炼厂气类似组分

仪器信息网炼厂气类似组分专题为您整合炼厂气类似组分相关的最新文章,在炼厂气类似组分专题,您不仅可以免费浏览炼厂气类似组分的资讯, 同时您还可以浏览炼厂气类似组分的相关资料、解决方案,参与社区炼厂气类似组分话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

炼厂气类似组分相关的耗材

  • 炼厂气标准气
    炼厂气标准气有三种不同浓度。含有C5+的非饱和烃和C6+以上成份可以配用专用的小型压力调节阀订货信息:炼厂气标准气 #1 cat.# 34441 % 每组分含量**炼厂气标准气 #2 cat.# 34442, % 每组分含量**炼厂气标准气 #,5 cat.# 34443 % 每组分含量**氢40.7512.512.5氩0.511氮437.237.2一氧化碳111二氧化碳333甲烷8.555乙烷644乙烯222乙炔—11丙烷766丙烯333丙二烯0.8511环丙烷—0.04—异丁烷655正丁烷444异丁烯2111,3丁二烯333顺-2-丁烯222反-2-丁烯233丁烯-12222-甲基-2-丁烯—0.20.2异戊烷111正戊烷111顺-2-戊烯—0.40.4反-2-戊烯—0.160.2戊烯-1—0.40.4正己烷0.50.1—己烷以上——0.1浓度molemolemole体积5.2 L @ 70 psig4.9 L @ 60 psig4.6 L @ 60 psig**每瓶气提供具体浓度列表,不同批次间浓度值与此表列出数值会有稍许差异
  • 炼厂气标准气
    炼厂气标准气有三种不同浓度。含有C5+的非饱和烃和C6+以上成份 炼厂气标准气 #1 炼厂气标准气 #2 炼厂气标准气 #5 cat.# 34441, ea. cat.# 34442, ea. cat.# 34443, ea. % 每组分含量** % 每组分含量** % 每组分含量**氢 40.750 12.500 12.500氩 0.500 1.000 1.000氮 4.000 37.200 37.200一氧化碳 1.000 1.000 1.000二氧化碳 3.000 3.000 3.000甲烷 8.500 5.000 5.000乙烷 6.000 4.000 4.000乙烯 2.000 2.000 2.000乙炔 — 1.000 1.000丙烷 7.000 6.000 6.000丙烯 3.000 3.000 3.000丙二烯 0.850 1.000 1.000环丙烷 — 0.040 —异丁烷 6.000 5.000 5.000正丁烷 4.000 4.000 4.000异丁烯 2.000 1.000 1.0001,3丁二烯 3.000 3.000 3.000顺-2-丁烯 2.000 2.000 2.000反-2-丁烯 2.000 3.000 3.000丁烯-1 2.000 2.000 2.0002-甲基-2-丁烯 — 0.200 0.200异戊烷 1.000 1.000 1.000正戊烷 1.000 1.000 1.000顺-2-戊烯 — 0.400 0.400反-2-戊烯 — 0.160 0.200戊烯-1 — 0.400 0.400正己烷 0.500 0.100 —己烷以上 — — 0.100浓度 mole mole mole体积 5.2 L @ 70 psig 4.9 L @ 60 psig 4.6 L @ 60 psig**每瓶气提供具体浓度列表,不同批次间浓度值与此表列出数值会有稍许差异
  • GsBP-FRGA炼厂气专用柱
    GsBP-FRGA炼厂气专用柱订货信息:货号描述8053-3000GsBP-FRGA, 30m x 0.53mm GsBP-FRGA快速炼厂气分析专用柱开发的方法实现对C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)组分的快速分离,C6以内的组分分离只需要5min。实验一 扩展炼厂气分析 色谱条件Agilent 5890 w/ FID 色谱柱: GsBP-FRGA 30m x 0.53mm (PN: 8053-3000)柱温: 70 ℃ (1min) -30 ℃ /min -145 ℃ (2min)- 45 ℃ /min -200 ℃ (10min) 载气: 氢气, 5psi 进样口: 275 ℃, 分流比 10:1 检测器: FID 325 ℃ 样品: C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)进样量: 1ul 图1. 在气相色谱柱 GsBP-FRGA上的分离结果图 2. C6以内组分放大谱图表 1. 出峰顺序出峰顺序 化合物名称保留时间(min)出峰顺序化合物名称保留时间(min)1甲烷(Methane)0.51515异戊烷(Iso-pentane)3.0082乙烷(Ethane)0.57216戊烷(Pentane) 3.1453乙烯(Ethylene)0.649171,3-丁二烯 (1,3-Butadiene)3.4424丙烷(Propane)0.81318丙炔(Propyne )3.7185环丙烷(Cyclopropane)1.29919 反式-2-戊烯(Trans-2-pentene)3.8526丙烯(Propylene)1.35520正戊烯(1-pentene )3.9117异丁烷(i-Butane)1.60721异戊烯(2-Methyl-2-butene)4.0458正丁烷(n-Butane)1.74922正己烷(n-Hexane)4.6589丙二烯(Propadiene)1.96123苯(Benzene)6.70410乙炔(Acetylene)2.14824甲苯(Toluene)7.19911反式丁烯(Trans-2-butene )2.53325乙苯(Ethylbenzene) 9.17512正丁烯 (1-Butene)2.6226间二甲苯(m-Xylene) 9.25913异丁烯(Iso-butylene) 2.75127对二甲苯(p-Xylene)12.58414顺式丁烯(c-2-butene)2.8528邻二甲苯(o-Xylene) 13.106 结论一从结果中可以看出在起始温度70℃的条件下,实现了5min之内分离C5烯烃和C6烷烃,在200℃的条件下扩展到了芳香烃的分离,整个分离过程在15min之内,大大提高炼厂气系统分析效率,减少维护的时间和成本。

炼厂气类似组分相关的仪器

  • minispec LF90 时域核磁共振分析仪可用于精确测定活体小鼠、大鼠和小动物的肌肉、脂肪和体液等含量。 快速分析,测定时间不超过2分钟,无需制备试样。操作简便,无需耗材,节省了珍贵的动物资源。减轻动物承受的压力:无需麻醉;“按现状”对动物进行测定。由于降低了对动物的健康危害,因此可以频繁地进行测试。较之 DEXA ( X 光)技术,准确度和精确度更高。推出全新 LF90II 布鲁克 minispec 肌肉/脂肪分析仪是台式核磁共振分析仪,适用于活体大鼠、小鼠及其他小动物进行全身组分分析。 自2001年初推出以来, minispec活鼠组分分析仪迅速赢得市场认可,被视为适于在研究实验室内进行活鼠表征、筛选和表型的功能强大的无损无创型分析工具。 全新 minispec LF90 采用一体化身体组分分析工作流程,实现整体式操作。分析用时不足两分钟,可以放到鼠棚里,测试大量的样品。为何采用时域核磁共振技术? 核磁共振技术是最有用的无损材料分析技术。利用核磁共振技术对身体进行无损检查已经非常广泛,有许多实用范例,特别是磁共振成像和磁共振波谱法。 时域核磁共振采用类似的核磁共振技术,可对脂肪组织、肌肉组织和体液等进行分析,所依据的物理原理与在核磁共振成像中形成对比度所遵循的物理选择规则相同。多个不同射频脉冲序列被发射到组织中,使得水和脂肪中氢原子核的磁自旋发生改变。这使得组织中的氢原子产生射频信号, minispec 进而检测出这些信号。这些信号的振幅和持续时长短与材料属性有关。基于相对弛豫时间的差别,脂肪与肌肉之间的组织对比非常明显,并且可以利用特定射频脉冲序列,进一步增强对比度。minispec LF90 所采用的6.2 MHz 频率可以准确分析出活体动物的身体组分,而不会危害动物健康。 无压力测定 时域核磁共振方法对样品无任何要求。活体动物无需杀死或麻醉,只要将动物装入特制的样品管即可;整个测试过程不到两分钟即可完成。可以对活体动物多次进行无创、无损、无压力测定。 外型小巧的移动式仪器 整个系统可以放置在移动推车上,轻松地在实验室间移动。minispec LF90 磁体装置外型小巧,仅为80厘米长、70厘米宽(27英寸长、30英寸宽)。系统及其配套台式机采用常规110伏或220伏交流电源。无需其他装置,即可开始测定。电子装置和梯度装置被放置在底架上。
    留言咨询
  • 沥青化学组分试验仪_图片_参数_配置-沭阳县市政工程仪器厂 SYD-0618沥青化学组分试验仪沥青化学组分试验仪型号:SYD-0618一、沥青化学组分试验仪用途:沥青化学组分试验仪符合国家行业标准JTG E20-2011《公路工程沥青及沥青混合料试验规程》中T0618《沥青化学组分试验(四组分法)》。适用于采用溶剂沉淀及色谱柱法进行道路石油沥青的四组分成分分析。 本仪器由沥青质抽提器(包括球形冷凝器及100ml抽提器组装面成)和玻璃吸附柱组成。二、沥青化学组分试验仪仪器组成:1、冷凝器2、吸附柱3、抽提器4、锥型烧杯(250ml)产品相关关键字:沥青化学组分试验仪如果您对沥青化学组分试验仪感兴趣,想了解更详细的信息(网站:),请与销售部联系:
    留言咨询
  • GC112A炼厂气分析专用气相色谱仪(推荐行业石油化工)系统简介:该仪器配置4阀5柱、双热导检测器用于炼油厂气分析或天然气组成分析。一次进样能完成炼厂气组成的全分析。组分包括H2、O2、N2、CO、CO2、H2S,C1-C5, C6+( C6以上烃)。检测范围0.01%-100%(体积分数)。通道Ⅰ含一个气体进样十通阀,具有反吹功能,通道Ⅱ含一个气体进样十通阀和两个具有隔离功能的六通阀,其中十通阀具有顺序反转和反吹功能。该分析系统,一次进样既可完成炼厂气的各种组份分析,数据处理和定量由炼厂气专用工作站完成,并得出各组分的热值(摩尔发热量、质量发热量、体积发热量、以及沃泊指数)等参数,阀的切换由色谱仪主机完成。炼厂气四阀五柱分析色谱图炼厂气四阀五柱系统流程图炼厂气分析系统流程图工作原理:该系统的测定是在两个通道上进行的,样品经阀进样后,阀4引入样品进入通道Ⅰ,H2流出以后阀4转回反吹其余组份放空。与此同时在通道Ⅱ上样品进入分离系统,经预柱1分离后改变柱流向,反吹C5H10、C6+烃类到TCD检测器,而后阀2和阀3分别收集CO2、乙烯、乙烷,N2、O2、CH4和CO,此后乙炔、H2S和C3~C5烃类流过TCD检测器检测,当正戊烷流出后,依次转回阀2和阀3,使CO2、乙烯、乙烷,N2、O2、CH4和CO流入到TCD检测器。特点:1. 该仪器系统是全填充柱、全TCD的多维色谱分析方法,柱负荷大,自动化程度高。2. 一次进样既可得到炼厂气的各个组份含量,并且四个C4烯烃异构体得到很好的分离。3. 线性范围内不受进样量的影响,对进样要求不苛刻。4. 两个通道相互独立,如不需要检测H2含量,则只用通道Ⅱ既可。5. N2、O2分别检测,C5H10、C6+烃类做为一个反吹峰检测6. 该分析系统为炼厂气的全组份分析,定量简单,方便用加校正因子的内部归一法定量。7. 该系统流程适合要求分离N2、O2、CO2、CH4、CO及C2~C5烃类的所有应用。产品行销全国,上海市,江苏省,浙江省,广东省,北京市,天津市,山东省,广西省,河北省,湖南省,陕西省,河南省,吉林省,江西省,黑龙江省,福建省,山西省,四川省,安徽省,新疆,甘肃省,青海省,贵州省,辽宁省,重庆市,内蒙古,西藏,海南省,武汉,青岛,常州,合肥,广州,沈阳,太原,郑州,杭州,苏州,昆明,南京,深圳,厦门,长沙,济南,烟台,大同,南宁,大连,哈尔滨,西安,兰州,银川,西宁,成都,重庆,长春等地。
    留言咨询

炼厂气类似组分相关的试剂

炼厂气类似组分相关的方案

炼厂气类似组分相关的论坛

  • 炼厂气色谱仪氢气组分不出峰故障排查

    [align=center][b][font=方正小标宋简体]炼厂气[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]故障[/font][/b][/align][align=left][font=宋体][color=black]在使用AC公司炼厂气[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进行气体组成分析时,发现进样后氢气组分不出峰,且连续分析多个样品时亦如此(样品中肯定包含氢气),需要及时研判查明原因。[/color][/font][/align][font=宋体][color=black]二、[/color][/font][font=宋体][color=black]主要原因[/color][/font][font=宋体][color=black]排除上述可能引起此问题的因素后,从仪器角度进行原因分析:1、样品进入分析系统。2、因为此台设备使用的是“五阀七柱”系统,样品进入系统后未到达分析氢气组分的色谱柱中进行有效分离。3、检测器故障。[/color][/font][font=宋体][color=black]1[/color][/font][font=宋体][color=black]、当日分析样品除氢气组分外,其余烃组分、惰性气体[/color][/font][font=宋体][color=black]组分均正常出峰,可排除样品未进入系统所致。2、检测氢气组分的检测器除不出氢气峰外,其余的升、降温操作谱图基线均有变化,可排除检测器故障所致。3、查看不出氢气峰的样品色谱图,发现应该在基线上的两个阀且信号也相应消失。故率先怀疑可能此切换阀存在未动作的问题。[/color][/font][align=left][font=宋体][color=black][img=,63,]file:///C:\Users\DlshUser\AppData\Local\Temp\msohtmlclip1\01\clip_image004.jpg[/img][/color][/font][/align][align=center][b][font=宋体]图[/font]4[font=宋体](柱箱)[/font][/b][/align][align=center][img=,400.5,252]file:///C:\Users\DlshUser\AppData\Local\Temp\msohtmlclip1\01\clip_image006.jpg[/img][/align][align=center][b][font=宋体]图[/font]6[font=宋体](六通阀气动执行机构)[/font][/b][/align][align=left][font=宋体]5[/font][font=宋体]、首先对上方控制v3执行机构的电池阀插头进行插拔,发现电磁阀切阀时指示灯会亮,将正常的v4电磁阀插头与v3插头对调。V3和v4指示灯都会亮, v4执行机构会动而v3执行机构依然不动,证明v3插头有效,问题出在之后的部分。[/font][/align][align=left][font=宋体]6[/font][font=宋体]、为了确定是电磁阀问题还是执行机构问题,继续测试,将阀3、4的空气管线拔出,把阀3、4的管线原有位置交换。点击仪器面板进行切阀。阀3能够切换,阀4不动。[img=,414.75,310.5]file:///C:\Users\DlshUser\AppData\Local\Temp\msohtmlclip1\01\clip_image007.jpg[/img][/font][/align][align=center][b][font=宋体]图[/font]7[font=宋体](六通阀气动管线)[/font][/b][/align][align=left][font=宋体]7[/font][font=宋体]、将阀3、4电磁阀拆出,插电切阀,阀4电磁阀动作,阀3毫无动静。[/font][/align][align=left][img=,414.75,246]file:///C:\Users\DlshUser\AppData\Local\Temp\msohtmlclip1\01\clip_image008.jpg[/img][/align][align=center][b][font=宋体]图[/font]8[font=宋体](损坏的电磁阀模块)[/font][/b][/align][align=left][font=宋体]处理仪器故障阀图和谱图十分重要,能够判断出大部分仪器故障问题,结合切阀时间进行逐个测试,使用仪器面板测试出故障点。将怀疑部分代替或者互换也是一个判断故障的好方法。[/font][/align][align=left][font=宋体] [/font][/align]

  • 高速炼厂气

    请问大家今天我用高速炼厂气刚刚老化的色谱柱做了5次标样,第二通道(TCD检测器)的前面出来的组分重复性很好和标样浓度差不多,后面出来的几个组分重复性差,且'和标样相差很多。请问是什么原因。

  • 【原创大赛】快速炼厂气分析系统的原理简介

    【原创大赛】快速炼厂气分析系统的原理简介

    [color=black]快速炼厂气分析系统的原理简介[/color][align=center][color=black]概述[/color][/align][color=black]炼厂气分析系统——三通道快速分析方案的基本工作过程图解。[/color][align=center][color=black]一 背景介绍[/color][/align][color=black]原油一次加工和二次加工的各生产装置都有气体产出,总称为炼厂气,主要来源于原油蒸馏、催化裂化、热裂化、石油焦化、加氢裂化、催化重整、加氢精制等过程。[/color][color=black]炼厂气的组成因加工条件及原料的不同,有很大差别。除了催化重整产生的气体是以氢气为主外,其他装置产气主要为碳一(甲烷CH4)至碳四(丁烷、丁烯等)的气态烃以及少量杂质等,其中以催化裂化装置总加工量大,气体产量大,气体中的烯烃也最多。因此,催化裂化气体是炼厂气加工装置的主要来源。[/color][color=black]炼厂气常分为两个部分,碳一和碳二(乙烷、乙烯)的烃类称为干气,数量较少,一般作为燃料气供加热炉烧掉,也可利用干气中的乙烯组分制作苯乙烯等;碳三(丙烷、丙烯等)和碳四的烃类,即液化石油气,是炼厂气加工的主体。[/color][color=black]使用Shimadzu公司的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]GC-2014,配备有双TCD检测器、单FID检测器和四支自动切换阀,设计某炼厂气分析系统,一次进样完成炼厂气样品中多组分(氢气、氧气、氮气、甲烷、一氧化碳、二氧化碳、碳二-碳六烃类、碳六以上总烃类)的分析工作,10min之内即可分析完成。[/color][align=center][color=black]二 结构原理[/color][/align][color=black]本系统的硬件结构原理如图1所示,系统分为三个分析通道,分别采用两个TCD检测器和一个FID检测器,两个TCD检测器选用不同种类载气以满足分析灵敏度的要求。[/color][color=black]系统配置有四支自动切换阀(三支自动十通阀、一支自动六通阀)和七根色谱柱,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系统分析程序对四支切换阀进行精确、定时的切换,改变七根色谱柱的连接与反吹状态,实现样品的分离测定。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733557696_3114_1604036_3.jpg[/img][/align][align=center][color=black]图1 快速炼厂气分析系统(待机状态)[/color][/align][color=black]通道一使用TCD检测器,氢气或者氦气做为载气,测定炼厂气样品中的微量轻烃类物质(甲烷、乙烷、乙烯)、氧气、氮气、二氧化碳、一氧化碳和硫化氢等组分,采用十通阀进样反吹加六通阀色谱柱选择的方式连接。[/color][color=black]通道二使用TCD检测器,氩气做为载气,测定炼厂气样品中的微量氢气组分,采用较为基本的十通阀进样反吹方式连接。[/color][color=black]通道三使用FID检测器,测定炼厂气样品中的碳三至碳六烃类以及碳六以上烃类物质总量浓度,采用十通阀进样反吹方式连接,反吹出口直接连接至FID检测器,测定碳六以上的重烃类物质总量。[/color][align=center][color=black]三 工作流程[/color][/align][color=black]该系统的工作流程如下:[/color][color=black]通道一工作过程[/color][color=black]取样:[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out),充分吹扫定量环,排除其中参与空气或样品。[/color][color=black]进样,样品预分离[/color][color=black]样品通入十通阀完全替换掉定量环中残余气体后,十通阀旋转36°,此时样品进样至色谱柱PC1中,此时系统状态如图2所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733562003_1441_1604036_3.jpg[/img][/align][align=center][color=black]图2 进样状态下的通道1系统结构图[/color][/align][color=black]此时样品流经Car1 - loop - PC1 - C1 - C2 - - TCD1。样品在色谱柱PC1中被预分离成两部分:保留较弱的碳二以下的烃类(包括硫化氢)和永久气体(氧气、氮气、一氧化碳、二氧化碳),和保留较强的碳三以上的烃类组分。[/color][color=black]反吹,放弃碳三以上的烃类组分[/color][color=black]当样品中的碳二和永久气体组分流出色谱柱PC1之后,系统控制十通阀再次旋转36°,系统恢复到图1的状态,色谱柱PC1内部的载气流向发生反相,该色谱柱内留存的碳三以上的重烃类物质被反吹放弃掉。[/color][color=black]此状态下,载气流向为:Car1 - PC1 - Vent1(PC1中载气方向发生反转)。[/color][color=black]色谱柱选择,滞留永久气体。[/color][color=black]色谱柱PC1中流出的碳二和永久气体组分,在色谱柱C1中继续分离以增加分离度和选择性(色谱柱PC1和色谱柱C1内部填充物为不同的有机担体类固定相)。组分在C1色谱柱中被分离成永久气体(色谱柱内表现为单峰)和二氧化碳、乙烷、乙烯、硫化氢几个部分。[/color][color=black]其中永久气体类组分作为合峰完全流入色谱柱C2之后,切换阀V2旋转60度,将永久气体物质滞留在色谱柱C2之中。[/color][color=black]色谱柱C1中的二氧化碳、乙烯、乙烷和硫化氢经过阻尼R,流出至TCD1检测器,首先出峰。系统此时状态如图3所示。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733564744_1119_1604036_3.jpg[/img][/align][align=center]图3 永久气体被滞留在色谱柱C2中的状态[/align][color=black]5 色谱柱选择,释放永久气体类组分。[/color][color=black]当色谱柱C1中的硫化氢出峰完毕,切换阀V3再次旋转60度,通道一结构恢复至待机状态,此时色谱柱C2中滞留的永久气体类组分流出至TCD1检测器,出峰顺序为氧气、氮气、甲烷、一氧化碳。[/color][color=black]通道二的工作过程:[/color][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out),充分吹扫定量环,排除其中参与空气或样品。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V3旋转36度,此时样品被载气携带进入预分离色谱柱PC2中(样品流经 car3 - loop -PC2 - Column1 - TCD2)。[/color][color=black]样品在预分离色谱柱PC2(PC1柱内填充物为有机担体类固定相)中分离为较轻组分(氢气、氧气、氮气、一氧化碳)和较重组分(烃类、二氧化碳等物质)。[/color][color=black]其中保留较弱的永久气体类组分流入色谱柱C3(色谱柱内填充物为分子筛),氢气被色谱柱C3上与氧气、氮气等组分分离并在TCD1检测器上出峰。[/color][color=black]3 反吹[/color][color=black]当色谱柱PC2中的较轻组分完全流入色谱柱C3中,十通阀V3再次旋转36度,此时色谱柱PC2内部的载气反向流动,将保留时间较强的组分(二氧化碳、重烃类等物质)反吹流出系统。[/color][color=black]通道三的工作过程:[/color][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out),充分吹扫定量环,排除其中参与空气或样品。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V4旋转36度,此时样品被载气携带进入预分离色谱柱PC3中(样品流经 car5 - loop -PC3 - C4 - FID)。[/color][color=black]样品在预分离色谱柱PC3(填充物为非极性硅氧烷类固定相,一般会使用长度较短的毛细管柱)中分离为较轻组分(氢气、氧气、氮气、一氧化碳、碳六以下的烃类)和较重组分(碳六以上的重烃类)。[/color][color=black]其中保留较弱的各类组分流入色谱柱C4(该色谱柱为长度较大的氧化铝毛细管色谱柱),烃类物质可以在该色谱柱上实现分离,并且存在一定的保留时间。[/color][color=black]3 反吹,碳六以上组分出峰[/color][color=black]当色谱柱PC3中的较轻组分完全流入色谱柱C4中,并且所有组分并未从色谱柱C4中流出时,十通阀V4再次旋转36度,系统恢复至图1所示的状态,此时色谱柱PC3内部的载气反向流动,将保留时间较强的组分(碳六以上的重烃类)反吹流出进入FID首先出峰。[/color][color=black]然后色谱柱C4中的各个烃类组分逐次流出在FID上出峰。[/color][color=black]系统总体谱图如图3所示[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733568898_2666_1604036_3.jpg[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733569656_2650_1604036_3.jpg[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111230733570525_9994_1604036_3.jpg[/img][/align][align=center]小结[/align][color=black]该分析系统三个通道工作相独立,通道三的保留时间需要嵌套,分析过程较为复杂。分析系统配置三个检测器,总体运行和维护成本较高,但系统分析效率高。[/color]

炼厂气类似组分相关的资料

炼厂气类似组分相关的资讯

  • 不得不察的生物类似药相关概念
    p  strong总前言/strong/pp  笔者曾在三年前写了多篇有关a href="http://www.instrument.com.cn/application/industry-S22.html" target="_self" title="" style="text-decoration: underline "span style="text-decoration: underline color: rgb(255, 0, 0) "strong生物类似药/strong/span/a的系列文章,主要内容先后发表在《中国科学报》和《中国医药技术经济与管理》,在过去不到三年的时间里,生物类似药领域有了很大发展,尤其是中美两国在生物类似药的监管政策上都取得了很大的进展。笔者在这几年也一直关注生物类似药领域的发展,因此借美中药源和《医药经济报》联合推出“研发热点透视”专栏之际,笔者对此前的系列文章进行了全面更新和补充,以飭读者。/pp  strong何为生物类似药?/strong/pp  生物类似药近年来依然是国内外制药界的热点领域,尤其在中国更是炙手可热。面对专利保护已经或即将到期的许多生物药以及庞大的市场,中国许多制药公司(尤其是一些原来做化学仿制药的公司)也磨拳插掌,准备大举进军生物类似药市场。根据汤森路透的最新数据:全球在研生物类似药数量最多的国家不是美国,而是中国!另外国内外媒体也已经有过有关生物类似药的大量报道,一些国际大型生物公司和市场调研、咨询公司也发表了不少有关生物类似药的白皮书或者专业报告,比较著名的、在业内有广泛影响的有:全球最大的生物技术公司安进发表的“Biologics and biosimilars: an overview”(生物制品与生物类似药概述),汤森路透公司发表的An outlook on US biosimilar competition”(美国生物类似药竞争展望)等。/pp  那么到底何为生物类似药? 在介绍什么是生物类似药之前,有必要先说说什么是生物药,什么是生物制药。尤其是生物制药(biopharm, biopharmaceutical),这是一个非常令人混淆、迷惑的概念。咋一看,或者狭义的说,生物制药是指采用生物技术生产的生物制品(生物药),它的对应词是小分子、通过化学合成的化学药(也包括采用化学合成方法得到的分子量相对较大的多肽等),所以两者的根本区别并非药品的分子量大小,比如现在的技术发展已经可以通过化学合成(自动化)的方式合成长达上百个氨基酸的多肽,分子量可达上万,但是这些药(无论是试验性还是临床用的)都算不上生物药,虽然多肽本身听起来是生物制品。所以,这个狭义的生物制药可以说大致等同于生物药。但是采用生物技术生产的药也并非一定是生物药,因为不少小分子化学药也可以采用现代生物工程技术在微生物体内合成出来。/pp  但是,广义的生物制药的概念也包括化学药,这有多种原因导致生物制药概念的外延。一是由于有些药的特点决定的,比如基于ADC技术(Antibody-Drug Conjugates, 抗体药物偶联)的药,这类药尽管归类于抗体药,但是显然不是纯粹的抗体,而是抗体或者抗体片段与化学药通过特别的接头(linker)偶联而成,所以这类药更像生物药与化学药的结合体 (对ADC药感兴趣的读者,可以点击参阅美中药源的一篇力作:开发抗体药物偶联(ADC)药物的技术挑战(一):申报和监管的一些问题),因此,从这个意义上说,生物药与化学药并无严格的界限。另外,几乎没有大型国际药企(尤其是top20)只做化学药的,越来越多的原来只做化学药的传统制药公司开始进军生物药领域,其中百事美施贵宝(BMS)公司就是一个典型例子。另外,生物药的重要性和在药品市场中的份额也逐年增大,市场经济的特点也决定更多的制药公司开始研发生物药。/pp  临床应用的生物药可谓是多种多样,至少包括:疫苗(包括预防性和治疗性)、血液及血液制品、基因治疗药(我国和欧洲均已有批准上市)、器官组织、细胞(如用于治疗的干细胞)以及重组治疗性蛋白。在生物药中,最为重要是治疗性蛋白。在欧盟和美国市场,已有上百种各种蛋白质类的生物药获准上市,每年有上千亿美元的市场销售额,其中包括全球第一个生物技术药、美国FDA在1982年批准的Humulin(即在大肠杆菌合成的人胰岛素,用于治疗糖尿病,转让自著名的基因泰克(Genentech)公司),更多的、至少数以百计的蛋白类药物正在进行临床实验,毫无疑问,以后会有更多的蛋白类药物获批上市。而对于蛋白药物而言,最重要的是抗体类药物,约占蛋白药一半的市场份额,所以,对于生物类似药企业而言,要仿制的首要目标就是抗体药,对于抗体类药物,在本系列文章以后还会专文详谈。/pp  治疗性蛋白类药物又多种多样,根据其药理活性可分为5类:1)替换人体内缺失或者不正常的蛋白 2)增强人体内已经存在的信号通路 3)提供新的功能或者活性 4)干扰人体内的某种分子或者器官组织 5)输送其它化学药或者蛋白。而根据治疗性蛋白的分子类型又可分为:抗体药、Fc(抗体可结晶片段)融合蛋白(此类蛋白也常被归入广义的抗体药类别)、抗凝血因子、血液因子、骨增生蛋白、工程化骨架蛋白、酶、生长因子、激素(荷尔蒙)、干扰素、白细胞介素,溶栓剂等等。/pp  而对于生物类似药(biosimilar)的定义,各国并无统一的、标准的定义和看法。在我国biosimilar至今仍有多种译法,除了生物类似药外,还有生物仿制药,生物类似物等。2015年3月,CFDA在其发布的《生物类似药研发与评价技术指导原则(试行)》文件中首次将biosimilar称为生物类似药,以后我国似乎有必要将biosimilar译名统一规范为生物类似药,笔者个人也认为生物类似药的译法最好。这是由于相比于化学仿制药(generics), 生物类似药和化学仿制药的核心区别是生物类似药只能和原研生物药类似,而不可能完全一样。另外,从国际上看,对生物类似药的定义主要来自如下三个最为重要和有影响力的机构组织。/pp  第一:世卫组织(WHO): “A biotherapeutic product which is similar in terms of quality, safety and efficacy to an already licensed reference biotherapeutic product”。试译如下:和一种已经批准的参比生物治疗产品在质量、安全性和效力方面均相似的生物治疗产品。/pp  第二:欧盟EMA: “A biological medicine that is developed to be similar to an existing biological medicine (the ‘reference medicine’). When approved, a biosimilar’s variability and any differences between it and its reference medicine will have been shown not to affect safety or effectiveness. ”。试译如下:与已经存在的生物药(即:参比药)类似的生物药。在批准时,该生物类似药自身的可变性以及与参考药的任何不同之处均应被证明不影响仿制药的安全性和有效性。/pp  第三:美国FDA: “A biological product that is highly similar to a U.S. licensed reference biological product notwithstanding minor differences in clinically inactive components, and for which there are no clinically meaningful differences between the biological product and the reference product in terms of the safety, purity and potency of the product”. 试译如下:与一种美国批准的参考生物产品高度相似,尽管无活性组分有小的差异 在临床上和参考生物产品相比在安全性、纯度与效力方面没有显著差异。/pp  尽管上述三种定义不尽相同,但是大同小异,并且都强调了生物类似药的安全性的重要性,而这个安全性主要是指病人或健康受试者身上的临床安全表现,这也决定了生物类似药必须要有临床实验来证明与参比原研生物药相比有相似的安全性(当然还必须包括有效性等)。这也是生物类似药和化学仿制药一大不同,对于两者的不同,以后笔者还会专文详谈。/ppbr//p
  • 可比性研究|使用HR-MAM方法对原研药与其生物类似药进行可比性研究
    可比性研究|使用HR-MAM方法对原研药与其生物类似药进行可比性研究关注我们,更多干货和惊喜好礼可比性研究生物类似药通常指与参考分子(原研药)高度类似的治疗性生物产品1。世界各地的监管机构,如美国食品药品监督管理局(United States Food and Drug Administration, USFDA), 欧洲药品管理局(European Medicines Agency, EMA)和中国市场监督管理总局(National Medical Products Administration, NMPA)均发布了指导规则,要求证实生物类似药与原研药之间在药品安全性/功效性等方面的相似度1。 随着高分辨质谱(HRAM MS)逐步成为创新药和生物类似药表征必不可少的分析工具,在氨基酸序列确认和化学/翻译后修饰等鉴定中,均起到不可或缺的作用2。2015年,Rogers 等2在公开发表的文献中提及可将基于肽图分析的Multi-Attribute Method (MAM) 工作流程用于多重PQA的监控与定量,与此同时还可进行新组分检测(new peak detection)2,进而提供更多产品质量相关信息,并提高生产率。由此,MAM在质量控制(QC)实验室中替代传统分析手段的潜力,引起越来越多生物制药行业和监管机构越来越多的关注2 3。2019年,US FDA的Rogstad等在发表的文献中提及可以考虑使用MAM替代一些常规的QC分析方法4。图1 赛默飞HR-MAM工作流程(点击查看大图)本期我们介绍赛默飞HR-MAM (图 1)工作流程的zui新进展:对未经处理/不同强制降解条件下的生物类似药与利妥昔原研药进行可比性研究,对多个选定PQA进行有效的鉴定、相对定量和监控,以减少分析实验所花费的时间,并提高生产率。 多PQA选定助力原研药与生物类似药结构相似性确证: PQA通常在药物安全性与有效性方面起到重要作用,基于肽图分析表征可以选择适合的PQA,如:糖基化(glycosylation),脱酰胺化(deamidation),琥珀酰亚胺化(succinimide formation),异构化(isomerization),氧化(oxidation),重链C-末端赖氨酸截断(C-terminal lysine truncation),N-末端焦谷氨酸环化(N-terminal pyroglutamate)。 所有被选中的PQA可在BioPharma Finder软件中创建为一个包含该PQA肽段保留时间/质荷比/价态/所有电荷态等信息的工作簿,随后此工作簿被导入至变色龙软件中,用于后续的MAM数据分析。使用HR-MAM工作流程,即使是含量约0.1%的组分,也可通过高分辨质谱平台提供的数据获得高重现性的定性与定量结果。在本文的研究中,选定了下列PQA来证实HR-MAM工作流程用于目标肽段定量的能力,进而评估利妥昔原研药与生物类似药之间的结构相似性:重链 N55 脱酰胺化和琥珀酰亚胺化 重链 N388和N393 脱酰胺化 重链 N388和N394 琥珀酰亚胺化 重链 M256 氧化 重链 D284 异构化 重链N-糖基化 重链C-末端赖氨酸截断和轻/重链N-末端焦谷氨酸环化。 PQA相对定量兼具稳健性与重现性,MAM展现独特潜力: 由于C-末端赖氨酸截断与N-末端焦谷氨酸环化等末端修饰会影响单克隆抗体产品的电荷异质性5,所以在结构可比性研究中需要对其进行评估。以本文中涉及的PQA为例,利妥昔原研药和两个不同批次的生物类似药,其重链C-末端赖氨酸截断与轻/重链N-末端焦谷氨酸环化的比率均在可比范围内(图2)。值得注意的是,所有定量结果三针技术重复的变异系数(coefficients of variation, CVs)均小于2%,显示了优异的重现性。图2. 利妥昔原研药/生物类似药在未经强制降解/强制降解条件下常见末端修饰相对定量结果。图中每个条柱均代表三针技术重复的平均值,误差线代表三针技术重复的标准偏差(下同)。(点击查看大图) N-糖基化可能会影响单克隆抗体产品的免疫原性、药效、抗体依赖的细胞介导细胞毒性(antibody-dependent cell-mediated cytotoxicity, ADCC)、补体依赖的细胞毒性(complement-dependent cytotoxicity, CDC)、血清清除率和药代动力学5。在生物类似药的开发和生产过程中,为了确保产品的安全性和有效性,N-糖基化必须被密切监控并严格控制。对于生物类似药开发厂商而言,生物类似药的糖基化异质性分布必须与其原研药具有可比性,以避免扩大临床试验的规模。 在本方案涉及的实验所用的原研药和生物类似药样品中,总共鉴定到15种不同糖型,这些糖型的相对含量在不同样品之间并没有明显区别(图3)。与传统N-糖链定量方法相比,未发生糖基化修饰的肽段相对含量也可在HR-MAM工作流程中同时被监控,这是传统方法无法做到的,展现了其独到价值。对所有糖型的相对定量结果同样显示了优异的重现性和灵敏度。例如,对于相对含量约0.3%的糖型A2S1G0F ,其技术重复之间的CV5.5%。图3. 利妥昔原研药/生物类似药在未经强制降解条件下重链EEQYNSTYR 15种糖型相对定量结果(三针平行技术重复)。(点击查看大图) 对于其他选定PQA,借助于赛默飞高分辨质谱平台的高灵敏度和高选择性,结合Vanquish UHPLC系统和Accucore Vanquish C18 +色谱柱提供的高重现性分离,均可实现兼具稳健性与重现性兼具的相对定量。 zui新应用方案,码上下载想要深入了解详细实验结果、参数设置、MAM优势,立即下载zui新Application Note相关阅读• 客户案例|辉瑞在多个实验室同时部署MAM• HR Multi-Attribute Method Workflow 化繁为简,有规可循|为生物制药表征和质量控制保驾护航 参考文献:[1] US Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. Guidance for Industry. April 2015. [2] Liu, H., et al. A high-resolution accurate mass multi-attribute method for critical quality attribute monitoring and new peak detection. APPLICATION NOTE 72916. [3] Rogstad, S., et al. Multi-Attribute Method for Quality Control of Therapeutic Proteins. Anal. Chem. 2019, 91, 14170−14177.[4] US Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. Guidance for Industry. April 2015. [5] Beck, A., et.al. Characterization of Therapeutic Antibodies and Related Products. Anal. Chem. 2013, 85, 715−736. 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 岛津推出《细胞培养上清液及培养基组分分析应用文集》
    现代生物技术一般认为包括基因工程技术、细胞工程技术、酶工程技术和发酵工程技术,而这些技术的发展几乎都与细胞培养有密切关系,特别是在医药领域的发展。比如基因工程药物或疫苗在研究生产过程中很多是通过细胞培养来实现的;细胞工程中更是离不细胞培养,杂交瘤单克隆抗体,完全是通过细胞培养来实现的。正在倍受重视的基因治疗、细胞治疗也要经过细胞培养过程才能实现,发酵工程和酶工程有的也与细胞培养密切相关。总之,细胞培养在整个生物技术产业的发展中起到了关键的核心作用。开发合适的培养基配方与优化细胞培养条件是保证产品质量、产量以及批次之间一致性的重要因素,尤其是抗体药物偶联物、双靶点/特异抗体类药物、抗体片段融合蛋白等相对分子量大、结构复杂的抗体类药物,对其重要性不言而喻。而对于生物类似药的研发与质量控制来说,尽可能通过优化工艺缩小差异,更有利于生物类似药与原研参比品的质量对比研究,提高生物类似药的质量研究结果与参比品之间的相似性,从而使各项质量属性达到预先设置的可接受范围。目前生物制品公司的生物过程工艺开发与优化偏重于监测常规的温度、搅拌、溶解气体、OD值等理化条件和少数培养基成分与代谢物等的变化,缺乏对于细胞培养上清液组分直接、全面且快速的客观动态数据分析,因此无法精准优化细胞培养工艺条件,甚至影响抗体类药物等的产品品质;而培养基生产商为了开发高效低成本培养基配方,并且要保证批次间一致性,则需要投入大量的人力物力,配备不同检测功能的仪器来实现培养基成分的全方位检测。 为满足快速全面分析细胞培养上清液组分和培养基组分,将基础碳源、氮源、核酸、维生素和其他主要代谢物同时检测分析的需求,我们开发出“细胞培养上清液方法包”。该技术平台采用超快速三重四极杆液质联用仪,仅需17分钟,即可同时监测95种细胞培养上清液营养成份和代谢物等的相对丰度变化 。无需用户自行开发方法,即装即用。所有目标化合物信息与实验方法全内置,且根据需要可增加,可拓展。为增进用户对“细胞培养上清液方法包”的深入了解和方便使用,岛津企业管理(中国)有限公司分析中心整理编写了本册《细胞培养上清液及培养基组分分析应用文集》。本册文集介绍了“细胞培养上清液方法包”在不同培养基组分分析以及细胞培养过程监控中的应用,共收录应用文章 10 篇,为相关领域的客户使用该系统提供参考。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制