当前位置: 仪器信息网 > 行业主题 > >

天然有机物

仪器信息网天然有机物专题为您整合天然有机物相关的最新文章,在天然有机物专题,您不仅可以免费浏览天然有机物的资讯, 同时您还可以浏览天然有机物的相关资料、解决方案,参与社区天然有机物话题讨论。

天然有机物相关的资讯

  • 浊度和天然有机物(NOM)的校正
    概述YSI EXO NitraLED™ 传感器利用光学吸收的基本原理检测硝酸盐。所有光学技术都必须应对浊度干扰,浊度干扰是由悬浮粒子引起的光散射引起的。由于有机物也会吸收光,依靠紫外光范围进行测量的传感器会受到天然有机物(NOM)的吸收的干扰。本文描述NitraLED传感器的工作原理同时,重点介绍应用于传感器内的原始信号的NOM和浊度校正。EXO NitraLED传感器的基本结构该传感器配有一个主LED ,发出波长为235nm光检查水样。以各种形态存在的氮都会吸收波长为235nm的光,NitraLED传感器无法区分这些不同形态的氮。比如,亚硝酸盐也会吸收。然而,在自然水域中,硝酸盐通常是氮最普遍的形态。在传感器内,NOM由发射275nm光的发光二极管检测。像其他在235nm吸收NOx的物种一样,NOM不是水中唯一能吸收波长为275nm的光的物质。但是在一定范围内,尤其是在用户提供的环境输入,275nm的LED可以方便对原位测量进行NOM校正。校正的效果取决于NOM的性质。浊度通过利用EXO浊度传感器来处理,该传感器须始终与NitraLED传感器搭配使用。经验丰富的EXO用户已经知道,浊度传感器的工作原理是光的散射,这不同于吸光度。下文描述了EXO浊度传感器如何协助校正浊度衰减。硝酸盐是以硝酸盐氮为单位来测量。因此,在使用化学表达式的地方都使用 NO3-N形式。这是因为传感器是在工厂用NO3-N标准进行校准的,且用户校准用的校准标准也是从YSI购买的NO3-N。由于衰减效应已在传感器中得到仔细处理,标准液中的任何微粒或不规则现象都会影响校准质量从而影响测量的准确性,因此YSI标准是唯一已知不会发生这种效应的标准。其他标准液也适用于NitraLED,但这些风险应该注意。吸光度原理EXO NitraLED传感器利用吸光度原理计算硝酸盐浓度。吸光度以吸光度的单位AU来测量,遵循比尔定律:其中,A表示以AU为单位的吸光度,它是透过样品的光强,而Io是来自传感器的光强根据传感器记录的235纳米处的总吸光度,NitraLED传感器计算硝酸盐的吸光度非常简单的公式如下:在275nm波长处,用一个类似的简化方程来确定干扰的影响:利用比尔定律测量235nm波长的吸光度,然后减去由浊度引起的衰减值(已转换为 AU 单位)以及减去275nm波长下估算NOM吸光度。然后将这样计算得出的ANO3-N用于回归方程,此方程是基于工厂线性化和两点用户校准。此回归定义了吸光度和硝酸盐浓度之间的关系。在此回归的计算过程中,校准过程中使用的硝酸盐标准没有任何颗粒物或有机化合物的产生的吸光度,这一点至关重要。如前述,这也正是建议采购YSI标准液的原因之一。在KOR软件中如何进行校正软件允许EXO NitraLED用户校准和执行校正,以优化其特定测量地点的传感器,该过程涉及三个重要步骤:1、输入一个通过独立测量确定现场采集样品的硝酸盐值2、通过以下任一种方式校正浊度:a.使用软件中提供的默认浊度系数b.通过测量现场的原始(未过滤的水样)和过滤后的水样的吸光度来估计浊度衰减3、根据过滤后的现场样本,使用滑动条来优化输出,以校正NOM。首先,在进行现场特定校正之前,必须校准EXO NitraLED和浊度传感器。在校正过程中,必须从测量现场收集抓取的样本。样品的硝酸盐浓度(单位为mg/L)应通过独立方法测定,例如EXO离子选择性电极(ISE)或台式光度计。而浊度的测定,最简单的方法是使用软件的默认浊度系数。在特定地点的校正可能有好处,然而,这将由用户决定。在这种情况下,NitraLED传感器将用于比较水样品采集时的测量值,以及样品使用0.45微米过滤器过滤后的测量值。最后一步,使用滑动条来优化过滤水中的传感器输出,从而进行NOM校正。校正浊度衰减浊度对吸光度的测量有显著影响,因为它可以使从LED到探测器的路径上光发生散射。颗粒的数量、大小和形状都可能影响光的衰减程度。如下图1所示,235nm波长光的吸光度和浊度FNU之间的关系呈现较好线性。但是,这一关系的斜率因不同的浊度来源而变化。NitraLED传感器内默认的吸光度校正程序是以高岭土为基础(如图所示)。之所以选择它,是因为它非常接近YSI所处理的所有样品的平均值。图1中的一些样品(迈阿密河和独木舟俱乐部)实际上是从天然水体中采集的,而其他样品(膨润土、Arizona 试验粉尘、硅藻土、高岭土和 Elliot 粉砂壤土)是购买的。已确认所购标准液中的样品不含硝酸盐,当存在硝酸盐时,对现场样品进行了校正。该图所示仅显示235nm波长下的相关性,但在275nm波长,观察到高岭土存在类似线性。当用户在Kor软件中选择默认浊度系数时,高岭土和吸光度之间的关系将应用于传感器内的原始信号。在广泛测试的基础上,使用一组平均高岭土干扰校正系数;图 1 没有描述所有进行的高岭土测试。相反,用户可以选择做特定地点校正。例如,图1表明,在较高的FNU时,样品之间的差异越大。如果用户在较高的FNU水域使用,可能会发现这些差异对于他们的研究目标是不可接受的。例如,一个位置的浊度是120FNU,由光学工具(分光光度计、NitraLED 等)测量的吸光度为0.19AU。则特定地点浊度的方程斜率为0.00158 AU/FNU。相比之下,高岭土的斜率为0.0028AU/FNU。因此,我们可以看到,根据沉淀物类型,默认的吸光度校正值和特定地点的校正值之间差异会对NitraLED的硝酸盐计算有显著影响当使用特定站点校正,NitraLED会在内部建立新的浊度回归方程,它将覆盖处理传感器中原始信号使用的默认关系。在特定地点校正过程中,分别收集水样过滤前,和使用0.45µm 过滤器对样品进行过滤后的吸光度值。这种预期差异值应该(以AU表示)是由过滤器去除的颗粒所引起的(即浊度)。在EXO用户手册(K版本及以上)中描述了这种方法。请注意,在进行浊度测量的同时,NitraLED也使用275nm LED进行测量,就可以方便地确定每个波长相应的吸光度,并从每个传感器测量的总吸光度中减去。我们现在可以缩小NOM和硝酸盐的吸光度。上一节的方程变为:NOM在275nm波长的吸光度现在是已知的,但该数值不等于NOM在235 nm 波长的吸光度,该吸光度如下所述确定。NOM 校正NOM从275nm波长校正到235nm波长处的吸光度,大致适用于测定废水中硝酸盐的标准方法1 . NOM校正系数等于以下:NitraLED传感器有一个内部编程默认的NOM系数,但为了实现最精确的计算,还是建议进行特定站点的校正。在特定站点的校正过程中,可使用滑动条对上述比率进行微调。当这个数字被调整时,传感器的输出被调整,并且对NOM系数进行调整 ,直到输出值等于已知的硝酸盐浓度。回顾一下,硝酸盐浓度是使用独立测量方法测得。一旦确定了NOM系数,在235纳米波长下的NOM吸光度将根据上述等式的重新排列来确定:在235纳米处计算出的NOM在下面的等式中用于确定由硝酸盐测量的吸光度,该吸光度归因于硝酸盐: 计算出硝酸盐的吸光度后,然后,将其插入两点校准过程中存储在传感器中的回归方程中,从而确定被测样品中硝酸盐的最终估计浓度。传感器计算的上述说明描述了硝酸盐值的计算方法,但现场特定校正的程序没有充分定义。有关如何执行特定场地校正程序的完整说明,请参考EXO用户手册。
  • 有机物监测为发电用水处理提供解决方案
    简介对于核电厂、燃气轮机发电厂、燃煤发电厂、地热发电厂、生物质燃烧发电厂来说,超纯水是发电系统的重要组成部分。发电用水通常来自于回收水、地表水、地下水等天然水源,用完后会被现场再利用或排放到环境中去。在提高整体发电效率、满足排放要求、为现场回收水创造更多用途方面,水处理发挥着关键作用。好的监测工具不仅能帮助操作人员控制水处理、保护昂贵设备、避免意外停机,还能用来优化水处理过程以节省开支、提高生产效率、防止污染物腐蚀锅炉和汽轮机。总有机碳(Total Organic Carbon,TOC)是造成腐蚀的罪魁祸首,TOC法能有效监测有机物污染。人们发现的有机污染物的种类越来越多,TOC是所有有机化合物的总称,TOC监测法在分别量化有机化合物方面提供了快速、简单的解决方法。检测有机物浓度的变化,能帮助识别系统工艺的违规之处。监测控制点有助于查找和排除污染源。源水中的有机化合物经过处理,在锅炉中氧化成腐蚀性酸。在水的回流侧,蒸汽冷凝后被循环使用。但冷却过程(在打开或关闭时)可能会将冷却剂或污染物从外部环境泄漏到工艺蒸汽中。表1是可能的有机污染源列表。表1. 可能的有机污染源列表例如,人们很难用传统处理方法去除源水中的多糖,而电导率或UV 254传感器也很难检测到多糖。在锅炉或汽轮机中,多糖会在高温高压下分解成具有腐蚀性的甲酸和乙酸,进而酸化蒸汽,造成腐蚀,并在锅炉中留下沉积物。维护和修理锅炉时,工厂不得不停机减产。为了防止锅炉受到损坏,有些锅炉保险公司和监管机构要求工厂满足很低的TOC限值,低至200 ppb(VGB)或100 ppb(EPRI)。多糖也同超滤(Ultrafiltration,UF)和反渗透(Reverse Osmosis,RO)污染有关。只有准确监测和去除有机化合物,才能有效地保护设备。总有机物包括离子形式和非离子形式的化合物,以及芳香族和非芳香族化合物。在监测总有机物浓度方面,TOC监测法具有可靠、精确等优点。图1显示了关键监测点,以查找泄漏或潜在污染处。表2是TOC分析法举例。图1. 需要监测的关键区域表2. TOC分析法举例现场再利用,推动液体零排放(Zero Liquid Discharge,ZLD)随着排放标准越来越严格,以及污水处理成本不断提高,工厂不得不减少用水量和排水量。这就增加了零液体排放(ZLD)系统监测和自动化的市场需求。在系统前端冷却和循环利用蒸汽,可以节约用水、提高工作效率。 TOC分析法能尽早检测到乙二醇等冷却液是否泄漏到工艺水流中,从而帮助操作人员采取措施以防止系统停机或永久性的设备损坏。TOC分析法能提供准确数据,来帮助操作人员决定是否重新使用或者舍弃回收的水流。结论TOC分析法可以检测和控制发电用水中的化学物质,极大降低有机物污染。通过有效监测和处理进水,工厂可以将腐蚀性离子浓度降到很低的水平。源水中的有机物含量和种类总是变化,因此只有监测水源,才能有效达到监测目的,保护昂贵设备不被损坏。还有一些有机物会污染膜和树脂床。尽可能地减少有机污染物,有助于节约成本、提高效率。新型的高温高压锅炉通常要求TOC限值低至100 ppb,内部控制限值低至10 ppb。补给水或回收水必须经过适当处理,才能达到上述要求和满足更严格的排放标准。有机物监测法能检测到泄漏、微生物生长、处理失效、有机物污染。减少此类问题能够帮助工厂降低生产成本、提高发电效率。◆ ◆ ◆联系我们,了解更多!
  • 通过可靠的有机物监测来实现饮用水再利用
    简介回收与再利用水能够提高运营效率、节约成本,但目前企业和城市只是偶尔实施水的再利用。气候变化、城市化加剧、人口增长等因素要求发展水的再利用技术、发掘更多更安全的可用水源。为此,监管机构致力于提高批量水处理的可靠性、制定充分的分析标准来确保安全运营。有机物监测就是满足高水质要求、保障公众健康、保证污染物去除的最优处理效率的重要部分。挑战间接饮水用再利用(IPR,Indirect Potable Reuse)事业发展迅猛,各种项目遍布美国和世界各地。但水资源的日益短缺迫使研究和监管机构制定直接饮用水再利用(DPR,Direct Potable Reuse)的规则框架。在回收水时,水处理厂将污水处理和饮用水处理结合起来,设置多道安全屏障,以保障公众健康。这些工作包括:- 降低生物需氧量(BOD)- 控制养分- 去除病菌/病毒- 确保正确的消毒- 控制味道/气味- 消除微量有机污染物正确的消毒要求在杀灭活性病菌/病毒和产生致癌消毒副产物(DBP,Disinfection Byproduct)之间取得合理平衡。致癌消毒副产物产生于消毒剂和天然有机物(NOM,Natural Organic Matter)的反应。为了进行监测和平衡,处理厂必须更好地了解各个回收阶段的进、出水水质和工艺水水质。总有机碳(TOC)分析是确定水质的可靠方法。同其它标准(详见表1)相比,TOC测量具有诸多优点。TOC包括NOM、味道和气味化合物、微生物和细菌、微量有机污染物、有机工业废水等。表1:TOC与其他可替代参数的比较解决方案TOC监测可以改善污水处理工艺,提高目标污染物的去除效率。TOC监测的优势在于:- 控制污水处理工艺- 根据实际数据作出决策- 维护系统的整体健康- 使出水水质达到要求在设计水再利用处理系统时,关键在于找出关键控制点(CCP,Critical Control Point) 和质量控制点(QCP,Quality Control Point),才能监视系统性能、确保工艺水质。除了监测水源变化和最终出水水质之外,表2还列出了得益于有机物监测的水处理工艺应用实例。表2:有机物监测解决方案实例加州地下水回灌的回收水量(RWC,Recycled Water Contribution)由TOC量来决定,加州用TOC量作为替代参数,表征未被规定的有机污染物的量。美国其他州也将TOC标准,作为回灌水法规标准,如表3所列。表3:各州的回灌与回收水的TOC 水平回收水处理厂以TOC监测为分析手段,用于改进工艺控制、满足补充水规则、改善处理工艺,如表4所列。表4:回收处理和TOC 监测实例BAC-Biological Activated Carbon,生物活性炭过滤;GAC-Granulated Activated Carbon,颗粒活性炭;GMF-Granular Media Filtration,颗粒介质过滤;MF-Microfiltration,微过滤;O3-Ozone,臭氧;RO-Reverse Osmosis,反渗透;UF-Ultrafiltration,超滤;UV AOP-Ultraviolet Disinfection Advanced Oxidation,紫外线消毒高级氧化在为回灌地下水提供可靠的高品质再生水方面,以及在防止海水浸入地下水方面,奥兰治县水区(OCWD)是领先者。从二级污水到MF、RO、UV高级氧化,OCWD的处理工艺生产了满足或超过再生水标准以及州、联邦饮用水标准的高质水。OCWD采用TOC分析来测试膜完整性、监测去除效率、防止膜污染。对MF、UF、RO进行不当的预处理,都可能导致高昂的能源成本和昂贵的清洁费用,并可能被迫更换膜。了解有关膜过滤前后的TOC浓度,有助于帮助优化有机物去除效率,以及监控入厂水质的变化。总结监测TOC,能使操作人员根据实际数据作出实时决策以优化工艺,还能使处理厂监控整个处理系统的功效,并达到出水质量目标。对再生水的日益增长的需求,以及新兴的污水处理技术,推动着直接饮用水再利用(DPR)的架构发展。该架构将依赖于TOC分析等可靠的实时监控,以保障公众健康、确保高效运行。◆ ◆ ◆联系我们,了解更多!
  • 征求《挥发性有机物泄漏和逸散排放的测定方法》等国家环保标准意见
    关于征求《挥发性有机物泄漏和逸散排放的测定方法》等两项国家环境保护标准意见的函各有关单位:  为贯彻《中华人民共和国大气污染防治法》,规范污染源排放监测工作,我部决定制订《挥发性有机物泄漏和逸散排放的测定方法》等两项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,于2009年5月1日前反馈我部。  联系人:环境保护部科技标准司 滕云  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556216  传真:(010)66556213  附件:1.征求意见单位名单 2.《固定污染源排气中挥发性有机物的采样 气袋法》(征求意见稿).pdf 3.《固定污染源排气中挥发性有机物的采样 气袋法》(征求意见稿)编制说明.pdf 4.《挥发性有机物泄漏和逸散排放的测定方法》(征求意见稿).pdf 5.《挥发性有机物泄漏和逸散排放的测定方法》(征求意见稿)编制说明.pdf附件一:征求意见单位名单  各省、自治区、直辖市环境保护厅(局)  各省、自治区、直辖市环境监测站(中心)  各环境保护重点城市环境监测站(中心)  中国环境科学研究院  环境保护部南京环境科学研究所  环境保护部华南环境科学研究所  中国环境监测总站  中国环境科学学会  中国环境保护产业协会  中日友好环境保护中心  环境保护部对外合作中心  环境保护部环境工程评估中心  环境保护部环境规划院  环境保护部标准样品研究所  中国石油化工集团公司  中国石油天然气集团公司  中国化工环保协会  沈阳化工研究院  华东理工大学  部内有关司局
  • 重大仪器项目“水中有机物监测仪” 30分钟检24种有机物
    p  11月10日电,如果河流突发环境事故,使用一种新型便携式检测仪器,可以在30分钟内,检测出水体中“隐藏”的各种有机物,为快速安全处置提供依据。据武汉市环保科技部门获悉,这种填补国内空白、国际领先的仪器正在武汉研制,目前研发工作已全面启动,预计于2020年实现量产。/pp  近年来,河流等水体的环境事故频发,如松花江的硝基苯、长治的苯胺、新安江的苯酚等污染事故,已严重威胁水体安全。据专家介绍,这类有机物在环境中较挥发性有机物(如苯、甲醛)更难降解,存在时间更长,吸附在颗粒物上容易被人体吸入,被称为半挥发性有机物(SVOCs)。它们种类众多,超过50种,主要来源于水源周边的一些有机排放物,如塑料、杀虫剂、燃烧产物、材料助剂(增塑剂、阻燃剂)等。SVOCs在水中含量极低,国家的检出标准多在0.01毫克/升左右,相当于在一个游泳池中滴入一滴墨水。 而这种“隐形污染物”的生理毒理却十分显著,如果长期接触,将严重危害人体健康。/pp  要捕捉到水中的“隐形污染物”非常困难。目前,我国只能采用实验室检测方法,从提取水样到实验室化验,往往需要3、4天才能检测出结果。国际上目前也没有快速、全面的检测仪器。/pp  为此,国家环保部门将“水中半挥发性有机物自动监测仪器”列为重大科学仪器开发项目。经过专家组的论证、评选,武汉境辉环保科技有限公司联合中国环境监测总站、中国科学院大连化学物理研究所等单位“夺标”,共同自主研发。据悉,该企业曾先后自主研发50余项水质自动监测仪器。/pp  目前,整个研发工作已全面启动。按照计划,研制组将采用多项国际前沿技术构建一套全新的检测设备。预计于2020年实现量产。该产品将首次实现水中SVOCs现场在线、快速检测,可在30分钟内一次检测出24种“隐形污染物”, 犹如一枚“照妖镜”让水中隐形污染物显形、被抓。业内人士称,此产品可弥补传统处理方法费时、费力、溶剂用量大等不足,能更好地分离、检测水中有机物,大大提升应对水体突发环境事故和日常监测水质的能力。/p
  • 我国大气挥发性有机物政策总结
    2011年3月,国家十二五规划中强调&ldquo 深化颗粒物污染防治&rdquo ,而研究发现,挥发性有机物是大气颗粒物的重要来源,故对挥发性有机物的控制逐步受到重视。  2011年12月,《国家环境保护&ldquo 十二五&rdquo 规划》发布,其中强调&ldquo 加强挥发性有机污染物和有毒废气控制&rdquo 。此规划正式提出控制挥发性有机污染物的排放,并明确提出开展挥发性有机污染物监测工作。 &ldquo 加强石化行业生产、输送和存储过程挥发性有机污染物排放控制。鼓励使用水性、低毒或低挥发性的有机溶剂,推进精细化工行业有机废气污染治理,加强有机废气回收利用。实施加油站、油库和油罐车的油气回收综合治理工程。开展挥发性有机污染物监测,完善重点行业污染物排放标准。&rdquo   2013年9月,国务院印发《大气污染防治行动计划》(即大气十条),进一步细化了需要控制挥发性有机污染物的重点行业。 &ldquo 推进挥发性有机物污染治理。在石化、有机化工、表面涂装、包装印刷等行业实施挥发性有机物综合整治,在石化行业开展&ldquo 泄漏检测与修复&rdquo 技术改造。限时完成加油站、储油库、油罐车的油气回收治理,在原油成品油码头积极开展油气回收治理。完善涂料、胶粘剂等产品挥发性有机物限值标准,推广使用水性涂料,鼓励生产、销售和使用低毒、低挥发性有机溶剂。推进非有机溶剂型涂料和农药等产品创新,减少生产和使用过程中挥发性有机物排放。&rdquo   同期,环保部等六部委共同发布《京津冀及周边地区落实大气污染防治行动计划实施细则》。 &ldquo 实施挥发性有机物污染综合治理工程。到2014 年底,加油站、储油库、油罐车完成油气回收治理。到2015 年底,石化企业全面推行&ldquo 泄漏检测与修复&rdquo 技术,完成有机废气综合治理。到2017 年底,对有机化工、医药、表面涂装、塑料制品、包装印刷等重点行业的559 家企业开展挥发性有机物综合治理。&rdquo   2014年7月,环保部等六部委共同发布《大气污染防治行动计划实施情况考核办法(试行)实施细则》,此细则规定了全国大气挥发性有机物控制的进度。  &ldquo 2014年,制定地区石化、有机化工、表面涂装、包装印刷等重点行业挥发性有机物综合整治方案 完成储油库、加油站和油罐车油气回收治理,已建油气回收设施稳定运行。  2015年,北京市、天津市、河北省、上海市、江苏省、浙江省及广东省珠三角区域所有石化企业完成一轮泄漏检测与修复(LDAR)技术改造和挥发性有机物综合整治 有机化工、表面涂装、包装印刷等重点行业挥发性有机物治理项目完成率达到50%,已建治理设施稳定运行。其他地区石化、有机化工、表面涂装、包装印刷等重点行业挥发性有机物治理项目完成率达到50%,已建治理设施稳定运行。  2016年,北京市、天津市、河北省、上海市、江苏省、浙江省及广东省珠三角区域有机化工、表面涂装、包装印刷等重点行业挥发性有机物治理项目完成率达到80%,已建治理设施稳定运行。其他地区石化、有机化工、表面涂装、包装印刷等重点行业挥发性有机物治理项目完成率达到80%,已建治理设施稳定运行。  2017年,各地区重点行业挥发性有机物综合整治方案所列治理项目全部完成,已建治理设施稳定运行。&rdquo   至此,大气挥发性有机物治理工作开始开展,而大气挥发性有机物的监测工作作为治理的前端工作,也正式开启。  2014年12月,环保部发布《石化行业挥发性有机物综合整治方案》,石化行业的挥发性有机物治理工作率先开展。  从上述政策可以看出,我国挥发性有机物治理将从京津冀、长三角、珠三角地区向全国逐步开展,涉及的行业有石油化工、有机化工、表面涂装、包装印刷、医药、塑料制品等,其中石化行业已制定明确的时间表。
  • 地下水有机物污染监控难题待解
    近日,国土资源部下属中国地质环境监测院的一项调查显示,2008~2010年间,通过对全国31省(区、市)69个城市地下水有机污染物的检测发现,64个城市的地下水样品中至少有一项有机污染物,占检测城市总数的92.8%。  如今,相比有机污染物,研究者已经对地下水中无机污染物做了大量工作。然而,“地下水有机污染物监测、控制和修复仍有相当大的难度。”中科院地理科学与资源研究所研究员宋献方接受《中国科学报》记者采访时如是说。  污染从无机转向有机  上世纪80年代末期,地下水中有机物污染就已经引起了注意。1999年,中国地质调查局启动第一轮地下水有机污染调查,结果发现,在43项检测指标中,北京市范围内共发现36种有机物。  2006年,第二轮国土资源大调查项目展开了华北平原各市县的地下水污染调查。数据表明,致癌、致畸、致突变的“三致”微量有机污染物和持久性有机污染物(POPs)普遍检出。这一地区地下水污染范围日益扩大、水质整体下降已成不争事实。  在最近的中国地质环境检测院的调查中也显示,来自69个城市的791个样品有383个至少含有一项有机污染物。其中,挥发性卤代烃、单环芳烃和半挥发性有机氯农药等检出率较高。  长期从事水环境研究的宋献方,在野外调研中直接观察到地下水的变化。“在淮河地区,我们看到采上来的地下水样水面上漂浮着一层油状物质。”他说,“这说明这个样品可能受到有机物污染。”  因此,业内普遍认为,地下水污染研究已从无机转向有机,微量有机污染上升为地下水环境保护领域的首要问题。  中国地质大学(北京)水资源与环境学院教授陈鸿汉告诉《中国科学报》记者:“地下水中有机物污染主要源于人类的活动。”例如,加油站、化工厂、垃圾填埋场等地如防渗条件或措施不利,都可能使其局部区域的地下水受到污染。  基础薄、成本高  不过,目前对于地下水有机污染物的基础研究尚显薄弱。  中国地质科学院水文地质环境地质研究所研究员汪珊曾撰文指出,与国际先进水平相比,我国在毒害有机化学污染物研究领域起步较晚,“常规的水质分析也多局限于化学需氧量、生物需氧量等综合性指标,很少对有机污染物进行单独分析”。  同时,“和无机污染物相比,人们更关注持久性有机物,它一旦进入地下水环境将长期存在,降解中间产物可能还会进一步污染环境”。陈鸿汉向《中国科学报》记者介绍。例如,四氯乙烯和三氯乙烯在降解过程中的中间产物二氯甲烷的毒性更大。  此外,检测、分析手段的缺乏也使地下水有机物污染研究面临困境。  《中国科学报》记者在北京市地下水环境监测网点采样现场看到,采样员小心地用大小不一的棕色玻璃瓶封装检测有机物的样品,并严格保证不带有气泡、在4摄氏度恒温条件下冷藏,再由实验室中高效液相色谱、质谱等先进化学分析仪器进行检测。  这带来了昂贵的分析测试成本。一家化学分析公司业务人员向记者透露,分析有机污染物的花费至少是无机污染物的4倍。  修复、处理难上难  面对地下水有机物污染的现实,专家纷纷表示修复难度大、成本高。宋献方指出:“实际条件复杂多变,还有很多技术问题没有解决,是各国正在研究的难题。”  “地下水污染隐蔽,治理起来难度较大,还有很长的路需要走。”陈鸿汉说。  受到有机物污染的地下水作为饮用源水给饮用水安全问题带来了巨大威胁,也给常规给水处理工艺提出了新挑战。  中科院生态环境研究中心副研究员刘锐平介绍,低浓度的挥发性有机物通常可采用“曝气吹脱”法进行去除。“简单地说,就是向水中鼓气。”他解释。  在此次69个城市地下水检出率较高的几种有机污染物均属挥发性有机物。“低浓度半挥发性有机物的处理可采用氧化、粉末活性炭吸附等方法去除,也可以通过催化氧化过程产生具有极强氧化能力的羟基自由基降解有机物。”  刘锐平继续介绍说,对于浓度较高的腐殖质类大分子有机物,在工程中则可采用强化混凝、颗粒活性炭吸附或臭氧—颗粒活性炭组合等工艺进行处理。
  • 六部委联合印发《“十三五”挥发性有机物污染防治工作方案》多行业或受影响
    p  近日,环保部等六部委联合印发《“十三五”挥发性有机物污染防治工作方案》(以下简称:方案),明确主要目标是到2020 年,建立健全以改善环境空气质量为核心的VOCs 污染防治管理体系,实施重点地区、重点行业VOCs 污染减排,排放总量下降10%以上。通过与NOx 等污染物的协同控制,实现环境空气质量持续改善。/pp  方案指出,“十三五”期间将重点治理京津冀及周边、长三角、珠三角等区域,涵盖北京、天津、河北、辽宁等16个省(市),重点推进石化、化工、包装印刷、工业涂装等重点行业以及机动车、油品储运销等交通源VOCs 污染防治,加强芳香烃、烯烃、炔烃、醛类等活性强的VOCs 排放控制。/pp  依据方案内容,“十三五”期间明确建立健全VOCs 管理体系,包括加快标准体系建设、建立健全监测监控体系、实标施排污许可制度、加强统计与调查、加强监督执法、完善经济政策六个方面的建设。其中标准体系建设、监测监控体系建设以及经济政策方面建设内容如下:/pp  strong加快标准体系建设。/strong/pp  环境保护部制修订制药、农药、汽车涂装、集装箱制造、印刷包装、家具制造、人造板、涂料油墨、纺织印染、船舶制造、储油库、汽油运输、干洗、油烟等行业大气污染物排放标准,制订挥发性有机物无组织排放控制标准,修订恶臭污染物排放标准和大气污染物综合排放标准。建立与排放标准相适应的VOCs 监测分析方法标准、监测仪器技术要求,加快制定固定污染源废气VOCs 自动监测系统、便携式监测仪技术要求及检测方法。质检总局出台和完善涂料、油墨、胶粘剂、清洗剂等产品VOCs 含量限值标准。地方结合本地产业特点加快制定地方排放标准。/pp  strong建立健全监测监控体系。/strong/pp  加强环境质量和污染源排放VOCs 自动监测工作,强化VOCs 执法能力建设,全面提升VOCs 环保监管能力。重点地区O3 超标城市至少建成一套VOCs 组分自动监测系统。将石化、化工、包装印刷、工业涂装等VOCs 排放重点源纳入重点排污单位名录,主要排污口要安装污染物排放自动监测设备,并与环保部门联网,其他企业逐步配备自动监测设备或便携式VOCs 检测仪。推进VOCs 重点排放源厂界VOCs 监测。加快石油炼制、石油化工、制药、农药、化学纤维制造、橡胶和塑料制品制造、纺织、皮革、喷涂、涂料油墨制造、人造板制造等行业自行监测技术指南制定。工业园区应结合园区排放特征,配置VOCs 连续自动采样体系或符合园区排放特征的VOCs 监测监控体系。/pp  strong完善经济政策。/strong/pp  研究将VOCs 排放适时纳入环境保护税征收范畴。加大财政资金对VOCs 治理的支持力度,有关地方可将符合规定的VOCs 污染防治项目纳入中央大气污染防治专项资金支持范围,利用专项资金、扩大绿色信贷等方式支持企业实施VOCs 防治工作。选择石化、化工、工业涂装、包装印刷等VOCs 治理重点行业,实施环保“领跑者”制度。推进集装箱等实施行业治理自律公约。推进政府绿色采购,要求家具、印刷、汽车维修等政府定点招标采购企业使用低挥发性原辅材料。支持符合条件的企业发行企业债券直接融资,募集资金用于VOCs 污染治理。落实支持节能减排企业所得税、增值税等优惠政策。推进地方建立基于环境绩效的VOCs 减排激励机制。/pp  具体通知如下:/pp style="text-align: center "strong关于印发《“十三五”挥发性有机物污染防治工作方案》的通知/strong/pp  各省、自治区、直辖市、新疆生产建设兵团环境保护厅(局)、发展改革委、财政厅(局)、交通运输厅(局、委)、质量技术监督局(市场监督管理部门)、能源局:/pp  为落实《中华人民共和国国民经济和社会发展第十三个五年规划纲要》《“十三五”生态环境保护规划》《“十三五”节能减排综合工作方案》相关要求,全面加强挥发性有机物(VOCs)污染防治工作,强化重点地区、重点行业、重点污染物的减排,提高管理的科学性、针对性和有效性,遏制臭氧上升势头,促进环境空气质量持续改善,我们制定了《“十三五”挥发性有机物污染防治工作方案》(见附件)。现印发给你们,请认真落实方案要求,扎实推进各项工作,及时报送有关材料,推动VOCs污染防治工作取得积极进展。/pp  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201709/ueattachment/56e4ef54-ec10-4987-92fd-def057d11eb6.pdf"“十三五”挥发性有机物污染防治工作方案.pdf/a/pp style="text-align: right "  环境保护部/pp style="text-align: right "  发展改革委/pp style="text-align: right "  财政部/pp style="text-align: right "  交通运输部/pp style="text-align: right "  质检总局/pp style="text-align: right "  能源局/pp style="text-align: right "  2017年9月13日/pp  抄送:中国石油天然气集团公司、中国石油化工集团公司、中国海洋石油总公司、中国中化集团公司。/pp  环境保护部办公厅2017年9月14日印发/pp /p
  • 盘点:大气中挥发性有机物检测技术
    大气中的VOCs不仅是生成光化学烟雾污染物的主要前体物,同时也是大气细粒子中有毒有害有机组分的重要来源,对形成灰霾有重要贡献,且一些VOCs本身具有毒性和致癌性。随着我国大气污染控制的不断深化,VOCs成为继颗粒物、二氧化硫、氮氧化物之后,我国大气污染控制中又一新的关注点。  VOCs定义  VOCs是一类有机化合物的组合,不同组织对其有不同的定义,主要分为两类,一类是学术意义上的定义,一类是环保意义上的定义。  化学意义上的定义主要有五种:1)挥发性有机物污染防治技术政策定义VOCs为熔点低于室温、沸点范围在50℃~260℃之间的有机化合物 2)世界卫生组织将VOCs定义为沸点范围在50-260℃之间,室温下饱和蒸汽压超过133.32Pa,在常温下以蒸汽形式存在于空气中的一类有机物,按挥发性有机物化学结构可进一步分为8类:烷类、芳烃类、烯类、卤烃类、酯类、醇类、酮类和其他化合物 3)ISO 4618/1-1998中VOCs指原则上,在常温常压下,任何能自发挥发的有机液体和/或固体 4)德国DIN55649-2000将VOCs定义为在常温常压下,任何能自发挥发的有机液体和/或固体,在通常压力条件下,沸点或初馏点低于或等于250℃的任何有机化合物 5)我国北京地方标准DB11/447-2007中将VOCs定义在20℃条件下蒸汽压大于或等于0.01kPa,或者特定适用条件下具有相应挥发性的全部有机化合物的统称。  环保意义上的定义主要有两种:1)美国EPA对VOCs的定义为除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物 2)美国ASTM D3960-98中VOCs指任何能参加大气光化学反应的有机化合物。  我国大气污染防治相关政策和标准中,还没有大气中VOCs的明确定义,而VOCs的定义关系到检测方法制定、治理措施等问题。  VOCs标准  我国VOCs检测标准有《HJ 732-2014固定污染源废气 挥发性有机物的采样 气袋法》、《HJ 733-2014泄漏和敞开液面排放的挥发性有机物检测技术导则》、《HJ 734-2014固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法》、《HJ 644-2013 环境空气 挥发性有机物的测定 吸附管采样-热脱附 气相色谱-质谱法》以及《GB 21902-2008 合成革与人造革工业污染物排放标准》附录C,均采用色谱法进行分析。  VOCs排放标准国家还没有相关规定,但是上海、天津、广东等地区针对不同行业制定了一些地区标准,如《DB12/524-2014 工业企业挥发性有机物排放控制标准(天津)》、《DB44/814-2010家具制造行业挥发性有机化合物排放标准(广东)》、《DB44/815-2010印刷行业挥发性有机化合物排放标准(广东)》、《DB44/816-2010表面涂装(汽车制造业)挥发性有机化合物排放标准(广东)》、《DB44/817-2010制鞋行业挥发性有机化合物排放标准(广东)》、《DB31/374-2006半导体行业污染物排放标准(上海)》。  美国EPA在上世纪八九十年代制定了一系列大气有毒有机物检测标准,其中涉及VOCs检测的共有6项,均是气相色谱法,但可配备不同的采样方法和检测方法。  VOCs检测  我国大气中的VOCs主要来源于石油化工、有机化工、表面涂装、包装印刷、医药、塑料制品等行业。因此大气中VOCs的检测主要应用于三个方面:一大气中VOCs检测 二污染源集中排放VOCs检测 三生产过程VOCs泄露检测。与三种应用场合相适应,VOCs的检测仪器也分为实验室仪器、在线式仪器和便携式仪器三类。  实验室VOCs检测  VOCs实验室分析发展较早,也比较成熟。分析方法为使用采样袋、苏码罐、吸附剂或吸收液将VOCs采集回实验室,再经过热解析、溶剂解析等前处理过程后,利用GC或HPLC分析。  实验室VOCs检测主要难点在于选择合适的采样方法保证可以采集到所有挥发性有机污染物,制定规范的运输方案防止运输过程中VOCs的损失,选择合适的前处理过程保证所有的挥发性有机物进入分析仪器。  实验室分析方法的主要优势是结果准确,主要缺点是时效性差,采样和运输过程中易导致样品损失,影响测定的准确性和可靠性。  在线VOCs检测仪  VOCs在线分析仪主要有在线气相色谱仪、在线质谱仪、在线气质联用仪、在线PID和FID检测器、在线红外光谱仪、在线激光检测仪和在线差分光学吸收光谱仪等。  由于VOCs没有标准的检测方法,而且在线系统用于现场检测,而不同现场的挥发性有机物种类差异较大且相对稳定,故检测需求不同。因此需要根据自身的需求和各种检测仪器的特点选择合适的检测方法。  在线气相色谱仪可检测出已知挥发性有机物的浓度 在线质谱仪可同时实现挥发性有机物的定性和定量检测,但无法区分同分异构体 在线PID和FID检测器可得出VOCs的总量,且仪器体积较小 各种在线光谱仪检测范围宽,可适应各种工业场合应用。  在线VOCs检测仪主要的国内厂家有聚光科技、广州禾信、宝英科技、中科光电、富瞻环保、武汉天虹等,国外厂家有英国Markes、日本亚那科、奥地利IONICON、韩国KNR、德国AMA、法国Chromatotec、美国CerexMS等。  便携式VOCs仪器  便携式VOCs分析仪主要有便携式FID/PID检测器、便携红外分析仪、便携激光光谱仪、便携式气质联用仪等。  最新公布的环保部标准中便携式仪器提到了FID检测器、PID检测器和红外吸收检测器三种。  便携式VOCs检测仪主要的国内厂商有东西分析、崂应、富瞻环保等,国外厂商有美国Inficon、英国SIGNAL、美国雷格沃夫、美国华瑞、日本亚那科、英国科尔康等。    挥发性有机物是一种混合物,由于其定义未明确,因此监测需求也不明确。目前的主要检测方法是气相色谱法、质谱法和光谱法,环保部公布的行业标准中采用的是气质联用法。其中环境空气挥发性有机物(HJ644)标准中测定的是35种目标有机化合物,主要是烷烃、烯烃和苯系物,固定污染源废气挥发性有机物(HJ734)标准中测定的是24种目标有机化合物,主要是酮类、酯类、烯烃类和苯系物。
  • 三维荧光光谱检测水中的有机物
    三维荧光光谱检测水中的有机物前言目前水污染问题已经收到世界各国的关注,其中溶解有机物普遍存在于水体中,主要包括腐殖质,复杂的多糖,含氮有机物(如蛋白质)以及乙酸等简单有机物。因此对水体进行净化至关重要,而净化过程中对溶解有机物的追踪必不可少。荧光光谱技术灵敏度高,不破坏样品结构,选择性好,被广泛用于水体中溶解有机物的检测。日立荧光分光光度计F-7100具有超高灵敏度和最快的扫描速度,配备有荧光指纹测定系统,能够有效的监测水体净化过程。荧光指纹自动测定系统 图1 荧光指纹自动测定系统系统组成:①自动取样器 ②F-7100荧光分光光度计 使用荧光指纹自动测定系统,同时还可以选配高灵敏度流通池,EEM Assist程序,分析软件(solo)等,具有以下优点:ü 系统连接自动取样器,可轻松自动测量多个待测样品的荧光指纹。 测试时间:5 min/样品(200-600nm, 5nm间隔) 进样量:20 mL/样品(使用高灵敏度流通池时) 最多样品数量:56个ü F-7100的灵敏度是现有机型的1.5倍,同时标配使用寿命是现有机型5倍的氙灯。ü 通过自动滤光器附件可进行去除不需要的多次光的荧光指纹测定。ü 通过使用吸收流通池池架(定制品)也可自动进行吸收光谱测定。ü 将输出文件读取到分析软件Solo,进行PARAFAC分析。水质测定实验从自来水厂采集一个待测水源,经过薄膜经过孔径为 0.45μm 的 薄膜滤器过滤后 ,再进行实验。详细信息请查看:https://www.instrument.com.cn/netshow/sh102446/s912841.htm总结水中的溶解有机物大多数具有荧光性,通过荧光分光光度计可以对它们进行追踪从而判断水质的好坏。日立集团以“高科技解决方案创造价值”这一基本理念,开发的F-7100荧光分光光度计以其超高的灵敏度将极大优化水质监测过程。
  • 有机物污染监测面临的不同挑战
    在工业和环境过程监测的水质分析中,存在各种不同的应用和挑战——因为水不仅仅是水。水必须满足的要求因应用领域、成分和检测数据的用途而异。例如,在半导体制造和芯片生产中,需要超纯水并且必须不含污染物。而对于饮用水来说,需要一定量的溶解矿物质,同时不得含有任何细菌或其他致病物质。这些与应用有关的具体要求还对水处理和各工艺监测产生影响。让我们通过不同的有机污染监测示例来仔细研究这些影响。水体中有机成分的污染是一个重要的分析参数。有机化合物可能会破坏工艺过程,或在某些情况下,尽管有机物可以接受,但必须了解其浓度并定期监测,以便正确控制工艺过程。有机物监测工具和实时监测需求实验室分析仍经常使用化学需氧量(COD)和生化需氧量(BOD)来确定有机污染的程度。但是,在线分析对于更精确地实时监测工艺过程以及提高自动化程度来说,变得越来越重要。BOD分析需要5天时间,因此不能用于在线监测。由于COD分析时间需要2-3小时,且使用高毒性试剂,COD分析也不适合。相反,多年来,总有机碳TOC检测一直处于主导地位,用于快速监测有机污染,尤其是在工业领域。TOC也越来越多地应用于环境分析领域。与COD相比,TOC监测的优点是使用无毒试剂且检测时间仅需几分钟。此外,取决于所选择的检测技术,TOC分析可以在更大的浓度范围内进行检测,同时具有更高的精度。所有TOC分析仪的基本原理都是基于有机碳氧化形成二氧化碳。通过检测CO2,可以直接测定TOC含量。在线TOC监测——应对常见挑战有多种不同方法来实现这一检测目标。以下示例展示了与在线TOC监测要求相关的外部因素可能带来的不同挑战。通过采用正确的监测技术,就可以应对这些挑战。工艺挑战要求污水处理厂进水有机负荷高含有颗粒物稳健污水处理厂排水难以消解组分自我监测可靠冷凝水回用分析间隔短检测限低快速响应例1. 污水处理厂进水确定废水处理厂进水中的有机负荷对TOC分析仪提出了多项挑战。一方面,污染程度可能差异很大。这种情况主要发生在工业应用中,当批量工艺过程中的废水被排放或意外发生液体泄漏的时候。同时,这些有机物可能由难以分解的高度复杂的组分组成。此外,进水中可能会出现较高浓度的未溶解颗粒和溶解的无机成分(例如盐)。此应用对在线TOC分析仪的要求主要体现在稳健性方面。合适的监测仪表必须能完全检测出大跨度浓度波动,其波动范围可能在远低于100 ppm至高达数万ppm之间。同样,监测仪表还必须足够稳健,以检测更高浓度的溶解成分和颗粒成分。后者很容易导致内径较小的设备内部管道系统发生堵塞。此外,此类仪表在工艺过程中的安装条件往往很苛刻,这就需要稳健的设计。然而,了解有机负荷是优化后续清洁步骤的重要参数。在线TOC监测可以确保在有机负荷发生偏差时,生物处理阶段不会过载。过载会杀死分解有机物所需的细菌。在此情况下,由于适当的监测工具可以快速识别高有机负荷,因此可以将相应部分的进水有效地转移到缓冲池并维持细菌的健康。在负荷较低时,可以将高度污染的水回流。同样,在厌氧反应器中,要注意确保进水浓度尽可能恒定,以实现最佳的降解结果。反之,如果进水有机负荷过低,可根据TOC检测添加甲醇等有机物,使细菌有足够的食物进行高效降解。例2. 污水处理厂排水污水处理厂出TOC监测主要用于检查排水是否符合规定的排放限值。同时,它可以显示污水处理厂内的降解过程是否正常进行。在这些情况下,可以避免因超过限值而产生的罚款,并实现监管合规。废水在经过处理后,出水TOC浓度值明显低于进水。然而,残留的有机物通常是那些难以降解的物质。必须对这些物质进行精确检测,以便发现何时超过限值。因此,分析仪必须提供高度的可靠性,例如,捕获所有有机碳并具有广泛的自我监测功能。自动验证检测或校准应确保检测值始终正确。此外,可以使用自诊断功能来检查设备的整体状态,并依此开展预防性维护工作。这延长了分析仪的在线时间,并确保对限值进行无缝监测,以满足法规要求。例3. 冷凝水回用中的泄漏监测在工业应用中,蒸汽是最常用的传热介质。蒸汽发生用水必须满足特殊要求,以避免在锅炉和蒸汽阶段出现问题。要求对水进行预处理并添加水处理化学品。主要是抑制沉积物的形成和腐蚀。当水蒸发时会残留溶解的物质,形成水垢,导致锅炉中污泥积聚。但是,也会有蒸汽挥发性无机物和有机物进入气相并会积聚在管道和换热器中。这不仅减小了蒸汽通过的路径宽度,而且沉积物还降低了热传递,从而导致能量损失。此外,由于会造成一定的温度梯度,沉积物产生热应力,从而导致微小开裂和泄漏。腐蚀主要是由pH值过低引起。有机杂质在这里起着主要作用,因为在锅炉和蒸汽高温条件下,许多有机物分解并形成有机酸。这降低了蒸汽中的pH值,并加剧腐蚀,直至形成泄漏。除了预处理过程中去除不彻底外,有机物主要通过小泄漏进入蒸汽循环。由于锅炉水的处理复杂且昂贵,通常大部分冷凝蒸汽被返回。如果有机物通过热交换器中的小孔逸出到冷凝水中,它就会返回蒸汽循环。由于大多数有机物在分解之前并非离子态,因此传统的电导率测量无法检测到它们,也无法做到准确记录。在这里,TOC提供了一个解决方案。在此应用中,TOC分析仪面临的挑战是快速响应。与废水相比,除检测范围更低外,检测周期也很重要,因为检测目标是在被污染的冷凝水返回锅炉给水前就应该检测到是否发生了泄漏,从而避免花费巨大财力来更换锅炉给水。因此,更短的检测周期几乎可以无缝监测冷凝水,从而在污染成为问题前及时采取纠正措施。更轻松地检测有机污染并增强故障排除能力Sievers TOC-R3是一款在线TOC分析仪,可满足常见工业工艺监测应用面临的上述挑战。1200℃无催化剂高温消解能够在较宽的检测范围内完全氧化复杂和颗粒有机碳。分析仪系统采用大内径管,可防止含颗粒的样品造成堵塞,该设计专门针对工业应用,使分析仪对环境条件不敏感。TOC-R3强大的自我监测功能为预防性维护提供信息,并提供了泄漏检测专门选项,可以非常快速地对泄漏进行检测。远程诊断和控制有助于增强故障排除,以避免停机。通过这些功能,可以应对有机污染监测所面临的最重要挑战——稳健、可靠、快速响应,从而提供实时信息,以更轻松地检测泄漏,管理工艺并满足法规要求。◆ ◆ ◆联系我们,了解更多!
  • 水和废水中的有机物监测
    总有机碳(TOC)监测是行业了解其用水或废水质量的重要工具。它有助于确定水中存在的有机物质的量,有多种用途。TOC监测还使不同行业在多方受益,包括提高安全和加强环境保护,节省成本以及更好地遵守相关法规。但是,TOC监测也可能带来技术实施和成本等方面的挑战,这取决于应用的复杂性以及采用的仪表是否适用。什么是BOD、COD和TOC?检测有机物含量采用的最传统分析技术是生物需氧量(BOD)。随着技术的发展,法规允许采用其它方法来分析有机污染,如化学需氧量(COD)和总有机碳(TOC)。尽管BOD和COD已广泛使用,但TOC已成为越来越广泛接受的替代方法。BOD是确定废水有机污染的最常见的参数之一。该方法依靠微生物通过消耗样品中的氧气来分解有机物。如果水样品中有机物含量高,会导致溶解氧消耗增大。通过测量在20℃温度条件下培养五天所消耗的氧气量,BOD试验可以间接指示有机污染。化学需氧量(COD)是用于确定废水有机污染程度的另一种方法。该试验采用化学氧化来分解水中的污染物,然后测量在该分解过程中消耗的氧气。如果氧气消耗量增大,这说明品中有机物含量增高。2-3小时的分析时间少于BOD所需的时间,但需要用到有毒试剂。多年来的技术进步引入了总有机碳(TOC)分析仪,用于直接、快速检测水中有机物含量。与通过需氧量来确定有机物含量的BOD或COD不同,TOC分析仪是直接检测和定量分析样品中的碳。TOC分析仪将有机物氧化成CO2,然后通过电导率或非色散红外检测(NDIR)来测量CO2。样品氧化所采用的不同方法包括紫外线过硫酸盐、燃烧和超临界水氧化(SCWO)。TOC可通过特定相关性转换为BOD和COD。但是,在排放法规中,也有用TOC取代BOD/COD的趋势。挑战与TOC解决方案对于行业而言,总有机碳(TOC)监测对于确保其产品和工艺安全至关重要,同时,还有助于检测样品中有机化合物的量。在TOC监测方面,如果行业无法将其应用需求与合适的TOC技术相匹配,则将会面临诸多挑战。造成这种情况的原因有很多,包括取样技术欠缺,难以检测低浓度有机化合物以及分析方法不可靠。仪器商已经开发了不同的TOC解决方案来应对这些问题,从而降低了TOC监测的复杂性和成本,如下两个实例所示。电力行业挑战:煤气化装置要求在现场的水处理能力约为5,000-6,000 GPM,目标是零工艺水排放。由于该装置采用的是再生市政水,因此其蒸汽和冷凝水的来源中有机物含量高。因此,必须监测反渗透(RO)膜上的有机物负载量,以对处理工艺进行调整并保护宝贵的资产。解决方案:最初,在实验室进行TOC分析,后来采用在线TOC分析,以监测RO预处理性能并验证其可靠性。实时监测能够可靠、有效地调整预处理混凝剂的投加量。食品饮料行业 挑战:对于大型无菌生产企业,如果出现非无菌产品,会反复造成产品损失。他们一直在使用ATP检测拭子来检测微生物污染。但是,质量问题和产品损失则表明他们需要一种新技术。为了验证设备的清洁度并确保质量和安全,他们必须确保在开始灭菌前完全清除污染物和残余产物。除改进其清洗验证工艺外,生产企业还希望降低用水量和成本。解决方案:食品饮料生产企业需采用以turbo模式运行的Sievers M9 TOC分析仪来进行TOC分析——每4秒钟提供一个数据点,以对原位清洗(CIP)后的冲洗样品进行监测。在审核过程中,证明这些数据对设施在CIP效果和设备清洁度方面很有价值。通过目视检查确认设备很脏,但通过ATP检测拭子检查发现设备干净,但事实上并非如此。来自TOC监测的定量和全面的数据能够进一步减少不必要的CIP次数,并针对不同产品对其进行优化,从而节约用水并改进清洗工艺。碳监测通过TOC分析进行碳监测是一种重要且有用的方法,可以在水通过工业设施时对水质进行检测。通过检测可能出现的任何工艺中断,防止导致停机并造成高昂维护费用,这还是一个保护宝贵设备资产的好方法。碳监测在以下方面很有用:资产保护工艺优化质量控制满足法规要求源水水质源水污染水平会发生很大变化。水质可能受到季节变化、暴风雨径流和当地火灾等多种因素的影响,这些因素可能会造成源水被有机物污染。你的源水告诉了你哪些信息?通过对源水直接进行碳监测,以:监测基线 — 确定源水的正常TOC水平。识别发生的变化 — 市政是否改变了工厂水源?是否有暴风雨或天气事件改变了进入装置的源水的质量?采取纠正措施 — 采用实时、直接的碳数据来调整水处理工艺。确保处理装置正常运行,并调整流量以确保按照足够的比例脱除。公用工程用水水质工业设施经常需要热量来推动化学反应或工艺原材料。在许多工业装置中,使用公用工程用水来产生热量或便于热交换。热量的产生通常通过锅炉给水和冷凝水返回来实现。超纯水在锅炉中加热,然后转化为蒸汽。你的公用工程用水告诉了你哪些信息?通过对公用工程用水直接进行碳监测,以:监测基线 — 确定锅炉给水的最佳TOC含量,以满足设备保护的质量要求。确定正常的冷凝水水平。识别变化 — 快速检测由于处理低效或水源变化而导致的锅炉给水变化。无论是冷却液本身还是其它工艺流体,能够快速发现冷凝水泄漏。采取纠正措施 — 调整处理以确保锅炉给水的质量,如果被污染,则将冷凝水转移到废水收集设施或实施停车以防止污染影响产品或设备。废水处理工艺碳监测可以以多种途径用于废水处理,包括监测处理设施的废水负荷、生物处理效率或最终排放质量是否合规。你的废水告诉了你哪些信息?对废水直接进行碳监测,以:监测基线 — 定量分析原始废水中的碳负载量,以了解系统的真正养料负载量。识别变化 — 检测可能影响处理的任何变化倾向或较大波动。采取纠正措施 — 调整投加量、停留时间或进行分流,以优化处理并实现废水排放标准中规定的质量目标。对工业用水实施直接碳监测可使许多不同行业受益匪浅。TOC是控制产品质量、优化工艺、保护反渗透膜和锅炉等资产以及确保满足法规要求的绝佳工具。TOC能够为决策提供快速、准确的数据,并正在被写入世界各地更多的监管指南中。通过采用有机物监测,世界上许多不同的行业都在有效地监测用水和废水的质量。◆ ◆ ◆联系我们,了解更多!
  • 科学仪器助力东北地理所在富营养化湖泊溶解性有机物组分研究中取得新进展
    溶解性有机物(DOM)是全球水体有机碳的一个大的储存库,也是水环境中生物体的主要营养底物和碳源,对全球碳循环具有重要的贡献。同时,过量的DOM可能会导致天然水体变成“棕色”,会阻碍太阳辐射在水层中的穿透,进而影响水生态系统的生物化学循环。   目前很多研究都表明湖泊营养状态对水体中DOM的浓度和组成有显著影响,但尚未在分子水平上明确富营养化对水体DOM组分的影响。中国科学院东北地理与农业生态研究所水环境遥感学科组科研人员采用三维荧光技术和傅里叶变换离子回旋共振质谱(FT-ICR-MS)相结合的方法,明确了不同营养状态的湖泊在浮游植物繁盛期和衰亡期,水体中DOM分子组成的变化(图1)。   结果表明,富营养化使水体DOM分子构成中的CHO%含量减少,含硫元素的杂原子化合物(CHOS%和CHNOS%)含量增加;富营养化湖泊中夏季水体DOM的分子稳定性要高于秋季,这与浮游植物群落的季节性演替有关;富营养化水体中,DOM的主要组分为高度不饱和化合物为主、O3S+O5S化合物和富羧基脂环化合物(CRAMs),这是内源DOM(浮游植物衍生)被进一步生物转化的产物,湖泊富营养化可能会导致水体中难降解DOM化合物逐渐增多。目前全球范围内水体富营养化现象逐渐加剧,本研究结果为阐明湖泊DOM在未来全球碳循环中的作用提供了重要的理论支撑。   该研究成果发表在国际期刊Water Research上,中国科学院东北地理与农业生态研究所温志丹副研究员为第一作者,宋开山研究员为通讯作者。图1 不同营养状态湖泊水体DOM的分子组成分析   该研究得到了国家科技部重点研究计划项目(2019YFA0607101)、中国科学院青年创新促进会(2020234)和国家自然科学基金面上项目(42071336、42171374)等共同资助。
  • 想用更短的时间,分析更多的土壤有机物?
    想用更短的时间,分析更多的土壤有机物?关注我们,更多干货和惊喜好礼土壤污染防治法》2016年5月,国务院发布实施《土壤污染防治行动计划》,这是我国“十三五”乃至更长一个时期全国土壤污染防治工作纲领,也是“净土保卫战”的重要遵循。2019年1月《土壤污染防治法》的出台,为“净土保卫战”提供了法治保障。2020年作为“十三五”收官之年,环保“净土保卫战”也进入攻坚之年。土污染防治和土壤污染物检测成为当前社会各界关注的重点。土壤污染物包含无机污染物和有机污染物,有机污染物包含挥发性有机物(VOCs)和半挥发性有机物(SVOCs)。如下是土壤分析常见标准。不难发现,土壤中有机污染物的种类巨多,项目繁杂,依据标准众多,仪器分析时间又长,实验室的样品又多,如何快速高效的检测样品成为分析人员的难题。请不要担心,亦无须崩溃,针对该分析难题,赛默飞可以提供如下两种方案:方案1 GC快速分析方法(具体方法,请点击链接查看往期推文)方案2 多组分一针进样同时分析法一. 161种半挥发性有机物(SVOCs)解决方案Thermo GCMS ISQ7000GCMS 仪器条件161种100ppb标准溶液TIC色谱图本方案具有如下优势:该方案除了满足土壤和沉积物检测标准(HJ834-2017,HJ743-2015 ,HJ805-2016, HJ835-2017,EPA8270C)之外,还能满足水质中的多个标准(HJ 716-2014,HJ 744-2015, GB5749-2006)可以参考标准方法,针对标准方法单独出具标准对应的数据结果。本方法采用赛默飞独有的Timed-SIM模式,无需分组,161个化合物一针进样完成检测。该161种化合物涵盖范围广,含有机磷、有机氯、多环芳烃、酞酸酯、苯胺类、苯酚类等众多化合物。可以参考标准方法,针对标准方法单独出具标161种化合物的仪器检出限在0.1~10.0 μg/L范围之间,可远远满足国内外各种法规的限量要求。其中,87.6%的化合物检出限小于1.0 μg/kg。161种化合物线性范围在10.0-200.0μg/L之间,91.3%的化合物线性相关系数大于0.995。二. 61种半挥发性有机物(SVOCs)解决方案 Thermo GCMS ISQ7000 Thermo 顶空 TriPlus 500GCMS 仪器条件61种50ppb标准溶液TIC色谱图本方案具有如下优势:该方案整合了3个标准(HJ642-2013, HJ736-2015, EPA 5021),含有3个标准中的所有化合物,且一针样品运行时间小于30分钟,大大提高了工作效率。60种化合物的方法检出限均低于2 μg/kg,可远远满足国内外各种法规的限量要求。各化合物线性范围在10-500 μg/kg之间,线性相关系数大于0.999,平均相对响应因子%RSD5,远优于国家环境标准要求。加标回收率大部分化合物在80-120%之间,远优于国家环境标准要求。4.5天的时间里,128个样品之间穿插的10针浓度为200 μg/kg QC样品的重复性和回收率非常好。最hou划重点!!!以上2种方案均可提供eWorkflow方法包,整合仪器方法,分析方法,报告模板,一键启动分析,解决用户方法开发的烦恼!!!eWorkflow方法包示意图eWorkflow运行流程图如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 土壤有机物检测,可以如此简单
    导 语2016 年 5 月 31 日,国务院印发实施《土壤污染防治行动计划》(又称“土十条”),正式启动全国土壤详查工作。会议明确要求于 2020 年 10 月底前全面完成重点行业企业用地土壤污染状况初步采样调查工作,还将对土壤污染实施常态化的监测。针对土壤中的有机污染物检测,岛津公司与国家环境分析测试中心联合推出了土壤有机物解决方案,助力检测单位轻松打赢土壤污染详查攻坚战。我们的优势 国家环境分析测试中心长期从事土壤样品的分析检测,在土壤样品前处理和分析方面积累了丰富的经验。岛津公司的Smart 数据库具有独特的优势。岛津公司与国家环境分析测试中心强强联合、共同合作,推出以Smart 数据库为核心的土壤有机物检测解决方案。 解决方案的光盘内包括土壤分析方法的Smart 数据库、土壤方法包操作视频、样品分析前处理操作指导手册、仪器操作指南以及数据库应用文集。 岛津土壤有机物检测解决方案可以完美应对以下标准针对上述每一个标准,我们都建立了相应的文件夹。文件夹里包括对应标准的AART采集方法、Smart数据库以及操作指南。对于用户来说,操作起来是十分便捷的。下图是标准HJ 743-2015文件夹内容展示。 Smart数据库亮点: Smart数据库操作简便快捷,三步(选择目标化合物、加载正构烷烃文件、点击创建方法文件)即可完成方法建立,极大提升实验室的工作效率;即便你是实验室小白,在我们视频的引导下,你也可以轻松地创建分析方法; Smart数据库使用AART(保留时间自动调整功能)功能,即使没有标准品,也可以对待测样品中的化合物进行快速筛查; Smart数据库依据岛津公司和国家分析测试中心共建实验室多年有机物检测经验建立,优化了复杂基质检测参数,得到的峰型更好,精心筛选的定性定量离子可以避免杂质干扰,使得定量结果更准确。
  • 郑重提示 | 致ICP有机物分析的广大用户
    您在进行有机物检测时,是否遇见过如下难点?易挥发组分在雾化过程中以及雾化后挥发,影响雾化后液滴粒径的稳定性,导致检测数据波动;有机物挥发导致气体流速不稳,从而导致等离子体熄火等现象;有机物含有大量的碳链,随着载气等离子化的过程中,产生中心管和矩管积碳,影响检测数据稳定性。珀金埃尔默针对上述难点,研发、验证并推出了可确保您数据稳定性的进样系统和加氧装置解决方案。此外,目前市场上有大量劣质有机进样系统和加氧装置,与仪器无法无缝对接,导致客户使用中遇到点火困难,无故熄火,数据不稳等各种问题,干扰工程师的专业判断。为保障您的利益,协助客户换回经验证的原装系统,实施全6折促销。同时,报废的旧装置可以再抵扣10%货款!敬请及时来电咨询:北区:021-60645636东区:021-60645659南区/西区:021-60645658邮箱:consumable.china@perkinelmer.com文末福利时间到只要您订购珀金埃尔默加氧装置,即可获赠价值398元的限量版仪器“拼装模型”,数量有限,预购从速!
  • 全国首套有机物在线监测仪启用
    12月20日下午,蚌埠市各民主党派负责人视察调研蚌埠环境保护工作。实地查看了蚌埠闸上水质自动监测站以及位于环保局内的蚌埠市环境自动监控中心,并听取了其建成和运行情况的介绍。目前,全国第一套有机物质在线监测仪在蚌埠闸正式启用。蚌埠市领导姜和龙、何洪江参加视察调研。  据介绍,蚌埠闸上水质自动监测站前不久启用了一套有机物质在线监测仪,这也是全国第一套,有别于常规监测仪只能监测出无机物质,它还可以同时监测出18种挥发性有机物质。位于环保局内的蚌埠市环境自动监控中心也运行了一套监控系统,主要对于蚌埠市40多家企业的废水废气进行实时监控。  在随后举行的2010年环保政情通报会上,蚌埠市环保局向市各民主党派一行汇报了在“十一五”期间蚌埠市环保工作情况,并就“十二五”的工作做出了展望。
  • 新品上架|GB/T 5750有机物标准物质解决方案上线
    饮用水安全是公众健康的基本保障,关系到国计民生,是需要关注的重要公共卫生问题之一。继GB 5749《生活饮用水卫生标准》 征求意见以后,其配套检测标准GB/T 5750《生活饮用水标准检验方法》也发布了征求意见稿。新版GB/T 5750仍然分为13个部分,涉及有机化合物检测为三部分:第8部分:有机物指标本文件代替GB/T 5750.8-2006《生活饮用水标准检验方法有机物指标》和GB/T 32470-2016《生活饮用水臭味物质土臭素和2-甲基异莰醇检验方法》。其中,将GB/T 32470-2016全部内容纳入本文件75.1中,与GB/T 5750.8-2006相比,除结构调整和编辑性改动外,主要技术变化如下:a)增加了“引言”;b)增加了“范围”(见第1章);c)增加了“规范性引用文件”(见第2章);d)增加了“术语和定义”(见第3章);e)增加了24个检验方法(见4.2,4.3,13.1,15.1,16.2,20.1,48.1,60.1,74.1,74.2,75.1,77.1,77.2,78.1,78.2,79.1,80.1,81.1,82.1,83.1,85.1,87.1,88.1,89.1);f)修改了1个检验方法(见21.2,2006年版18.4);g)删除了13个检验方法(见2006年版1.1,3.1,4.1,9.2,10.1,12.1,17.1,18.1,18.3,23.1,24.1,37.1,44.1)。第9部分:农药指标本文件代替GB/T 5750.9-2006《生活饮用水标准检验方法农药指标》,与GB/T 5750.9-2006相比,除结构调整和编辑性改动外,主要技术变化如下:a)增加了“引言”;b)增加了“范围”(见第1章);c)增加了“规范性引用文件”(见第2章);d)增加了“术语和定义”(见第3章);e)增加了9个检验方法(见8.3,12.2,13.4,14.2,21.2,25.1,36.1,36.2,41.1);f)删除了5个检验方法(2006年版1.1,4.1,9.1,11.1,11.2)。第10部分:消毒副产物指标本文件代替GB/T 5750.10-2006《生活饮用水标准检验方法消毒副产物指标》,与GB/T 5750.10-2006相比,除结构调整和编辑性改动外,主要技术变化如下:a)增加了“引言”;b)增加了“范围”(见第1章);c)增加了“规范性引用文件”(见第2章);d)增加了“术语和定义”(见第3章);e)增加了6个检验方法(见13.2,14.2,15.3,23.1,23.2,23.3);f)删除了1个检验方法(见2006版5.1);g)将氯酸盐及其检验方法由本系列文件第11部分调整至本部分(见第22章,2006版GB/T 5750.11第6章)。GB 5749《生活饮用水卫生标准》、GB/T 5750《生活饮用水标准检验方法》及相关标准的每次更新将引起供水行业、生活饮用水检验检测机构及相关单位高度关注,阿尔塔科技作为检测行业的优质标准物质供应商紧跟标准的步伐推出配套的标准物质套装,同时提供饮用水新标准和各地地标兼容的混标定制服务,助力饮用水检验检测实验室全面展开新标准的验证工作。GB/T 5750有机物标准物质相关产品:产品号中文名称英文名称规格型号1ST80287-KitGBT 5750.8 混标套装GBT 5750.8 Mix Kit套装1ST80371-KitGBT 5750.9 混标套装GBT 5750.9 Mix Kit套装1ST80372-KitGBT 5750.10 混标套装GBT 5750.10 Mix Kit套装更多产品需求也可以来电咨询
  • 溶解有机物影响抗生素光降解机理研究获进展
    近岸海域中,常常会产生抗生素的残留,这些残留对海洋生物甚至人类健康产生了威胁。光降解是抗生素在海洋环境中重要的非生物降解途径,包括直接光降解和间接光降解,其中,间接光降解是表层水体中抗生素的重要转化途径。溶解有机物可通过光照作用产生活性中间体参与间接光降解反应,是影响抗生素间接光降解的关键性因素。由于溶解有机物结构组成的复杂性,目前国际上关于溶解有机物对抗生素间接光降解的影响机制尚不明确。多年来,中国水产科学研究院黄海水产研究所渔业环境优化与循环水处理技术创新团队针对这一科学问题展开了深入研究,揭示了溶解有机物结构组成在磺胺类抗生素间接光降解过程中的关键作用,阐明了海水中关键环境因子对间接光降解的影响机理。近日,相关研究成果发表在环境科学与生态学领域期刊《整体环境科学》和《环境污染》上。溶解有机物的结构组成对磺胺类抗生素间接光降解的影响机制 黄海水产研究所供图据了解,该研究以溶解有机物的结构、性质以及环境中pH、盐度、硝酸根、碳酸氢根等关键因子为影响因素,首次系统阐明了近海海水中溶解有机物对磺胺类抗生素光降解的影响机制。研究发现,溶解有机物通过产生活性中间体,有效促进了磺胺类抗生素的间接光降解;溶解有机物中陆源类腐殖质组分对磺胺类抗生素间接光降解的影响要显著强于海源类腐殖质组分;pH、盐度、硝酸根和碳酸氢根均可通过改变活性中间体的稳态浓度影响磺胺类抗生素的间接光降解。团队进一步研究表明,由于具有高的芳香性,陆源类腐殖质组分能够较好促进磺胺类抗生素的间接光降解;低分子量的溶解有机物比高分子量的溶解有机物对磺胺类抗生素间接光降解的促进作用更显著;由于具有较高的芳香性和陆源类腐殖质物质,亲水性酸、亲水性碱和疏水性酸是影响磺胺类抗生素间接光降解的主要组分。这些研究结果揭示了磺胺类抗生素在我国近岸渔业水域光降解过程的反应动力学及降解机理,为准确掌握近岸海域环境中抗生素的归趋和评估其生态环境风险提供了理论依据。相关研究得到国家自然科学基金、山东省自然科学基金、崂山实验室项目和中国水产科学研究院创新团队等项目的支持。
  • 土壤固废中有机物提取方法3项环保标准征求意见
    关于征求《土壤和沉积物 有机物的提取 加压流体萃取法》(征求意见稿)等3项国家环境保护标准意见的函  各有关单位:  为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定《土壤和沉积物 有机物的提取 加压流体萃取法》、《固体废物 有机物的提取 加压流体萃取法》和《土壤和沉积物中有机污染物的提取 超声波提取法》等三项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2011年1月10日前反馈我部。  联系方式:  联系人:环境保护部科技标准司 何俊  通信地址:北京市西城区西直门内南小街115号  邮政编码:100035  联系电话:(010)66556621  传真:(010)66556213  联系人:环境保护部环境标准研究所 黄翠芳 武婷  通信地址:北京市朝阳区安外大羊坊8号  邮政编码:100012  联系电话:(010)84934068/84924935  传真:(010)84921403/84926394  附件:1.《土壤和沉积物 有机物的提取 加压流体萃取法》(征求意见稿)     2.《土壤和沉积物 有机物的提取 加压流体萃取法》(征求意见稿)编制说明     3.《固体废物 有机物的提取 加压流体萃取法》(征求意见稿)     4.《固体废物 有机物的提取 加压流体萃取法》(征求意见稿)编制说明     5.《土壤和沉积物中有机污染物的提取 超声波提取法》(征求意见稿)     6.《土壤和沉积物中有机污染物的提取 超声波提取法》(征求意见稿)编制说明  二○一○年十二月九日
  • 北京市印发《关于挥发性有机物排污收费标准》
    p style="text-align: center "北京市发展和改革委员会 北京市财政局北京市环境保护局关于挥发性有机物排污收费标准的通知/pp  各有关单位:/pp  为改善本市环境质量,发挥经济手段促进治污、减排的作用,根据财政部、国家发展改革委、环保部《关于印发〈挥发性有机物排污收费试点办法〉的通知》(财税[2015]71号)、市政府《关于印发北京市2013-2017年清洁空气行动计划的通知》(京政发[2013]27号),经市政府批准,现就本市挥发性有机物排污收费有关事宜通知如下:/pp  一、对本市行政区域内的石油化工、汽车制造、电子、包装印刷、家具制造行业征收挥发性有机物排污费,具体行业范围见附件。/pp  二、为体现奖优罚劣,鼓励深度治理,根据排污者挥发性有机物污染控制措施情况,实施差别化的排污收费政策。通过挥发性有机物清洁生产评估、排放浓度低于本市排放限值的50%(含50%),且当月未因污染环境受到环保部门处罚的,收费标准为每公斤10元 存在未安装废气治理设施,或废气治理设施运行不正常,或挥发性有机物超出本市排放标准等环境污染行为的,收费标准为每公斤40元 其他情况收费标准为每公斤20元。/pp  挥发性有机物排放量的核算办法,由市环保局按照国家有关规定,并结合本市实际情况制定发布。/pp  三、每一排放口排放的挥发性有机物均征收挥发性有机物排污费,不受对前3项污染物征收排污费限制。征收挥发性有机物排污费后,不再对大气污染物中单项有机物征收排污费。/pp  四、各区县环保局应加强收费情况信息公开,按规定实行收费公示,收费时开据市财政局印制的财政票据。排污费的缴纳和使用,按照国家和本市有关规定执行。/pp  五、各级价格、财政、环保部门要密切配合,切实做好政策实施的宣传解释工作,依各自职责切实加强对排污费征收和资金管理的监督检查。/pp  六、本通知自2015年10月1日起执行。/pp  特此通知。/pp style="text-align: right "  北京市发展和改革委员会 北京市财政局/pp style="text-align: right "  北京市环境保护局/pp style="text-align: right "  2015年9月1日/pp style="text-align: left "附件:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201703/insimg/df074319-cc3a-443c-8061-a60830648c99.jpg" title="0.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201703/insimg/940603e4-1db0-430f-b322-a3a25d39562a.jpg" title="00.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201703/insimg/25609076-1dde-4a70-af22-3f268fd51560.jpg" title="000.jpg"//p
  • 中国水周——岛津推出《地下水有机物检测数据库》
    2022年3月22日是第三十届“世界水日”, 2022年“世界水日”主题为珍惜地下水,珍视隐藏的资源。水利部办公厅印发通知,我国2022年“世界水日”“中国水周”活动主题为“推进地下水超采综合治理复苏河湖生态环境”。 地下水资源是我国重要的水资源,为了加强地下水管理,防治地下水超采和污染,保障地下水质量和可持续利用。2018年5月1日《地下水质量标准》(GB/T 14848-2017)正式执行,2021年12月1日《地下水管理条例》正式实施。 《地下水质量标准》(GB/T 14848-2017)地下水指标由之前的93版的39项增加到93项,增加了57项指标,其中有机指标增加了47项。从质量标准可以看出,重视控制地下水的有机污染物,并且地下水中有机污染物的浓度水平低,配置设备应该注意有足够的灵敏度。 为了更好应对《地下水质量标准》(GB/T 14848-2017),岛津与河北省水环境监测实验中心合作开发针对有机物检测数据库方法包,有机物数据库方法包涵盖有机物检测的分类、采样贮存的方法与注意事项,优化的检测方法以及仪器操作说明等,为地下水有机物检测提供完善的解决方案,助力地下水有机物的监测。 光盘封面 有机物检测应用介绍 01多环芳烃、多氯联苯、硝基苯02有机氯农药03草甘膦和氨甲基磷酸04克百威,2,4-D,莠去津,涕灭威丰富全面的产品线涵盖分析检测项目本文内容非商业广告,仅供专业人士参考。
  • 台州这款有机物监测仪器叫板美国设备
    p style="TEXT-ALIGN: center"img style="WIDTH: 323px HEIGHT: 342px" title="1.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/3256a2ae-3227-4e11-aaa5-ae3f8b3ff474.jpg" width="276" height="538"//pp  众所周知,排放挥发性有机物(VOCs)超标不仅会造成环境大气污染,还会影响到周边人群的健康。大众环保意识的提高也催生了挥发性有机物治理及监测产品,挥发性有机物监测系统就是其中之一。/pp  清华大学精密仪器与机械学系博士徐强拥有多年气相色谱仪器的研究经验,两年前,他开始投入在线色谱挥发性有机物监测仪项目研发中,成功将实验室气相色谱技术转换成了在线气相色谱监测设备。/pp  2016年底,该项目入选我市“500精英项目”,目前已在台州落地。蔚蓝3000VOC用于企业排放挥发性有机物的监测,为环保部门的监管和决策提供数据参考。/pp  台州制造的有机物监测仪器,将走进各个企业/pp  近年来,随着雾霾频发、大气污染严重等环境问题逐渐引起社会强烈反响,2015年8月新修订的《大气污染防治法》首次将挥发性有机物纳入监管范围,明确生产、进口、销售和使用含挥发性有机物的原材料和产品的,其挥发性有机物含量应当符合质量标准或者要求。/pp  一系列政策的推出让徐强团队意识到,挥发性有机物监测设备具有广阔的市场前景。/pp  “非甲烷总烃与氮氧化物在阳光的作用下可生成臭氧、过氧乙酰硝酸酯和醛类等被称为光化学烟雾的物质,其毒性和危害性已成为最受关注的污染环境类型。而苯系物广泛应用在油漆、农药、医药、有机化工等行业中,是污染源废气和环境空气中常见的化合物,对环境空气质量及人体健康均有毒性,有致癌作用,是我国环境检测优先控制的污染物。”多次商讨后,徐强团队决定重点针对甲烷、总烃、非甲烷总烃、苯系物这几类物质进行仪器研发。/pp  2015年底,作为团队技术带头人的徐强着手将实验室气相色谱技术转换成在线气相色谱监测设备,并通过技术整合使其可用于固定污染源和厂界空气的在线连续监测。/pp  之所以选择让项目在台州落地,徐强和团队成员有着成熟的考量。/pp  “我们的监测仪器将主要应用于石化化工、喷涂、印刷、电子工业、橡胶制品、有机溶剂制造、医药等行业挥发性有机物排放的在线监测。而台州恰恰拥有众多上述行业企业,比如汽摩配、家具、橡胶企业都涉及到喷漆,对环境监测仪器的需求很大。”徐强告诉记者,在环保产业尚未在台州形成产业集聚的情况下,让该项目在台州落地很有优势。/pp  仪器产生的监测数据,可为环保部门提供决策和监管依据/pp  这一款专业的监测仪器,乍一听有些神秘,那么它的工作原理是怎样的呢?/pp  据徐强介绍,该挥发性有机物在线监测系统基于高温法气相色谱技术,在线监测烟气及环境中的甲烷/非甲烷总烃、苯系物、恶臭等挥发性有机物。/pp  “采样系统从采样点抽取被测气体,经高温采样探头除尘后,通过高温伴热管先进入在线气相色谱仪。色谱仪内置加热箱,使样品经过的管路全部高温。然后采用高灵敏度FID检测器对样品进行检测,最后通过工作站软件自动完成数据的采集、分析、处理、传输和存储。”徐强说。/pp  谈到产品优势,徐强的回答言简意赅:“国际领先技术,国产优势价格。”这一点,也得到了浙江高校产学研联盟台州中心主任沈海滨的认可,作为项目引荐人之一,他对其评价不俗。/pp  “仪器的灵敏度和精度重大突破,达到国际实验室气相色谱的指标 通过对FID检测器进行重新设计加工,达到较高的灵敏度水平 实现自动校准功能,灵活设置校准周期,降低人力投入……”沈海滨说,项目的技术可媲美国际顶尖品牌,成本也控制得非常好,产品产生的监测数据可传输给环保部门,为他们的决策和监管提供参考依据。/pp  记者了解到,目前蔚蓝产品已经获得环保认证、形式批准认证和生产制造许可认证,目前正在杭州、宁波、台州等地区部分典型企业进行试用,已初见成效。/pp  按照徐强团队的初步计划,到年底完成固定源及厂界系列产品的应用和推广,并于明年达到年产500台的产能,进行规模生产和批量销售。/pp/p
  • 雾霾中被检出大量含氮有机物 被指最危险信号
    据中国青年报报道,中国科学院近日公布了该院“大气灰霾追因与控制”专项组的最新研究结果,研究认为,最近的强雾霾事件,是异常天气形势造成中东部大气稳定、人为污染排放、浮尘和丰富水汽共同作用的结果,是一次自然因素和人为因素共同作用的事件。  污染物遇水汽发生灰霾事件  研究认为,人类污染物排放是造成雾霾天气的内因,可以说是“主谋”。专项组成员、中科院遥感与数字地球研究所研究员陈良富说,空气污染物中的可溶性成分遇到浮尘矿物质凝结核后会迅速包裹,形成混合颗粒,再遇到较大的空气相对湿度后,就会很快发生吸湿增长,颗粒的粒径增长2倍至3倍,消光系数增加8倍至9倍,也就是能见度下降为原来的八分之一至九分之一。通俗地讲,空气中原本存在的较小颗粒的污染物遭遇水汽后变成人们肉眼可见的大颗粒物,随即发生灰霾事件。  中国科学院分布在京津冀区域的15个PM2.5监测站的监测数据统计显示,1月份京津冀5次强霾污染分别发生在1月6日至8日、9日至15日、17日至19日、22日至23日、25日至31日。这5次都少不了陈良富所说的水汽做“帮凶”。  霾中检测出危险有机化合物  专项组“大气灰霾溯源”项目负责人、中科院大气物理所研究员王跃思说,本次席卷中国中东部地区的强霾污染物化学组成,是英国伦敦1952年烟雾事件和上世纪40-50年代开始的美国洛杉矶光化学烟雾事件污染物的混合体,并叠加了中国特色的沙尘气溶胶。  尤其值得一提的是洛杉矶光化学烟雾事件,在该污染事件中,共有800余人丧生。美国政府在后来的调查中称,石油挥发物(碳氢化合物)和二氧化氮,在强烈的阳光紫外线照射下,会产生一种有刺激性的有机化合物,这个过程被称为光化学反应,其产物就是含剧毒的光化学烟雾。  在京津冀雾霾天气的专项研究中,专项组检出了大量含氮有机颗粒物,这在王跃思看来是“最危险的信号”,因为这就是“洛杉矶上世纪光化学烟雾的主要成分之一”。  经过源解析技术,这些包括含氮有机颗粒物在内的有机物被识别出了4类有机组分:氧化型有机颗粒物,主要来自于北京周边 油烟型有机物,主要来自局地烹饪源排放 氮富集有机物,一种化学产物 还有烃类有机颗粒物,主要来自于汽车尾气和燃煤。其中氧化型有机颗粒物在整个污染过程所占比例最大,为44%,其余三个组分别占21%、17%和18%。  建议重点控制工业和燃煤  专项组将这些因素归结为“人为粗放式排放和自然生态被破坏的直接后果”。在北京地区,机动车为城市PM2.5的最大来源,约为1/4 其次为燃煤和外来输送,各占1/5。对于整个京津冀区域,专项组认为,应重点控制工业和燃煤过程,重点在于燃烧过程的脱硫、脱硝和除尘 同时要高度关注柴油车排放和油品质量。  用王跃思的话说,“控制灰霾还是需要从控制污染物排放着手。”
  • 24种挥发性有机物标准品促销
    24种挥发性有机物混标(顶空气相色谱-质谱法测定24种挥发性有机物) 货号:CDGG-122768-03-1ml 名称:24种挥发性有机物 标准品 说明:共25组分,因为1,2-二氯乙烯有顺反异构体。 溶剂:甲醇 规格:1ml 价格:1200元 促销:900元 促销时间:11月29日至12月29日库存:现货同时提供其他环境标准品:地表水检测混标,挥发性有机物(VOCs),半挥发性有机物(SVOCs),多环芳烃(PAHs),EPA方法标准品等,请关注《安谱标准品专刊2010-2011》或访问: www.anpel.com.cn
  • 24种挥发性有机物 标准品促销
    24种挥发性有机物混标(顶空气相色谱-质谱法测定24种挥发性有机物) 货号:CDGG-122768-03-1ml 名称:24种挥发性有机物 标准品 说明:共25组分,因为1,2-二氯乙烯有顺反异构体。 溶剂:甲醇 规格:1ml 价格:1200元 促销:900元 库存:现货同时提供其他环境标准品:地表水检测混标,挥发性有机物(VOCs),半挥发性有机物(SVOCs),多环芳烃(PAHs),EPA方法标准品等,请关注《安谱标准品专刊2010-2011》或访问: www.anpel.com.cn
  • 国瑞力恒发布挥发性有机物采样器新品
    GR-1210型挥发性有机物采样器 1.产品概述 GR-1210型挥发性有机物采样器(以下简称采样器)是我公司针对环境空气、工作场所、工业生产有组织排放中的挥发性有机物采样进行研发的专用采样器。该采样器是环境空气中的TVOCs、苯、甲苯、二甲苯等多种有机物专用采样设备,采样器的技术性能指标符合国家颁布的有关标准的规定。研制过程中广泛征求了专家及广大用户的意见,应用高性能处理器、进口采样泵、高精度质量流量传感器及新材料领域的高新技术,竭力为用户提供一台质量可靠、性能稳定的高品质采样器。2.适用范围适用于环境空气、工作场所、工业生产有组织排放中的挥发性有机、有毒有害气体的采样。可供环保、卫生、劳动、安检、军事、科研、教育等部门使用。3.采用标准HJ644-2013《环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱质谱法》HJ583-2010《环境空气 苯系物的测定 固体吸附/热脱附-气象色谱法》HJ584-2010《环境空气 苯系物的测定 活性炭吸附/二硫化碳解析-气象色谱法》HJ645-2013《环境空气 挥发性卤代烃的测定 活性炭吸附管-二硫化炭解析/气相色谱质谱法》HJ683-2014 《环境空气 醛、酮类化合物的测定 高效液相色谱法》HJ801-2016《环境空气和废气 酰胺类化合物的测定 液相色谱法》GB/T 17061-1997 《作业场所空气采样仪器的技术规范》HJ2.2-2008 《环境影响评价技术导则 大气环境》4.技术特点1.原创流量控制算法,微小流量稳定;2.采用进口质量流量传感器,流量控制精度高; 3.采用进口采样泵,恒流采样,稳定性好; 4.内置高能锂电池,一次充电工作24小时以上; 5.自动测量大气压、温度,自动计算标况流量和标况体积;6. 即时采样、定时采样、定容采样、间隔采样多种采样模式可选择;7.具有欠压和掉电保护功能,来电继续采样,保证采样数据不丢失;8.内置2微米双重粉尘过滤,保护仪器内部不受粉尘的影响,使用寿命更长; 9.一机多用,支持活性炭等吸附管、溶液吸收瓶、滤膜等多种采样方式; 10. 体积小、重量轻;配三角支架,采样高度可调。 5.技术指标 表1技术指标主要参数参数范围分辨率准确度采样流量(20~300)mL/min1mL/min优于±5%负载流量 20kPa (100ml/min)工作温度(-20~+60)℃数据存储能力1000组电池工作时间大于24小时仪器噪声60dB(A)整机重量约0.65kg主机尺寸(mm )234×134×45功耗10W 创新点:GR-1210型挥发性有机物采样器 应用高性能处理器、进口采样泵、高精度质量流量传感器及新材料领域的高新技术;原创流量控制算法,微小流量稳定;采用进口采样泵,恒流采样,稳定性好;采用进口质量流量传感器,流量控制精度高;具有欠压和掉电保护功能,来电继续采样,保证采样数据不丢失挥发性有机物采样器
  • 睿科:提升土壤有机物检测效率 需从样品前处理着手
    p  随着土壤污染防治攻坚战的开展,各级政府对土壤污染防治纷纷从政策和资金上给予了大力支持, 2019年1月1日起正式施行的《中华人民共和国土壤污染防治法》更是从法律上给予了坚实的保障。由此看来,提升土壤检测能力的重要性和紧迫性越来越凸显。在众多的土壤污染物中,有机化合物由于品种多、化学结构和性质各不相同、待测组分复杂,检测分析方法难度系数较大,对从业者的专业要求也相当之高。/pp  为了帮助相关领域的用户学习、了解土壤有机物检测最新技术、方法及相关标准等内容,仪器信息网特别策划了“土壤有机物检测最新技术进展”专题,并邀请睿科集团应用工程师叶维鹏就土壤有机物检测技术相关的问题发表了自己的观点。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/19b9a10e-0b03-4ca6-ad4d-68fff2857acf.jpg" title="睿科1.jpg" alt="睿科1.jpg"//pp/pp style="text-align: center "strong叶维鹏 睿科仪器应用工程师/strong/pp span style="color: rgb(255, 0, 0) "strong 仪器信息网:请谈谈您对我国现行的土壤有机污染物检测标准或方法的看法,有哪些方面需要进行改进和完善?/strong/span/pp  strong叶维鹏:/strong土壤中的污染物检测不像人们的想象那样简单,存在很多复杂的有机污染物,甚至有许多无法解释的东西,给相关的检测部门带来了相当大的难度。总体而言,有机物和重金属是土壤污染的最主要来源,为保证土壤有机物检测有标准可依,国家相关部门定期地对现有的土壤有机污染物进行编制,目前现行的土壤有机物污染物检测标准几乎能满足绝大多数的检测要求,但某些标准还未细致划分到每种物质,以致于有些有机污染物无法参照相应的标准,比如没有明确的苯胺类气质标准,目前已经发布的有《土壤和沉积物苯胺类和联苯胺类的测定液相色谱-三重四级杆质谱法》征求稿。/pp span style="color: rgb(255, 0, 0) "strong 仪器信息网:在目前的土壤有机污染物检测项目中有哪些值得特别关注?相关检测方法的技术难点主要在哪?/strong/span/pp  strong叶维鹏:/strong目前我们比较关注的是苯胺类化合物、有机氯农药以及半挥发性有机物的检测,难点主要还是在于前处理(萃取、浓缩、净化)。比如低沸点目标化合物的回收率相对较低,必须控制好氮吹或旋转蒸发过程中的浓缩温度;酚类目标化合物则主要看仪器灵敏度,因为仪器的灵敏度决定最低检出限;邻苯二甲酸酯类目标化合物需尽可能避免用到塑化剂前处理设备,做空白基底扣除,否则做出来回收率相对较高,有可能偏离标准;极性相对大沸点相对较高目标化合物可选择二氯甲烷和丙酮(1:1)取代正己烷和丙酮进行萃取,效果明显。/pp  span style="color: rgb(255, 0, 0) "strong仪器信息网:请介绍贵公司在土壤有机物检测方面有哪些仪器产品或产品组合?相比于同类产品,在技术上有哪些优势?/strong/span/pp  strong叶维鹏:/strong我们可提供多种土壤有机物检测前处理组合、提取设备,例如HPFE高通量加压流体萃取仪+浓缩设备、MPE高通量真空平行浓缩仪+净化设备、Fotector plus高通量全自动固相萃取仪等。其中HPFE高通量加压流体萃取仪一次可运行6个样品(30分钟),按照正常工作时间8个小时来计算,日处理最多可达96个样品。而且HPFE的收集瓶可兼容MPE,可直接将萃取后的收集液转移至MPE ,一次可处理16个大体积120mL的收集液或36个小体积40mL的收集液,浓缩时间30分钟左右,大大提高浓缩效率,再将预浓缩后的样品转移至Fotector plus 进行净化,一次可同时运行6个样品,可批量处理60个样品,解放人工手动净化,整个实验只需将架子转移,无需其他手动操作,避免目标化合物的损失。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 375px " src="https://img1.17img.cn/17img/images/201909/uepic/7ab83486-b71e-4b06-a804-8feffea67c4f.jpg" title="睿科2.jpg" alt="睿科2.jpg" width="500" height="375" border="0" vspace="0"//pp/pp style="text-align: center "strong图一、睿科HPFE高通量加压流体萃取仪/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 500px height: 376px " src="https://img1.17img.cn/17img/images/201909/uepic/fa430f98-ead0-458e-91fe-8f40ca18dd7e.jpg" title="睿科3.jpg" alt="睿科3.jpg" width="500" height="376" border="0" vspace="0"//strong/pp/pp style="text-align: center "strong图二、睿科Fotector plus高通量全自动固相萃取仪/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 500px height: 375px " src="https://img1.17img.cn/17img/images/201909/uepic/1f9ba127-13d1-454e-8942-bf28240697e9.jpg" title="睿科4.jpg" alt="睿科4.jpg" width="500" height="375" border="0" vspace="0"//strong/pp/pp style="text-align: center "strong图三、睿科MPE高通量真空平行浓缩仪/strong/pp  span style="color: rgb(255, 0, 0) "strong仪器信息网:贵公司可以提供哪些土壤有机物检测解决方案?/strong/span/pp  strong叶维鹏:/strong我们可提供土壤和沉积物以及固体废物等相关应用解决方案,符合标准如下:/pp  1 固体废物 半挥发性有机物的测定 气相色谱-质谱法(HJ 951-2018)/pp  2 固体废物 多环芳烃的测定 高效液相色谱法(HJ 892-2017)/pp  3 固体废物 多环芳烃的测定 气相色谱-质谱法(HJ 950-2018)/pp  4 固体废物 多氯联苯的测定 气相色谱-质谱法(HJ 891-2017)/pp  5 固体废物 有机氯农药的测定 气相色谱-质谱法(HJ 912-2017)/pp  6 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017)/pp  7 土壤和沉积物 多氯联苯的测定 气相色谱法(HJ 922-2017)/pp  8 土壤和沉积物 多氯联苯混合物的测定 气相色谱法(HJ 890-2017)/pp  9 土壤和沉积物 有机氯农药的测定 气相色谱法(HJ 921-2017)/pp  10 土壤和沉积物 有机氯农药的测定 气相色谱-质谱法(HJ 835-2017)/pp  11 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法(HJ1021-2019/pp  12 GB5085.3-2007《危险废物鉴别标准 浸出毒性鉴别》/pp  正如以上所言,土壤有机物检测工作的难点在于样品前处理,耗时、耗力、且容易产生操作误差,有资料表明有60%的分析误差产生于样品前处理,而不是最后的分析过程。如何快速、高效且准确地完成样品前处理,是土壤有机物检测工作中亟待解决的问题。睿科集团作为自动化样品前处理解决方案领先供应商,通过多种高通量、自动化样品前处理设备组合,为土壤有机物检测,如多环芳烃、有机氯、半挥发性有机物、多氯联苯、石油烃等,提供从提取、预浓缩、净化再到富集浓缩的全套土壤样品前处理自动化、批量化应用解决方案。/ppbr//p
  • 专家:PM2.5主要危害成分为有机物重金属等
    环保部7月31日公布的2013年全国74个城市上半年空气质量数据显示,今年上半年全国74个城市PM2.5平均浓度为76&mu g/m3,北京地区空气质量达标天数仅38.9%,超标天数中,重度污染和严重污染的天数达到42天,占23.3%。在8月13日举行的&ldquo 空气和健康&rdquo 科学沙龙活动上,专家表示&mdash &mdash 空气中有机物、放射性物质、重金属等污染物对人体的危害不容忽视,PM2.5中所含有机物、放射性物质等污染成分危害性更大。  空气中PM1.0、有机物对人体健康的危害  据公开数据显示,在北京,人们有60%以上的时间生活在空气质量不达标的日子里。对此,大气物理专家、中国科学院大气物理研究所研究员王庚辰认为,空气污染对人体健康的影响包括气候变化、全球变暖、放射性物质等多重因素。  王说,全球变暖基本已经是一个不争的事实,现在的争论是引起全球变暖的原因 而暖冬、干旱、洪涝、热浪等极端天气气候事件的发生频率增加,近期持续性的高温、洪涝等气象灾害发生后的相关疾病疫情,也在直接危害着人体的健康。  &ldquo 从先前的TSP、PM10、PM2.5到现在研究的PM1.0,PM1.0对人体健康影响最严重,PM1.0包括PM2.5,PM2.5包括PM10。截至目前,PM1.0还没有纳入到环保部门日常业务监测中,科学研究表明PM1.0是真正的&ldquo 凶手&rdquo ,国家环保部门在PM1.0方面还没有日常观测,没发布这方面的资料。&rdquo 王庚辰说。  对于有机物造成的空气污染,王认为,有机物对人体健康的影响不包括在大气中经过物理和化学作用转化成其他污染物以及细小的颗粒物。他举例说,一些企业排放的气体经过发生反应转化成PM2.5和PM1.0等二次污染物,排放有机物多,同样严重污染空气质量。  空气中重金属、放射性物质污染对人体健康的危害  据环保部统计(2009)的重金属和类金属污染事件数据显示,全国发生12起金属污染事件,有4035人血铅超标,182人镉超标。  &ldquo 截至目前,重金属污染尤其是铅、砷、镉中毒并没有引起有关部门和广大公众的关注,现在我们的关注点在PM2.5,大家都知道PM2.5。实际上我们看PM2.5的时候有两个问题,一是看它的浓度,我认为这不是最主要的,最主要的是PM2.5里含有什么组成成分,如果PM2.5里包含着有机物和重金属,那么,当PM2.5值不是很高的情况下危害也会很高。&rdquo 王庚辰说。  在他看来,日本福岛核电站事故报道后,公众对放射性物质的污染以及环保部门的监测数据结果关注度还不够。&ldquo 放射性物质污染是一个非常重要的问题,它不同于一般性事件污染 当事件发生后,其影响到整个事故周边群众的身体健康,而且这种影响是长期性的。&rdquo 王庚辰强调,重视放射性物质污染已不容忽视。  王庚辰最后指出,空气污染恶化生存环境,直接或间接危害人体健康,重视空气污染,需要强化相关流行病学和环境毒理学研究。科研人员应该将研究数据的结果和看法更多地推广公开,让更多的人知道,尤其让政策决策部门领导知道问题的严重性以及问题的所处阶段。
  • 挥发性有机物污染监测有新规
    p  2016年5月26日,由天津市环境监测中心承担的《固定污染源挥发性有机物连续监测系统安装联网技术规范(试行)》,通过了中国环境监测总站、北京市环境保护监测中心、上海市环境监测中心等单位组成的专家组论证。/pp  据介绍,该技术规范规定了固定污染源挥发性有机物连续监测系统的组成、安装要求和联网要求,对推进和规范天津固定源挥发性有机物连续监测系统的建设具有重要意义。挥发性有机化合物是指沸点在50℃—260℃之间,常温常压下蒸气压大于13.332pa,分子量范围约在16amu~250amu的有机化合物的总称,其成分包括烃类、含氧烃、卤代烃、低沸点多环芳烃等多种类型,是环境空气主要污染物之一(简称VOCs)。据了解,本市已出台地方标准《DB12/524-2014工业企业挥发性有机物排放控制标准》,对石油化工、医药制造、橡胶制造、涂料制造、电子工业等多个行业的VOCs排放限值及在线监测方法进行了详细要求,监测因子主要包括非甲烷总烃、苯、甲苯和二甲苯等。目前国家标准正在起草当中。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制