天然有机物

仪器信息网天然有机物专题为您整合天然有机物相关的最新文章,在天然有机物专题,您不仅可以免费浏览天然有机物的资讯, 同时您还可以浏览天然有机物的相关资料、解决方案,参与社区天然有机物话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

天然有机物相关的耗材

  • 有机物组件包
    有机物组件包4100 MP-AES 有机物组件包包括用4100 进行有机溶剂测定所需的所有部件。订货信息:说明部件号4100 MP-AES 有机物组件包 包括外部气体控制模块(EGCM),OneNeb 雾化器和耐溶剂管G8000-68004
  • 挥发性有机物组件包
    挥发性有机物挥发性有机物组件包减少蒸汽压,有利于稳定等离子体并防止信号损失。组件包包括:玻璃同心(Conikal)雾化器水冷却雾化室安装支架带有内径0.8 毫米中心管的整体炬管。ICP-OES 管线组件包括两包蠕动泵管(6/包),一个FEP 转换管(雾化室到炬管),排废管(1 米长),雾化室废液管(1 米长),一包Ezyfit 进样口接头(10/包),雾化器毛细管(2 米长),用于连接管的Barb 接头(5 个内径1/16 英寸到内径1/8 英寸和5 个内径1/16 英寸到内径1/16英寸)和连接管(0.5 米长)。当分析挥发性有机溶剂时,建议使用AGM1 氧气附件(部件号10055900)冷却雾化室要求可冷却至零下10 度的制冷循环水冷却器,用于分析挥发性有机溶剂如汽油和石脑油。订货信息:挥发性有机物说明雾化器、雾化室部件号挥发性有机泵管组件包-轴向玻璃同心(Conikal)雾化器、水冷却雾化室9910127500挥发性有机泵管组件包-径向玻璃同心(Conikal)雾化器、水冷却雾化室、退火炬管9910127600
  • 铂歆 土壤有机物采样瓶 PTFE垫片 棕色 样品瓶
    BOLOR铂勒品质提供的500mL土壤有机物采样瓶 PTFE垫片 棕色 BOXIN/铂歆 02.009.0500性能优越。 产品特点:1.土壤采样瓶有1000mL、500mL、250mL、110mL,瓶身采用高强度耐冲击棕色玻璃,瓶盖内附有高纯度的聚四氟乙烯(PTFE)垫片,专门用于采集分析土壤众VOCs,SVOCs,POPs等有机物2.瓶身为直身设计,方便土壤的装取,亦易于清洗。符合标准:1.HJ/T 166-2004 土壤环境监测技术规范2.HJ 743-2015 土壤和沉积物 多氯联苯的测定 气相色谱-质谱法3. HJ 784-2016 土壤和沉积物 多环芳烃的测定-高效液相色谱法4. HJ 835-2017 土壤和沉积物 有机氯农药的测定气相色谱-质谱法5. GB 17378.3-2007 海洋监测规范 第3部分:样品采集、贮存与运输作为众多知名品牌的合作伙伴,BOLOR铂勒以其优良的品质和服务与阁下携手建立战略合作。编号产品02.009.0110土壤有机物采样瓶,棕色,带PTFE垫片,110mL02.009.0250土壤有机物采样瓶,棕色,带PTFE垫片,250mL02.009.0500土壤有机物采样瓶,棕色,带PTFE垫片,500mL02.009.1000土壤有机物采样瓶,棕色,带PTFE垫片,1000mL上海铂歆环境科技有限公司致力于环境检测领域,为众多客户提供水质、大气、土壤、振动等领域的测试仪器及所需耗材。公司拥有众多行业从业十余年的产品工程师,也有专业的技术团队,可为客户提供专业的技术服务。十多年来,我们见证了中国第三方环境检测行业的迅速发展,众多客户成为了行业领军企业,我们也见证了中国环境的持续改善。铂歆为您提供环境空气/固定污染源:石英滤筒、石英滤棉、玻纤滤筒、玻纤滤膜、低浓度采样头、47mm石英滤膜、铝圈、托网、油烟滤筒、泰德拉采样袋、气体传感器、各种采样管、各种吸收瓶、土壤/地下水:土壤采样瓶、40mL EPA瓶、非扰动土壤采样器、贝勒管、棕色水样瓶,SPE小柱、玻璃棉、石英棉等产品。

天然有机物相关的仪器

  • 典型应用有机物分析仪可用在污水、地表水、工业循环水中连续监测有机污染物。自来水原水有机污染程度的综合评价指标特性和优点● 国际通用技术,经过验证的、高精确的紫外光吸收方法● 无需样品预处理,反应分析速度快,不需要任何试剂、无需取样设备● 传感器有机械自清洗功能● 浸入和流通池两种安装方式可供选择检测原理含 有共轭双键或多环芳烃的有机物溶解在水中时,对紫外光有吸收作用。因此,通过测量这些有机物对254nm 紫外光的吸收程度,以特别吸光系数SAC254来表达测量结果,作为衡量水中有机污染物总量的物理量。在一定条件下,SAC254可换算并显示为COD、 BOD、DOC、TOC值。仪器通过双光束系统,实现浊度自动补偿。量程可选:0.01~60m-1, 0.1~600m-1 , 0~1500m-1, 2~3000m-1COD 可选 BOD 可选 TOC 可选0~100mg/L 0~25mg/L 0~100mg/L0~800mg/L 0~1000mg/L 0~500mg/L0~2500mg/L 0~5000mg/L 0~2500mg/L0~5000mg/L 0~20000mg/L 0~10000mg/L0~20000mg/L 注:在样品水质稳定的情况下,UVAS sc 紫外吸收在线分析仪的光吸收系数与COD 或TOC 值之间有较好的线性相关关系。通过与实验室标准测量方法所得结果的比较,计算出转换系数和量程选择:测量准确度: ± 3% 测量值+ 0.5mg/L测量周期: 1 分钟光程: 1mm,2mm,5mm,50mm响应时间: 1 min(可调)电缆长度: 10 米自动清洗: 机械(刮片)自动清洗,频率可调模拟输出: 两路0/4~20 mA,负载 500 Ohm现场总线: MODBUS 或Profibus(可选)工作温度: +2℃~40 ℃探头耐压: 0.5 bar (探头在水下安装深度为2 米)工作电源: 230VAC ± 10%,50 Hz,15VA 或 24V DC/ AC ± 25%,800mA探头尺寸: 约70 × 333mm(直径×长度)探头重量: 约3.6kg?????????常用的整机定货以下UVAS sc在线有机物分析仪包括sc200 控制器及不同光程的传感器2976700 UVAS sc带1mm光程传感器的在线有机物分析仪2976400 UVAS sc带2mm光程传感器的在线有机物分析仪(通用型)2976600 UVAS sc带5mm光程传感器的在线有机物分析仪2976500 UVAS sc带50mm光程传感器的在线有机物分析仪单项定货UVAS sc 在线有机物分析仪传感器LXV418.99.10002 仅1 mm UVAS sc 传感器LXV418.99.20002 仅2 mm UVAS sc 传感器LXV418.99.50002 仅5 mm UVAS sc 传感器LXV418.99.90002 仅50mm UVAS sc 传感器可选流通池和安装附件LZX868 用于50mm 传感器的流通池组件LZX867 用于5 mm 传感器的流通池组件LZX869 用于2 mm 传感器的流通池组件LZX414.00.10000 沉入式带安装组件,带90 度适配器和安装支架等
    留言咨询
  • 详细介绍 ZR-3950型环境空气有机物采样器,主要应用于采集环境空气中多环芳烃类、吡啶类、有机农药类、氯代苯类、喹啉类、硝基苯类、多氯联苯类等半挥发性有机物(SVOC)样品,同时也适用于垃圾焚烧发电厂等区域环境空气中二噁英成分的采样。 执行标准HJ/647-2013 《环境空气和废气 气相和颗粒物中多环芳烃的测定高效液相色谱法》GBT 15439-1995《环境空气 苯并[a]芘测定 高效液相色谱法》 HJ 77.2-2008 《环境空气和废气 二噁英类的测定 同位素稀释高分辨气象色谱-高分辨质谱法》HJ/691-2014 《环境空气 半挥发性有机物采样技术导则(SVOCS)》征求意见稿 《工作场所空气有毒物质测定 第148部分:二噁英类化合物》征求意见稿 《环境空气 气相和颗粒物中 多氯联苯混合物的测定气相色谱法》技术特点同时采集环境空气中存在的颗粒物态、气态和气溶胶状态的VOCS和SVOCS;分体化设计,专用铝合金和硼硅酸盐玻璃吸附剂套筒,拆装、运输方便;采样前、后套筒全程密封避光保存,防止吸附剂污染和样品挥发损失;流量范围覆盖大流量(225L/min)、超大流量(800L/min)以及苯并芘采样流量(1130L/min);优良散热性能,环境温度过高时不会热保护;采用进口无刷风机,自动恒流采样,负载能力强,低噪音;内置GPRS模块,远程查看仪器采样状态及采样数据。内置蓝牙模块,可选配蓝牙打印机进行数据打印;体积小巧,重量轻,可折叠支架 ;具备按体积和时间两种采样功能,支持定时采样和立即采样功能;专业结构设计,具有防雨防尘功能,可在雨雪天气、扬尘环境下工作;数字化测定,自动计算累计体积和标况体积;自动测量和显示环境温度、湿度、大气压等参数,可选配风速风向传感器;过载自动保护功能,仪器采样出现异常状况时,停机保护;来电重启功能,采样过程中掉电,上电后继续采样,并记录掉电数据;高亮彩色触摸屏、宽温工作,操作方便,人机交互好;内置大容量存储器,长期保存采样数据及掉电数据;可通过U盘进行数据导出及程序升级。
    留言咨询
  • 仪器简介:典型应用在污水、地表水、工业循环水中连续监测有机污染物。自来水原水有机污染程度的综合评价指标检测原理含有共轭双键或多环芳烃的有机物溶解在水中时,对紫外光有吸收作用。因此,通过测量这些有机物对254nm 紫外光的吸收程度,特别吸光系数,用来衡量水中有机污染物总量的物理量。通过双光束系统,实现浊度自动补偿。技术参数:量程可选:0.01~60m-1,0.1~600m-1,0~1500m-1,2~3000m-1测量周期:1分钟光 程:1mm,2mm,5mm,50mm响应时间:>1 min(可调)电缆长度:8 米模拟输出:两路0/4~20 mA,最大负载 500 Ohm现场总线:MODBUS 或Profibus(可选)防护等级:IP65工作温度:+2℃~40 ℃探头耐压:最大0.5 bar(探头在水下安装最大深度为2 米)工作电源:230VAC± 10%,50 Hz,15VA 或 24V DC/AC± 25%,800mA探头尺寸:约70× 333mm(直径× 长度)探头重量:约3.6kg主要特点:● 国际通用技术,经过验证的、高精确的紫外光吸收方法● 无需样品预处理,反应分析速度快,不需要任何试剂、无需取样设备。● 传感器有机械自清洗功能● 浸入和流通池两种安装方式可供选择
    留言咨询

天然有机物相关的试剂

天然有机物相关的方案

  • 天然有机物总氮含量的测定方法
    天然有机物(如蛋白质和氨基酸等化合物)的总氮量通常用微量凯氏定氮法(micro-kjeldahl method)来测定。当被测的天然含氮化合物与浓硫酸共热时分解出氨,氨与硫酸反应生成硫酸铵,此过程称为消化。由于消化过程进行缓慢,实验中常添加硫酸钾和硫酸铜的混合物来促进,硫酸铜是催化剂,硫酸钾可提高消化液的沸点。氧化剂过氧化氢也能加速反应。消化完成后,在凯氏定氮仪中加入强碱碱化消化液,使碳酸铵分解出氨。用水蒸汽蒸馏法将氨蒸入无机酸溶液中,然后再用标准酸溶液进行滴定。
  • 饮用水的检测10:消毒过程对水质中天然有机物的作用
    摘要:利用LC-OCD-OND-UVD分析系统分析了加入氯化物消毒前后水质中的天然有机物的存在情况......纳锘仪器--为您提供纳米级专业细致服务! 如欲了解更多该产品信息,可来电咨询 。 ---------------------------------------------------------------------  上海纳锘仪器有限公司  地址:上海市莲花南路1388弄8号楼碧恒广场1503室[201108]  电话:021-60900829,60900830,61131031,61131051  传真:021-61131052  E-Mail:info@nano-instru.com
  • 饮用水的检测6-7:地下水中天然有机物的检测
    摘要:利用LC-OCD-OND-UVD分析系统分析两处不同地方的地下水中天然有机物的情况,通过比较其中生物聚合物、腐殖质等含量可判断水中微生物的活动状况,从而可得出水质的污染情况等信息......纳锘仪器--为您提供纳米级专业细致服务! 如欲了解更多该产品信息,可来电咨询 。 ---------------------------------------------------------------------  上海纳锘仪器有限公司  地址:上海市莲花南路1388弄8号楼碧恒广场1503室[201108]  电话:021-60900829,60900830,61131031,61131051  传真:021-61131052  E-Mail:info@nano-instru.com

天然有机物相关的论坛

  • 有机物中的重金属铜和铁?有机物的前处理应该怎么处理?

    本人刚接触原吸,需要检测有机物中的重金属铜和铁! 有机物2,4二氯甲苯等应该怎么处理呢? 例如: 1,用什么酸进行酸解?我用硝酸进行酸解,不过硝酸和2,4二氯甲苯有分层的现象!不知是不是正常现象或者选合适的酸的标志是什么现象? 2,有机物进行微波消解应该要注意些什么?消解设置是根据什么进行设置的?有机物的熔点?还是别的方面? 3,微波消解后赶酸的温度设置是根据什么进行设置的? 4,原吸上机检测时有哪些方面需要注意? 主要是请教有机物的前处理过程?谢谢各位老师指教!

  • 【求助】水中有机物

    请问各位大虾们,要测水中有机物的量用哪种方法最好.样品中的有机物是未知物,只想测出样品中所有的有机物的总含量.

天然有机物相关的资料

天然有机物相关的资讯

  • 浊度和天然有机物(NOM)的校正
    概述YSI EXO NitraLED™ 传感器利用光学吸收的基本原理检测硝酸盐。所有光学技术都必须应对浊度干扰,浊度干扰是由悬浮粒子引起的光散射引起的。由于有机物也会吸收光,依靠紫外光范围进行测量的传感器会受到天然有机物(NOM)的吸收的干扰。本文描述NitraLED传感器的工作原理同时,重点介绍应用于传感器内的原始信号的NOM和浊度校正。EXO NitraLED传感器的基本结构该传感器配有一个主LED ,发出波长为235nm光检查水样。以各种形态存在的氮都会吸收波长为235nm的光,NitraLED传感器无法区分这些不同形态的氮。比如,亚硝酸盐也会吸收。然而,在自然水域中,硝酸盐通常是氮最普遍的形态。在传感器内,NOM由发射275nm光的发光二极管检测。像其他在235nm吸收NOx的物种一样,NOM不是水中唯一能吸收波长为275nm的光的物质。但是在一定范围内,尤其是在用户提供的环境输入,275nm的LED可以方便对原位测量进行NOM校正。校正的效果取决于NOM的性质。浊度通过利用EXO浊度传感器来处理,该传感器须始终与NitraLED传感器搭配使用。经验丰富的EXO用户已经知道,浊度传感器的工作原理是光的散射,这不同于吸光度。下文描述了EXO浊度传感器如何协助校正浊度衰减。硝酸盐是以硝酸盐氮为单位来测量。因此,在使用化学表达式的地方都使用 NO3-N形式。这是因为传感器是在工厂用NO3-N标准进行校准的,且用户校准用的校准标准也是从YSI购买的NO3-N。由于衰减效应已在传感器中得到仔细处理,标准液中的任何微粒或不规则现象都会影响校准质量从而影响测量的准确性,因此YSI标准是唯一已知不会发生这种效应的标准。其他标准液也适用于NitraLED,但这些风险应该注意。吸光度原理EXO NitraLED传感器利用吸光度原理计算硝酸盐浓度。吸光度以吸光度的单位AU来测量,遵循比尔定律:其中,A表示以AU为单位的吸光度,它是透过样品的光强,而Io是来自传感器的光强根据传感器记录的235纳米处的总吸光度,NitraLED传感器计算硝酸盐的吸光度非常简单的公式如下:在275nm波长处,用一个类似的简化方程来确定干扰的影响:利用比尔定律测量235nm波长的吸光度,然后减去由浊度引起的衰减值(已转换为 AU 单位)以及减去275nm波长下估算NOM吸光度。然后将这样计算得出的ANO3-N用于回归方程,此方程是基于工厂线性化和两点用户校准。此回归定义了吸光度和硝酸盐浓度之间的关系。在此回归的计算过程中,校准过程中使用的硝酸盐标准没有任何颗粒物或有机化合物的产生的吸光度,这一点至关重要。如前述,这也正是建议采购YSI标准液的原因之一。在KOR软件中如何进行校正软件允许EXO NitraLED用户校准和执行校正,以优化其特定测量地点的传感器,该过程涉及三个重要步骤:1、输入一个通过独立测量确定现场采集样品的硝酸盐值2、通过以下任一种方式校正浊度:a.使用软件中提供的默认浊度系数b.通过测量现场的原始(未过滤的水样)和过滤后的水样的吸光度来估计浊度衰减3、根据过滤后的现场样本,使用滑动条来优化输出,以校正NOM。首先,在进行现场特定校正之前,必须校准EXO NitraLED和浊度传感器。在校正过程中,必须从测量现场收集抓取的样本。样品的硝酸盐浓度(单位为mg/L)应通过独立方法测定,例如EXO离子选择性电极(ISE)或台式光度计。而浊度的测定,最简单的方法是使用软件的默认浊度系数。在特定地点的校正可能有好处,然而,这将由用户决定。在这种情况下,NitraLED传感器将用于比较水样品采集时的测量值,以及样品使用0.45微米过滤器过滤后的测量值。最后一步,使用滑动条来优化过滤水中的传感器输出,从而进行NOM校正。校正浊度衰减浊度对吸光度的测量有显著影响,因为它可以使从LED到探测器的路径上光发生散射。颗粒的数量、大小和形状都可能影响光的衰减程度。如下图1所示,235nm波长光的吸光度和浊度FNU之间的关系呈现较好线性。但是,这一关系的斜率因不同的浊度来源而变化。NitraLED传感器内默认的吸光度校正程序是以高岭土为基础(如图所示)。之所以选择它,是因为它非常接近YSI所处理的所有样品的平均值。图1中的一些样品(迈阿密河和独木舟俱乐部)实际上是从天然水体中采集的,而其他样品(膨润土、Arizona 试验粉尘、硅藻土、高岭土和 Elliot 粉砂壤土)是购买的。已确认所购标准液中的样品不含硝酸盐,当存在硝酸盐时,对现场样品进行了校正。该图所示仅显示235nm波长下的相关性,但在275nm波长,观察到高岭土存在类似线性。当用户在Kor软件中选择默认浊度系数时,高岭土和吸光度之间的关系将应用于传感器内的原始信号。在广泛测试的基础上,使用一组平均高岭土干扰校正系数;图 1 没有描述所有进行的高岭土测试。相反,用户可以选择做特定地点校正。例如,图1表明,在较高的FNU时,样品之间的差异越大。如果用户在较高的FNU水域使用,可能会发现这些差异对于他们的研究目标是不可接受的。例如,一个位置的浊度是120FNU,由光学工具(分光光度计、NitraLED 等)测量的吸光度为0.19AU。则特定地点浊度的方程斜率为0.00158 AU/FNU。相比之下,高岭土的斜率为0.0028AU/FNU。因此,我们可以看到,根据沉淀物类型,默认的吸光度校正值和特定地点的校正值之间差异会对NitraLED的硝酸盐计算有显著影响当使用特定站点校正,NitraLED会在内部建立新的浊度回归方程,它将覆盖处理传感器中原始信号使用的默认关系。在特定地点校正过程中,分别收集水样过滤前,和使用0.45µm 过滤器对样品进行过滤后的吸光度值。这种预期差异值应该(以AU表示)是由过滤器去除的颗粒所引起的(即浊度)。在EXO用户手册(K版本及以上)中描述了这种方法。请注意,在进行浊度测量的同时,NitraLED也使用275nm LED进行测量,就可以方便地确定每个波长相应的吸光度,并从每个传感器测量的总吸光度中减去。我们现在可以缩小NOM和硝酸盐的吸光度。上一节的方程变为:NOM在275nm波长的吸光度现在是已知的,但该数值不等于NOM在235 nm 波长的吸光度,该吸光度如下所述确定。NOM 校正NOM从275nm波长校正到235nm波长处的吸光度,大致适用于测定废水中硝酸盐的标准方法1 . NOM校正系数等于以下:NitraLED传感器有一个内部编程默认的NOM系数,但为了实现最精确的计算,还是建议进行特定站点的校正。在特定站点的校正过程中,可使用滑动条对上述比率进行微调。当这个数字被调整时,传感器的输出被调整,并且对NOM系数进行调整 ,直到输出值等于已知的硝酸盐浓度。回顾一下,硝酸盐浓度是使用独立测量方法测得。一旦确定了NOM系数,在235纳米波长下的NOM吸光度将根据上述等式的重新排列来确定:在235纳米处计算出的NOM在下面的等式中用于确定由硝酸盐测量的吸光度,该吸光度归因于硝酸盐: 计算出硝酸盐的吸光度后,然后,将其插入两点校准过程中存储在传感器中的回归方程中,从而确定被测样品中硝酸盐的最终估计浓度。传感器计算的上述说明描述了硝酸盐值的计算方法,但现场特定校正的程序没有充分定义。有关如何执行特定场地校正程序的完整说明,请参考EXO用户手册。
  • 有机物监测为发电用水处理提供解决方案
    简介对于核电厂、燃气轮机发电厂、燃煤发电厂、地热发电厂、生物质燃烧发电厂来说,超纯水是发电系统的重要组成部分。发电用水通常来自于回收水、地表水、地下水等天然水源,用完后会被现场再利用或排放到环境中去。在提高整体发电效率、满足排放要求、为现场回收水创造更多用途方面,水处理发挥着关键作用。好的监测工具不仅能帮助操作人员控制水处理、保护昂贵设备、避免意外停机,还能用来优化水处理过程以节省开支、提高生产效率、防止污染物腐蚀锅炉和汽轮机。总有机碳(Total Organic Carbon,TOC)是造成腐蚀的罪魁祸首,TOC法能有效监测有机物污染。人们发现的有机污染物的种类越来越多,TOC是所有有机化合物的总称,TOC监测法在分别量化有机化合物方面提供了快速、简单的解决方法。检测有机物浓度的变化,能帮助识别系统工艺的违规之处。监测控制点有助于查找和排除污染源。源水中的有机化合物经过处理,在锅炉中氧化成腐蚀性酸。在水的回流侧,蒸汽冷凝后被循环使用。但冷却过程(在打开或关闭时)可能会将冷却剂或污染物从外部环境泄漏到工艺蒸汽中。表1是可能的有机污染源列表。表1. 可能的有机污染源列表例如,人们很难用传统处理方法去除源水中的多糖,而电导率或UV 254传感器也很难检测到多糖。在锅炉或汽轮机中,多糖会在高温高压下分解成具有腐蚀性的甲酸和乙酸,进而酸化蒸汽,造成腐蚀,并在锅炉中留下沉积物。维护和修理锅炉时,工厂不得不停机减产。为了防止锅炉受到损坏,有些锅炉保险公司和监管机构要求工厂满足很低的TOC限值,低至200 ppb(VGB)或100 ppb(EPRI)。多糖也同超滤(Ultrafiltration,UF)和反渗透(Reverse Osmosis,RO)污染有关。只有准确监测和去除有机化合物,才能有效地保护设备。总有机物包括离子形式和非离子形式的化合物,以及芳香族和非芳香族化合物。在监测总有机物浓度方面,TOC监测法具有可靠、精确等优点。图1显示了关键监测点,以查找泄漏或潜在污染处。表2是TOC分析法举例。图1. 需要监测的关键区域表2. TOC分析法举例现场再利用,推动液体零排放(Zero Liquid Discharge,ZLD)随着排放标准越来越严格,以及污水处理成本不断提高,工厂不得不减少用水量和排水量。这就增加了零液体排放(ZLD)系统监测和自动化的市场需求。在系统前端冷却和循环利用蒸汽,可以节约用水、提高工作效率。 TOC分析法能尽早检测到乙二醇等冷却液是否泄漏到工艺水流中,从而帮助操作人员采取措施以防止系统停机或永久性的设备损坏。TOC分析法能提供准确数据,来帮助操作人员决定是否重新使用或者舍弃回收的水流。结论TOC分析法可以检测和控制发电用水中的化学物质,极大降低有机物污染。通过有效监测和处理进水,工厂可以将腐蚀性离子浓度降到很低的水平。源水中的有机物含量和种类总是变化,因此只有监测水源,才能有效达到监测目的,保护昂贵设备不被损坏。还有一些有机物会污染膜和树脂床。尽可能地减少有机污染物,有助于节约成本、提高效率。新型的高温高压锅炉通常要求TOC限值低至100 ppb,内部控制限值低至10 ppb。补给水或回收水必须经过适当处理,才能达到上述要求和满足更严格的排放标准。有机物监测法能检测到泄漏、微生物生长、处理失效、有机物污染。减少此类问题能够帮助工厂降低生产成本、提高发电效率。◆ ◆ ◆联系我们,了解更多!
  • 通过可靠的有机物监测来实现饮用水再利用
    简介回收与再利用水能够提高运营效率、节约成本,但目前企业和城市只是偶尔实施水的再利用。气候变化、城市化加剧、人口增长等因素要求发展水的再利用技术、发掘更多更安全的可用水源。为此,监管机构致力于提高批量水处理的可靠性、制定充分的分析标准来确保安全运营。有机物监测就是满足高水质要求、保障公众健康、保证污染物去除的最优处理效率的重要部分。挑战间接饮水用再利用(IPR,Indirect Potable Reuse)事业发展迅猛,各种项目遍布美国和世界各地。但水资源的日益短缺迫使研究和监管机构制定直接饮用水再利用(DPR,Direct Potable Reuse)的规则框架。在回收水时,水处理厂将污水处理和饮用水处理结合起来,设置多道安全屏障,以保障公众健康。这些工作包括:- 降低生物需氧量(BOD)- 控制养分- 去除病菌/病毒- 确保正确的消毒- 控制味道/气味- 消除微量有机污染物正确的消毒要求在杀灭活性病菌/病毒和产生致癌消毒副产物(DBP,Disinfection Byproduct)之间取得合理平衡。致癌消毒副产物产生于消毒剂和天然有机物(NOM,Natural Organic Matter)的反应。为了进行监测和平衡,处理厂必须更好地了解各个回收阶段的进、出水水质和工艺水水质。总有机碳(TOC)分析是确定水质的可靠方法。同其它标准(详见表1)相比,TOC测量具有诸多优点。TOC包括NOM、味道和气味化合物、微生物和细菌、微量有机污染物、有机工业废水等。表1:TOC与其他可替代参数的比较解决方案TOC监测可以改善污水处理工艺,提高目标污染物的去除效率。TOC监测的优势在于:- 控制污水处理工艺- 根据实际数据作出决策- 维护系统的整体健康- 使出水水质达到要求在设计水再利用处理系统时,关键在于找出关键控制点(CCP,Critical Control Point) 和质量控制点(QCP,Quality Control Point),才能监视系统性能、确保工艺水质。除了监测水源变化和最终出水水质之外,表2还列出了得益于有机物监测的水处理工艺应用实例。表2:有机物监测解决方案实例加州地下水回灌的回收水量(RWC,Recycled Water Contribution)由TOC量来决定,加州用TOC量作为替代参数,表征未被规定的有机污染物的量。美国其他州也将TOC标准,作为回灌水法规标准,如表3所列。表3:各州的回灌与回收水的TOC 水平回收水处理厂以TOC监测为分析手段,用于改进工艺控制、满足补充水规则、改善处理工艺,如表4所列。表4:回收处理和TOC 监测实例BAC-Biological Activated Carbon,生物活性炭过滤;GAC-Granulated Activated Carbon,颗粒活性炭;GMF-Granular Media Filtration,颗粒介质过滤;MF-Microfiltration,微过滤;O3-Ozone,臭氧;RO-Reverse Osmosis,反渗透;UF-Ultrafiltration,超滤;UV AOP-Ultraviolet Disinfection Advanced Oxidation,紫外线消毒高级氧化在为回灌地下水提供可靠的高品质再生水方面,以及在防止海水浸入地下水方面,奥兰治县水区(OCWD)是领先者。从二级污水到MF、RO、UV高级氧化,OCWD的处理工艺生产了满足或超过再生水标准以及州、联邦饮用水标准的高质水。OCWD采用TOC分析来测试膜完整性、监测去除效率、防止膜污染。对MF、UF、RO进行不当的预处理,都可能导致高昂的能源成本和昂贵的清洁费用,并可能被迫更换膜。了解有关膜过滤前后的TOC浓度,有助于帮助优化有机物去除效率,以及监控入厂水质的变化。总结监测TOC,能使操作人员根据实际数据作出实时决策以优化工艺,还能使处理厂监控整个处理系统的功效,并达到出水质量目标。对再生水的日益增长的需求,以及新兴的污水处理技术,推动着直接饮用水再利用(DPR)的架构发展。该架构将依赖于TOC分析等可靠的实时监控,以保障公众健康、确保高效运行。◆ ◆ ◆联系我们,了解更多!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制