银黄颗粒

仪器信息网银黄颗粒专题为您整合银黄颗粒相关的最新文章,在银黄颗粒专题,您不仅可以免费浏览银黄颗粒的资讯, 同时您还可以浏览银黄颗粒的相关资料、解决方案,参与社区银黄颗粒话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

银黄颗粒相关的耗材

  • 颗粒度取样瓶 颗粒度净化瓶
    颗粒度净化瓶(取样瓶) 颗粒度净化瓶(取样瓶)热烈祝贺普洛帝分析仪器事业部推出第七代炫彩双激光窄光颗粒计数器的同时,升级配套专用的清洁瓶,清洁等级再上高度;高等级清洁度可达2.1um以上颗粒为0个!清洁度等级RCL不大于100个/100mL(2um),技术超过同类企业。 颗粒度净化瓶(取样瓶)根据国际最新标准颗粒度取样瓶平均检出质量极限AOQL和清洁度等级RCL均达国际标准;可经过:ISO 3722、GB/T17484、NAS1638、ISO4406、SAE749D、ISO16232、GJB420A/B、GB/T14039、DL/T427和DL/T1096验证,完全符合ISO3722《液压传动取样容器清洗方法的鉴定》清洗专用器具的标准要求。 颗粒度净化瓶(取样瓶)耐高温高压,耐酸碱/有机试剂/重铬酸钾配置的洗液浸泡,防漏外旋盖,瓶口O形防滴漏圈! 颗粒度净化瓶(取样瓶)瓶盖颜色还有蓝色、橙黄、粉红可供选择! 优质材料,高硬度,高透明度!全自动设备生产,品质优良一致! 可 替代进口产品! 颗粒度净化瓶(取样瓶)适用于各种液体颗粒度测试的采样,又称清洁瓶、取样瓶、净化瓶、无菌瓶、洁净瓶、滤液瓶。是采用高精度超声波清洗机清洗、十万级洁净风风淋,烘干密封,紫外杀菌,清洁度验证等一整套工艺制作而成,取样瓶清洁度:NAS1638-00级,是颗粒计数器进行液体污染度测试的专用采样容器。 颗粒度净化瓶(取样瓶)可广泛用于液压元器件、液压系统、液压站、油缸、齿轮箱、变速箱、变压器、汽轮机组、反应釜、马达、发动机、泵、阀、轮毂、能器、过滤器、冷却器、加热器、油管、管接头、油箱、压力计、流量计、密封装置等等的油样抽样及手动取样。技术阐述: 平均检出质量极限AOQL:0.5%等级RCL:100个/100mL(2um)验证标准:ISO3722或GB/T17484容积:100ml、150ml、220ml、250ml、300ml、500ml、1000ml产地:西安 品牌:普勒/PUll 请认准普勒/PULL商标,以防假冒!材质:玻璃/高硅硼 耐温:150度 耐压:0.1mpa 洁净度:可定制,目前仅限超高压、特高压及核电设施等使用。供应:100只以上,30个工作日 ,其他数量可商定最小起订量:20只检测方:普研检测 可替代:各类进口颗粒计数器要求用取样瓶颗粒度净化瓶(取样瓶)配套性:可配套各类油液污染取样、颗粒检测取样、清洁度分析取样、油液监测取样、油液分析取样、常规取样。颗粒度净化瓶(取样瓶)配套仪器:颗粒计数器 颗粒计数仪 颗粒计数系统 油液颗粒度分析仪具体详情请电询普洛帝服务中心! 本次活动解释权归普洛帝服务中心所有!普洛帝、Puluody、普勒、Pull、PLDMC为Puluody公司注册的商标! 有关技术阐述、参数、服务为普洛帝测控拥有,普洛帝保留对经销商、用户的知情权!普洛帝为贵司提供:颗粒度取样瓶、颗粒计数器净化瓶、清洁无菌瓶、洁净瓶、颗粒滤液瓶、油液颗粒度检测仪、油液颗粒计数器、油液颗粒技术系统、油液粒子计数器、油液颗粒度分析仪,颗粒度检测仪、颗粒计数器、油液激光颗粒计数器、颗粒计数系统、自动颗粒计数器、激光油液颗粒计数系统、实验室激光油液颗粒计数系统、实验室颗粒计数器、实验室油液颗粒度分析仪、实验室油液颗粒计数器、实验室激光油液检测仪\颗粒度净化瓶(取样瓶)/油污染度检测仪器/洁净度检测设备/油颗粒度仪取样瓶是符合NAS,ISO标准的取样瓶/净化瓶关键词:HIAC 8011 颗粒计数器、美国太平洋 HIAC ROYCO 8000A / HIAC 8011 / HIAC 8012 油污染度检测仪器 / /洁净度检测设备 / 油颗粒度仪(HIAC ROYCO 8000A Particle Counter)专用取样瓶、PLD-0201油液颗粒度检测仪润滑油颗粒度分析仪 液压油清洁度检测仪,液压污染检测仪 双激光液压油颗粒度检测仪,油液污染检测专用取样瓶 HIAC 8011 颗粒计数器、HIAC PODS颗粒计数器、HIAC PM4000颗粒计数器、PALL HPCA-Kit-O污染度检测仪 、PALL HPCA-2污染度检测仪、PALL PIM400污染度检测仪 、PALL PCM400污染度监测仪、PALL PFC400污染度检测仪,油液颗颗粒度 污染度 清洁度仪器 颗粒度计数器 油液颗粒度分析仪、颗粒度计数器、颗粒度计数器、油液清洁度分析仪、油液颗粒度分析仪、油液颗粒度分析仪、油料微粒粒度分析仪、SBSS型实验室用颗粒计数系统、S40型现场用便携式颗粒计数系统、便携式白光油液颗粒计数仪、颗粒计数器/油品污染检测仪、微粒粒度分析、颗粒计数仪专用取样瓶 ,全面替代进口产品的颗粒度检测仪专用瓶/ 颗粒度净化瓶(取样瓶)
  • 颗粒度检测取样瓶
    可经过:NAS1638和ISO4406、GJB380、GJB420A/B、GB/T14039、SD/T313、DL/T1096验证,完全符合ISO3722《液压传动取样容器清洗方法的鉴定》清洗专用器具的标准要求。耐高温高压,耐酸碱/有机试剂/浓硫酸+重铬酸钾配置的洗液浸泡,防漏外旋盖,瓶口O形防滴漏圈! 瓶盖颜色还有蓝色、橙黄、粉红可供选择! 优质材料,高硬度,高透明度!全自动设备生产,品质优良一致! 可替代进口产品! 颗粒度检测仪专用取样瓶适用于各种液体颗粒度测试的采样,又称取样瓶、净化瓶、无菌瓶、洁净瓶、滤液瓶。颗粒计数器专用取样瓶是采用高精度超声波清洗机清洗、十万级洁净风风淋,烘干密封等一整套工艺制作而成,取样瓶清洁度:NAS1638-00级,是颗粒计数器进行液体污染度测试的专用采样容器。 技术阐述: 容积:110毫升、250毫升 产地:英国 材质:高硅硼 耐温:150?C 耐压:0.1mpa 洁净度:NAS 1~4级可定制 供应:现货供应 最小起订量:12只
  • 颗粒计数器专用取样瓶 nas1级玻璃取样瓶 油液颗粒度清洁瓶 150ml颗粒度洁净瓶
    可经过:NAS1638和ISO4406、GJB380、GJB420A/B、GB/T14039、SD/T313、DL/T1096验证,完全符合ISO3722《液压传动取样容器清洗方法的鉴定》清洗专用器具的标准要求。耐高温高压,耐酸碱/有机试剂/浓硫酸+重铬酸钾配置的洗液浸泡,防漏外旋盖,瓶口O形防滴漏圈! 瓶盖颜色还有蓝色、橙黄、粉红可供选择! 优质材料,高硬度,高透明度!全自动设备生产,品质优良一致! 可替代进口产品! 颗粒度检测仪专用取样瓶适用于各种液体颗粒度测试的采样,又称取样瓶、净化瓶、无菌瓶、洁净瓶、滤液瓶。颗粒计数器专用取样瓶是采用高精度超声波清洗机清洗、十万级洁净风风淋,烘干密封等一整套工艺制作而成,取样瓶清洁度:NAS1638-00级,是颗粒计数器进行液体污染度测试的专用采样容器。 技术阐述: 容积:110毫升、250毫升 产地:英国 材质:高硅硼 耐温:150?C 耐压:0.1mpa 洁净度:NAS 1~4级可定制 供应:现货供应 最小起订量:10只 油污染度检测仪器/洁净度检测设备/油颗粒度仪专用取样瓶是符合NAS,ISO标准的专用取样瓶/净化瓶

银黄颗粒相关的仪器

  • 黄度黄色指数测定仪ASTM D6290塑料颗粒颜色测定ASTM D6290-2019塑料颗粒颜色测定的标准试验方法,推荐使用45°/0°或者0°/45°定向型结构的黄度指数仪。This procedure outlines a method to determine color measurements. such as Yellowness Index(YI).CIE XYZ and Hunter L.a.b.or CEL*.a* b*。在塑料颗粒生产过程中,冷却方式可能有很大差异。粒料冷却的这种变化会导致粒料中结晶度的不同水平。更多的结晶尼龙将比无定形尼龙更不透明。这将导致颗粒不透明度的差异。颗粒形状与材料的结晶度无关。由于结晶度水平不同,颗粒外观的这种变化不会影响最终性能。注38212;该测试方法不应用于一般材料规格。该测试方法描述了一种可用于对颗粒形式的树脂进行颜色比较的技术,该技术快速且方便,因为它不需要准备,例如模制或挤出样品。该测试方法仅用于比较相似颗粒形状、尺寸、质地和半透明度的样品。例如,半透明圆盘形颗粒应与半透明圆盘形颗粒进行比较,而不是与不透明的矩形颗粒进行比较。由于存在多种变量,例如生产变量、方法以及颗粒形状和尺寸,树脂颗粒颜色的精确测量可能与最终铸造、模制或挤出产品的颜色不直接相关。当所有样品的形状和尺寸相似时,颜色测量可用于比较颗粒形式的树脂。为了完整、精确地量化颜色,需要三数三刺激值系统。此过程中使用的一般方法使用实践 E308 中描述的 CIE 系统、测试方法 D2244、CIE 1976 (X、Y、Z) 系统和 CIELAB 1976 色彩空间来测量颜色。三色刺激测量的各个组成部分,例如 CIE Y(亮度)、Hunter L、a、b 或 CIE L*、a*、b* 值或其他有用的指标(例如黄度指数)可用于描述材料的颜色属性。本测试方法描述了如何进行这些测量的标准程序。本测试方法主要用于在日光照射下用仪器测量均匀、无荧光、近无色透明的黄度(或黄度的变化)。或近白色半透明或不透明塑料。测量是在颗粒上进行的,并基于用分光光度计或色度计获得的三刺激值。本试验方法适用于塑料颗粒的颜色分析。每种材料可能具有决定颜色值的独特特性。本程序概述了确定颜色测量值的方法,例如黄度指数、CIE X、Y、Z 和 Hunter L、a、b 或 CIE L*、a*、b*。 HunterLab提供二款符合ASTM D6290标准的色差仪,即ColorFlex EZ和Agera。广泛用于下列化工产品的颜色测量:工程塑胶,PC,ABC,PBT,聚碳酸酯,聚酰胺(尼龙66切片),聚乳酸,硫酸,硫酸钾,甲醇,双酚A,多元醇,航油,汽油,柴油,PTA压片,PET聚酯切片,EVA乙烯-醋酸乙烯酯共聚物,乙二醇,树脂,丁苯橡胶,异辛烷,丙烯酸,环氧乙烷,二甲苯,对二甲苯,苯乙烯,偏二氟乙烯,聚偏二氟乙烯,太阳能背板基膜,反光膜,工业丝,半光DTY,有光FTY,热塑性聚氨酯(TPU),工业玻璃,催化剂,粘合剂,己二胺等。典型客户:仪征化纤,科思创,巴斯夫,盛虹集团,恒力集团,浙江石化,镇海炼化,中石化中石油,中航油,青岛炼化,青岛石化,上海石化,通标SGS,陶氏化学,霍尼韦尔,埃克森美孚,万华化学,浙江卫星能源,恒逸集团,三房巷集团,荣盛集团,古雷石化,新凤鸣集团等。 ColorFlex EZ拥有45°/ 0°的光学系统,为颜色测量提供更大的准确性。ColorFlex EZ结合多用途、简易性及高效能于一身,为用户提供简易及值得信赖的颜色测量。 45°/ 0°设计:达到完美色彩质量ColorFlex EZ的45°/ 0°设计每次都让你得到完美无误的色度,这令你得到与人眼最接近的测量结果。不论在实验室或真实世界,你也可以在仪器下,观测到与你客户所看到的相同色度。 更多可扩展性具有3个USB接口,以连接不同的周边设备:利用USB闪存盘将资料传送到仪器或电脑利用键盘以人手输入样品名称以条形读取器快速读取样品并避免人为错误用打印机得到样本数据的文件档可选配软件EasyMatch QC得到绘图数据 更简易的操作简易操作以应付各种测量需要只占有少量桌面空间“即按即测” 按键 更高的性能功效卓越、效果更佳可以测量多种样品包括实色固体、液体、粉末、颗粒及球状以至半透明固体及液体可以简易的将数据传输并上载或者下载至USB闪存盘有250个标样存储、产品标准及容差设置,2000个样品测量 更多元化的使用体验内置软件设有250个安装配置,并包含产品标准及容差值等参数,详见以下:色度坐标,指数,发光体及观测者并指出数据产品的环境设标准值以分辨所测的样品与其标准的颜色对比通过/不通过的容差来衡量产品规格透过平均法为不均匀或不一致的样品提供准确测量以不同的格式显示测量数据,如色度数据、色差数据以及光谱数据差异多样化的样品处理工具 亨特立的优势HunterLab一直专注于研发颜色测量技术,本公司拥有超过60年的经验及智慧,ColorFlex EZ就是在这基础上钻研出来的。HunterLab从各种仪器、软件、技术支持以及培训,为用户提供完备的解决方案。 应用于咖啡 粉末 颗粒 糖 球状 液态 洗洁剂 树脂 碎片 层板 酱料 灌浆 汤 辣椒 薄片 水泥 混凝土 乳酪 果汁 面板 胶粘剂 染料 干性化学制品 牛奶 烤漆面板 水果 芝士 粉末涂料 果仁 肥皂 固体
    留言咨询
  • 真空粉末分散仪介绍:YH-SPS-20固体分散仪:对于粉末类样品的粒度测试,因为颗粒与颗粒之间的静电吸附容易发生团聚,测试结果容易出现不稳定的情况,为了解决分散的问题,保证测试结果的准确性和稳定性。胤煌科技YinHuang Technology自主研发的YH-SPS-20固体分散仪,通过特殊的分散设计使颗粒可以轻易分开,让粉末样品可以均匀、稳定的分散在载玻片或者其他载样容器上,保证了测试的准确性。真空粉末分散仪设备技术优势:1 特殊的分散结构设计,使颗粒分散更均匀,更稳定;2 设备可搭载可控气路,实现对分散设备的自清洁;真空粉末分散仪设备图片:
    留言咨询
  • 日本理音RION液体光学颗粒度仪宽广的测试范围,可测试 0.03~0.13um 之间的颗粒只需要小小的样品取样量就可以得到高效率高精准的颗粒数据。 可侦测到最小粒径 0.03um 可自行设定的粒径范围 0.03~0.13um,通过 KE-40B1 的控制器可扩充至 10 个通道 出厂设定为 4 通道:0.03/ 0.06 / 0.1 / 0.13um 综合泄漏传感器与报警输出 蓝宝石材质的毛细管耐腐蚀性更强
    留言咨询

银黄颗粒相关的方案

银黄颗粒相关的论坛

  • 【原创大赛】银黄颗粒质量标志物评价研究

    【原创大赛】银黄颗粒质量标志物评价研究

    [b][/b][align=center][b]银黄颗粒质量标志物评价研究[/b][/align][b] 摘要[/b]目的:以黄芩药材、金银花药材、黄芩提取物、金银花提取物、银黄制剂为研究对象,考察并优化了样本在前处理环节的回流提取溶剂的体积、回流提取时间和提取溶剂的温度等。方法:采用高效液相色谱法,色谱柱为Venusil MP C[sub]18[/sub](4.6mm × 250 mm,5μm), Venusil MP C[sub]18[/sub](4.6mm × 250 mm,3μm)和 Agela MP S/N。以乙腈一0.3% 磷酸溶液为流动相进行梯度洗脱,流速为0.7 mLmin[sup]-1[/sup],检测波长为235 nm。结果和结论:通过各方面的考察,确定了银黄颗粒、黄芩药材和金银花药材在样品前处理环节的工艺优化参数,为银黄颗粒质量标志物研究提供借鉴指导。结论: 建立的提取方法稳定、可靠,有效成分达到最大提取效率,可用于银黄颗粒溯源检测的质量控制和综合评价。[b] 关键词:[/b]银黄颗粒;质量标志物;高效液相;黄芩;金银花[b] [/b][align=center][b][color=#333333]Evaluation of Quality Markers of Yinhuang Granules[/color][/b][/align]Objective: To investigate and optimize the volume ofreflux solvent, reflux extraction time and temperature of extraction solvent inthe pretreatment of samples, taking Scutellaria baicalensis, honeysuckle,Scutellaria baicalensis extract, honeysuckle extract and Yinhuang preparationas research objects. METHODS: High performance liquid chromatography was usedwith Venusil MP C18 (4.6 mm *250 mm, 5 micron), Venusil MP C18 (4.6 mm *250 mm,3 micron) and Agela MP S/N as chromatographic columns. The gradient elution was carried out with acetonitrile-0.3% phosphoric acid solution as mobile phase.The flow rate was 0.7 mL/min and the detection wavelength was 235nm. RESULTS AND CONCLUSION: The process optimization parameters of Yinhuanggranules, Radix Scutellariae baicalensis and Flos Lonicerae in samplepretreatment were determined through various aspects of investigation, whichcould provide reference and guidance for the study of quality markers ofYinhuang granules. CONCLUSION: The established extraction method is stable andreliable, and the effective ingredients can reach the maximum extractionefficiency. It can be used for quality control and comprehensive evaluation oftraceability detection of Yinhuang granules.Keywords: Yinhuang granules quality markers high performance liquidchromatography Scutellaria baicalensis honeysuckle[b]一、前言[/b] 银黄颗粒组方由金银花和黄芩构成,具有清热疏风、利咽解毒的功效,用于外感风热、肺胃热盛所致的咽干、咽痛、喉核肿大、口渴、发热急慢性扁桃体炎、急慢性咽炎、上呼吸道感染等症。该复方原料金银花为忍冬科植物忍冬的干燥花蕾或带初开的花,主产于山东、河南和河北等地。该复方原料黄芩为唇形科[url=https://baike.baidu.com/item/%E9%BB%84%E8%8A%A9%E5%B1%9E][color=windowtext]黄芩属[/color][/url]多年生草本植物,产于河北,河南,陕西,山西,山东等地。黄芩提取物的主要活性成分为黄芩苷、汉黄芩苷、黄芩素及汉黄芩素,金银花提取物是从金银花中提取的有机酸类活性成分。该制剂及其原料药成分复杂,生产厂家及产地众多,样品存在差异。中药质量标志物(Q-marker)已广泛应用于中成药的质量评价与控制。近年来越来越多的研究使用不同种类的分析仪器,密切联系中药有效性-物质基础- Q-marker研究,建立了丰富的中成药系统质量控制方法,为探讨建立中药全过程质量控制及质量溯源体系奠定了基础。[b]二、材料与方法1仪器与试剂、试药1.1仪器[/b] Waters e2695高效液相色谱仪(美国Waters公司),Waters 2998紫外检测器(美国Waters公司),Waters Empower色谱工作站(美国Waters公司);AGBP210S电子天平(Sartorius公司);MILLIPORE纯水机(MILLIPORE公司);高速万能粉碎机(北京市永光明医疗仪器有限公司,FW-80型);SB4200DTS超声波双频清洗机(宁波新芝生物科技股份有限公司);KDM-A控温电热套(金坛市医疗仪器厂);Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,5 μm)和Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm)。[b]1.2 试剂与试药[/b] 乙腈(上海星可高纯溶剂有限公司,色谱纯);甲醇(天津市科密欧化学试剂有限公司,色谱纯);其余试剂均为分析纯,水为超纯水。对照品来源:葛根素(批号:110752-200912)购自中国食品药品检定研究院。2样品的收集与前处理[b]2.1样品的收集[/b] 本研究从全国范围内收集黄芩、金银花药材各50批,分别制备相应的黄芩提取物和金银花提取物各50批,并制备银黄颗粒样品至少50批。(共计不少于250批样品)。[b]2.2黄芩、金银花药材的处理[/b] 对收集到的各批样品,均按照《中国药典》2015年版(第四部)药材取样法,四分法取样,1/4留样,剩余药材粉碎,使粉末分别过60目和20目筛,并按比例称重。所有黄芩、金银花药材样品均装袋密封,保存于冰柜(-20℃)中,备用。[b]2.3黄芩提取物的制备[/b] 取黄芩约100 g,置于1000 ml容量瓶中,加热回流两次,每次2 h,将滤液置于烧杯中浓缩至200 ml,用2 mol/L的盐酸调PH至1.0-2.0,80 ℃保温1 h,静置24 h.减压抽滤,沉淀加一倍量水混匀,用40 %氢氧化钠调节PH至7.0,加等量乙醇,搅拌溶解,滤过,滤液用2 mol/L的盐酸调PH 1.0-2.0, 60 ℃保温1 h,静置24 h,滤过,沉淀物加水洗至PH 5.0,95%乙醇洗至中性,挥尽乙醇,干燥,即得。[align=center]表1 黄芩提取物的提取[/align][align=center][img=,579,348]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091021374879_6392_3255306_3.png!w579x348.jpg[/img][/align][b]2.4金银花提取物的制备[/b] 称取金银花50.05 g置于圆底烧瓶中,加纯水回流提取三次,第一次8倍量水400 ml回流提取1 h,滤过,残渣加8 倍量水400 ml二次回流提取1 h,滤过,合并煎液,残渣加6倍量水300 ml,合并煎液,浓缩成浸膏,加浸膏量50%的淀粉混匀,置于烘箱中,60 ℃干燥,粉碎成粉,即得。[align=center]表2 金银花提取物的提取[/align][align=center] [img=,552,347]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091021550706_5584_3255306_3.png!w552x347.jpg[/img][/align][b]3供试品溶液方法考察的制备3.1供试品溶液制备方法考察3.1.1提取溶剂的选择[/b] 根据银黄颗粒的服用说明,该样品采用水为溶媒制备供试品溶液,由于临床应用中黄芩,金银花多采用水煎内服的用法,因此研究中以水作为提取溶媒,制备样品溶液。[b]3.1.2内标物溶液的制备[/b] 经查阅大量文献,本实验适用的内标物为葛根素。取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg*mL[sup]-1[/sup]的内标溶液[b]3.2银黄颗粒供试液制备方法考察3.2.1银黄颗粒不同料液比的考察[/b] 银黄颗粒研细后精密称取细粉1.0 g,称四份,置于100 ml或250 ml的圆底烧瓶中,分别精密加入煮沸的蒸馏水25 ml、50 ml、100 ml、150 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后0.5 ml等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表3、图1。[align=center]表3 银黄颗粒不同料液比单位质量色谱峰面积比较[/align][align=center] [img=,289,425]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091023281381_1955_3255306_3.png!w289x425.jpg[/img][/align][align=center]图1 银黄颗粒不同料液比单位质量色谱峰面积比较[/align][align=center][img=,289,123]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091023402582_6283_3255306_3.png!w289x123.jpg[/img][/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取体积为100 ml时值最大,最终选择回流提取体积为100 ml。[b]3.2.2银黄颗粒不同提取时间的考察[/b] 银黄颗粒研细后精密称取细粉1.0 g,称四份分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水25 ml于圆底烧瓶中,称重,分别加热回流20 min、30 min、40 min、60 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后0.5 ml等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表4、图2。[align=center]表4 银黄颗粒不同提取时间单位质量色谱峰面积比较[/align][align=center] [img=,292,421]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091024007921_8570_3255306_3.png!w292x421.jpg[/img][/align][align=center][img=,577,251]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091024513811_6890_3255306_3.png!w577x251.jpg[/img][/align][align=center]图2 银黄颗粒不同提取时间单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取时间为30 min时值最大,最终选择回流提取时间为30 min。[b]3.2.3银黄颗粒冷热水的考察[/b] 银黄颗粒研细后精密称取细粉1.0 g,称两份分别置于250 ml的圆底烧瓶中,第一份精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,第二份精密加入100 ml常温蒸馏水,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表5、图3。[align=center]表5 银黄颗粒冷热水单位质量色谱峰面积比较[/align][align=center][img=,287,427]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091025490101_4911_3255306_3.png!w287x427.jpg[/img][/align][align=center][img=,574,270]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091026003331_9248_3255306_3.png!w574x270.jpg[/img][/align][align=center]图3 银黄颗粒冷热水单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取溶剂为热水时值最大,最终选择提取溶剂为热水。[b]3.3黄芩药材供试液制备方法考察 3.3.1黄芩药材不同料液比的考察[/b] 按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.57 g,称取三份,置于100 ml或250 ml的圆底烧瓶中,分别精密加入煮沸的蒸馏水25 ml、50 ml、100 ml于圆底烧瓶中,称重,加热回流30 min ,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表6、图4。[align=center]表6 黄芩药材不同料液比单位质量色谱峰面积比较[/align][align=center][img=,291,425]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091026251557_1424_3255306_3.png!w291x425.jpg[/img][/align][align=center][img=,567,260]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091026352391_8450_3255306_3.png!w567x260.jpg[/img][/align][align=center]图4 黄芩药材不同料液比单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取体积为50ml时值最大,最终选择50ml为最佳提取容积。[b]3.3.2黄芩药材不同提取时间的考察[/b] 按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.57 g,称取四份,分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水25 ml于圆底烧瓶中,称重,分别加热回流20 min、30 min、40 min、60 min ,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表7、图5。[align=center]表7 黄芩药材不同提取时间单位质量色谱峰面积比较[/align][align=center][img=,289,424]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091027053867_9448_3255306_3.png!w289x424.jpg[/img][/align][align=center][img=,605,240]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091027125561_9333_3255306_3.png!w605x240.jpg[/img][/align][align=center]图5 黄芩药材不同提取时间单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取时间为40 min时值最大,最终选择40 min为最佳提取时间。[b]3.3.3黄芩药材冷热水提取的考察[/b] 按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.57 g,称取二份,置于100 ml的圆底烧瓶中,第一份精密加入煮沸的蒸馏水50 ml于圆底烧瓶中,第二份精密加入50 ml常温蒸馏水,分别称重,加热回流40 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表8、图6.[align=center]表8 黄芩药材冷热水单位质量色谱峰面积比较[/align][align=center][img=,287,424]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091027401011_8981_3255306_3.png!w287x424.jpg[/img][/align][align=center][img=,619,293]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091027478961_1794_3255306_3.png!w619x293.jpg[/img][/align][align=center][/align][align=center]图6 黄芩药材冷热水单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取溶剂为热水时值最大,最终选择热水提取是最佳的。[b]3.4金银花药材供试液制备方法考察3.4.1金银花药材不同料液比的考察[/b] 按比例称取2 0~60目和过60目筛的金银花药材粉末,共0.5 g,称取三份,置于100 ml或250 ml的圆底烧瓶中,分别精密加入煮沸的蒸馏水50 ml、100 ml、200 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表9、图7。[align=center]表9 金银花药材不同料液比单位质量色谱峰面积比较[/align][align=center][img=,358,511]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091031346401_7706_3255306_3.png!w358x511.jpg[/img][/align][align=center][img=,636,256]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091031349941_1562_3255306_3.png!w636x256.jpg[/img][/align][align=center]图7 金银花药材不同料液比单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取容积为100 ml,200 ml时值较大,100 ml与200 ml比较,两者的成分含量差别不大,所以选择100 ml提取较好。[b]3.4.2金银花药材不同提取时间的考察[/b] 按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.5 g,称取四份,分别置于250 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,分别加热回流20 min、30 min、40 min、60 min ,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表10、图8。[align=center]表10 金银花药材不同提取时间单位质量色谱峰面积比较[/align][align=center][img=,290,424]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091030005792_6136_3255306_3.png!w290x424.jpg[/img][/align][align=center][img=,555,215]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091030053727_8053_3255306_3.png!w555x215.jpg[/img][/align][align=center][/align][align=center]图 9 金银花药材冷热水提取单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取溶剂为热水时值最大,最终选择热水提取最佳。[b]3.5 黄芩提取物,金银花提取物供试液制备方法考察[/b] 通过实验得知黄芩提取物,金银花提取物供试液制备方法考察同银黄颗粒供试液制备方法考察一致。[b]3.6 含葛根素内标的银黄颗粒、黄芩药材、金银花药材、黄芩提取物、金银花提取物供试液配制方法的确定3.6.1含葛根素内标银黄颗粒供试品溶液的配制[/b] 银黄颗粒研细后精密称取细粉1.0 g,置于250 ml圆底烧瓶内,精密加入煮沸的蒸馏水100 ml,称重,加热回流30 min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]3.6.2含葛根素内标黄芩药材供试品溶液的配制[/b] 从冰柜中取出黄芩药材粉末,放置室温。采用四分法取样,按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.57 g,置于100 ml圆底烧瓶中,精密加入煮沸的蒸馏水50 ml,称重,加热回流40 min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]3.6.3含葛根素内标金银花药材供试品溶液的配制[/b] 从冰柜中取出金银花药材粉末,放置室温。采用四分法取样,按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.25 g,置于100 ml圆底烧瓶中,精密加入煮沸的蒸馏水50 ml,称重,加热回流30 min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]3.6.4含葛根素内标金银花提取物供试品溶液的配制[/b] 从冰柜中取出金银花提取物粉末,按比例精密称取0.2 g,置于250 ml圆底烧瓶中,精密加入煮沸的蒸馏水100 ml,称重,加热回流30min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]3.6.5含葛根素内标黄芩提取物供试品溶液的配制[/b] 从冰柜中取出黄芩提取物粉末,按精密称取0.04 g,置于250 ml圆底烧瓶中,精密加入煮沸的蒸馏水100 ml,称重,加热回流30 min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]三、结论[/b] 实验考察了银黄颗粒在样本处理环节的回流提取溶剂的体积、回流提取时间和提取溶剂的温度等。最终选择回流提取体积为100 ml,选择回流提取时间为30 min,选择提取溶剂为热水。考察了黄芩药材在样本处理环节的回流提取溶剂的体积、回流提取时间和提取溶剂的温度等。最终选择50ml为最佳提取容积,选择40 min为最佳提取时间,选择热水提取是最佳的。考察了金银花药材在样本处理环节的回流提取溶剂的体积、回流提取时间和提取溶剂的温度等。最终选择100 ml体积提取溶剂,选择30 min提取是最佳的,选择热水提取最佳。本实验还确定了含葛根素内标的银黄颗粒、黄芩药材、金银花药材、黄芩提取物、金银花提取物供试液配制方法。[align=left][b]参考文献[/b][/align] 王亚丹,杨建波,戴忠,等.中药金银花的研究进展.药物分析杂志,2014,34(11):1928-1935 中国药典.一部.2015:1498 王彩芳,张楠,黄龙,等. HPLC法测定不同厂家银黄颗粒中黄芩苷的含量.医药论坛杂志,2006,27(24):27-28 王彩芳,黄龙,程茜,等.高效液相色谱法测定不同厂家银黄颗粒中绿原酸的含量.时珍国医国药,2007,18(5):1143-1144黄雄,黄嬛,王峻,等.银黄颗粒的HPLC特征图谱分析.药物分析杂志,2009,29(8):1320-1323 肖小河,王永炎.从热力学角度审视和研究中医药.国际生物信息与中医药论丛.新加坡:新加坡医药卫生出版社,2004:74 贺福元,罗杰英,刘文龙,等.中药谱效学研究方向方法初探.世界科学技术-中医药现代化,2004,6(6):44-50 赵渤年,于宗渊,丁晓彦,等.黄芩质量评价谱-效相关模式的研究.中草药,2011.42(2):380-383 高燕,赵渤年,于宗渊等.金银花抗流感病毒毒谱-效相关质量评价模式的研究.中华中医药杂志,2013.28(12):3508-3511 Ke Li, Wei Cheng, Xiao-Jian Liu, hu-Bin Li, En-Guang Hou, Yan Gao, Liang Wang, Qing Liu, Bo-Nian Zhao, Zong-Yuan Yu, Mathematical Modelling for the Quality Evaluation of BaikalSkullcap Root, Applied Mechanics and Materials, 2011 王荣梅,徐丽华,林永强.HPLC法同时测定银黄含片中6个咖啡酰奎宁酸类成分的含量.药物分析杂志,2012,32(1):57-60 高苏亚,范涛,王黎等.红外光谱技术结合化学计量学方法在中药研究中的应用.应用化工,2012,41(2):324-328 王鹏,王振国,薛付忠等.基于支持向量机法的中药性状与药性相关性研究. 江西中医药,2012,43(355):65-68 Cifford MN, Johnston KL, Knight S et al. Hierarchical scheme for [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] identification ofchlorogenic acids.J Agric Food Chem,2003 51(10):2900-2910张倩,张加余,隋丞琳,等. HPLC-DAD-ESI-MS/MS研究金银花水提工艺中绿原酸类成分的变化规律.中国中药杂志,2012 37(23):3564-3567 沈红,段金廒,钱大玮,等.黄芩及复方野马追胶囊中黄酮类成分的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析.药物分析杂志,2009 29(9):1425-1429 赵胜男,李守拙.黄芩药材中黄酮类成分的HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]研究.承德医学院学报2012 29(4):345-347 Chkoshi E, Nagashima T, Sato H, et al. Simple preparation ofbaicalin from Scutellariae Rdixi. JChromatogr A,2009 1216(11): 2192 -2194高燕,吕凌,王亮,等.银黄颗粒HPLC指纹图谱与模式识别分析.中华中医药杂志,2017,32(09):4238-4242 丁晓彦,刘青,李岩,等.丹参脂溶性成分的HPLC指纹图谱及模式识别研究.中华中医药杂志,2016,3(6):2254-2256

  • 【原创大赛】一种银黄颗粒HPLC指纹图谱的检测方法及其应用

    【原创大赛】一种银黄颗粒HPLC指纹图谱的检测方法及其应用

    [align=center][b]一种银黄颗粒HPLC指纹图谱的检测方法及其应用[/b][/align]摘要目的:本研究介绍了银黄颗粒及其原料药黄芩和金银花的指纹图谱的建立方法,包括供试品溶液的制备、高效液相色谱仪测定及对数据和图谱的处理,以及由该方法制备得到的相应指纹图谱。方法:使用Venusil MP C18(4.6 mm × 250 mm,5 μm)+ Venusil MP C18(4.6 mm × 250 mm,3 μm)色谱柱在紫外235 nm吸收波长,选用流动相:乙腈(A)-0.3%磷酸(B)梯度洗脱,0~103 min,17%ACN 103~142 min,17%→27%ACN;142~156 min,27%→29%ACN;156~179 min,29%→41%ACN;179~219min,41%→80%CAN。结果:在测定的不同厂家 10 批次样品的色谱图中,选择90%以上批次样品均有的色谱峰为共有峰,银黄颗粒。黄芩药材、金银花药材分别确定了22,22,21 个共有峰。结论:为银黄颗粒定性鉴别提供借鉴。关键词:银黄颗粒;黄芩;金银花;指纹图谱[align=center][b]A Method for Detecting Fingerprint of Yinhuang Granules by HPLC and ItsApplication[/b][/align]Abstract Objective: To introduce the method ofestablishing fingerprint of Yinhuang granules and its raw materials,Scutellaria baicalensis and Lonicera japonica, including the preparation ofsample solution, determination by high performance liquid chromatography andthe treatment of data and chromatogram, as well as the correspondingfingerprint obtained by this method. METHODS: Venusil MP C18 (4.6 mm×250 mm, 5 mm) + Venusil MP C18 (4.6 mm×250mm, 3 mm) column was used at 235 nmultraviolet absorption wavelength. The mobile phase was selected: acetonitrile(A) - 0.3% phosphoric acid (B) gradient elution, 0-103 min, 17% ACN, 103-142min, 17% to 27% ACN, 142-156 min, 27% to 29% ACN, 156-179 min, 29% to 4% ACN.1% ACN 179 ~ 219 min, 41%80% CAN. RESULTS: In the chromatograms of 10 batchesof samples from different manufacturers, more than 90% of the samples hadcommon peaks, Yinhuang granules. Scutellaria baicalensis and Lonicera japonicahave 22, 22 and 21 peaks respectively. CONCLUSION: It can provide reference forthe qualitative identification of Yinhuang Granules.Key words: Yinhuang granules Scutellaria baicalensis Honeysuckle Fingerprint[b] 一、前言[/b]银黄颗粒组方由金银花和黄芩构成,具有清热疏风、利咽解毒的功效,用于外感风热、肺胃热盛所致的咽干、咽痛、喉核肿大、口渴、发热急慢性扁桃体炎、急慢性咽炎、上呼吸道感染等症。该复方原料金银花为忍冬科植物忍冬的干燥花蕾或带初开的花,主产于山东、河南和河北等地。该复方原料黄芩为唇形科[url=https://baike.baidu.com/item/%E9%BB%84%E8%8A%A9%E5%B1%9E][color=windowtext]黄芩属[/color][/url]多年生草本植物,产于河北,河南,陕西,山西,山东等地。黄芩提取物的主要活性成分为黄芩苷、汉黄芩苷、黄芩素及汉黄芩素,金银花提取物是从金银花中提取的有机酸类活性成分。该制剂及其原料药成分复杂,生产厂家及产地众多,样品存在差异。中药 HPLC 指纹图谱技术被认为是当前能较全面反映中药材及复方整体化学成分信息的方法,能更有效地评价中药的质量信息。本研究在分析上述研究背景的基础上,收集来源于不同产地的各50批金银花和黄芩药材,并制成银黄颗粒成品,再采用HPLC法同时建立金银花药材,黄芩药材和相应批次银黄颗粒的指纹图谱,选出各自的共有峰,从而确定不同产地,不同厂家的的药材共有物质及其数量。[b]二、材料与方法1仪器与试剂、试药1.1仪器[/b]Waters e2695高效液相色谱仪(美国Waters公司),Waters 2998紫外检测器(美国Waters公司),Waters Empower色谱工作站(美国Waters公司);AGBP210S电子天平(Sartorius公司);MILLIPORE纯水机(MILLIPORE公司);高速万能粉碎机(北京市永光明医疗仪器有限公司,FW-80型);SB4200DTS超声波双频清洗机(宁波新芝生物科技股份有限公司);KDM-A控温电热套(金坛市医疗仪器厂);Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,5 μm)和Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm)。[b]1.2 试剂与试药[/b]乙腈(上海星可高纯溶剂有限公司,色谱纯);甲醇(天津市科密欧化学试剂有限公司,色谱纯);其余试剂均为分析纯,水为超纯水。对照品来源:葛根素(批号:110752-200912)购自中国食品药品检定研究院。[b]2方法2.1 HPLC色谱条件的考察2.1.1不同流动相的考察[/b]比较了乙腈--0.05%甲酸、乙腈-0.4%甲酸、乙腈-0.3%甲酸的流动相系统进行洗脱。见图1。 [align=center][img=,671,271]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091124382201_5843_3255306_3.png!w671x271.jpg[/img][/align][align=center]乙腈--0.05%甲酸[/align][align=center][img=,610,288]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091124499241_4585_3255306_3.png!w610x288.jpg[/img][/align][align=center]乙腈-0.4%甲酸[/align][align=center][img=,690,286]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091124589941_1562_3255306_3.png!w690x286.jpg[/img][/align][align=center]乙腈-0.3%甲酸[/align][align=center][img=,610,286]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091125102591_3301_3255306_3.png!w610x286.jpg[/img][/align][align=center]图1 不同流动相系统下银黄颗粒指纹图谱[/align]结果表明,前二者分离度均相对较差,且乙腈-0.05%甲酸均基线噪音大。最终选用乙腈-0.3%磷酸作为流动相系统,所得色谱峰型较好,基线平稳,分离效果最佳。[b]2.1.2 梯度洗脱条件的选择[/b]本实验考察了不同比例的乙腈-磷酸的洗脱条件,尽可能多且全面展现银黄颗粒样品的峰信息,考察了以下4个洗脱程序。梯度条件一:流动相:乙腈(A)-0.1%磷酸(B)梯度洗脱,0~70 min,17%ACN;70~100 min,17%→20% ACN;100~110 min,20%→25% ACN;110~140 min,25%→55% ACN;140~150 min,55%→70%ACN。梯度条件二:流动相:乙腈(A)-0.1%磷酸(B)梯度洗脱,0~80min,17%ACN;80~139min,17% →34% ACN;139~159 min,34% →64% ACN;159~170min,64% →80% ACN。梯度条件三:流动相:乙腈(A)-0.1%磷酸(B)梯度洗脱,0~103min,17%ACN;103~142min,17%→24%ACN;142~165min,24%→33%ACN;165~195 min,33%ACN;195~280min,33%→70%ACN。梯度条件四:流动相:乙腈(A)-0.3%磷酸(B)梯度洗脱,0~103 min,17%ACN 103~142min,17%→27%ACN;142~156 min,27%→29%ACN;156~179 min,29%→41%ACN;179~219min,41%→80%CAN。结果梯度条件四下的指纹图谱,色谱图中采集的色谱峰形好,峰数多且分离度良好,基线较平稳,能展现最多的谱图信息,故确定为最终梯度条件,见图2。[align=center][img=,607,284]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091125509322_7749_3255306_3.png!w607x284.jpg[/img][/align][align=center]梯度条件一[/align][align=center][img=,607,287]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126035685_7140_3255306_3.png!w607x287.jpg[/img][/align][align=center]梯度条件二[/align][align=center][img=,608,287]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126106612_24_3255306_3.png!w608x287.jpg[/img][/align][align=center]梯度条件三[/align][align=center][img=,690,282]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126155801_3154_3255306_3.png!w690x282.jpg[/img][/align][align=center]梯度条件四[/align][align=center]图2 不同洗脱条件下银黄颗粒指纹图谱[/align][b]2.1.3 不同流速的选择 [/b]分别考察同一样品供试液,以梯度条件四下的方法,测定其流速在0.9 mLmin[sup]-1[/sup]、 0.8 mLmin[sup]-1[/sup]、 0.7mLmin[sup]-1[/sup]时的分离效果。结果表明,流速在0.9 mLmin[sup]-1[/sup]和0.8mLmin[sup]-1[/sup]时,130min附近两峰分离效果不理想,而0.7 mLmin[sup]-1[/sup]时峰形及分离情况均比较理想。综合考虑,选择0.7 mLmin[sup]-1[/sup]流速。见图3。[align=center][img=,690,283]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126346021_2490_3255306_3.png!w690x283.jpg[/img][/align][align=center]流速:0.9 mLmin[sup]-1[/sup][/align][align=center][sup][img=,690,264]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126456661_6012_3255306_3.png!w690x264.jpg[/img][/sup][/align][align=center]流速:0.8 mLmin[sup]-1[/sup][/align][align=center][sup][img=,690,286]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091127029111_5432_3255306_3.png!w690x286.jpg[/img][/sup][/align][align=center]流速:0.7 mLmin[sup]-1[/sup][/align][align=center]图3 不同流速下银黄颗粒指纹图谱[/align][b]2.1.4 测定波长的选择 [/b]对同一银黄颗粒样品供试液在235~295 nm波长范围内,每隔20 nm测定一次,选择最佳吸收波长。其色谱图结果见图4。[align=center][img=,690,285]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091127570951_5526_3255306_3.png!w690x285.jpg[/img][/align][align=center]235 nm[/align][align=center][img=,690,283]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091128103641_8767_3255306_3.png!w690x283.jpg[/img][/align][align=center]255 nm [/align][align=center][img=,690,284]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091128182679_3036_3255306_3.png!w690x284.jpg[/img][/align][align=center]275 nm[/align][align=center][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091128256647_2872_3255306_3.png!w690x236.jpg[/img][/align][align=center]295 nm[/align][align=center] 图4 不同波长下银黄颗粒指纹图谱[/align]由图4结果可知,在235 nm时,色谱图中峰形佳,各峰间比例协调,基线较平稳,且呈现的峰信息量大。因此,选用235 nm作为测定波长。[b]2.2 不同色谱柱的考察[/b]考虑到银黄颗粒中主要是黄酮类成分,故选用C[sub]18[/sub]柱,对色谱柱进行考察,分别使用VenusilMP C[sub]18[/sub](4.6 mm × 250 mm,5 μm),Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm),Agela MP S/N.三根色谱柱及其不同组合,在同一梯度条件下分别对同一银黄颗粒供试液进行指纹图谱峰的采集,结果前四根色谱柱分离度相对较差,Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,5 μm)+ Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm)组合柱分离出的色谱峰较多,峰型较好,对流动相条件进行微调后,进行色谱图的采集。见图5。[align=center][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091131336001_8004_3255306_3.png!w690x236.jpg[/img][/align][align=center]Agela MP S/N(4.6 mm × 250 mm,3 μm)[/align][align=center][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091131265708_7298_3255306_3.png!w690x236.jpg[/img][/align][align=center]Agela MP S/N(4.6 mm × 250 mm,3 μm) [/align][align=center][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091131195130_7680_3255306_3.png!w690x233.jpg[/img][/align][align=center]Venusil MP C[sub]18[/sub](4.6 mm× 250 mm,3 μm) [/align][align=center][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091131092861_3850_3255306_3.png!w690x233.jpg[/img][/align][align=center]Agela MP S/N(4.6 mm × 250 mm,3 μm)+Venusil MP C[sub]18[/sub](4.6 mm× 250 mm,5 μm) [/align][align=center] [img=,690,285]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091130395070_4225_3255306_3.png!w690x285.jpg[/img][/align][align=center]Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,5 μm)+ Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm)[/align]图5 不同色谱柱银黄颗粒指纹图谱[b]2.3 方法学考察2.3.1 仪器精密度考察 [/b]取银黄颗粒同一样品供试液,10 μL进样,连续进样 5次,按“4.1”项下的色谱条件进样测定,以葛根素为参照峰,计算共有峰的峰面积和相对保留时间比值。结果显示各共有峰的相对峰面积RSD<3 %,相对保留时间RSD<3%,表明仪器精密度良好。见表1、2。[align=center]表1 银黄颗粒指纹图谱精密度(相对峰面积)[/align][align=center][img=,348,494]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091132223573_3518_3255306_3.png!w348x494.jpg[/img] [/align][align=center]表2 银黄颗粒指纹图谱精密度(相对保留时间)[/align][align=center][img=,352,511]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091132363167_2471_3255306_3.png!w352x511.jpg[/img] [/align][b]2.3.2 重复性试验 2.3.2.1银黄颗粒重复性实验考察[/b]银黄颗粒研细后精密称取细粉1.0 g,称取五份分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表3、4的25个峰的RSD值都接近3%,由此可以得出结论,银黄颗粒的重复性良好。[align=center]表3 银黄颗粒指纹图谱重复性(相对峰面积)[/align][align=center][img=,294,424]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091133158091_6693_3255306_3.png!w294x424.jpg[/img][/align][align=center] 表4 银黄颗粒指纹图谱重复性(相对保留时间)[/align][align=center][img=,301,407]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091133264387_6060_3255306_3.png!w301x407.jpg[/img][/align][b]2.3.2.2黄芩药材重复性实验考察[/b]黄芩药材研细后精密称取细粉0.57 g,称取五份分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水50 ml于圆底烧瓶中,称重,加热回流40 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表5、6的15个峰的RSD值都接近3 %,由此可以得出结论,黄芩药材的重复性良好。[align=center][b] [/b]表5黄芩药材指纹图谱重复性(相对峰面积)[/align][align=center][img=,521,450]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091134133924_7231_3255306_3.png!w521x450.jpg[/img][/align][align=center]表6 黄芩药材指纹图谱重复性(相对保留时间)[/align][align=center][img=,526,450]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091134223683_8185_3255306_3.png!w526x450.jpg[/img][/align][b]2.3.2.3金银花药材重复性实验考察[/b]金银花药材研细后精密称取细粉0.5 g,称取五份分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表7、8的15个峰的RSD值都接近3%,由此可以得出结论,金银花药材的重复性良好。[align=center] 表7 金银花药材指纹图谱重复性(相对峰面积)[/align][align=center][img=,521,453]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091135202061_4447_3255306_3.png!w521x453.jpg[/img][/align][align=center]表8 金银花药材指纹图谱重复性(相对保留时间)[/align][align=center][img=,520,450]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091135276281_796_3255306_3.png!w520x450.jpg[/img][/align][b]2.4.3 稳定性试验 2.4.3.1银黄颗粒稳定性实验考察[/b]银黄颗粒研细后精密称取细粉1.0 g置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表9、10的25个峰的RSD值都接近3 %,由此可以得出结论,银黄颗粒的稳定性良好。[align=center]表9 银黄颗粒指纹图谱稳定性(相对峰面积)[/align][align=center][img=,284,411]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091135513432_6898_3255306_3.png!w284x411.jpg[/img] [/align][align=center]表10 银黄颗粒指纹图谱稳定性(相对保留时间)[/align][align=center][img=,285,423]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091135598981_6279_3255306_3.png!w285x423.jpg[/img][/align] [b]2.4.3.2黄芩药材稳定性实验考察[/b]黄芩药材研细后精密称取细粉0.57 g置于50 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流40 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表11、12的25个峰的RSD值都接近3 %,由此可以得出结论,黄芩药材的稳定性良好。[align=center] 表11 黄芩药材指纹图谱稳定性(相对峰面积)[/align][align=center][img=,534,451]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091136295090_8710_3255306_3.png!w534x451.jpg[/img][/align][align=center] 表12 黄芩药材指纹图谱稳定性(相对保留时间)[/align][align=center][img=,468,403]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091136437515_7524_3255306_3.png!w468x403.jpg[/img][/align][b]2.4.3.3金银花药材稳定性实验考察[/b]金银花药材研细后精密称取细粉1.0 g置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表13、表14,25个峰的RSD值都接近3 %,由此可以得出结论,金银花药材的稳定性良好。[align=center]表13 金银花药材指纹图谱稳定性(相对峰面积)[/align][align=center][img=,452,406]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091137142831_7122_3255306_3.png!w452x406.jpg[/img][/align][align=center]表14 金银花药材指纹图谱稳定性(相对保留时间)[/align][align=center][img=,441,402]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091137227371_5231_3255306_3.png!w441x402.jpg[/img][/align][b]2.5 样品共有峰的确定[/b]对10 批不同厂家的银黄颗粒及黄芩和金银花药材供试液进行分析,采集指纹图谱,并以葛根素作为参考峰,银黄颗粒选取标定了22个共有峰,见图6。黄芩药材选取标定了22个共有峰,见图7。金银花药材选取标定了21个共有峰,见图8。[align=center][img=,690,265]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091137498881_3854_3255306_3.png!w690x265.jpg[/img][/align][align=center]图6 10 批次的银黄颗粒共有特征峰[/align][align=center][img=,690,259]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091138017531_1112_3255306_3.png!w690x259.jpg[/img][/align][align=center]图7 10 批次的黄芩共有特征峰[/align][align=center][img=,690,247]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091138139735_5366_3255306_3.png!w690x247.jpg[/img][/align][align=center]图8 10 批次金银花药材的共有特征峰[/align][b]三、结果与分析[/b]本研究介绍了银黄颗粒及其原料药黄芩和金银花的指纹图谱的建立方法,包括供试品溶液的制备、高效液相色谱仪测定及对数据和图谱的处理,以及由该方法制备得到的相应指纹图谱。在测定的不同厂家 10 批次样品的色谱图中,选择90 %以上批次样品均有的色谱峰为共有峰,银黄颗粒。黄芩药材、金银花药材分别确定了22,22,21 个共有峰。[b]四、讨论与结论[/b]本研究的指纹图谱构建方法操作简单,稳定可靠,精密度高,分离度好,指纹图谱的稳定性和重现性较好,且信息量大,采用指纹图谱找出不同产地,不同厂家的同一药材的共有峰为质量控制手段,既避免了因只测定一、两个化学成分而判定制剂整体质量的片面性,又减少了为质量达标而人为处理的可能性,通过对多个批次的样品进行系统分析,能更加全面、科学评价银黄颗粒的质量,从而使产品的质量和疗效得到保证。参考文献王亚丹,杨建波,戴忠,等.中药金银花的研究进展.药物分析杂志,2014,34( 11):1928-1935 中国药典.一部.2015:1498 王彩芳,张楠,黄龙,等. HPLC法测定不同厂家银黄颗粒中黄芩苷的含量.医药论坛杂志,2006,27 (24):27-28 王彩芳,黄龙,程茜,等.高效液相色谱法测定不同厂家银黄颗粒中绿原酸的含量.时珍国医国药,2007,18(5):1143-1144黄雄,黄嬛,王峻,等.银黄颗粒的HPLC特征图谱分析.药物分析杂志,2009,29(8):1320-1323 肖小河,王永炎.从热力学角度审视和研究中医药.国际生物信息与中医药论丛.新加坡:新加坡医药卫生出版社,2004:74 贺福元,罗杰英,刘文龙,等.中药谱效学研究方向方法初探.世界科学技术-中医药现代化,2004,6(6):44-50 赵渤年,于宗渊,丁晓彦,等.黄芩质量评价谱-效相关模式的研究.中草药,2011.42(2):380-383 高燕,赵渤年,于宗渊等.金银花抗流感病毒毒谱-效相关质量评价模式的研究.中华中医药杂志,2013.28(12):3508-3511 Ke Li, Wei Cheng, Xiao-Jian Liu,hu-Bin Li, En-Guang Hou, Yan Gao, Liang Wang, Qing Liu, Bo-Nian Zhao, Zong-Yuan Yu, Mathematical Modelling for the Quality Evaluation of Baikal Skullcap Root, Applied Mechanics and Materials, 2011 王荣梅,徐丽华,林永强.HPLC法同时测定银黄含片中6个咖啡酰奎宁酸类成分的含量.药物分析杂志,2012,32(1):57-60 高苏亚,范涛,王黎等.红外光谱技术结合化学计量学方法在中药研究中的应用.应用化工,2012,41(2):324-328 王鹏,王振国,薛付忠等.基于支持向量机法的中药性状与药性相关性研究. 江西中医药,2012,43(355):65-68 Cifford MN, Johnston KL, Knight S et al. Hierarchical scheme for [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] identification of chlorogenic acids.J Agric Food Chem,2003 51(10):2900-2910张倩,张加余,隋丞琳,等. HPLC-DAD-ESI-MS/MS研究金银花水提工艺中绿原酸类成分的变化规律.中国中药杂志,2012 37(23):3564-3567 沈红,段金廒,钱大玮,等.黄芩及复方野马追胶囊中黄酮类成分的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析.药物分析杂志,2009 29(9):1425-1429 赵胜男,李守拙.黄芩药材中黄酮类成分的HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]研究.承德医学院学报2012 29(4):345-347 Chkoshi E, Nagashima T, Sato H, et al. Simple preparation of baicalin from Scutellariae Rdixi. J Chromatogr A,2009 1216(11): 2192 -2194高燕,吕凌,王亮,等.银黄颗粒HPLC指纹图谱与模式识别分析.中华中医药杂志,2017,32(09):4238-4242 丁晓彦,刘青,李岩,等.丹参脂溶性成分的HPLC指纹图谱及模式识别研究.中华中医药杂志,2016,3(6):2254-2256

  • 2015中国药典检测方案有奖问答11.16(已完结)——银黄颗粒中的绿原酸的检测

    2015中国药典检测方案有奖问答11.16(已完结)——银黄颗粒中的绿原酸的检测

    问题:迪马科技哪几款液相色谱柱满足2015药典银黄颗粒中的绿原酸的检测要求?答案:Leapsil C18 ,Diamonsil C18、Platisil ODS三款液相色谱柱【活动奖励】幸运奖(2钻石币)dahua1981(注册ID:dahua1981)——沙发langyabeilei(注册ID:langyabeilei)——9楼shudawang(注册ID:v2893540)——10楼积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161507_573698_1610895_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/11/201511161507_573699_1610895_3.jpg【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================银黄颗粒中的绿原酸的检测样品制备制备方法1. 对照品:取绿原酸对照品适量,精密称定,置棕色量瓶中,加50%甲醇制成每1 mL含40 μg的溶液,即得。2. 供试品:取装量差异项下的银黄颗粒,研细,取10 g,精密称定,置50 mL棕色量瓶中,加50%甲醇50 mL,超声处理(功率500 W,频率40 kHz)30分钟,放冷,加50%甲醇至刻度,摇匀,滤过,取续滤液,即得。分析条件 色谱柱Leapsil C18 100 x 4.6 mm,2.7 μm (Cat#:86002)流动相A:乙腈 B: 0.4%磷酸溶液 梯度流速1 mL/min柱温30 ℃检测器UV 327 nm 进样量10 μL 色谱图对照品http://ng1.17img.cn/bbsfiles/images/2015/11/201511160946_573639_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子分离度 1 10.562 1087809173359 54008.959 1.002 --*药典要求理论板数按绿原酸峰计算应不低于2000http://ng1.17img.cn/bbsfiles/images/2015/11/201511160948_573642_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 7.501 1806148 153782 8614.389 0.742 -- 2 10.445 3727483 458651 32615.111 0.923 10.614 3 11.355 2055645 283373 46607.279 0.943 4.121 4 20.011 751117 119505 185425.796 1.042 [align=

银黄颗粒相关的资料

银黄颗粒相关的资讯

  • 五月枇杷黄似橘 | 蜜枇杷叶配方颗粒
    五月枇杷黄似橘 | 那年枇杷黄澄澄枇杷果の夏天眼下正是枇杷的成熟季节,个个都是黄澄澄的,皮薄多汁,酸甜可口。枇杷全身都是宝,果实,枇杷花,枇杷叶等都有各自的功效。蜜枇杷叶配方颗粒蔷薇科枇杷属植物枇杷的叶经蜜制后并按标准汤剂的主要质量指标加工制成的配方颗粒,具有润肺止咳、养胃止渴等功效。此次使用日立Primaide高效液相色谱仪和技尔InertSustain C18色谱柱,参照国家药品监督管理局国家药品标准对蜜枇杷叶配方颗粒进行测定。实验仪器及耗材液相色谱仪:日立Primaide色谱柱:InertSustain C18 250×4.6mm, 5μm(P/N:5020-07346)GL Filter针式过滤器(GLS0604 25mm×0.22μm Nylon)GL Vial样品瓶(GLS0008 2mL透明瓶 带刻度+GLS0143 红膜白胶垫片)特征图谱色谱条件色谱柱:InertSustain C18 250×4.6mm, 5μm (P/N:5020-07346)流动相A:乙腈 流动相B:0.4%磷酸水溶液※完全符合标准流速:1.0 mL/min柱温:35℃检测波长:UV 300 nm进样量:10 μL柱压:6.8 MPa仪器型号:日立 Primaide溶液配置对照品溶液的制备:取绿原酸对照品适量,精密称定,加50%甲醇制成每1mL含30μg的溶液,即得。供试品溶液的制备:取本品适量,研细,取约0.2g,精密称定,置具塞锥形瓶中,精密加入50%甲醇25ml,密塞,称定重量,超声处理(功率600W,频率40kHz)30分钟,放冷,再称定重量,用50%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。系统适用性要求供试品色谱中应呈现6个特征峰,其中峰3、峰4、峰5、峰6应与对照药材参照物色谱中的4个特征峰保留时间相对应,与绿原酸参照物峰相对应的峰为S峰,计算各特征峰与S峰的相对保留时间,其相对保留时间应在规定值的±10%范围之内。规定值为:0.339(峰1)、0.454(峰2)、0.742(峰3)、0.939(峰4)、1.061(峰6)。 实验结果含量测定色谱条件以十八烷基硅烷键合硅胶为填充剂(250×4.6mm, 5μm);以乙腈为流动相A,以0.4%磷酸溶液水流动相B,按下表中的规定进行梯度洗脱;柱温为35℃,检测波长为327nm。溶液配置对照品溶液的制备:取绿原酸对照品适量,精密称定,加50%甲醇制成每1mL含30μg的溶液,即得。供试品溶液的制备:取本品适量,研细,取约0.2g,精密称定,置具塞锥形瓶中,精密加入50%甲醇25ml,密塞,称定重量,超声处理(功率600W,频率40kHz)30分钟,放冷,再称定重量,用50%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。系统适应性要求理论板数按绿原酸峰计算应不低于5000。实验结果标准品供试品重现性以绿原酸计:说明:此实验根据国家药品标准进行,无改动。结论蜜枇杷叶配方颗粒按照国家药品标准测定。特征图谱测定中,各特征峰的相对保留时间在规定值的±10%之内。含量测定中,绿原酸理论塔板数皆大于70000,且5次实验重复性良好。实验结果表明,使用日立Primaide高效液相色谱仪和技尔InertSustain C18色谱柱完全满足蜜枇杷叶配方颗粒的检测需求。THE END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 单颗粒ICP-MS应用:水中银纳米颗粒的归宿
    过去二十年中,随着工程纳米材料产量和使用量迅速增加, 它们向环境中释放带来了潜在危害。因此,研究他们对环境影响至关重要。对环境中工程纳米材料进行合适的生态危害评价和管理,需要对工程纳米材料准确定量暴露和影响,由于环境介质中纳米粒子浓度非常低,大多数分析技术并非适合。一直以来,颗粒尺寸采用光散射(DLS)和透射电子显微镜(TEM)测量颗粒尺寸,这些常规技术对测定复杂水体中存在低浓度的胶体形态非常有限。单颗粒ICP-MS可快速有效并提供更多信息的技术。它能够测定颗粒尺寸分布、颗粒数量浓度、溶解金属比例等,检测ppb级(ng/L)浓度纳米颗粒。而且,它能够区分不同元素粒子。Ag,是一种是最常见被用于消费品并释放至环境中的低浓度纳米材料。本工作目的是调查SP-ICP-MS测定和定性环境水体中金属纳米粒子。图1. 地表水中银纳米粒子可能的归宿:(A) 溶解过程导致自由离子释放和更小颗粒;(B) 团聚成更大颗粒,根据团聚尺寸而沉淀离开水体;(C,D) 释放Ag+和纳米银吸附于水中其它固相;(E)形成可溶性复杂产物;(F)同水中其它成分反应导致共沉淀;(G)继续稳定的纳米银。样品地表水采自于加拿大蒙特利尔Rivière des Prairies河,0.2μm滤纸过滤后添加银纳米粒子。水样中纳米银悬浮物加入浓度2.5至33.1μg/L,并缓慢摇匀。在SP-ICP-MS分析前,样品稀释低于0.2μg/L Ag。悬浮银纳米粒子购于Ted Pella公司:柠檬酸包裹(40和80nm直径)和裸露(80nm直径)纳米银悬浮物(产品编号. 84050-40, 84050-80和15710-20SC)。实验实验数据采集使用珀金埃尔默NexION系列ICP-MS和纳米应用Syngistix模块软件,并使用下表的参数。实验结果上图为Syngistix数据采集交互界面,显示了地表水中银纳米离子(裸露纳米银,标称直径60nm,金属总浓度200.8ng/L)信号强度与采集时间关系图。每个纳米颗粒会形成一个脉冲信号,软件将信号的积分强度自动转换成颗粒的粒径信息。整体样品中不同粒径的颗粒信息就会如上图中显示出来,横坐标代表粒径,纵坐标代表相应半径颗粒的含量。以上三图分别为纯水和地表水中,柠檬酸包裹的80nm银颗粒,裸露的80nm银颗粒,和柠檬酸包裹的40nm银颗粒的平均粒径和颗粒状态比例,随时间的变化。所有情况下,纳米粒子的平均颗粒尺寸保持相对稳定。是否包裹,对纳米粒子溶解情况几乎无严重影响,5天均下降了20%左右。相同时间,柠檬酸包裹纳米银中可溶性银比率更高一些。裸露的80nm纳米银,地表水中平均颗粒直径和颗粒百分比高于去离子水。柠檬酸包裹纳米银,二者无明显差别。这可能是由于单独纳米粒子比柠檬酸包裹纳米粒子更易团聚。但总体来说,并未观察到严重地团聚现象。结论采用Syngisitx纳米应用模块研究地表水中银纳米颗粒的行为,无需使用任何手工数据处理过程。该技术允许有效选择性测定颗粒尺寸,团聚和一定时间内溶解低浓度范围。SP-ICP-MS可提供环境水体中低浓度的金属纳米颗粒归宿信息的唯一合适的技术。尽管这项研究只代表在特定情况下河水中纳米银颗粒测定技术的有效性,毫无疑问,也可应用于各种复杂基体中其它类型金属和金属氧化物纳米粒子。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 什么?营养品中有银纳米颗粒!
    纳米银作为常见的抑菌成分在很多生活用品中都能找到,比如无臭衣服,防霉浴帘,食品容器及食品砧板。有些商家甚至将纳米银颗粒添加到膳食补充剂中,宣称可以提高免疫力,广为宣传。但是,没有任何一种含胶体纳米银的保健品被认为是安全有效的。事实上不仅仅是保健效果,连所谓的独家技术和高科技成果都是忽悠人的。美国FDA禁止了纳米银保健品,也有研究发现纳米银会对肺部、神经及皮肤产生毒性。甚至能渗入大脑、进入胎盘、干扰精细胞。而且银纳米颗粒排放到环境中,可能会对植物和水生生物造成影响。单颗粒ICP-MS (SP-ICP-MS)技术,可用于非常低的颗粒浓度,大小,大小分布和溶解浓度的测定,使得SP-ICP-MS成为评估纳米颗粒在不同环境介质中命运的常规技术。本实验使用NexION ICP-MS测定了三种市售含有银纳米颗粒的三种营养补充剂,实际看看这些保健品中的银纳米颗粒数量和尺寸。样品三个市售营养补充剂样品置于超声波浴中超过5分钟,以确保颗粒被均匀地分布在溶液中并减少结块。样品依次用实验室一级去离子水稀释并定容到50mL聚乙烯样品管中。对样品和参比溶液进行稀释,使得所述颗粒的浓度为约20万个粒子/mL。实验使用Ted Pella公司柠檬酸盐缓冲液中的20nm,50nm和80 nm的银纳米颗粒悬浮液来计算尺寸和传输效率。通过建立0.5-5 μg/L的标准曲线来进行测定溶解银离子浓度。所有SP-ICP-MS测定均是在NexION 350D ICP-MS (PerkinElmer, Shelton, CT )标准模式(无气体)和Syngistix纳米应用模式下操作的。所有仪器的工作条件见下表。实验结果下面两图展示了1号样品和2号样品中银纳米颗粒的尺寸分布图。两者都使用了对数正态拟合方式进行计算,见图中的实线部分。样品1的数据显示颗粒的一个明显的分布约为15nm,而样品2的数据显示颗粒的分布为约33nm。Syngistix纳米应用模块给出了样品的颗粒浓度和溶解浓度。Ted Pella™ 50 nm AgNP标准溶液用于样品审核控制。48nm作为最常见的尺寸与给定值50nm非常吻合,并且所测量的颗粒浓度与制造商给出的2.5 E+10颗粒/mL浓度值非常吻合。结论使用珀金埃尔默NexION 350 ICP-MS和Syngistix纳米应用模块,对市售的3中营养补充剂中的纳米银颗粒进行了测定。单粒子的ICP-MS能实现分析物的溶解离子和颗粒形式之间的分离和定量。在一次分析中,颗粒成分,浓度,尺寸和尺寸分布,均可直接进行测定。扫描下方二维码,即可下载采用ICP-MS对营养补充剂中银纳米粒子单粒子的特性研究相关应用报告。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制