础质谱  中科大是一个令人魂牵梦萦的地方。出国率高、理科强校、数不清的第一名,对于一个“菜鸟”研究生来说,这些就是中科大耀眼的标签。由于怀揣一个出国梦,因此选择了考研中科大并最终以专业第一的成绩被录取(后来才知道很多同学是保研进来的,根本就不用跟我们pk)。2012年3月底第一次来到科大见到年轻的黄老师。当时在教学楼与黄老师第一次见面聊了一个多小时,初步印象是,黄老师皮肤很好,人也很好。我感觉自我回答很完美的一个问题是:为什么选择分析化学而不是有机化学等其它方向(是因为分析轻松吗)?我说,分析方向相对绿色环保、无毒无害,但是要想出重要成果,肯定要付出加倍努力才行(多么朴实无华的表态)。在我自己当过好多次面试官以后,我才发现自己当时的回答有多么强烈地抓住一位年轻老板的心(此处手动偷笑中)。自此被黄老师选中,追随着黄老师的脚步,在黄老师入职科大大约半年后,我也顺利成为了Huang Lab的第一届硕士研究生。(其实我第一位联系的是邓兆祥老师,当时官网上还没有出现黄老师的太多信息。现在回想起来也要感谢邓老师的推荐,才得以有机会进入质谱分析行业。)  图1. 在Huang Lab搭建的第一个CE-ESI-MS接口装置图。  在中科大这五年,在黄老师的指导下,在科研课题方面,很惭愧仅干了三件小事:1)第一个课题是关于毛细管电泳-质谱接口开发,近乎失败告终(图1,后来课题转给师妹,共同作者发表1篇RCM) 2)基于非接触式电喷雾离子化技术,提出了In-cell MS的概念(原位细胞蛋白质谱,借鉴了当时很火的in-cell NMR),实现了细胞内高表达蛋白的直接进样质谱分析(图2和图3,发表2篇Anal Chem,其中图3是博士毕业前3个月,拿到了博后offer之后等签证过程中的一个quick publication) 3)发展出毫秒级微电泳理论(可能与第一个失败的电泳课题有关)与毫秒级电磁感应加热理论,并整合离子淌度质谱(访问密西根大学),实现了溶液蛋白高级结构动态变化的在线质谱实时监测(发表1篇Anal Chem)。  图2.在Huang Lab搭建的脉冲高压电源电路图、In-cell MS及高通量非接触式电喷雾装置图图3. 博士毕业前3个月发表的一篇Anal Chem  中科大读博期间,有太多的难忘时刻。正如我的博士毕业论文上青涩的文笔所描绘的那般场景,我们致力于发展一种新型的蛋白质质谱监测方式,力争实现细胞内蛋白质的原位、快速监测与结构分析,核心的解决思路是利用超强抗基质干扰能力的离子化方法,并在活细胞内金属蛋白与配体相互作用等方面做了初步的尝试。至今仍会为尝试了6个月差点放弃的全细胞电喷雾实验而突然看到蛋白信号的那一瞬间所触动,起初黄老师和我自己其实都并不太确定最后能拿到信号。6个月的时间里,我们尝试了除了稀释样品外的几乎所有可能想到的方案,直到有一天,我不小心把细胞稀释液给配稀了3个数量级(“失误”),隐隐约约在杂乱的氯化钠团簇离子背景峰中,看到了几个与众不同的多电荷态峰。虽然那时候的信噪比奇差无比,我顿时就预感了成功就在眼前了。剩下的只是参数优化而已。这个课题当时是和中科大化学系刘扬中老师课题组合作的,翻到当时给刘老师的邮件(图4),当时还起了一个特别诗意的名字,One Spray One Separation。这个课题后来我总结起来,还是自己受限于思维定势了,当时一直想着寄希望提高样品量以此获得信号,不曾想过稀释、降低浓度可以减少干扰、提高离子化效率,毕竟惯性思维(思维定势)告诉我,细胞内的蛋白太少了。可是质谱是一个超高灵敏的检测仪器,甚至可以实现单个分子水平上的离子信号监测。虽然后来我们开复盘会的时候,有朝这个方向思考,不过最终并没有进一步实施,后来Albert Heck等相关课题组在charge detection-mass spectrometry(CDMS)仪器上就实现了类似的设想(发表了一系列高影响力文章)。(欲了解相关可点击:电荷检测质谱技术进展)  总结而言,中科大的这段时光是质谱梦的开端,在黄光明老师的指导下,我学会了基础质谱的相关知识,尤其是离子源方面。在黄老师自由宽松的学术氛围下,一切似乎都是那么从容,我可以做自己想做的课题,可以尝试自己不靠谱的想法,这种和谐的科研环境让我很多时候都觉得博士生活并不是人们宣扬的那样枯燥与无趣。这份心态陪伴我渡过了一个又一个关键的时间节点:2014年4月第一篇文章的发表,2015年6月第一次看到细胞内冷应激蛋白的信号,2015年12月与斯坦福大学Richard Zare教授在南京第一次面谈,2016年3月校青年基金获批,2016年4月成功抵达密歇根大学安娜堡分校Brandon T. Ruotolo教授实验室,2016年10月Anal. Chem.接收,2017年4月提交博士毕业论文。  图4. 2015年6月17日首次看到全细胞喷雾钙调蛋白的信号之后,给合作导师刘扬中老师的邮件  寻梦安娜堡:启蒙结构质谱  安娜堡给人的感觉就像是初恋,砰然心动、短暂相伴却也刻骨铭心。在个人职业发展方面,也特别感谢黄老师的大力支持,成功前往密西根大学进行短期交流。这次作为访问学生的身份前往安娜堡的经历,对我的人生走向起着至关重要的作用,彷佛打开了新世界的大门。我可以把所有的事情写成回忆录、拍成照片视频等共享,然而这种认识新事物的过程与体验,若非本人经历是无法体会的。  作为访问学生,第一次去美国,一切都充满未知,语言、饮食习惯、生活和社会环境,每天都给我带来冲击。当时Brandon刚好过了tenure考核,正在学术休假。因此与他直接面对面的交流机会并不多。大多数时间都是跟着实验室师兄师姐们学习离子淌度质谱。很庆幸在此期间接受了离子淌度理论、非变性质谱样品制备以及质谱数据采集及数据处理等方面的系统训练。短短的四个月时间,太多令人回忆起来觉得温暖的瞬间,报到那天是4月11日,负责帮我办手续的HR上来就是一句happy birthday,随后就拿到了后来失而复得的两张UM校园卡(图5)。2016年参加了人生第一次ASMS会议,一个人感受经济舱(第一次坐那种只有二三十个座位的小型客机)、乘坐灰狗长途汽车、换乘短途Uber穿梭在美国中西部大玉米地之间,安娜堡、普渡、俄亥俄州立以及UIUC香槟多个校区,朝发夕至。  图5. 两张UM校园卡(其中一张属于遗失又找回)  图6. ASMS-2016 Ruotolo课题组圣安东尼奥聚餐  翻看着旧照片,思绪万千。2016年和2019年,两次到访Ruotolo Lab,体验截然不同。图6是第一次访问时随课题组参加当年的ASMS年会,在圣安东尼奥(德州)当地一家牛排店,课题组聚餐前的大合影。那一次会议对我来说突如其来,规模之大、交流之深,完全超出我对学术会议的预期,由于我没有做好充分准备,一切都猝不及防,走马观花、热闹过场,却也收获了一批一面之交的、之后时不时线上交流的学术网友。学术上,我的结构质谱是从这里开始的,Ruotolo Lab教会了我离子淌度质谱的基础知识。在做文献阅读时我被Brandon发表在JACS和Angew上的三篇Hofmeister盐调控蛋白结构的文章所深深吸引。作为一个初学者,最快入门的方式就是模仿与重复别人的代表性实验。当时我对此执念很深,因此就开始动手重复那些让我痴迷的实验。Brandon那三篇文章主要是聚焦在盐本身对蛋白的一级质谱的信号挖掘,包括寡聚体组成以及碰撞横截面积CCS的变化等信息。我当时就很想知道,这些盐如果真的调控了高级结构,是否这些盐也能调控复合物拓扑学组装结构?我当时有一个猜想:有没有可能在特定盐的喷雾条件下,复合物的拓扑学结构能够得到更好的保护?因为在结构质谱领域,一直被人诟病的一个地方,就是我们直接测量的是脱溶剂条件下的结构,与溶液相真实结构之间必然存在差异。而这种差异具体有多少,尚缺乏有效的定量评估方法以及通用的差异缓和措施。  图7. 附带普渡大学Graham Cooks院士真迹的实验记录本  一次实验中我意外地发现,当我在经典的非变性质谱溶液中,加入低浓度的碳酸氢铵时,神奇的现象出现了:血红蛋白四聚体复合物的气相解离路径发生了显著变化。传统条件下,几乎所有文献和实验都会相信,四聚体会解离成单体和三聚体,这种解离路径与其溶液中“二聚的二聚”的结构特点是相矛盾的。而在我调整Hofmeister盐条件之后,这种传统认知被打破,四聚体优先解离为二聚体,而这恰恰是溶液相拓扑学结构的真实情况。在我去Purdue访问Aston Lab以及去Ohio State University访问Wysocki Lab时,分别与Graham和Vicki谈论了我当时引以为傲的新发现,试图从两位SID发明人那里得到机制解析方面的帮助。两位都对这个现象表示感兴趣,Graham还用一张便签纸写下了他从电荷态分布的角度给我的一些猜想建议(图7)。第一次观测到这个新现象是大约在抵达安娜堡一个月内。Brandon对此非常谨慎,为了说服他,我接下来的访问时间里,做了至少十种不同复合物体系,并从各种不同的侧面去试图解释这里到底发生了什么。正如博士导师黄光明老师经常在组会上说的那样,咱们做科研的,没有人会相信魔术。后来经过接近2年的断断续续补充实验(图8),我们发现这可能和pH改变之后邻近的双硫键易发生交联有相关性,最终Brandon选择将文章发表在IJMS的一期结构质谱约稿专刊上(尽管我当时有一万个不愿意,从一个初学者的执拗与不成熟的角度看,这种新奇的发现怎么都可以发到一个影响力更高的杂志上)。  图8. 论“喷针质量对于非变性结构质谱实验成功重要性” ——UM实验记录本  2019年夏天,在美国质谱学会博士后职业发展奖的支持下,我再次来到Ruotolo Lab,再次感受安娜堡夏天的尾巴。只是这次是短暂的两周交流,来之前我就一个一个联系之前一起住在Arbor Village、周末一起打球的好朋友们,包括现在已经回到浙大任教授的优秀结构生物学专家张岩老师(青千、长江、青年973首席科学家),只是大家大都已经搬走离开或已回国。我自己选择住在一个更远的、公交车可以直达的地方,想着进一步感受安娜堡downtown远端的生活。这一次,UM给我重新启用之前的学号,课题组安全培训表上我的两次签名之间竟然还没有翻页(亲切感油然而生!),实验室也仍然沿用之前大家商量安排质谱机时的传统(图9)。这一次我来的主要任务是学习结构质谱指引下的分子模拟方法(图10),然而很遗憾,两周的时间还是太过短暂,我并没有完全掌握分子模拟本身,在课题组成员的帮助下,我只基本掌握了在拿到分子结构后,如何用我们的结构质谱数据去匹配、筛选、构建气相条件下的蛋白结构。而图10是当时我在离开安娜堡之前,为了防止我离开课题组以后就忘了怎么做,带我做模拟的Chae要求我在黑板上写下来的工作流程。这一张照片已经成为了我实验室(LimsLab)分子模拟初学者的第一手教材。看着图5的校园卡,猛然发现,还在有效期内,期待疫情过后,重返安娜堡的画面。  图9. Ruotolo课题组安全培训记录(2016+2019)与质谱实验安排表。  图10. 结构质谱指引下的分子模拟过程(2019年8月,写于安娜堡Ruotolo Lab)。  驻扎麦迪逊:感受定量质谱  麦迪逊的经历印象深刻,酸甜苦辣,受益终生。从2017年8月至2021年1月,我在麦屯过了四个中国年。期间没有回国,后来疫情来了,也就直接放弃了回国休假的打算,直到回南开的那一天。麦屯是全美宜居幸福指数排名第一的城市,也是我人生中待过时间第四长的一个城市,同时也是我在美国待过时间最长的一个城市。难忘的生活细节太多,也认识了超级多好朋友兄弟姐妹。竟然一时间不知从何处下笔。今天回想起来,还是觉得时间过得太快,过去四年的时光历历在目,仿佛一切就在昨天。  图11. 博士后导师Lingjun赠送歌手赵雷亲笔签名CD,2019年3月23日,药学院办公室。  非常荣幸加入李灵军老师课题组Li Lab进行博士后训练。印象中Lingjun一直都非常忙,Li Lab课题组大小事务都要操心,几乎每天都工作到凌晨两三点,在凌晨收到李老师的邮件或者信息也不足为奇,当然如果你的邮件被淹没在茫茫list中也偶有发生。记得当时联系李老师申请博后位置,李老师就是在我发送第二封邮件时才回复。Li Lab课题组的研究兴趣广泛,但是以定量质谱方法开发为核心,Lingjun在这个方向上还获得了美国质谱学会ASMS专门给中青年科学家设立的、一年仅颁发一位的重量级奖项Biemann Medal(李老师获得的荣誉如果全部列出来,将占据我这篇文章一半以上的篇幅,建议感兴趣的读者请自行查阅)。Lingjun最让我佩服的一点是,可以常年不花时间锻炼身体,却似乎从来不感冒不生病,一年365天铁人般坚守在工作岗位上。平时的爱好,主要是追追星(图11,赵雷)以及朋友圈发发美食美景和美图。  犹记得当时,刚好前期主要负责离子淌度相关方向的贾辰熙师兄回国(现任北京蛋白质中心独立PI),而我在Brandon那边有一些离子淌度的训练背景,加上有NIH的基金需要这个方向继续发展,最后顺利进入了Li Lab,成为麦屯定量质谱大团队的一员。李老师备受领域内同行的尊敬与认可,作为李老师的学生与课题组成员,我们也深得其益,每次出去开会提到Madison Li Lab就能得到wow的大声回应,而我自己也得益于Lingjun的reputation,成功申请到ASMS的博士后职业发展奖(Postdoc Career Development Award)。这对于我的职业生涯确实起着很大的鼓舞作用,并以此为契机,推动着后面的每一步探索。  图12. “快速入门”的一篇文章(手性修饰质谱方法学开发)。  博后期间,协助指导了几名研究生,负责维护管理离子淌度质谱Synapt G2,参与撰写了几份NIH基金并发表了五六篇论文,代表Li Lab在ASMS年会上做了两次口头报告。科研方面,总结起来,很惭愧在Li Lab仅干了以下两件小事:  (1)定量质谱方向,一事无成,只是在最后一年时间里(拿到南开的offer之后回国之前),跟着实验室的小伙伴们,学会了4-plex DiLeu的简单合成与组学定量应用,没有在这个方向上帮助Li Lab做出任何贡献(而我自己到今天还在后悔,如果给我更长的时间,我一定会把蛋白组学样品制备、数据处理、定量测量等方面加强,组学质谱技术太强大了!)。当然,在我现在自己课题组LimsLab,我正在弥补这个遗憾,我的学生们目前也正在DiLeu定量质谱的道路上摸索着前行,争取能将DiLeu探针推广到完整蛋白标记领域中。  图13. “厚积薄发”的一篇文章(纳秒光化学点击反应助力原位蛋白质谱分析)。  (2)结构质谱方向,三年多的时间里,主要在以下三个方面取得一点小的进展:发展了面向蛋白结构微小差异的高通量构象操控新策略AIU(发表1篇AC+1篇JASMS) 借鉴印第安纳大学Clemmer Group多维分离单糖小分子的思路,发展了多维差异放大结构质谱新策略,并成功应用于手性多肽的快速结构拆分(图12,如果没记错,这是Li Lab近年来的第一篇Nat. Commun.) 受荧光热电泳实验启发,开发了质谱兼容的纳秒光化学点击反应,实现了蛋白原位检测与结构标记分析(图13,如果没记错,应该是Li Lab近年来的第二篇Nat. Commun.)。前两个工作我现在的学生也在follow,似乎他们现在很喜欢使用相关的技术方法,而第三个工作,我当时在Li Lab协助指导的博士生也跟着拓展,应用到小分子代谢物的检测分析中,今年发表了一篇AC。第二个工作我把它标注为“快速入门”,第三个工作则为“厚积薄发”,主要原因在于课题的完成过程截然不同,前者的关键数据是在我抵达麦屯一个多月就拿到了(美国入境签证为证,哈哈哈),而后者则是我构思了很长时间的一个idea(2017年开始构思),经过漫长的摸索调整,才以最终发表的样子呈现在大家面前。  2020年2月,一场突如其来的新冠疫情席卷全球。所有人的生活方式均因此而改变。犹记得最后一次驱车前往UIUC校园,Jonathan Sweedler实验室使用TIMS仪器就是2月底,当时还特别幸运,在大玉米地香槟这座城市遇到了受Jonathan邀请来化学系做特邀报告的Dick Zare(图14,右下倒数第二张)。这也是除了我去斯坦福Zare Lab访问期间与Dick在美国的唯一一次会面。从此之后,大家经历了居家办公、线上组会、带薪休假的艰难岁月,后来给南开投了第一封求职信便很快收到学院回复,再后来就是和Li Lab的各位小伙伴线上告别(图14,Lingjun很贴心地拼贴了我们故事的点点滴滴,包括第一次线下和李老师在海口国际分析化学年会见面的青涩照片,右下,太感动啦)。  图14. 2021年1月,与Li Lab的各位小伙伴们线上告别。  南开再起航:创办LimsLab  南开是一个既熟悉又陌生的全新环境,无限可能、机遇大于挑战,因此充满期待。南开化学在我投递求职信的第二天就给了我面试通知,并在面试后一周内毫不犹豫地通知我通过了学院的面试。我也在随后毫不犹豫地接受了这份来自南开的爽快offer。于是开始筹建实验室,回国前就在构思自己实验室名字,博后实验室叫Li Lab,最后把自己的实验室叫做LimsLab(图15),寓意为Li-MS-Lab或者Li-IMS-Lab。如其名,LimsLab将打造以离子淌度质谱为核心技术的大分子结构质谱分析实验室。  图15. 南开大学大分子结构质谱分析实验室Logo。  2021年2月25日,我第一次来到天津,第一次来到南开,高效完成了各项报到工作。至此,可以算得上是完成了从“菜鸟球员”到“菜鸟教练”的角色转换。虽然之前也曾帮助实验室做过一些相关的服务工作,而只有此次真正完成角色转变之后,我才深刻意识到一位导师所面临的事物有多繁杂,尤其是对一个从毛坯房白手起家的“菜鸟教练”(图16)。每次被要求填写业余爱好时,我都会毫不犹豫地写下“篮球”这两个字。如果把科研事业当成篮球爱好,首先要建好球场,然后要招募球员。而在这些工作之前,最为重要的是,作为这样一个身兼数职的“菜鸟教练”,虽然有学校给提供的start-up启动经费,还需要时时刻刻思考着如何“融资”,而不断构思着说服“资本家们”给你投资的理由。  庆幸的是,在各位同行专家的大力支持与鼓励下,经过快两年的摸爬滚打,LimsLab目前运转逐渐步入正轨,课题组目前拥有操作室(图17)、质谱室(图18)、制样室(图19)、细胞间和学生办公室等多个活动空间,仪器设备有适用于蛋白组学高通量定量分析的Orbitrap Eclipse(依托生科院)、Fusion Lumos(依托药化生国重),有高分辨结构质谱离子淌度仪Cyclic IMS(依托海河实验室)和经典结构质谱仪Synapt G2(依托国重),近期也着手采购非变性大分子结构质谱QE UHMR仪器。同时,实验室的小伙伴们还一起盲盒般开箱了一台适用于离子源等方法开发的Orbitrap二手质谱仪器(图20)。除配套设备外,LimsLab课题组目前经费充足,拥有研究生和科研助理十余名科研人员,现亟需在定量蛋白组学、合成化学和计算模拟化学等方向的博士后研究员加入,以充实、完善LimsLab队伍,尽快提升团队的整体科研素养与综合水平。待遇由你定,要求仅一条,那就是对高水平科研工作有足够的热情与向往。  随附LimsLab课题组网站:https://www.x-mol.com/groups/gongyu_li  同附PI联系方式:李功玉(ligongyu@nankai.edu.cn)  再附PI简介:李功玉,南开大学化学学院,研究员、博士生导师。入选国家高层次青年人才计划(2021)、主持科技部重点研发青年项目(2022)。2017年毕业于中国科学技术大学,获理学博士学位。 2017年至2021年在美国威斯康星大学麦迪逊分校开展博士后研究。2016年和2019年两次前往美国密西根大学安娜堡分校交流访问。2021年2月加入南开大学化学学院,成立LimsLab课题组,研究方向为大分子结构质谱分析。图16. “菜鸟教练”的必修课之毛坯实验室装修(拍摄于2021年3月)。图17. 南开大学LimsLab实验室操作室(拍摄于2022年11月)。图18. 南开大学LimsLab实验室质谱室(拍摄于2022年11月)。 图19. 南开大学LimsLab实验室制样室(拍摄于2022年11月)。  图20. 南开大学LimsLab实验室成功自主拆机(拍摄于2022年11月)。
  • 显微镜连接电脑 摄像头连接到显微镜的安装操作
    显微镜连接电脑 摄像头连接到显微镜的安装操作显微镜可通过USB接口连接电脑和摄像头,用户可以在电脑进行拍照和录像等操作。显微镜摄像头通过高分辨率的CMOS/CCD传感器捕捉显微镜下的图像,然后通过控制器将图像传输到电脑或其他存储设备中。显微镜摄像系统可以用于观察、记录和分析细胞、组织、微生物等样本的结构和特征。它也可以用于医学、生物学、农业等领域的研究和实验中。MHS900显微镜摄像头显微镜摄像头连接到电脑的安装操作如下:1. 准备显微镜、摄像头和电脑,确保它们都是关闭状态。2. 使用相应的接口将数码显微镜与电脑连接起来,通常情况下会使用USB线或HDMI线,显微镜的USB2.0/3.0接口直接插入电脑对应的USB2.0/3.0接口即可,操作比较简单,插好后打开视频软件就可以使用了。3. 打开显微镜的电源,调整显微镜的焦距,使其清晰。(可以先放一张白色的纸张,调节好距焦。)4. 打开电脑,找到对应的驱动程序并安装,通常可以在显微镜摄像头的说明书上找到。5. 安装完成后,打开显微镜摄像头的软件,通常会在电脑的右下角或任务栏中显示。6. 在软件中选择“连接”或“导入”选项,然后选择要连接的数码显微镜品牌/型号。7. 等待软件与显微镜建立连接,连接成功后,可以在软件中看到显微镜中的图像。8. 可以使用软件进行拍照、录像、测量等操作,同时也可以将图像导出到电脑中进行进一步处理和分析。显微镜摄像系统界面显微镜摄像系统:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm显微镜摄像头:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm如果您的显微镜需要升级拍照功能和安装,请与我们联系。
  • 中山大学李惠琳:非变性质谱技术推动蛋白质结构研究,助力新药研发
    蛋白质是生命的物质基础,通过与不同生物分子间的相互作用在生物体内执行着各项重要工作,其功能与结构直接相关。因此,解析蛋白质及其复合物高阶结构对于深入理解蛋白质功能、生理现象及药物研发具有重要意义。过去的60余年,随着X-射线晶体衍射(X-ray)、核磁共振(NMR)以及冷冻电镜(cryoEM)等技术的出现和不断发展,蛋白质结构解析取得了长足发展。然而,如何在分析蛋白质时使其保持近似自然生理环境的非变性状态,对其动态、异质性、相互作用等属性的研究是结构生物学领域的热点和难点。  质谱技术的不断发展使其在蛋白质结构表征领域发挥了越来越重要的作用。非变性质谱(native MS)兴起于20世纪90年代,是一种可以分析蛋白高阶结构的生物质谱方法。与传统的破坏蛋白质立体结构和弱相互作用力的方法不同,非变性质谱采用质谱兼容的近生理pH值的溶液体系(主要为醋酸铵)和更温和的电离方式,使生物大分子在气相中能够最大程度地保持自然折叠状态、非共价相互作用和相关的生物学功能。因此,非变性质谱可以提供分子质量、寡聚态、构象(折叠vs 去折叠)、异质性、配体结合、靶蛋白-小分子亲和力以及复合物中蛋白亚基的相互作用网络关系等更具生物学意义的重要信息,为蛋白质“序列-结构-功能”关系提供分子基础,已成为结构生物学不可或缺的互补工具,在生物制药、蛋白一配体、蛋白一蛋白复合物结构分析等诸多领域具有广泛应用。  近年来,蛋白质结构研究领域经历着剧烈的技术迭代。2021年人工智能(AI) AlphaFol2横空出世,将蛋白质3D结构预测的精度从60%提升到90%以上,在给传统结构解析技术带来冲击的同时,也为结构质谱的发展提供了契机。  未来,非变性质谱技术的发展需要简化样品处理,提升仪器的灵敏度、分析通量和鲁棒性,实现内源性蛋白复合物样本的直接或原位分析,推动其在生物医药表征、蛋白多聚态等领域的更广泛应用。非变性质谱技术与离子消度(MS)、自上而下串联解离(top-down)、电荷检测质谱(CDMsS)等创新联用技术和方法的不断开发及完善,将极大地提升结构信息的广度、丰富度及精确度,补充生物物理学方法缺失的结构信息。同时,非变性质谱与cryoEM1、氢完交换质谱(HDX-MS)、交联质谱等技术联用将更加常态化,这些实验数据与AI结构预测算法的进一步整合将有效解决蛋白及蛋白复合物结构预测存在的精度问题,推动结构生物学发展,助力新药研发。  此外,非变性质谱技术的应用发展将更加关注:1)蛋白复合物结构一功能关系的研究,通过与计算机模拟(MD)、HDX-Ms、cryoEM等技术联用,揭示标志物蛋白在人类疾病发展过程中的作用,推动靶向药物设计和精淮医疗 2)通过研究小分子与靶蛋白的相互作用获取二者结合的亲和力信息,加速靶向药物筛选 3)翻译后修饰(PTMS)、突变等因素导致的蛋白高度异质性及其对蛋白或亚基折叠动力学、构象及构象变化、结合计量比等造成的结构和功能影响 4)蛋白与其他生物分子(配体、DNAA/RNA、金属离子等)之间的相互作用。  李惠琳,中山大学药学院教授,博士生导师。主要从事生物大分子质谱新技术的开发及应用,其研究主要侧重于1)开发整合结构质谱技术,并对蛋白质机器结构、功能和动态变化及靶向药物作用分子机制进行深入研究2)开发middle-down/top-down蛋白质组学技术,探索蛋白翻译后修饰在生命过程中的调控机制。承担国家自然科学基金项目3项,荣获美国质谱学会颁发的Postdoctoral Career Development Award (2014) ,入选珠江人才计划(青年拔尖人才,2019),其研究成果发表在Nature Chemistry, Analytical Chemistry, J. Am.Soc.Mass Spectrom.等杂志。  "非变性质谱技术研究与应用"专栏共收录7篇论文,既介绍了非变性质谱技术的样品制备、离子源、质量分析器、联用技术等基础内容,也涵括了样品提取、样品引入、离子化及电荷操控等方式,以及在蛋白结构及构象解析、蛋白・蛋白相互作用等领域的应用,代表了国内非变性质谱技术的发展现状。希望本专栏能成为《质谱学报》广大读者颇有价值的科技文献,同时也希望更多的学者加入到非变性质谱研究领域,推动我国结构质谱技术的创新发展。
  • 理化所飞秒激光双光子聚合水凝胶3D微结构分辨率研究获进展
    水凝胶具有类似于细胞外基质的理化性质,具备良好力学性能、自愈合能力和响应性,可用于构建组织再生的微纳米仿生结构,并提供微米尺度的表面形态来调节细胞行为,如细胞粘附、迁移或生存增殖分化因子的释放。因此,水凝胶被广泛应用于组织工程和药物递送等领域。然而,制备高精度的三维(3D)任意生物相容性水凝胶支架颇具挑战性。为了适应未来生物医学领域的发展,亟需开发具有精细3D几何结构的新型水凝胶材料。   近日,中国科学院理化技术研究所仿生智能界面科学中心有机纳米光子学实验室研究员郑美玲团队在《ACS应用材料与界面》(ACS Applied Materials & Interfaces)上,发表了题为22 nm Resolution Achieved by Femtosecond Laser Two-Photon Polymerization of a Hyaluronic Acid Vinyl Ester Hydrogel的研究成果。该研究提出了真3D高精细任意可设计拓扑结构调控单细胞的新策略。   科研人员采用飞秒激光双光子聚合技术,以乙烯基酯透明质酸(HAVE)水凝胶作为单体材料,P2CK作为高效水溶性双光子引发剂,二硫苏糖醇(DTT)作为硫醇-烯点击化学交联剂和PBS缓冲溶液配制了HAVE前驱体,通过配方优化和激光焦点调控在水凝胶结构分辨率上取得了重要进展即最高分辨率达22 nm,制备了与细胞尺寸相当的水凝胶3D微支架并验证了材料与结构的生物相容性,表明HAVE水凝胶细胞支架可进一步用于研究细胞迁移和操作等行为。   该团队开展了配方优化实验,通过改变单体和引发剂的质量比及控制硫醇-烯官能团比例筛选出溶解性好、易于加工和聚合性能良好的HAVE前驱体配方。   在几十纳米尺度的分辨率中,体素相对于基底的位置是不可忽略的影响因素。为了进一步提高结构分辨率,该团队根据激光焦点体素理论调控焦点与基底相对位置从而获得更高分辨率的线结构。如图2所示,大功率激光焦点光斑明亮,且体素体积较大,不易得到最佳焦点位置,而小功率激光焦点光斑较弱,体素体积更小,更易获得最佳焦点位置,基于此方法获得了更高分辨率的线结构。   通过上述配方优化和焦点调控,科研人员开展了HAVE前驱体C配方的分辨率研究。当扫描速度为6 μm/s时,线结构的质量得到了显著提高(图3a),结构完整致密。研究利用HAVE前驱体C配方实现了22 nm的分辨率(图3c)。   进一步,研究对HAVE前驱体配方进行了3D水凝胶微结构的双光子聚合加工,利用原子力显微镜测量了3D细胞支架的杨氏模量,平均值94 kPa接近体内组织的力学性能。研究对配方中水溶性引发剂P2CK和3D细胞支架进行了生物相容性测试,验证了该材料和结构具有良好的生物相容性。   综上,该团队全面研究了HAVE水凝胶光刻胶的双光子聚合性能,通过优化光刻胶前驱体的配方和调节焦点位置获得了22 nm的特征线宽,并验证了材料和3D水凝胶细胞支架的生物相容性。本研究提出的方案,有望创建复杂的生物相容性3D水凝胶结构,并探索其在个性化微环境调控、组织工程、生物医学和仿生科学领域的潜在应用。   上述成果是该团队前期一系列仿生水凝胶工作的拓展。研究工作得到国家重点研发计划“纳米科技”重点专项、国家自然科学面上基金、中国科学院国际伙伴计划等的支持。图1.3D水凝胶的制备示意图表1 A-E系列HAVE前驱体配方优化及性能比较图2.体素形态和相对基底位置对大功率变化(a)和小功率变化(b)聚合线结构分辨率的影图3.HAVE前驱体C配方双光子聚合性能研究图4.A和C配方制备的3D细胞支架结构的SEM对比图以及水凝胶支架上共培养L929细胞的共聚焦荧光显微镜图像
  • 冷冻电镜首个新冠病毒蛋白结构解析发布:传染性为何强?
    p style="text-indent: 2em "strong style="text-indent: 2em "仪器信息网讯/strongspan style="text-indent: 2em " 2020年2月15日,美国卫生总署(NIH)与美国得克萨斯大学奥斯汀分校Jason S. McLellan研究组合作在预印本平台bioRxiv上发表论文:Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation(span style="text-indent: 2em color: rgb(127, 127, 127) "DOI: 10.1101/2020.02.11.944462/span),报道了新冠病毒(2019-nCoV)S蛋白的首个冷冻电镜结构,利用冷冻电镜技术分析了新型冠状病毒表面S蛋白的近原子结构。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 206px " src="https://img1.17img.cn/17img/images/202002/uepic/29be9fbf-7286-475f-807a-ea01b409b72a.jpg" title="1.png" alt="1.png" width="600" height="206" border="0" vspace="0"//pp style="text-indent: 2em "span style="color: rgb(127, 127, 127) "(注:预印本网站bioRxiv的所有论文未经同行评议, bioRxiv在所有2019-nCoV相关论文页面增加了突出字体说明(上图黄底黑字):“bioRxiv收到了许多关于2019年ncov冠状病毒的新论文。提醒一下:这些是没有经过同行评审的初步报告。他们不应被视为结论性的,指导临床实践/健康相关的行为,或在新闻媒体中作为既定信息进行报道。”)/span/pp style="text-indent: 2em "作者通过生物物理以及结构方面的证据发现,新冠病毒的S蛋白结合人体ACE2(宿主细胞受体血管紧张素转化酶2)的亲和力要远高于SARS-CoV的S蛋白,或解释了新型冠状病毒传染性很强的主要原因。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 322px " src="https://img1.17img.cn/17img/images/202002/uepic/4ad16a73-5442-4584-899c-bca9a93d4e04.jpg" title="2.png" alt="2.png" width="450" height="322" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em " 预融合构象/spanspan style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "中的2019-nCoV S结构/span/pp style="text-indent: 2em "新型冠状病毒(2019-nCov)的爆发代表了一种流行病威胁,已宣布为国际关注的突发公共卫生事件。CoV突刺(S)糖蛋白是疫苗、治疗性抗体和诊断方法的关键靶标。此前的大量研究均基于2019-nCoV突刺蛋白的预测结构或相关病毒(如SARS)的突刺蛋白的已知结构展开。为促进医学对策(MCM)的开发,论文中确定了预融合构象中的2019-nCoV S蛋白三聚体冷冻电镜结构,为3.5埃分辨率。三聚体的主要状态为三个受体结合结构域(RBD)之一向上旋转为受体可及构象。同时,生物物理和结构证据表明, 2019-nCoV S以比SARS-CoV S更高的亲和力结合ACE2(宿主细胞受体血管紧张素转化酶2)。此外,作者测试了几种已发布的SARS-CoV RBD特异性单克隆抗体,发现它们与nCoV-2019没有明显的结合。这表明两种病毒RBD之间的抗体交叉反应性可能受到限制。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 200px " src="https://img1.17img.cn/17img/images/202002/uepic/96b62197-7abe-467b-b461-e70a6a2a6f3f.jpg" title="3.png" alt="3.png" width="450" height="200" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "2019-nCoV S.和SARS/spanspan style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "-CoV S.之间的结构比较(A)/span/pp style="text-indent: 2em "span style="text-align: center text-indent: 0em color: rgb(0, 0, 0) "新型冠状病毒利用高度糖基化的同源三聚体S蛋白进入宿主细胞。S蛋白经历结构变化将病毒融合进入宿主细胞的细胞膜。此过程包括病毒的S1亚基结合到宿主细胞受体上,引发三聚体不稳定性的发生,进而造成S1亚基脱落S2亚基形成高度稳定的融合后结构。/span/pp style="text-indent: 2em "通过该结构分析,作者发现S1亚基中的RBD经历铰链类似运动,此移动特点与SARS-CoV以及MERS-CoV均非常相似,但新型管冠状病毒中则RBD结构则更靠近三聚体的中央部位,其S蛋白中3个RBP中的1个会向上螺旋突出从而让S蛋白形成能够轻易与宿主受体ACE2结合的空间构象。这也说明,新型冠状病毒引发病毒的机制虽然与其他的冠状病毒科的病毒机制异曲同工,但传染性更强。/pp style="text-indent: 2em "论文受到业界的广泛关注,研究中,John Ludes-Meyers博士对细胞转染给予很大帮助,德克萨斯大学奥斯汀分校Sauer结构生物学实验室的Aguang Dai博士在显微镜对准方面做了大量工作。/pp style="text-indent: 2em "论文链接:a href="https://www.instrument.com.cn/download/shtml/932743.shtml" target="_self" style="color: rgb(127, 127, 127) text-decoration: underline "span style="color: rgb(127, 127, 127) "https://www.instrument.com.cn/download/shtml/932743.shtml/span/a/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制