当前位置: 仪器信息网 > 行业主题 > >

炼厂气类似组分

仪器信息网炼厂气类似组分专题为您整合炼厂气类似组分相关的最新文章,在炼厂气类似组分专题,您不仅可以免费浏览炼厂气类似组分的资讯, 同时您还可以浏览炼厂气类似组分的相关资料、解决方案,参与社区炼厂气类似组分话题讨论。

炼厂气类似组分相关的方案

  • 炼厂气快速分析—岛津双柱箱四阀八柱系统的应用
    本文采用岛津GC-2030气相色谱仪建立了双柱箱四阀八柱系统,并应用于炼厂气及类似组成样品分析的方法。该方法采用十通阀和十四通阀同步进样,三个通道同时分析,灵敏度高,TCD检测器分析永久性气体与硫化氢的检出限<20ppm;FID检测器分析烃类检出限<0.3ppm,方法重复性良好,所有组分峰面积RSD<0.8%,完成分析包括硫化氢在内所有组分的时间13min以内。该系统可用于石化炼厂气快速分析,亦可用于煤热解、焦油加氢等工艺类似气体以及天然气组成分析。
  • 快速炼厂气分析
    赛默飞快速炼厂气分析系统,可以在7 min完成炼厂气复杂组分的分析,提高了实验室的工作效率。而且采用两个具有独立控温的阀箱和柱箱,通过使用不同的温度,避免了因为老化色谱柱而带来的拆卸色谱柱所引起的问题,简化了维护程序。此外,做为炼厂气的扩展分析,在额外配备了两个液体阀后,可以满足GPA 2261方法分析热值。这两个分析可以独立完成,也可以合并分析,从而提升了仪器的使用效率,降低了成本。
  • 石化应用方案六:炼厂气分析--三阀四柱方案
    炼厂气是石油炼制过程中副产的气体烃,它主要来源于加氢裂化、催化重整、加氢精制等过程,不同来源的炼厂气,其成分、含量也各有差异,但其主要成分为碳四(C 4 )以下的烷烃、烯烃以及氢气和少量氮气、二氧化碳等气体。本方案:1、采用双检测器,各组分的灵敏度高;2、带吹扫六通阀能够防止空气中氧气和氮气的渗透,减少这些组分的干扰
  • 快速炼厂气分析
    赛默飞快速炼厂气分析系统,满足了用户以上的要求。首先它将传统的四阀五柱,两个分析通道、顺序分离各组分的分析方式,修改为三个分析通道同时进样、同时分析,整个分析时间仅为7分钟左右。其次,针对炼厂气色谱柱多(5个以上),老化温度不同,从而导致维护复杂的特点,提供两个具有独立控温的柱箱。一个柱箱安装阀和预柱,作为阀箱;另一个安装主分析柱,作为柱箱。老化色谱柱时,阀箱和柱箱可以采用不同的温度,避免了拆卸色谱柱所带来的困扰,提高了实验室效率。此外,做为炼厂气的扩展分析,在额外配备了两个液体阀后,可以满足GPA 2261方法分析热值。这两个分析可以独立完成,也可以合并分析。
  • 气相色谱柱GsBP-FRGA和GsBP-Select Olefins快速分离炼厂气
    炼厂气是炼油工艺产生的各种气体的混合物,主要来源于加氢裂化、催化重整、加氢精制等过程。不同来源的炼厂气,其成分、含量也各有差异。一般含有烃类、永久气体、硫化物等等。它们可以是燃料气、最终产品或下一步工艺的原料。而加工流程的选择取决于炼厂气的产量、组成和产品要求,因此炼厂气分析是石化项目中很重要的色谱分析。 传统的炼厂气分析时间大约40分钟左右。但是随着石化装置的大型化以及工艺链的延长,化验室炼厂气样品数量明显增多,因此,迫切需要缩短炼厂气分析时间。本文采用炼厂气专用柱GsBP-FRGA开发的方法实现对C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)组分的快速分离,C6以内的组分分离只需要5min,GsBP-Select Olefins炼厂气专用柱实现了对C4/C5烯烃的快速分离,尤其对C4烯烃异构体表现了出色的分离能力。
  • 快速炼厂气分析
    首先它将传统的四阀五柱,两个分析通道、顺序分离各组分的分析方式,修改为三个分析通道同时进样、同时分析,整个分析时间仅为7分钟左右。其次,针对炼厂气色谱柱多(5个以上),老化温度不同,从而导致维护复杂的特点,提供两个具有独立控温的柱箱。一个柱箱安装阀和预柱,作为阀箱;另一个安装主分析柱,作为柱箱。老化色谱柱时,阀箱和柱箱可以采用不同的温度,避免了拆卸色谱柱所带来的困扰,提高了实验室效率。
  • 气相色谱柱GsBP-FRGA和GsBP-Select Olefins快速分离炼厂气
    炼厂气是炼油工艺产生的各种气体的混合物,主要来源于加氢裂化、催化重整、加氢精制等过程。不同来源的炼厂气,其成分、含量也各有差异。一般含有烃类、永久气体、硫化物等等。它们可以是燃料气、最终产品或下一步工艺的原料。而加工流程的选择取决于炼厂气的产量、组成和产品要求,因此炼厂气分析是石化项目中很重要的色谱分析。传统的炼厂气分析时间大约40分钟左右。但是随着石化装置的大型化以及工艺链的延长,化验室炼厂气样品数量明显增多,因此,迫切需要缩短炼厂气分析时间。本文采用气相色谱柱GsBP-FRGA开发的方法实现对C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)组分的快速分离,C6以内的组分分离只需要5min,GsBP-Select Olefins色谱柱实现了对C4/C5烯烃的快速分离,尤其对C4烯烃异构体表现了出色的分离能力。
  • 气相色谱法6分钟内完成含硫化氢的炼厂气分析
    本文采用岛津GC-2014气相色谱仪,建立了在6min内可分析包含硫化氢在内的炼厂气组分的快速分析方法。该方法由四阀八柱系统构成,对重烃反吹合峰,三个检测器同时检测,TCD1分析永久性气体与硫化氢,检出限<100ppm;TCD2分析氢气,检出限<20ppm;FID分析烃类,检出限<5ppm。该方法重复性良好,所有组分峰面积RSD<1%,可用于石油化工、煤化工工艺过程相似组成气体及天然气分析。
  • 炼厂气分析解决方案
    炼厂气和化工设备分析仪在任何炼制和石化工厂的实验室中都是重要的组成部分。这些分析仪器可为装置的操作,优化及最终产品出厂提供有价值的信息,安捷伦科技提供很多不同配置用于扩展炼厂气分析和快速炼厂气分析(6 分钟分析时间)。炼厂气分析解决方案涵盖了烃类C1 到C5, C6+ 作为反吹,如果采用不反吹的方案,能够使分析能力扩展到C15,最低的检测限:烃类化合物FID 检测为10 ppm、TCD 为50 ppm。用氦气作载气、TCD 检测永久性气体氧气,氮气,一氧化碳,二氧化碳,最低检测限为50 ppm,硫化氢为500 ppm,用氩气或氮气作载气,TCD 分析氢气最低检测限为50 ppm。对于高浓度硫化氢,安捷伦科技提供了对硫有抗腐蚀作用的管路,表3 是一个选择炼厂气分析方案的指南。
  • 气相色谱柱GsBP-FRGA和GsBP-Select Olefins快速分离炼厂气甲烷
    炼厂气是炼油工艺产生的各种气体的混合物,主要来源于加氢裂化、催化重整、加氢精制等过程。不同来源的炼厂气,其成分、含量也各有差异。一般含有烃类、永久气体、硫化物等等。它们可以是燃料气、最终产品或下一步工艺的原料。而加工流程的选择取决于炼厂气的产量、组成和产品要求,因此炼厂气分析是石化项目中很重要的色谱分析。传统的炼厂气分析时间大约40分钟左右。但是随着石化装置的大型化以及工艺链的延长,化验室炼厂气样品数量明显增多,因此,迫切需要缩短炼厂气分析时间。本文采用气相色谱柱GsBP-FRGA开发的方法实现对C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)组分的快速分离,C6以内的组分分离只需要5min,GsBP-Select Olefins色谱柱实现了对C4/C5烯烃的快速分离,尤其对C4烯烃异构体表现了出色的分离能力。
  • 气相色谱柱GsBP-FRGA和GsBP-Select Olefins快速分离炼厂气乙烷
    炼厂气是炼油工艺产生的各种气体的混合物,主要来源于加氢裂化、催化重整、加氢精制等过程。不同来源的炼厂气,其成分、含量也各有差异。一般含有烃类、永久气体、硫化物等等。它们可以是燃料气、最终产品或下一步工艺的原料。而加工流程的选择取决于炼厂气的产量、组成和产品要求,因此炼厂气分析是石化项目中很重要的色谱分析。传统的炼厂气分析时间大约40分钟左右。但是随着石化装置的大型化以及工艺链的延长,化验室炼厂气样品数量明显增多,因此,迫切需要缩短炼厂气分析时间。本文采用气相色谱柱GsBP-FRGA开发的方法实现对C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)组分的快速分离,C6以内的组分分离只需要5min,GsBP-Select Olefins色谱柱实现了对C4/C5烯烃的快速分离,尤其对C4烯烃异构体表现了出色的分离能力。
  • 气相色谱柱GsBP-FRGA和GsBP-Select Olefins快速分离炼厂气丙烷
    炼厂气是炼油工艺产生的各种气体的混合物,主要来源于加氢裂化、催化重整、加氢精制等过程。不同来源的炼厂气,其成分、含量也各有差异。一般含有烃类、永久气体、硫化物等等。它们可以是燃料气、最终产品或下一步工艺的原料。而加工流程的选择取决于炼厂气的产量、组成和产品要求,因此炼厂气分析是石化项目中很重要的色谱分析。传统的炼厂气分析时间大约40分钟左右。但是随着石化装置的大型化以及工艺链的延长,化验室炼厂气样品数量明显增多,因此,迫切需要缩短炼厂气分析时间。本文采用气相色谱柱GsBP-FRGA开发的方法实现对C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)组分的快速分离,C6以内的组分分离只需要5min,GsBP-Select Olefins色谱柱实现了对C4/C5烯烃的快速分离,尤其对C4烯烃异构体表现了出色的分离能力。
  • 气相色谱柱GsBP-FRGA和GsBP-Select Olefins快速分离炼厂气乙烯
    炼厂气是炼油工艺产生的各种气体的混合物,主要来源于加氢裂化、催化重整、加氢精制等过程。不同来源的炼厂气,其成分、含量也各有差异。一般含有烃类、永久气体、硫化物等等。它们可以是燃料气、最终产品或下一步工艺的原料。而加工流程的选择取决于炼厂气的产量、组成和产品要求,因此炼厂气分析是石化项目中很重要的色谱分析。传统的炼厂气分析时间大约40分钟左右。但是随着石化装置的大型化以及工艺链的延长,化验室炼厂气样品数量明显增多,因此,迫切需要缩短炼厂气分析时间。本文采用气相色谱柱GsBP-FRGA开发的方法实现对C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)组分的快速分离,C6以内的组分分离只需要5min,GsBP-Select Olefins色谱柱实现了对C4/C5烯烃的快速分离,尤其对C4烯烃异构体表现了出色的分离能力。
  • 气相色谱柱GsBP-FRGA和GsBP-Select Olefins快速分离炼厂气环丙烷
    炼厂气是炼油工艺产生的各种气体的混合物,主要来源于加氢裂化、催化重整、加氢精制等过程。不同来源的炼厂气,其成分、含量也各有差异。一般含有烃类、永久气体、硫化物等等。它们可以是燃料气、最终产品或下一步工艺的原料。而加工流程的选择取决于炼厂气的产量、组成和产品要求,因此炼厂气分析是石化项目中很重要的色谱分析。传统的炼厂气分析时间大约40分钟左右。但是随着石化装置的大型化以及工艺链的延长,化验室炼厂气样品数量明显增多,因此,迫切需要缩短炼厂气分析时间。本文采用气相色谱柱GsBP-FRGA开发的方法实现对C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)组分的快速分离,C6以内的组分分离只需要5min,GsBP-Select Olefins色谱柱实现了对C4/C5烯烃的快速分离,尤其对C4烯烃异构体表现了出色的分离能力。
  • 气相色谱柱GsBP-FRGA和GsBP-Select Olefins快速分离炼厂气环丙烷
    炼厂气是炼油工艺产生的各种气体的混合物,主要来源于加氢裂化、催化重整、加氢精制等过程。不同来源的炼厂气,其成分、含量也各有差异。一般含有烃类、永久气体、硫化物等等。它们可以是燃料气、最终产品或下一步工艺的原料。而加工流程的选择取决于炼厂气的产量、组成和产品要求,因此炼厂气分析是石化项目中很重要的色谱分析。传统的炼厂气分析时间大约40分钟左右。但是随着石化装置的大型化以及工艺链的延长,化验室炼厂气样品数量明显增多,因此,迫切需要缩短炼厂气分析时间。本文采用气相色谱柱GsBP-FRGA开发的方法实现对C1-C6和BTEX(苯、甲苯、乙苯、二甲苯)组分的快速分离,C6以内的组分分离只需要5min,GsBP-Select Olefins色谱柱实现了对C4/C5烯烃的快速分离,尤其对C4烯烃异构体表现了出色的分离能力。
  • 采用安捷伦炼厂气分析仪分析炼厂气中的氧气
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的氢气
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的羰基硫
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的乙烷
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。
  • 采用安捷伦炼厂气分析仪分析炼厂气中的甲烷
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。
  • 采用安捷伦炼厂气分析仪分析炼厂气中的烃类
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的氮气
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的 1-丁烯
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的反-2-丁烯
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的正丁烷
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的正戊烷
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的二氧化碳
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的硫化氢
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
  • 采用安捷伦炼厂气分析仪分析炼厂气中的 C6+
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。
  • 采用安捷伦炼厂气分析仪分析炼厂气中的一氧化碳
    使用三通道Agilent 7890B 气相色谱系统测定炼厂气。通道1 使用了FID 检测器和氧化铝 PLOT 色谱柱,用于测定从甲烷到C6+ 的烃类。通道3 使用氮气为载气,用于测定氢气。通道2 采用了G3507A 大阀箱(LVO),在恒温条件下以氦气为载气,用于测定永久性气体和硫化氢。通道1 和3 为程序升温,而通道2 为恒温,其温度控制独立于主柱温箱。根据G3507A LVO 的温度和阀切换时间,分析时间从15 到18 分钟不等。?
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制