甲磺酸酚妥拉明参考频谱

仪器信息网甲磺酸酚妥拉明参考频谱专题为您提供2024年最新甲磺酸酚妥拉明参考频谱价格报价、厂家品牌的相关信息, 包括甲磺酸酚妥拉明参考频谱参数、型号等,不管是国产,还是进口品牌的甲磺酸酚妥拉明参考频谱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲磺酸酚妥拉明参考频谱相关的耗材配件、试剂标物,还有甲磺酸酚妥拉明参考频谱相关的最新资讯、资料,以及甲磺酸酚妥拉明参考频谱相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

甲磺酸酚妥拉明参考频谱相关的资料

甲磺酸酚妥拉明参考频谱相关的论坛

  • 48.6 高效液相色谱法测定甲磺酸地拉韦啶分散片的含量

    48.6 高效液相色谱法测定甲磺酸地拉韦啶分散片的含量

    【作者】 管清香; 林天慕; 王恩思;【机构】 吉林大学药学院; 吉林大学生命科学学院;【摘要】 目的:建立测定甲磺酸地拉韦啶薄膜衣分散片含量的方法。方法:采用Diamonsil(TM) C18(150mm×4.6mm,5μm),乙腈-50mmol·L-1pH4.6磷酸二氢钠(55∶45)为流动相,检测波长为300nm。结果:甲磺酸地拉韦啶在12.54~62.70mg·L-1范围内呈良好线性关系(r=0.9999)。低、中、高3种浓度的平均回收率分别为99.5%,99.9%和101.5%(n=3)。结论:本方法简便、快速、专属性强,可用来测定甲磺酸地拉韦啶分散片的含量。 【谱图】

  • 甲磺酸的规格问题

    一下子买不到色谱纯或分析纯的甲磺酸,于是就用了化学纯的甲磺酸,只是背景稍高于以前,分离效果目前也没有什么问题,不知道以后会不会有影响。

甲磺酸酚妥拉明参考频谱相关的方案

甲磺酸酚妥拉明参考频谱相关的资讯

  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 上海微系统所在自参考太赫兹双光梳方面取得重要进展
    近日,中国科学院上海微系统与信息技术研究所曹俊诚、黎华研究员领衔的太赫兹(THz)光子学研究团队与华东师范大学曾和平教授团队合作,在高稳定自参考太赫兹双光梳方面取得重要研究进展。项目团队提出自参考方法,完全消除了THz双光梳共有载波噪声,同时抑制了重复频率噪声,将THz双光梳梳齿线宽由未稳频的2-3 MHz量级压缩至14.8 kHz,大幅提升了THz双光梳光源的稳定度。相关成果于2023年2月3日以“Terahertz Semiconductor Dual-comb Source with Relative Offset Frequency Cancellation”为题发表在Laser & Photonics Reviews期刊,并被遴选为封面论文。双光梳由两个重复频率略有不同的光频梳组成,通过多外差采样将光谱信息直接映射在微波波段,这种不依赖机械扫描的时间延迟结构令双光梳天然地具有高速、高分辨等优势,在高精度光谱、成像、测距以及大容量高速通信方面具有重要应用。在THz波段,基于电泵浦的半导体量子级联激光器(quantum cascade laser, QCL)是现实THz光频梳与双光梳的理想载体。当前,THz QCL双光梳通常工作于自由运行模式,具有较高的相位噪声,限制其高精度应用。提高双光梳频率稳定性的主要思路是分别控制两个光频梳基础频率分量,载波包络偏移频率和重复频率。因此,要完全锁定THz QCL双光梳需要同时锁定四个不同频率,即两个载波包络偏移频率和两个重复频率。四个不同频率的复杂系统。尽管项目团队在前期工作中将THz双光梳一根梳齿通过锁相环实现了锁定,并提升了双光梳的稳定性,但是还未实现THz双光梳的完全硬件锁定。而要在实验室实现四个频率的完全锁定,将涉及非常复杂的硬件系统。在本工作中,研究人员提出了自参考“软锁定”方法,不采用任何硬件锁模模块,对双光梳整体信号进行操控,实现了高稳定自参考THz QCL双光梳光源。双光梳梳齿噪声来源于两个未锁定的光频梳的载波包络偏移频率和重复频率噪声,通过多外差拍频过程,双光梳的每根梳齿都共享相同的载波包络频率及噪声。通过消除共有的载波包络频率噪声,则可以显著提高每根双光梳梳齿的稳定性。如图1(a)所示,通过窄带滤波器将双光梳的一根梳齿滤出并将其与整个双光梳信号进行混频,从而彻底消除双光梳梳齿的共有载波噪声,同时还可以抑制重复频率噪声,构造出无载波包络偏移频率的零偏双光梳,显著提高双光梳信号的长期稳定性。图1(b)为未稳频THz双光梳光谱,在15 s的测试时间内,测得的梳齿“最大保持”线宽为2 MHz。图1(c)为施加自参考稳频之后测得的THz双光梳光谱。在60 s内,测得的“最大保持”线宽为14.8 kHz,比未稳频的THz双光梳梳齿线宽提升了130倍以上。本工作提出的自参考稳频方法,不依赖任何锁定元件,同时可方便移植于其它激光系统中,为提高光谱、成像等各种应用的稳定性提供一种简单有效的稳频方法。本论文共同第一作者为中科院上海微系统所副研究员李子平、博士生马旭红,黎华研究员、曹俊诚研究员、曾和平教授为论文共同通讯作者。同时,上海理工大学李敏副教授和华东师范大学闫明研究员为该工作也做出了重要贡献。该研究工作得到了国家自然科学基金重点项目(62235019)、国家优秀青年科学基金项目(62022084)、中科院稳定支持基础研究领域青年团队计划(YSBR-069)、中科院“从0到1”原始创新项目(ZDBS-LY-JSC009)、中科院科研仪器设备研制项目(YJKYYQ20200032)、上海市优秀学术带头人计划(20XD1424700)等支持。图1(a)自参考稳频原理。其中frep1和frep2分别是两个光频梳的重复频率,其中frep2通过微波注入锁定到fRF。“彩虹”频谱表示MHz范围内的下转换双光梳信号,通过带通滤波器将其中一根梳齿滤出(虚线框),从而采用混频实现零偏自参考双光梳。(b)未稳频THz双光梳“最大保持”频谱,测量时间为15 s。(c)自参考双光梳“最大保持”频谱,测量时间为60 s。图2 论文封面论文链接:https://doi.org/10.1002/lpor.202200418封面链接:https://doi.org/10.1002/lpor.202370016
  • 上海微系统所在自参考太赫兹双光梳研究方面取得进展
    近日,中国科学院上海微系统与信息技术研究所研究员曹俊诚、黎华团队与华东师范大学教授曾和平团队合作,在高稳定自参考太赫兹双光梳方面取得研究进展。研究团队提出自参考方法,完全消除了THz双光梳共有载波噪声,同时抑制了重复频率噪声,将THz双光梳梳齿线宽由未稳频的2-3 MHz量级压缩至14.8 kHz,大幅提升了THz双光梳光源的稳定度。相关成果以Terahertz Semiconductor Dual-comb Source with Relative Offset Frequency Cancellation为题发表在《激光与光子学评论》(Laser & Photonics Reviews)上,并被遴选为封面论文。双光梳由两个重复频率略有不同的光频梳组成,通过多外差采样将光谱信息直接映射在微波波段,这种不依赖机械扫描的时间延迟结构令双光梳天然具有高速、高分辨等优势,在高精度光谱、成像、测距以及大容量高速通信方面具有重要应用。在THz波段,基于电泵浦的半导体量子级联激光器(quantum cascade laser,QCL)是实现THz光频梳与双光梳的理想载体。当前,THz QCL双光梳通常工作于自由运行模式,具有较高的相位噪声,限制其高精度应用。提高双光梳频率稳定性的主要思路是分别控制两个光频梳基础频率分量,即载波包络偏移频率和重复频率。要完全锁定THz QCL双光梳需要同时锁定四个不同频率,即两个载波包络偏移频率和两个重复频率。尽管研究团队在前期工作中将THz双光梳一根梳齿通过锁相环实现了锁定,提升了双光梳的稳定性,但是还未实现THz双光梳的完全硬件锁定,而要在实验室实现四个频率的完全锁定,将涉及复杂的硬件系统。该工作中,研究人员提出了自参考“软锁定”方法,不采用任何硬件锁模模块,对双光梳整体信号进行操控,实现了高稳定自参考THz QCL双光梳光源。双光梳梳齿噪声来源于两个未锁定的光频梳的载波包络偏移频率和重复频率噪声,通过多外差拍频产生的双光梳的每根梳齿都享有相同的载波包络频率及噪声。通过消除共有的载波包络频率噪声,则可以显著提高每根双光梳梳齿的稳定性。研究通过窄带滤波器将双光梳的一根梳齿滤出并将其与整个双光梳信号进行混频,从而彻底消除双光梳梳齿的共有载波噪声,同时还可以抑制重复频率噪声,构造出无载波包络偏移频率的零偏双光梳,显著提高双光梳信号的长期稳定性【图1(a)】。未稳频THz双光梳光谱在15 s的测试时间内,测得的梳齿“最大保持”线宽为2 MHz【图1(b)】。施加自参考稳频之后测得的THz双光梳光谱,在60 s内,测得的“最大保持”线宽为14.8 kHz,比未稳频的THz双光梳梳齿线宽提升了130倍以上【图1(c)】。研究工作提出的自参考稳频方法,不依赖任何锁定元件,同时可方便移植于其他激光系统中,为提高光谱、成像等各种应用的稳定性提供一种简单有效的稳频方法。 相关研究工作得到国家自然科学基金重点项目、国家优秀青年科学基金项目、中科院稳定支持基础研究领域青年团队计划、中科院“从0到1”原始创新项目、中科院科研仪器设备研制项目、上海市优秀学术带头人计划等的支持。  图1(a)自参考稳频原理。其中frep1和frep2分别是两个光频梳的重复频率,其中frep2通过微波注入锁定到fRF。“彩虹”频谱表示MHz范围内的下转换双光梳信号,通过带通滤波器将其中一根梳齿滤出(虚线框),从而采用混频实现零偏自参考双光梳。(b)未稳频THz双光梳“最大保持”频谱,测量时间为15 s。(c)自参考双光梳“最大保持”频谱,测量时间为60 s。

甲磺酸酚妥拉明参考频谱相关的仪器

  • SVLab218 参考声源SVLab 218 是一款参考声源,符合《GBT 12060.1-2017 声 系统设备第 1 部分 : 概述》的要求,主要应用于职业卫生噪 声检测实验室间对比和测量审核、期间核查、盲样考核等声 级计能力验证,判断实验室从事噪声检测活动的能力以及检 查实验室能力的持续状况。也可应用于声信号对声级计在自 由声场中的频率计权特性进行核查。 采用了紧凑的结构设计,体积小巧,重量轻便,并且性能强大, 内置功率放大器,兼顾了现场使用的便携性和实际应用中对 稳定可靠声源的需求。典型应用▶ 可作为声学标准器使用 声级计、噪声剂量计等声学测量设备的校准或者检测中需 要使用到声学标准器,SVLab218 的各项性能指标均符合声 学标准器的要求,可以应用于实验室校准。▶ 场景噪声还原功能 用户可以使用声源来播放预先录制好的各类场景噪声音频 数据,实现各类工作场所场景噪声的模拟或还原。功能特点稳定性宽频噪声信号 声源具备多种数据输入方式,包括音频输入、USB 和 TF 卡输入,不管是实时的模拟音频信号,还是 数字音频文件,都可以直接使用声源进行播放。 实验室应用中会涉及到不同的声场环境,SVLab218 参考声源即可用于自由场,也可用于混响声场, 都有着优越的性能表现。 可以输出测试和计量中常用的声学测试信号,如粉红噪声、白噪声和正弦信号,也可输出用户自定义 的音频信号,确保符合声学测试人员的多样需求。 稳定输出的声级和频谱对于测试数据的可靠性至关重要,声源的频率范围高达 20KHz,频率稳定性和 声压稳定性都非常优越,达到了计量级别,符合现场和实验室的需求。LED 显示屏 高亮的 LED 显示屏,即使在各类复杂的环境下也可清晰地观察屏幕的内容,仪器配备 TF 卡接口和 USB 接口,可以方便地读取并播放外部存储的音频数据文件,集成了音频输入 接口,因此也可直接播放外部的模拟音频信号输入,如 PC 或手机的输入音频,带有红外 接收口,可对声源进行遥控。可输出粉噪、白噪、正弦信号、自定义音频信号可以输出测试和计量中常用的声学测试信号,如粉红噪声、白噪声和正弦信号,也可输出用户自定义 的音频信号,确保符合声学测试人员的多样需求。适用于自由声场、混响声场实验室应用中会涉及到不同的声场环境,SVLab218 参考声源即可用于自由场,也可用于混响声场, 都有着优越的性能表现。具有音频输入、USB 和 TF 卡输入声源具备多种数据输入方式,包括音频输入、USB 和 TF 卡输入,不管是实时的模拟音频信号,还是 数字音频文件,都可以直接使用声源进行播放。主要指标适用标准GB/T 12060.1-2007(IEC 60268-1:1985,MOD)频率范围50 Hz ~ 20 kHz灵敏度> 80 dB(@1m)电信号频率响应± 3 dB信噪比 > 75 dB显示屏 LED接口USB,TF 卡,音频输入供电方式内置电池,电压 12 V,容量 5 AH失真度声信号 < 5 %(200 Hz ~ 20 KHz) 电信号< 1 %(20 Hz ~ 20 KHz)输出信号粉红噪声、白噪声、正弦信号、自定义功率75 W工作温度-10 ℃ ~ 50 ℃尺寸260 × 260 × 260 mm
    留言咨询
  • 光频梳偏频测量模块(f-2f自参考模块)一.载波包络偏移模块(f-2f自参考)/fceo频率产品概述 光学频率梳是当今激光与时间频率学科的前沿技术,载波包络偏移(f-2f自参考)有效地链接了光学频率与微波频率,在过去二十年间推动了精密光谱学、光学测量技术、量子精密操控、光钟等重要技术的发展。其基于飞秒锁模激光器,通过锁定重复频率(frep)和载波包络偏移频率(fceo)使梳齿稳定呈现出固定间隔的特征。 昊量光电新推出光频梳偏频测量模块(COSMO),为测量载波包络偏移频率(fceo)的f-2f自参考锁定过程提供了一种紧凑且方便的解决方案。COSMO运用了非线性波导技术产生超连续谱,将频谱扩展到至少一个倍频区域,通过低频翻倍与高频进行重叠,从而精准测定fceo。同时,COSMO可以用极低的脉冲能量检测目标频率,从而实现更低的功耗或更高的重复频率。二.载波包络偏移模块(f-2f自参考)/fceo频率模块基本参数规格COSMO输入脉冲波长~ 1560 nm输入脉冲能量 200 pJ输入光纤PM 1550 Fiber输入光学信号接口FC/APC输出电信号接口SMA模块尺寸~ 50×35×22 mm输入平均功率400 mW工作温度0 to 40 ℃fceo峰值的信噪比 35 dB三.载波包络偏移模块(f-2f自参考)/fceo频率使用案例激光器载波包络偏频锁定实验装置 Menhir激光器产生波长1550 nm 1 GHz脉冲激光,并将其送入掺铒光纤放大器以增加脉冲能量。放大后的脉冲光通过一小段色散补偿光纤,输入至光频梳偏频测量模块(COSMO),测定fceo。fceo信号在放大、滤波后进入锁相环等反馈模块,为激光器提供反馈信号。射频频谱分析仪可以看到具有相干尖峰的锁定fceo信号。关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
    留言咨询
  • 频谱分析仪的仪器校准程序仪器内部计算机有三种常用的校准程序:频率校准、幅度校准和预选器校准。频率校准当频谱分析仪经受振动、运输、长期存放或较大的环境温度变化时,频谱分析仪的频率调谐会发生变化,从而产生频率测量误差。现象。仪器校准过程主要是以300MHz信号作为参考信号,对频谱分析仪的扫频时间、中心频率、量程(span)、YIG主线圈延迟、副线圈灵敏度、扫频灵敏度进行误差校准,使频谱分析仪的频率调谐范围正常。仪器校准方法是:使用频率/幅度校准电缆将校准信号(CAL OUTPUT)连接到频谱分析仪的信号输入端。按【CAL】(CALFREQ),频谱分析仪进入频率校准程序。校准完成之后,屏幕上会出现“CALDONE”信息,按之下【CALSTORE】键将校准数据存储在仪器的E2PROM之中。振幅校准与频率仪器校准一样,当频谱分析仪的测量幅度精度发生变化时,仪器可以通过幅度校准程序满足出厂指标。该过程主要以300MHz信号作为参考信号,对整个通道进行幅度、分辨率、带宽滤波、对数放大、输入衰减等处理。幅度误差测量和校正。仪器校准方法是:用频率/幅度校准电缆,将校准信号(CAL OUTPUT)接入频谱仪的信号输入端。按【CAL】(CALAMP),频谱分析仪进入幅度校准程序。校准完成之后,屏幕上会出现“CALDONE”信息,按之下【CALSTORE】键将校准数据存储在仪器的E2PROM之中。预选器校准预选器的扫频和跟踪是频谱分析仪谐波带的关键。机的设计采用了独立于第一本振的驱动电路,分别对各频段进行仪器校准和驱动。在频谱分析仪的快扫、慢扫和跨带扫频过程之中,对第一振荡器和预选器的滞后和延迟进行了补偿,极大地改善了YTF的跟踪特性。如果频谱分析仪在谐波波段有5dB超过的幅度误差,往往是仪器放置时间长,环境温度变化大造成的。跟踪器的预选择不当会导致幅度测量误差,甚至信号失效。此时,应执行YTF校准。仪器校准方法是:使用YTF校准电缆将100MHZ梳状波(COMB)信号连接到频谱分析仪的射频输入端。按【CAL】(CALYTF),频谱分析仪进入YTF校准程序。校准完成之后,屏幕上会出现“CALDONE”信息,按之下【CALSTORE】键将校准数据存储在仪器的E2PROM之中。如果在仪器校准过程之中出现错误信号或校准无法完成,请按【CALFETCH】以检索校准数据。此时需要对仪器进行重新调整和维修。频谱分析仪仪器校准之后的校准数据HP859X系列频谱分析仪不仅可以对仪器的各种指标进行仪器校准,还可以将各种校准数据存储在内存中,方便操作和维护人员参考。只需进入维护菜单,即可显示校准数据。具体步骤是:按菜单【CAL】、(MORE)、(MORE)、(SERVICE EDIG)、(DISPLAYCALDATA),屏幕上会显示频谱分析仪的幅度校准表。
    留言咨询

甲磺酸酚妥拉明参考频谱相关的耗材

  • EGC 500 MSA甲磺酸洗脱液发生器 075779
    Thermo Scientific™ 相关应用:工业色谱防止基线偏移,提高灵敏度,提高分辨率,并通过使用洗脱液生成确保一致的峰积分。 一系列Thermo Scientific™ Dionex™ EGC墨盒可用于生产氢氧化物,碳酸盐,碳酸氢盐和甲磺酸洗脱液。 洗脱液生成不需要处理传统上用于制备IC洗脱液的酸和碱,并且允许色谱仪比手工洗脱液更有效地运行全范围的梯度和等度离析。产品规格 - Search Display Family Umbrella Brand Thermo Scientific™ 适用于 ---- 类型 Methanesulfonic Acid Eluent Generator Cartridge 流速 0.10–3.00 mL/min 压力 Maximum: 34.5 MPa (5000 psi) 溶剂 No solvents 浓度 Range: 0.1–100 mM 描述 Dionex™ EGC 500 MSA Methanesulfonic Acid Eluent Generator Cartridge
  • 甲磺酸洗脱液发生器,毛细管072077
    Thermo Scientific™ 相关应用:工业色谱防止基线偏移,提高灵敏度,提高分辨率,并通过使用洗脱液生成确保一致的峰积分。 一系列Thermo Scientific™ Dionex™ EGC墨盒可用于生产氢氧化物,碳酸盐,碳酸氢盐和甲磺酸洗脱液。 洗脱液生成不需要处理传统上用于制备IC洗脱液的酸和碱,并且允许色谱仪比手工洗脱液更有效地运行全范围的梯度和等度离析。产品规格 - Search Display Family Umbrella Brand Thermo Scientific™ 适用于 ICS-5000 and ICS-2100 systems 类型 Methanesulfonic Acid Eluent Generator Cartridge, Capillary 流速 0.01-3.00 mL/min 压力 Maximum: 20.7 MPa (3000 psi) 溶剂 No solvents 浓度 Range: 0.1-100 mM (0.1-80 mM EGC III LiOH) 操作 For the production of hydroxide, carbonate and methanesulfonic acid eluents 描述 Dionex™ EGC-MSA Methanesulfonic Acid Eluent Generator Cartridge, Capillary
  • 提供分析以下药品的色谱柱及其2010年中国药典标准/ODS
    提供分析以下药品的色谱柱及其2010年中国药典标准/ODS 甲砜霉素 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲氧苄啶 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲氧氯普胺 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲硝唑 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲苯磺丁脲 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲睾酮 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲磺酸培氟沙星分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 甲磺酸酚妥拉明分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 生长抑素 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 他扎罗汀 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 他唑巴坦 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 司坦唑醇 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 司帕沙星 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 司莫司汀 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 尼可刹米 分析用色谱柱 十八烷基硅烷键合硅胶为填充剂 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息:www.greenherbs.com.cn

甲磺酸酚妥拉明参考频谱相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制