微生物抗药性

仪器信息网微生物抗药性专题为您整合微生物抗药性相关的最新文章,在微生物抗药性专题,您不仅可以免费浏览微生物抗药性的资讯, 同时您还可以浏览微生物抗药性的相关资料、解决方案,参与社区微生物抗药性话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

微生物抗药性相关的耗材

  • 维科生物 滤杯( 一次性、反复)
    反复用滤杯ZW-3B 反复用滤杯ZW-3B,采用开放式薄膜过滤法原理,通过内置真空泵抽滤,供试品通过微孔滤膜,将微生物截留在微孔滤膜上,取出滤膜菌面朝上平贴于固体培养基上,移至相应的生化培养箱培养,落数计数。性能特点1、采用不锈钢设计和透明杯体设计,可反复使用,降低检验成本;2、操作过程不易受污染、易于清洁;3、还可进行除菌、除微粒等;4、所有型号微生物检测仪均可使用的配套专用器材。5. 耐高温杯体,聚碳酸酯材料技术参数滤膜:0.45μm*50mm或0.22μm*50mm滤杯容积:100ml底座材质:316L不锈钢滤杯材质:聚碳酸酯高分子材料 应用领域1、制药行业:纯化水、注射用水、无菌注射剂(大输液、小针剂、粉剂、生物制剂、乳剂、保养液等);2、医疗器械行业:纯化水、注射用水、无菌注射器、输液器、输血器、静脉导管等无菌产品;3、质检行业:药品食品检验所,环保部门等;4、大中、专院校微生物实验室;5、食品、饮料行业; 一次性滤杯ZW-LotusCN100 一次性滤杯ZW-LotusCN100为我公司特聘澳大利亚专业设计团队设计的一款新型微生物过滤器,是国内首创的快装拼接式一次性使用滤头,极大的降低了操作过程中出现的微生物交叉污染风险,避免了传统卡扣式一次性过滤器连接处漏液的风险,增加了微生物检测的可靠性与准确性。可配合我公司生产的多款微限仪和过滤支架使用,是药品、纯化水等液体检品进行微生物限度检查的专用耗材。 性能特点 1、 无菌包装,使用便捷2、 配有一次性滤头,无需火焰灭菌,降低交叉污染风险,简化操作。3、 滤杯与滤头间采用独特的防漏拼接设计,有效避免滤膜周边长菌,提升实验有效性。4、 边缘防积液设计,杜绝水渍残留。5、 100ml、250ml多种规格满足各种实验需求。应用领域 1、制药行业:纯化水、注射用水、无菌注射剂(大输液、小针剂、粉剂、生物制剂、乳剂、保养液等);2、医疗器械行业:纯化水、注射用水、无菌注射器、输液器、输血器、静脉导管等无菌产品;3、质检行业:药品食品检验所,环保部门等;4、大中、专院校微生物实验室;5、食品、饮料行业;
  • 制药行业的拉曼光谱库 6.6071.602
    制药行业的拉曼光谱库订货号: 6.6071.602有关制药工业和医学研究的活性物质和助剂的拉曼光谱( 1170 种光谱)。
  • 制药行业的拉曼光谱库 6.06073.602
    制药行业的拉曼光谱库订货号: 6.06073.602制药工业和医学研究相关活性物质和助剂的拉曼光谱( 1170 种光谱)。

微生物抗药性相关的仪器

  • 超高灵敏蛋白检测 助力揭示微妙生物学事件当蛋白的检测与差异表达对您的科研发现意义重大,那么选择一个值得信赖的超高灵敏度检测平台将极大程度加速研究进程,确保数据可靠性。 日益精准的研究和药物研发需要平台具备更为灵敏的靶标检测与更高通量的样本检测能力。默克生命科学全新推出的SMCxPRO™单分子免疫检测平台,突破常规免疫检测极限极大地提升检测灵敏度,引领生命科学研究领域蛋白质定量检测进入----飞克级时代!平台优势? 超高灵敏度(fg/mL)? 快速读取分析? 精巧时尚设计? 磁珠反应制式? 超过600种的抗体对验证实现大动态范围检测体液样本蕴含着最为直接和丰富的生物标志物信息,但相对于人工样本而言,也是检测起来最为困难的样本。体液样本有着非常复杂的特性,不同个体的同一标志物表达水平呈现巨大的差异。即使是同一种生物标志物,也在不同的时间能出现几十倍乃至几百倍的表达量变化。例如正常个体和发生细胞因子风暴个体的IFN-γ标志物含量可产生2000-3000倍的差异。开创性的科学工作需要新的检测技术能够适用于不同浓度条件的样本,也就是要求具备大的动态检测范围,这一点已经成为生物标志物检测技术的重要要求。SMCxPRO™实现了高灵敏度,大动态范围4 logs的检测。SMC™ 技术应用1. 改变了生物标志物的传统认识肌钙蛋白cTnl是心脏病领域经典的生物标志物。cTnl的检测被用来判断冠心病、心衰等心脏疾病的发生,同时也帮助医生进行预后评估。正常人血液无法通过ELISA有效测得cTnl指标,因此一般认为这种因子在正常人中并不存在。而SMC™技术通过基于磁珠孵育条件的单分子检测,能够实现低至0.4pg/mL的检测灵敏度。研究发现,在350例健康的男性和女性个体中,几乎所有个体血液中的cTnl都可被精确检测,并且99%个体的表达水平都在10.19pg/mL以下,而市售其他所有检测试剂盒都无法达到10pg/mL以下的检测能力。大多数个体的实测值在1-2pg/mL之间,远远超出了传统方法的检测范围。在一项长达12年的连续研究中,cTnl的价值被彻底地重新定义。研究者在12年前检测了正常个体的cTnl, 并且根据本底表达水平的差异将被测者分为4组。在随后12年的临床追踪中,发现本底表达cTnl较高的个体倾向于较高的累积心脏病发病率,而本底表达丰度低于1.06pg/mL的个体12年后心脏病的累积发病率极低。研究揭示cTnl本底表达水平可影响多年后心脏病事件发病率。2. 全新生物标志物的发现阿尔茨海默症是严重的神经疾病,全球有多达5000万阿尔茨海默症患者。人类已经发现一些重要的蛋白可能会参与到这种疾病,并且可以作为判断疾病的重要标志物。寻找合适的生物标志物用于早期诊断对于防治阿尔茨海默症十分关键。Aβ蛋白造成的淀粉样蛋白沉淀和tau蛋白造成神经纤维缠结,会在最早出现认知损失症状的10-15年前开始,这段时间也被称为阿尔茨海默症潜伏期(preclinical-Alzheimer Disease)。如果能在这个时期尽早确认疾病的出现,将为医学干预和治疗争取非常宝贵的治疗期。因此,要求有更好的生物标志物能够在早期进行诊断。通过SMC™单分子免疫检测平台,研究者自主开发出了VILIP(Visinin-like protein-1)的超高灵敏度检测技术,并且证实VILIP在阿尔茨海默症造成的神经细胞损失方面是非常有效的生物标志物。3. 助力全新单抗药物开发IL-13是重要的细胞炎症因子,与IL-13信号通路相关研究发现青壮年的哮喘很多是由于IL-13信号通路所造成,因而IL-13被认为是一种很重要的成年哮喘诱发因素。SMC™单分子免疫检测平台具备数倍乃至上百倍于高质量ELISA检测试剂盒的灵敏度,磁珠孵育系统达到了0.07pg/mL的超高检测灵敏度,实现了所有个体本底表达水平的检测,从而得到了血液中IL-13在治疗条件下的完整变化数据,提供了关键的临床证据。4. 新蛋白药物/治疗方法的免疫原性检免疫原性指的是抗原激发免疫反应的能力,也指抗原刺激机体后,机体免疫系统能形成抗体或致敏T淋巴细胞的特异性免疫反应的能力。免疫原性很多情况下是对机体有利的,例如疫苗产生的免疫反应。但是,在生物治疗过程中,对治疗性抗原(重组蛋白,单抗)的免疫反应是非常不利的,会产生细胞因子释放综合症cytokine release syndrome (CRS),促炎症因子在治疗中被免疫细胞释放(例如TNF-α, IL-6, IL-8, IFN-γ, 等等),或者是抗药性抗体产生 anti-drug-antibodies (ADAs) ,削弱治疗效果,对治疗产生反作用。SMC™其检测灵敏度可达到TNF-α:0.1 pg/mL ,IL-2:0.2 pg/mL,本底细胞因子水平: 100% 可被检测,提高了数据质量,并且可通过本底水平对样品进行分级。而其大动态检测范围能力可满足在CRS中炎症反应细胞因子剧烈变化,同时高通量的实验形式可检测大量实验样本,减小个体差异对结果的影响。
    留言咨询
  • 100系列水质测量仪 pH ORP 离子 导电率 溶解氧无论是实验室或户外,方便携带到您需要的地方,各式各样的电极系列可与台式分析仪通用,更方便您的使用。主机材质采用了最新的聚碳酸酯,耐冲击、抗药性强,在严峻的环境也能准确测量。操作方便,直观快捷,水质分析「多面手」LAQUAact带给您全新的测量体验。 功能特点1. IP67 级防水防尘外壳。完全防水,浸泡在水深1m处約30分钟也不会故障的防水性能。2. 采用汽车和手机领域所使用的聚碳酸酯树脂*来提高抗振性。*聚碳酸酯与历来的ABS树脂相比,耐冲击特性增强了约2倍。3. 抗药性强 聚碳酸酯抗药性强,可用酒精直接擦拭清洁。※对酒精,弱酸?碱,油类安定,不产生反应4. 紧凑型人体工程学设计 测量仪便于携带,附带电极挂钩,可在测量仪两侧挂装多达 2个电极。配件的电极支架,使得手持式的主机也方便在桌上操作使用。自由旋转式电极支架可单手上下左右调节。5. 延长操作时间相比传统测量仪,使用约 10% 的电量。凭借长达 1000 小时的使用寿命,在户外也可安心使用。6. 单手操作 机身小巧,适合手握。只需三个基本操作按钮即可实现单手操控。7. 自动保持或自动稳定功能 在自动保持模式下,测量仪在读数稳定时读数冻结。自动稳定模式不断刷新 LCD显示屏(带稳定指示器)上的读数。8. 超大LCD显示屏 超大 64mm×52mm 显示屏便于清晰查看读数和诊断信息。 附背光灯的大型液晶屏幕,在暗处也可轻松读取测量値。9. 各种数据处理方式内建记忆体可储存1000笔测量结果,也可连结电脑直接读取测量资料。符合GLP/GMP规范的打印机输出数据。 DO 110防水溶氧测量仪 套装包含: DO110测量仪 电镀溶氧探头(93004-38), 2m电缆 携带箱DO 120防水溶氧测量仪 套装包含: DO120测量仪 电镀溶氧探头(93004-38), 2m电缆 携带箱
    留言咨询
  • 不论是实验室或是戸外,方便携带到您需要的地方。可单手操作,方便测量。机身小巧,操作合手。将基本操作键集约成3个,单手操作、简单灵活。耐冲击采用了最新的聚碳酸酯※,耐磨,耐冲击。※聚碳酸酯与历来的ABS树脂相比,耐冲击特性增强了约2倍。暗处也无需烦恼附背光灯的大型液晶萤幕,在暗处也可轻松读取测量値(D-71除外)防水?防尘IP67规格的防水?防尘构造※IP67:浸泡在水深1m處約30分鐘也不會故障的防水性能。长时间使用与历来产品的设计相比可省电约1/10,实现了长达约1000小时的长时间使用,在户外也可安心使用。方便携带配件的电极挂勾,可收纳电极线。小巧机身,方便携带。主机材质采用了最新的聚碳酸酯,耐冲击、抗药性强, 严峻的环境也能准确测量。操作方便,直观快捷, 水质分析「多面手」LAQUAact带给您全新的测量体验。※本公司调查,2013年6月当时。大显示屏幕容易观看,可同时显示2个测量项目。显示屏幕比历来机型增大约1.4倍,更方便用户观察测量数値。可在同一画面显示2个水质项目的测量値。※可同时测量2种水质项目的机型:桌上也方便使用配件的电极支架,让手持式的主机也方便在桌上操作使用。自由旋转式电极支架可单手上下左右调节,自由自在。抗药性强聚碳酸酯抗药性强,可用酒精直接擦拭清洁。※对酒精,弱酸?碱,油类安定,不产生反应各种数据处理方式内建记忆体可储存1000笔测量结果,也可连结电脑直接读取测量资料。符合GLP/GMP规范的打印机输出数据。※使用配件的传输线可与电脑连结;数据传输软件可在会员登录後免费下载。EC110测量仪套装: EC110测量仪 塑料壳体,钛/铂黑,电导电极(93004-25),k=1.0 84uS/cm, 1413 uS/cm, 12.88 mS/cm, 111.8 mS/cm溶液(60ml) 携带箱EC120测量仪套装: EC120测量仪 塑料壳体,钛/铂黑,电导电极(93004-25),k=1.0 84uS/cm, 1413 uS/cm, 12.88 mS/cm, 111.8 mS/cm溶液(60ml) 携带箱
    留言咨询

微生物抗药性相关的方案

微生物抗药性相关的论坛

  • 新方法可解决疟疾对氯喹的抗药性

    据新华社堪培拉4月15日电 (记者徐海静)氯喹原本是治疗疟疾的特效药,但由于疟原虫对其产生抗药性,这种药物在很多地方已经不再使用。澳大利亚和德国科学家发现,疟原虫的抗药性也有弱点,通过增加服药次数,氯喹仍然能够起作用。 澳大利亚国立大学15日发表一份声明说,该校生物学院研究人员罗伊娜·马丁和德国海德堡大学的同行共同发现,导致疟原虫产生抗药性的蛋白质也有“软肋”。 “我们研究了这种蛋白质的不同形式,在所有情况下,蛋白质将氯喹移出疟原虫体外的能力都是有限的。这意味着,能够继续使用氯喹治疗疟疾,只要每天服用两次,而不是一天一次。”马丁说。 她说,这种蛋白质能通过两种通道中的一种将氯喹移出疟原虫体外,但这一过程相当苛刻,发生任何错误,蛋白质就不起作用。这意味着该蛋白质处于相互矛盾的压力之下,这是它的弱点,在以后的新药开发中可以加以考虑。 研究人员建议,原先每天服用一个标准剂量的做法可以改成早晚各服用一个标准剂量,重点在于增加服药次数。但马丁不推荐增加单次服用剂量,因为一次大量服用会很危险。

  • 《科学》抗药性的困局与出路:中国的机遇?

    《科学》抗药性的困局与出路:中国的机遇?

    [align=left]作者:许越 点击查看作者自传[/align][align=center][/align][align=left][b]1.全球挑战与解决方案 [/b][/align]本周的[b]《科学》[/b](Science Vol 360, Issue 6390, 18 May 2018)期刊聚焦了由于过度或长期使用各种抗菌药、杀虫剂和除草剂,导致人类目前所面临的,或即将面临的无药可用的窘境。为此科学家们各抒己见,提出了各种方案。[align=center][img=,425,276]http://ng1.17img.cn/bbsfiles/images/2018/06/201806141016448525_4020_3037344_3.png!w649x422.jpg[/img][/align]在《可恶的进化:我们能摆脱杀虫剂抗性导致的社会生物学困境吗?》一文提出的证据表明,昆虫和杂草的演化会超过人类研发新的化学物质的速度。因此作者们指出必须将生态,遗传,经济和社会政治因素放在一起通盘考虑,才有希望解决这个问题。《利用基因组技术分析抗菌病原体的出现和传播》则寄希望于全基因组测序(WGS)技术来揭示细菌病原体中抗微生物耐药性(AMR)在时间和空间演变的内在规律。并提出利用这种规律来更有效地使用现有的和未来的抗菌剂,并且能够延长它们的使用周期。《利用生物制剂进行生物修复和解毒的前景展望》则把希望寄托在原核生物的代谢可塑性上,并提出可以用它们的这个特点来进行生物修复和解除环境有毒物质,比如从废水处理到生境恢复。《抗真菌药物的抗药性对人类健康和粮食安全构成的全球性挑战》也指出为了避免人类控制真菌感染的能力在全球范围内崩溃,我们必须加强对现有化学品的管理,加速新的抗真菌药物的研发,并利用新兴技术寻找替代解决方案。[b]2. NMT非损伤微测技术的机会?! [/b]概括一下上面综述的主要论点,无外乎寄希望于综合治理和筛选新技术的出现两个方面。在综合治理方向,科学家梦将抗性的时间和空间演变规律作为主要突破口。正如笔者在[b]从PC膜片钳到NMT非损伤微测技术(2)时间与空间[/b]中指出的那样,未来科研的发展将在不同的时间和空间维度展开。但同样如笔者在博文[b]《科学》癌症免疫疗法非意外受挫:中国的机会?[/b]单靠基因组技术不能够完全解决生理层面的问题,这在人类半个多世纪寻求癌症开关基因的努力失败中已得到证明。因此,非损伤微测技术在从细胞器到器官等不同空间结构和从秒级到数小时的时间范围内,对抗性的规律和发生机制可以进行多时间和多空间的发掘和检测。这对于在抗性基础研究方面苦苦摸索的科学家们来讲,可谓是从海岸浅滩驶入了浩瀚的太平洋。而对于抗药性应用研发的工程师们来说,工具上无疑是从小舢板换成了辽宁舰。在筛选新技术方面,当我们回顾英国科学家弗莱明(Alexander Fleming)1928年发现盘尼西林的过程时,从被杀死的细菌们的角度,如果它们可以说话的话,当有盘尼西林出现的时候,它们的一定会是这张卡通里下方的那个表情,大喊大叫。而右侧的NMT非损伤微测技术数据将直观地告诉科研人员,我们的尝试方向是否正确。[align=center][/align][align=center][img=,529,254]http://ng1.17img.cn/bbsfiles/images/2018/06/201806141017068427_2043_3037344_3.png!w687x330.jpg[/img][/align]现在,让我们再温习一下非损伤微测技术的另一个定义,即:NMT是一个通过离子分子流速检测,揭示生物活体与外界环境进行信息交换的工具。我们知道非损伤微测技术从细胞器,到微生物都可以活体检测,而且其分子流速检测的灵敏度可以达到femto(10[sup]-15[/sup]moles●cm[sup]-2[/sup]●s[sup]-1[/sup])级,完全可以胜任筛选工作。而且,不同的离子分子流速图谱将从信号传导、能量代谢、生长发育等等多方面进行更为全面,多时间空间维度的筛选。[b]3.为什么是中国的机遇? [/b]技术优势:中国目前是世界上,拥有非损伤微测系统实验室数量最多的国家,也是非损伤微测技术从研发到技术支持专业人员最多的国度。而且十几年来积累了一批这方面的专家,教授和学生群体。因此,无论在技术还是人才方面,中国都有着傲视世界的先发优势。文化优势:历史有时总是惊人的巧合和一致。在西方政治零和游戏日薄西山的时候。西方的科学也似乎难以跳出非友即敌的科研思路。尽管他们也想进行‘综合治理’‘生物防治’,但显然中国人在这方面有着天然的优势。政策优势:当今如火如荼的贸易战,国有大企业的被人一剑封喉,使得国家意识到核心技术的重要性。而抗药性的基础和应用研究,对于一个国家的安全和人民生命健康保障的重要性是不言而喻的!当然,挑战与机遇永远并存,非损伤微测技术在抗药性领域的应用才刚刚开始(请见下面文献)。但既然我们开着航母来到了太平洋,那就只有勇敢向前,直到抵达胜利的彼岸![i][/i][b]参考文献[/b][list][*]宋瑾,唐勇,许越. 用非损伤微测技术研究肿瘤细胞的耐药性与其胞外H[sup]+[/sup]流变化的相关性. 生物物理学报,2008(03):191-197.[/list][hr/][b][color=#a5a5a5]许越,男,1967年生于北京。[/color][/b][list][*][color=#a5a5a5][color=#888888]于[/color][color=#888888]1993[/color][color=#888888]年和[/color][color=#888888]2000[/color][color=#888888]年分别获得首都师范大学及美国麻省州立大学,植物生理学双硕士学位。[/color][/color][*][color=#a5a5a5][color=#888888]2001[/color][color=#888888]年在美国创建基于[/color][color=#888888]NMT[/color][color=#888888]技术的美国扬格公司,次年运用[/color][color=#888888]NMT[/color][color=#888888]服务于设立在美国北卡州立大学的美国航空航天局[/color]([color=#888888]NASA[/color])[color=#888888]空间植物学研究项目。[/color][/color][*][color=#a5a5a5][color=#888888]2005[/color][color=#888888]年成立旭月(北京)科技有限公司,在匡廷云院士、杨福愉院士和林克椿教授的帮助,以及各级政府的大力支持下,将非损伤微测技术引进中国大陆。[/color][/color][*][color=#a5a5a5][color=#888888]2014[/color][color=#888888]年带领旭月团队提出被誉为“第二个人类基因组计划”的“动态分离子组学([/color][color=#888888]imOmics[/color][color=#888888])”创新概念,同年成立旭月生物功能研究院。[/color][/color][*][color=#a5a5a5][color=#888888]2015[/color][color=#888888]年推出世界领先的“自动化非损伤微测系统”,并倡导建立中关村[/color][color=#888888]NMT[/color][color=#888888]产业联盟,开启以水安全、个体化精准医疗、粮食安全等民生应用为代表的[/color][color=#888888]NMT[/color][color=#888888]产业化进程。[/color][/color][*][color=#a5a5a5][color=#888888][color=#a5a5a5]截至2016年,已帮助国内400多个科研单位及实验室,利用NMT实现了科研水平的跨越式发展。[/color][/color][/color][/list][b]旭月版权所有,转载注明出处.[/b]

  • 新型“核糖开关”:科学家找到病菌耐药性“七寸”

    中国科技网讯 复旦大学近日宣布,该校上海医学院英国籍全职长江学者特聘教授、复旦大学生物医学研究院研究员Alastair Murchie和研究员陈东戎带领的课题组,历经3年多艰辛努力,在耐药性病原菌中首次发现了一种对控制此类抗生素的耐药性有重大作用的新型“核糖开关”,有望攻克此类药物带来的耐药难题。该成果近日发表在最新一期《细胞》杂志上。 人类抗生素的广泛应用使致病菌耐药性日益严重。氨基糖苷类抗生素临床上主要用于治疗“敏感需氧革兰氏阴性杆菌”所导致的脑膜炎、肺炎、骨关节等感染,但这类细菌产生的两个“破坏分子”,即氨基糖苷乙酰转移酶和氨基糖苷腺苷酰转移酶,能灭活抗生素,导致抗生素失效。为阐明这种耐药性如何形成,博士研究生贾旭和张静等通过大量实验,发现上述两个“破坏分子”编码基因中存在核糖开关元件,它能够“一对一”地识别氨基糖苷类抗生素,并与之结合,从中“捣乱”,改变核糖开关自身结构,诱导相应耐药基因的表达,导致抗药性产生。 有关专家认为,这一发现拓展了抗生素耐药性的研究领域,开创了抗生素耐药性新的研究方向,使人们对抗生素耐药机制有了新认识。在以后的实践中,科学家可以利用“核糖的破坏作用”,从根本上解决细菌耐药问题。 Alastair Murchie表示,虽然对现有药物进行轻微改造,就可以勉强控制现有局面,但从长远来看,研发出能以全新方式靶向杀灭细菌的新型药物则更具吸引力,因为这样就能保持药物的原有临床药效,亦有望通过联合用药等方法彻底解决耐药问题。(孙国根 金婉霞记者王春) 《科技日报》(2013-02-02 一版)

微生物抗药性相关的资料

微生物抗药性相关的资讯

  • 解读抗药性极强的超级病菌
    超级病菌是一种耐药性细菌。这种超级病菌能在人身上造成浓疮和毒疱,甚至逐渐让人的肌肉坏死。更可怕的是,抗生素药物对它不起作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡。这种病菌的可怕之处并不在于它对人的杀伤力,而是它对普通杀菌药物——抗生素的抵抗能力,对这种病菌,人们几乎无药可用。2010年,英国媒体爆出:南亚发现新型超级病菌NDM-1,抗药性极强,可全球蔓延。  超级病菌的历史  1920年,医院感染的主要病原菌是链球菌。  1960年,产生了耐甲氧西林的金黄色葡萄球菌(MRSA),MRSA取代链球菌成为医院感染的主要菌种。耐青霉素的肺炎链球菌同时出现。  1990年,耐万古霉素的肠球菌、耐链霉素的“食肉链球菌”被发现。  2000年,出现绿脓杆菌,对氨苄西林、阿莫西林、西力欣等8种抗生素的耐药性达100% 肺炎克雷伯氏菌,对西力欣、复达欣等16种高档抗生素的耐药性高达52%-100%。  2010年,研究者发现携有一个特殊基因的数种细菌具有超级抗药性,可使细菌获得超级抗药性的基因名为NDM-1。同年10月巴西大规模爆发KPC超级病菌导致多名感染者丧生。  抗生素的发展历史  1877年,Pasteur和Joubert首先认识到微生物产品有可能成为治疗药物,他们发表了实验观察,即普通的微生物能抑制尿中炭疽杆菌的生长。  1928弗莱明爵士发现了能杀死致命的细菌的青霉菌。青霉素治愈了梅毒和淋病,而且在当时没有任何明显的副作用。  1936年,磺胺的临床应用开创了现代抗微生物化疗的新纪元。  1944年在新泽西大学分离出来第二种抗生素链霉素,它有效治愈了另一种可怕的传染病:结核。  1947年出现氯霉素,它主要针对痢疾、炭疽病菌,治疗轻度感染。  1948年四环素出现,这是最早的“广谱”抗生素。在当时看来,它能够在还未确诊的情况下有效地使用。今天四环素基本上只被用于家畜饲养。  1956年礼来公司发明了万古霉素,被称为抗生素的最后武器。因为它对G+细菌细胞壁、细胞膜和RNA有三重杀菌机制,不易诱导细菌对其产生耐药。  1980年代喹诺酮类药物出现。和其他抗菌药不同,它们破坏细菌染色体,不受基因交换耐药性的影响。  1992年,这类药物中的一个变体因为造成肝肾功能紊乱被美国取缔,但在发展中国家仍有使用。  超级病菌产生的原因  基因突变是产生此类细菌的根本原因。但在自然状况下,变异菌在不同微生物的生存斗争中未必处于优势地位,较易被淘汰。  抗生素的滥用则是这类细菌今日如此盛行的导火线!由于人类滥用抗生素,使得原平衡中的优势种被淘汰,而这种“抗抗生素”的细菌则树立成长的成为了优势种,取得了生存斗争的优势地位,从而得以大量繁衍、传播。  综上,基因突变是产生此类细菌的根本原因,抗生素的滥用对微生物进行了定向选择,导致了超级细菌的盛行。所以,一方面,我们在寻找解决途径的同时,必须注意对抗生素等物质的使用。否则,超级细菌的生存状况将迅速从“优势”走向“盛世”。另一方面,我们应该积极探索,继续寻找解决方案,而不能过分悲观,因为优势与盛世的距离从不小于劣势与失败。  超级病菌怎样传播?  (1)经血传播:如输入全血、血浆、血清或其它血制品,通过血源性注射传播   (2)胎源性传播:如孕妇带毒者通过产道对新生儿垂直传播   (3)医源性传播:如医疗器械被乙肝病毒污染后消毒不彻底或处理不当,可引起传播 用1个注射器对几个人预防注射时亦是医源性传播的途径之一 血液透析患者常是乙型肝炎传播的对象   (4)性接触传播:近年国外报道对性滥交、同性恋和异性恋的观察肯定证实   (5)昆虫叮咬传播:在热带、亚热带的蚊虫以及各种吸血昆虫,可能对病毒传播起一定作用   (6)生活密切接触传播:与病毒携带者长期密切接触,唾液、尿液、血液、胆汁及乳汁,均可污染器具、物品,经破损皮肤、粘膜而传播。
  • 重磅!屠呦呦团队“青蒿素抗药性”等研究再获新突破
    p style="text-indent: 2em "屠呦呦团队放“大招”了!针对近年来青蒿素在全球部分地区出现的“抗药性”难题,屠呦呦及其团队经过多年攻坚,在“抗疟机理研究”“抗药性成因”“调整治疗手段”等方面取得新突破,于近期提出应对“青蒿素抗药性”难题的切实可行治疗方案,并在“青蒿素治疗红斑狼疮等适应症”“传统中医药科研论著走出去”等方面取得新进展,获得世界卫生组织和国内外权威专家的高度认可。br//pp style="text-indent: 2em "自屠呦呦发现青蒿素以来,青蒿素衍生物一直作为最有效、无并发症的疟疾联合用药。然而,世卫组织最新发布的《2018年世界疟疾报告》显示,全球疟疾防治进展陷入停滞,疟疾仍是世界上最主要的致死病因之一,“在2020年前疟疾感染率和死亡率下降40%”的阶段性目标将难以实现。究其原因,除对疟疾防治经费支持力度和核心干预措施覆盖不足等因素外,疟原虫对青蒿素类抗疟药物产生抗药性是当前全球抗疟面临的最大技术挑战。/pp  世卫组织和东南亚国家的多项研究表明,在柬埔寨、泰国、缅甸、越南等大湄公河次区域国家,对疟疾感染者采用青蒿素联合疗法(“青蒿素药物”联合“其他抗疟配方药”疗法)的三天周期治疗过程中,疟原虫清除速度出现缓慢迹象,并产生对青蒿素的抗药性。/pp  “青蒿素联合疗法是目前世卫组织大力推广的一线抗疟疗法,是当前全球抗疟的最重要武器。一旦疟原虫普遍对其产生抗药性,后果将十分严重,全世界科学家都非常担心‘青蒿素抗药性’进一步恶化。”/pp  屠呦呦认为,要想破解“青蒿素抗药性”难题,就必须搞清楚青蒿素的作用机理。屠呦呦团队成员、中国中医科学院青蒿素研究中心研究员王继刚说,青蒿素在人体内半衰期(药物在生物体内浓度下降一半所需时间)很短,仅1至2小时,而临床推荐采用的青蒿素联合疗法疗程为三天,青蒿素真正高效的杀虫窗口只有有限的4至 8小时。而现有的耐药虫株充分利用青蒿素半衰期短的特性,改变生活周期或暂时进入休眠状态,以规避敏感杀虫期。同时,疟原虫对青蒿素联合疗法中的辅助药物“抗疟配方药”也可产生明显的抗药性,使青蒿素联合疗法出现“失效”。/pp  经过三年多科研攻坚,屠呦呦团队在“抗疟机理研究”“抗药性成因”“调整治疗手段”等方面终获新突破,提出新的治疗应对方案:一是适当延长用药时间,由三天疗法增至五天或七天疗法;二是更换青蒿素联合疗法中已产生抗药性的辅助药物,疗效立竿见影。/pp  国际顶级医学权威期刊《新英格兰医学杂志(NEJM)》近期刊载了屠呦呦团队该项重大研究成果和“青蒿素抗药性”治疗应对方案,引发业内关注。/pp  屠呦呦认为,解决“青蒿素抗药性”难题意义重大:一是坚定了全球青蒿素研发方向,即在未来很长一段时间内,青蒿素依然是人类抗疟首选高效药物;二是因青蒿素抗疟药价格低廉,每个疗程仅需几美元,适用于疫区集中的非洲广大贫困地区人群,更有助于实现全球消灭疟疾的目标。/pp  “全球疟疾防控与中国政府提出的构建人类命运共同体的行动倡议主旨高度一致。”世卫组织全球疟疾项目主任佩德罗· 阿隆索说,“截至目前,青蒿素联合疗法治愈的疟疾病患已达数十亿例。屠呦呦团队开展的抗疟科研工作具有卓越性,贡献不可估量。”/pp style="text-align: center "  strong青蒿素治疗红斑狼疮:一期临床试验结果谨慎乐观/strong/pp style="text-indent: 2em "记者了解到,在“青蒿素抗药性”研究获新突破的同时,屠呦呦团队还发现,双氢青蒿素对治疗具有高变异性的红斑狼疮效果独特。/pp  中国工程院院士、中国中医科学院原院长张伯礼称,传统治疗红斑狼疮只能使用免疫制剂保守治疗,难以根治且存在继发感染等风险。/pp  根据屠呦呦团队前期临床观察,青蒿素对盘状红斑狼疮、系统性红斑狼疮的治疗有效率分别超90%、80%。佩德罗· 阿隆索肯定了这种可能,同时他也认为,必须进一步根据国际标准,经周密设计和严格实施的临床试验才能得出最终结论。/pp  国家药品监督管理局《药物临床试验批件》显示,由屠呦呦团队所在的中国中医科学院中药研究所提交的“双氢青蒿素片剂治疗系统性红斑狼疮、盘状系统性红斑狼疮的适应症临床试验”申请已获批准。昆药集团股份有限公司作为负责单位开展临床试验。/pp  昆药集团医学经理薛乔介绍,在屠呦呦团队的指导下,该临床试验一期于2018年5月正式启动,设计样本共120例,由北京协和医院、北京大学第一医院、内蒙古医科大学附属医院、新疆维吾尔自治区人民医院、安徽医科大学第一附属医院、山东大学齐鲁医院等全国15家牵头单位共同参与开展。/pp  “报名参加该临床试验的中外患者约500人,经过‘疾病活动性评分’等多流程严格筛选,首批志愿患者已入组开展试验。”薛乔透露,“从目前情况看,志愿患者没有发生非预期不良事件。”/pp  屠呦呦说:“青蒿素对治疗红斑狼疮存在有效性趋势,我们对试验成功持谨慎的乐观。”/pp  记者了解到,临床试验一般共三期,二、三期试验样本量更大,至少还需7到8年。若试验顺利,预计新双氢青蒿素片剂或最快于2026年前后获批上市。/pp  青蒿素等传统中医药科研论著有望首次纳入《牛津医学教科书》/pp  记者从中国中医科学院获悉,由屠呦呦团队成员、中国中医科学院研究员廖福龙等专家撰写的青蒿素等传统中医药科研论著,有望首次纳入即将再版的国际权威医学教科书《牛津医学教科书(第六版)》。业界认为,这将成为中医文化“走出去”的重要实践成果。/pp  据廖福龙介绍,题为“传统医药的典范——中医药”的章节已完成定稿,分为“什么是传统医药”“青蒿素等中药发现史、作用机理和临床应用”“中医药整体观与辨证论治”和“传统医药便廉可及”四大部分。今年4月,该书出版方牛津大学出版社已启动校对工作,将于今年下半年再版。/pp  《牛津医学教科书》主编考克斯教授说,对传统中医药论著即将纳入该教科书感到高兴。他说:“中医药章节既重要又具深度。这一切都是中国科学家杰出努力的结果。”/pp  佩德罗· 阿隆索等权威专家认为,屠呦呦团队在传统医学和现代医学之间架起一座桥梁,让中医疗法不仅在中国广泛应用,而且因有效治疗而被越来越多的国家认可。希望中国科学家在青蒿素研究的国际舞台上继续发出更多声音。 /p
  • 抗药性菌株可视化检测新技术获国家发明专利
    近日,中国农业科学院植物保护研究所智慧植保创新团队的“检测炭疽病菌对甲氧基丙烯酸(QOI)类杀菌剂抗药性的组合物及其应用”获得国家发明专利授权。 该团队克服了传统植物病原菌抗药性检测方法中存在的检测周期长、操作繁琐、效率低等诸多缺点,建立了一种炭疽病菌对QOI类杀菌剂抗药性的田间快速检测方法,可用于田间抗性菌株快速检测、早期预警和快速选药,为构建药剂智能筛选和药效智能评价提供了技术手段。 据介绍,该技术成果操作简单,结果准确、判断直观,通过荧光染色或胶体金检测技术,实现了结果可视化,可指导用户田间地头科学智能选药,实现了精准选药和精准用药。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制