热分析联用仪

仪器信息网热分析联用仪专题为您提供2024年最新热分析联用仪价格报价、厂家品牌的相关信息, 包括热分析联用仪参数、型号等,不管是国产,还是进口品牌的热分析联用仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热分析联用仪相关的耗材配件、试剂标物,还有热分析联用仪相关的最新资讯、资料,以及热分析联用仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热分析联用仪相关的厂商

  • 400-601-1369
    德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质热红联用,我们都能提供一系列不同型号不同配置的具有高精度高稳定性与优异性价比的仪器,温度范围上至高温2800℃,下及低温-180℃。耐驰树脂固化监测仪采用美国麻省理工大学技术,包括介电法、超声波法等一系列仪器,广泛应用于热固性树脂、油漆、涂料、复合材料与电子材料等领域的研发、质控与工艺优化。耐驰公司在导热分析仪领域同样处于世界领先地位,针对不同应用提供了一系列的导热测试仪,包括激光法、热流法、热板法、保护热流法与热线法等各种原理,其测试温度范围为-150℃...2000℃,导热率范围为0.005...1500W/(m*k)。作为驰名世界的仪器供应商,耐驰公司在全球二十余个国家设有分公司和代表处。在德国总部与美国设有多个研究实验室,专为国际市场提供应用及技术支持。实验室每年都发表聚合物、陶瓷、金属等研究领域的技术年鉴和图谱集。耐驰仪器公司于1996年进入中国,凭借其仪器性能上的优势,强大的技术支持,完善的售前、售后服务,在国内的用户不断增加。耐驰公司现已在上海、北京、广州、成都、西安、沈阳、济南、武汉等地设立了办事处和维修站,在上海设有技术服务中心与应用实验室。德国耐驰仪器制造公司以其雄厚的实力和可靠的品质,愿与您共创美好的前程。
    留言咨询
  • 400-801-5339
    自1957年以来,德国林赛斯在热分析和热物性领域不断推陈出新,提供了先进的设备,可靠的服务和完善的解决方案。 我们始终坚持以产品创新和客户满意度为第一导向。“客户至上、品质第一、探索创新”的理念让林赛斯在前沿科研机构和工业企业中享负盛名。多年来,一直为热分析研究领域提供优质的仪器。 林赛斯热分析业务涉及多个应用领域的设备研发,包括在聚合物、化工、无机建筑材料和环境分析行业的产品性能检测。完全适用于固体、液体和熔液等不同状态样品的热物性分析。 林赛斯公司因技术领先而得以不断发展壮大。我们以高标准、高精度和严要求来研发热分析仪器。创新驱动和高精确度让我们成为热分析领域倍受客户信赖的一流生产商。 针对热分析仪器发展领域现存的前沿研究方向和高精准度需求,林赛斯不吝大力投资,始终坚持着“客户利益至上”的服务理念。
    留言咨询
  • 我们是一家全球性的日立公司,通过互联材料分析解决方案帮助我们的客户变得更加成功和可持续,这些解决方案使生产和开发过程更加高效、自动化和绿色,以确保产品质量、安全性和合规性。我们提供实验室级和强大高性能现场检测设备如光电直读光谱仪、X射线荧光光谱(XRF)、X荧光测厚仪(镀层测厚仪)、激光诱导击穿光谱仪(LIBS)、热分析仪、锂电池异物分析仪、油品分析仪、土壤分析仪等。
    留言咨询

热分析联用仪相关的仪器

  • 仪器简介:PerkinElmer 全新推出的同步热分析产品系列可在单台紧凑型设备中实现重量信号和热流信号的同步监测,赋予您双倍的热分析能力,满足您不同的需求。PerkinElmer 的同步热分析仪 (STA) 产品系列可实时监测样本重量以及热流信号随温度或者时间变化曲线。凭借独创的传感器技术和紧凑型炉体设计,我们的 STA 仪器可以胜任从常规品质检测到科学研究等各个领域。因此,无论您从事的是无机物材料表征、聚合物结构剖析、亦或是油品品质检测工作,STA 8000 系列产品将差热分析技术(DTA 或 DSC)与久经验证的热重分析 (TGA) 技术完美融合,您都可以获得可靠的测试结果和明确的数据阐释。技术参数:精确控温量热能力:STA 系列同步热分析仪具有宽广的工作温度区间,最低工作温度达 15º C,从而能够捕获完整的水分或溶剂挥发过程.卓越的热分析性能,高效的检测通量:本着高效的原则,STA 系列同步热分析仪均采用了垂直式炉体和天平设计方案,易于装卸样品。另外,该款仪器还集成了气体质量流量控制器,操作者可在软件中方便的进行气体流速的控制以及气体种类的切换,量热灵活性:STA 系列同步热分析仪外观小巧、结构紧凑,能够同时进行 TGA 和 DTA/DSC 测量,可为众多应用领域提供高质量的热分析数据。仪器配有质量流量控制器,可以根据您的分析需求保持稳定且精确的气体流速;如果您需要进行气体切换,Pyris 软件可以方便的将切换步骤编入温控程序中,全自动的进行气体切换操作。主要特点:强大的拓展能力联用分析技术往往可以有效简化数据分析的难度,而 PerkinElmer 提供多种不同的分析技术(红外、气质联用等等),均可以与 STA 8000 搭建联机工作站。此外,您也可以选择定制接口将其它制造商的实验室设备连接到您的 PerkinElmer STA 上。众多选择无论您从事何种行业,PerkinElmer 都能为您定制全套解决方案。高度集成STA 8000 仪器可选配自动进样器,满足您连续测试的要求,您可以在 Pyris 软件中独立的为自动进样器进行编程(Player List)。软件可以自动监测轻质炉体内的温度,并在 STA 6000/8000 准备就绪之后自动载入下一个样品进行测试。
    留言咨询
  • 到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的同步热分析仪TGA/DSC 1专业型具有很强的测试性能和经久耐用的可靠性。热重分析的核心是天平单元,TGA/DSC 1专业型同步热分析仪采用世界最好的梅特勒托利多微量或超微量天平。并采用双铂铑热电偶DSC传感器,同时测量热流变化。TGA/DSC 1专业型同步热分析仪可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC1专业型同步热分析仪是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。同步热分析仪技术参数:仪器型号:TGA/DSC 1同步热分析仪专业型温度范围:室温~1100° C或~1600° C天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)传感器热电耦数量:2对Pt-Pt/Rh热电偶量热温度分辨率:0.0001℃量热准确度(金属标样):2%同步热分析仪主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品温度范围广&ndash 从室温到1100或1600℃同步DSC 热流测量&ndash 同步测定热效应,灵敏度高密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要同步热分析仪应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。同步热分析仪主要型号: TGA/DSC1到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪查看更多信息咨询电话:4008-878-788
    留言咨询
  • 到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪早在1964年,梅特勒就上市了世界上第一台商品化的高温TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的高温热重分析仪TGA/DSC1/1600以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析仪的核心是天平单元,TGA/DSC1/1600热重分析仪采用世界最好的梅特勒托利多微量或超微量天平。并采用单盘SDTA传感器,可同时测量热流(模拟计算得到),这样可用金属标样的熔点来精确校准仪器。TGA/DSC1/1600热重分析仪可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,高温热重分析仪TGA/DSC1/1600 是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。热重分析仪技术参数:仪器型号:高温热重分析仪TGA/DSC1/1600温度范围:室温~1600° C温度准确性:+/-0. 5℃天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)空白曲线重复性:+/-10µ g(全程温度)热重支架:单盘含1对Pt-Pt/Rh热电偶热重分析仪主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品同步DSC 热流测量(模拟计算) &ndash 可精确校准温度密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要热重分析仪应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。热重分析仪主要型号: TGA/DSC1/1600到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪查看更多信息咨询电话:4008-878-788
    留言咨询

热分析联用仪相关的资讯

  • 热分析联用仪市场调研报告(2020版)重磅发布
    1977年,国际热分析协会(ICTA, International Conference on Thermal Analysis)第七次会议在日本京都召开,并对热分析进行了如下定义:热分析是在程序控制温度下,测量物质的物理性质与温度之间关系的一类技术。热分析技术分为九类十七种,在化学、化工、冶金、地质、建材、燃料、轻纺、食品、生物等多个领域得到广泛应用,可以应用在成分分析、材料研制和应用开发、化学反应的研究、环境监测、稳定性的测定、微量物证检验等方面。  热分析仪器由程序温度控制器、炉体、物理量检测放大单元、微分器、气氛控制器、显示和打印以及计算机数据处理系统7部分组成。其核心部件主要有电子天平、热电偶传感器、位移传感器等。在中国热分析仪器市场,活跃着TA、耐驰、梅特勒、珀金埃尔默等近30家仪器企业。据统计,中国热分析仪器市场年产值应为近10亿元人民币。  随着新的学科和材料工业的不断发展,热分析所研究的物质由无机物(金属、矿物、陶瓷材料等)逐步扩展到有机物、高聚物、药物、络合物、液晶和生物高分子、空间技术等领域,对于表征分析技术也提出了更高的要求。基于热分析技术,联用技术应运而生,通过热分析仪与其他仪器的联用,可以获得更多的结构与性能信息。热分析联用技术是在程序控温和一定气氛下,对一个试样采用两种或多种热分析技术,分为同时联用、串接联用、间歇联用等,常见于热分析仪与红外光谱、气相色谱、质谱等仪器的联用。  仪器信息网于2020年年末之际重磅发布了《热分析联用仪市场调研报告(2020版)》,以内参报告的形式梳理了当前的市场状况。由于热分析联用仪涉及多类仪器的联用等因素,本报告以热分析仪市场为主线,分析热分析联用仪的市场情况。  亮点1:本报告盘点了国内外主要的热分析仪器厂商,对于其厂商规模与产值、产品线进行了横向分析。  亮点2:本报告中首次披露了热分析联用仪、热重分析仪/热天平(TGA)、同步热分析仪(STA)、差示扫描量热仪(DSC/DTA)四个专场的用户关注热度,从中窥见哪些品牌最受用户关注。  亮点3:通过用户调研分析哪些品牌在用户中的知名度较高,用户在采购时最倾向于采购何种品牌的产品,对于影响用户采购的多种因素进行了全面解析。  亮点4:进行了仪器的应用分析,可以了解哪些应用领域的用户分布较多。  亮点5:调研了耗材配件的更新周期,了解用户更换坩埚等的周期。  亮点6:收集了普通仪器用户和专业仪器用户对于仪器改进的建议与意见。  目录  第一章 热分析联用仪概述................................................................................................ 1  1.1 热分析技术......................................................................................................... 1  1.2 常用热分析仪简介............................................................................................. 11  1.3 热分析联用仪简介及分类.................................................................................. 16  第二章 国家与行业标准................................................................................................. 21  第三章 热分析联用仪市场分析....................................................................................... 34  3.1 主要热分析仪厂商............................................................................................. 34  3.2 厂商规模及产值................................................................................................ 57  3.3 厂商产品线分析................................................................................................ 59  3.4 中标情况分析.................................................................................................... 62  3.5 仪器信息网专场热度分析.................................................................................. 75  3.5.1 热分析联用仪专场................................................................................... 75  3.5.2 热重分析仪/热天平(TGA)专场............................................................. 76  3.5.3 同步热分析仪(STA)专场...................................................................... 77  3.5.4 差示扫描量热仪(DSC/DTA)专场.............................................................. 78  第四章 热分析联用仪用户调研....................................................................................... 79  4.1 调研用户属性分析............................................................................................. 79  4.1.1 调研用户行业分析................................................................................... 79  4.1.2 调研用户单位类型分析............................................................................ 80  4.1.3 主题网络会议参与倾向性分析.................................................................. 82  4.2 联用技术及联用仪器品牌认可度分析................................................................. 83  4.2.1 联用技术分析.......................................................................................... 83  4.2.2 红外光谱品牌认可度分析......................................................................... 83  4.2.3 气质联用品牌认可度分析......................................................................... 83  4.2.4 质谱品牌认可度分析................................................................................ 83  4.2.5 紫外光谱品牌认可度分析......................................................................... 84  4.3 热分析仪使用与配置分析.................................................................................. 85  4.3.1 常用热分析仪类型分析............................................................................ 85  4.3.2 应用分析................................................................................................. 85  4.3.3 检测途径分析.......................................................................................... 86  4.3.4 配备数量分析.......................................................................................... 87  4.3.5 使用年限分析.......................................................................................... 87  4.3.6 价格区间分析.......................................................................................... 88  4.4 用户采购分析.................................................................................................... 89  4.4.1 采购渠道分析.......................................................................................... 89  4.4.2 采购调研方式分析................................................................................... 89  4.4.3 采购调研时间分析................................................................................... 90  4.4.4 国产/进口倾向性分析............................................................................... 90  4.4.5 采购影响因素分析................................................................................... 92  4.4.6 品牌知名度分析....................................................................................... 96  4.4.7 品牌倾向性分析....................................................................................... 96  4.4.8 品牌复购分析.......................................................................................... 97  4.4.9 采购周期分析.......................................................................................... 97  4.4.10 三年内采购意向分析.............................................................................. 98  4.5 耗材配件分析.................................................................................................... 99  4.5.1 常用耗材配件.......................................................................................... 99  4.5.2 耗材寿命分析.......................................................................................... 99  4.6 售后服务分析.................................................................................................. 100  4.6.1 产品故障率分析..................................................................................... 100  4.6.2 售后服务响应速度分析.......................................................................... 100  4.6.3 用户培训分析........................................................................................ 101  4.6.4 回访紧密度分析..................................................................................... 102  4.6.5 软件升级分析........................................................................................ 103  4.6.6 解决问题能力分析................................................................................. 103  4.6.7 售后服务意见与建议.............................................................................. 104  4.7 用户意见与建议............................................................................................... 105  4.7.1 普通用户意见........................................................................................ 105  4.7.2 专业用户意见........................................................................................ 105  第六章 总结................................................................................................................. 117  参考资料...................................................................................................................... 122  如对本报告感兴趣,可通过以下邮箱guancg@instrument.com.cn联系我司相关人员,咨询购买报告相关细节!
  • 第一轮通知 | 第十届“热分析及联用技术”网络会议
    热分析是测量在程序控制温度下,物质的物理性质与温度依赖关系的一类技术。常用的热分析方法包括:差(示)热分析(DTA)、热重法(TG/TGA)和差示扫描量热法(DSC)等。当前已成为材料、化工、生命科学、制药、食品及烟草等多个领域中不可或缺的表征技术之一。然而单一的热分析技术难于明确地表征和解释物质随温度变化产生的现象,热分析联用技术应运而生。不仅包括热分析技术本身的同时联用,也包括与其他分析技术的联用,常见的比如TG-MS、TG-GC、TG-IR。国际热分析协会将热分析联用技术分为三类:同时联用技术、串接联用结束、间歇联用技术。同时联用技术指在程序控制温度下,对一个试样同时采用两种或多种分析技术,如TG-DTA 、TG-DSC等。串接联用技术是指在程序控制温度下,对一个试样同时采用两种或多种分析技术,第二种分析仪器通过接口与第一种分析仪器相串联,如TG-MS等。间歇联用技术是在程序控制温度下,对一个试样采用两种或多种分析技术,仪器之间串联连接,但第二种分析技术是不连续地从第一种分析仪器取样,典型的如TG-GC-MS。热分析联用技术用于分析复杂物质成分、评价产品质量等方面已在多个行业领域广泛应用。基于此,仪器信息网将于2024年7月31日举办第十届“热分析及联用技术”主题网络研讨会。本届会议将聚焦于热分析领域的最新技术及前沿应用,并邀请专家针对当下热分析技术的发展瓶颈与未来方向进行探讨。1. 主办单位仪器信息网 2. 会议时间2024年7月31日3. 会议形式仪器信息网“3i讲堂”平台4. 会议日程第十届“热分析及联用技术”网络会议时间报告题目报告嘉宾09:00-09:30热分析联用技术及规范表示丁延伟(中国科学技术大学 教授级高级工程师/博士生导师)09:30-10:00待定夏红德(中国科学院工程热物理研究所 研究员)10:00-10:30珀金埃尔默热分析联用-逸出气体综合分析系统郭然(珀金埃尔默企业管理(上海)有限公司 热分析联用高级产品经理)10:30-11:00待定朱邦尚(上海交通大学 研究员)11:00-11:30采用热分析及联用技术鉴定填充聚合物体系郭艳霜(沃特世科技(上海)有限公司 TA仪器高级应用专家)11:30-12:00待定王晓红(西安近代化学研究所 副研究员)12:00-14:00午休14:00-14:30热分析技术研究离子液体和低共熔溶剂牟天成(中国人民大学 教授)15:00-15:30热分析联用技术和实验设计案例徐颖(苏州大学分析测试中心 高级实验师)16:00-16:30待定谢续明(清华大学 教授)5. 参会方式本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/thermalanalysis2024/ (内容更新中)6. 会议联系会议内容:张编辑 15683038170(同微信) zhangxir@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 第九届热分析及联用技术网络会议第一轮通知
    热分析技术当前广泛应用于材料、化工、生命科学与制药、食品、烟草等多个领域,是应用极为广泛的表征技术之一。仪器信息网将于2022年8月29日举办第九届热分析及联用技术主题网络研讨会暨热分析技术发展现状与未来方向研讨会,本届会议将聚焦于热分析领域的最新技术及前沿应用,并邀请专家针对当下热分析技术的发展瓶颈与未来方向进行探讨,利用互联网技术为国内的广大科研及相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到材料研究及热分析技术专家的精彩报告,节省时间和资金成本。欢迎国内外仪器厂商参与会议,通过网络会议的形式介绍新产品新技术,开展品牌宣传和数字营销,进一步与用户互动交流。主办单位:仪器信息网支持单位:北京化工大学新材料校友会& 河北省化学会热力学与热分析专业委员会会议日程:第九届热分析及联用技术(2023年8月29日)报告时间报告内容报告人09:30--16:00主持人中国科学院工程热物理研究所研究员 夏红德09:31--10:00热分析联用技术的规范表示及常见问题分析中国科学技术大学教授级高级工程师/博士生导师 丁延伟10:00--10:30稀土功能配合物的热分解反应动力学及热力学河北师范大学研究员 张建军10:30--11:00待定梅特勒托利多11:00--11:30单一热分析和联用技术在材料中的应用研究华东理工大学副研究员 于惠梅11:30--12:00绝热加速量热原理、仪器化及应用中国计量大学副教授 丁炯14:00--14:30量热与热分析技术在能源材料研究中的应用中国科学院大连化学物理研究所研究组长/研究员 史全14:30--15:00两种磷腈基金属有机框架材料对环氧树脂阻燃及热性能的影响河北大学主任/教授 屈红强15:00--15:30热分析联用技术在含能材料研究中的应用进展西北大学副院长/教授 徐抗震15:30--16:00Flash DSC表征微尺度材料热导率南京大学(胡文兵教授团队)博士研究生 任晓宁扫码报名嘉宾介绍:中国科学院工程热物理研究所研究员 夏红德夏红德,博士,现工作于中国科学院工程热物理研究所。目前,主要研究质谱定量解析技术、反应过程机理的分析与研究,重点研究热反应过程控制机理与工艺流程改进。建立了基于反应过程特征参数的临界时刻及其状态的检测分析方法体系,形成了十多项发明专利,并开发了相关的智能解析算法。在国际上首次提出了基于质谱工作原理的反应过程定量分析理论——等效特征图谱法(ECSA®),实现了复杂反应过程逸出气体中不同组分质量流量的精准测量,为深度解析基元反应过程及其动力学特性提供了坚实的技术基础。该技术已获得日本、德国、美国等全球领先设备供应商的高度认可,目前获得日本理学公司的支持,研发国际领先的质谱解析方法,与德国耐驰公司建立长期数据分析合作伙伴关系。中国科学技术大学教授级高级工程师/博士生导师 丁延伟丁延伟,博士、中国科学技术大学教授级高级工程师,博士生导师。精通多家主流热分析生产厂商多种热分析仪器的工作原理、结构及应用,开发多种基于商品化仪器的附件和实验装置。自2002年开始从事热分析与吸附技术的分析测试、仪器应用和实验方法研究等工作。现任中国化学会化学热力学与热分析专业委员会委员、中国仪器仪表学会分析仪器分会热分析专业委员会委员、中国分析测试协会青年委员会委员、全国教育装备标准化委员会化学分委会委员、中国材料与试验团体标准委员会科学试验领域委员会委员等。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020), 以主要作者发表SCI论文30余篇,获授权专利7项。以第一作者或唯一作者身份出版《热分析基础》、《热分析实验方案设计与曲线解析概论》、《热重分析 —方法、实验方案设计与曲线解析》等热分析相关著作5部。河北师范大学研究员 张建军张建军,河北深泽县人,研究员,三级教授岗,河北省中青年骨干教师,河北省化学会理事,河北省化学会热力学与热分析专业委员会主任,河北省“三三三人才工程”人选,河北省杂环化合物重点实验室学术委员会委员,河北省氮化物工程陶瓷技术创新中心技术委员会委员,河北省自然科学研究系列高级职称评审委员会专家,国家自然科学基金委员会函审专家。河北师范大学学报(自然科学版)编委,曾担任多届光谱实验室杂志副主编。2021年入选全球顶尖前10万科学家榜单。2008年、2011年2013年获河北省优秀硕士论文指导教师,2018年获学校研究生优秀指导教师。为Journal of Hazardous Materials Journal of Chemical Thermodynamics、中国科学、科学通报、化学学报、高等学校化学学报等国内外五十多种学术杂志的审稿人,两次被《物理化学学报》聘为客座编辑,组织《热分析动力学与热动力学》专刊的出版,主要研究方向为热化学、热力学、热分析动力学及稀土配位化学。作为课题负责人主持国家自然科学基金4项、主持河北省自然科学基金和河北省教育厅自然科学基金项目8项, 2002年、2006年、2010年和2015年获河北省自然科学三等奖四项 (均第一完成人),1995年获河北省科技进步三等奖一项(第一完成人)。已在DaltonTransactions,Journal of Chemical Thermodynamics,Physico-ChimicaSinica等国内外学术刊物上共计发表论文270多篇,其中被SCI收录190余篇,EI收录90余篇。合作主编《热分析动力学》第二版,参编《量热学基础与应用》,参编《分析化学手册第8分册热分析与量热学》第三版。华东理工大学副研究员 于惠梅于惠梅,博士,华东理工大学材料科学与工程学院副研究员,中国化学会热力学和热分析专业委员会委员,上海市科技翻译学会理事。报告人长期从事热分析研究工作,开展了联用技术以及脉冲热分析方法研究,建立了热分析-质谱联用技术中逸出气体的定量新方法,申请实用新型和国家发明专利共7项。2012~2013年赴美Pennsylvania State University,开展了温室气体CO2的捕获和转化利用研究工作。起草制定了多项国家标准方法、行业标准和上海市企业标准,完成了国家自然科学基金、国家科技支撑(攻关)计划课题、中国科学院仪器研制等项目,在国内外核心期刊和会议上发表论文共40余篇。中国计量大学副教授 丁炯丁炯,男,现为中国计量大学副教授,硕士生导师,中国计量测试学会热物性专业委员会委员,中国仪器仪表学会朱良漪分析仪器青年创新奖获得者,《计量学报》青年编委,先后在浙江大学生物医学工程专业获得学士与博士学位,曾在中国科学技术大学从事博士后研究工作,长期致力于热学传感与测量、量热技术与仪器、细胞量热学方面的研究,近5年主要学术成绩有:主持国家自然科学基金重大科研仪器研制项目课题1项;主持国家自然科学基金青年项目1项;主持浙江省基础公益研究计划项目2项(已结题,其中基金项目为优秀);以分项目负责人承担国防科工局某工程专项1项(已结题,技术验收优秀);主持企业合作项目多项;以唯一第一/通讯作者在传感器领域权威期刊IEEE Sensors Journal,Sensors and Actuators A: Physical,科学仪器领域期刊Review of Scientific Instruments,热分析与量热仪器领域权威期刊Thermochimica Acta、Journal of Thermal Analysis and Calorimetry等发表高水平SCI期刊论文12篇,其它国内高质量论文6篇;以第一发明人申请国家发明专利14项,其中8项已获得授权,申请PCT国际专利1项;主持和参与制定国家计量技术规范、国防军工计量技术规范或团体标准4项。近年来,以高校青年博士教师下企业为载体,研制和产业化了多款热测量仪器,构建了标准化生产线,新增销售额过亿元,部分仪器市场占有率超四成,解决了我国面向本质安全的热测量仪器的“卡脖子”问题,并获2021年度公共安全科学技术学会科学技术一等奖1项。中国科学院大连化学物理研究所研究组长/研究员 史全史全,男,博士,中国科学院大连化学物理研究所研究员、博士生导师、热化学研究组长。现任中国化学会热力学与热分析专业委员会委员、中国计量测试学会热物性专业委员会委员、Chemical Thermodynamics and Thermal Analysis编委、辽宁省能源材料热化学重点实验室主任、大连市能源材料热力学技术创新中心主任。致力于热化学量热技术与能源材料热力学研究,研究方向包括:(1)热化学与量热技术:针对能源与材料研究领域的热化学问题,开展量热技术开发与仪器研制工作;(2)能源材料热力学性质:利用绝热量热、弛豫量热、差示扫描量热及落入式量热技术,准确测定与研究能源材料热力学性质,从热力学角度阐释材料结构状态与功能性质的关联;(3)相变材料:设计合成新型相变储能材料,构建相变储热/控温功能器件,探索相变材料应用新途径。建立了1.9-1700K温区热容准确测量装置与功能拓展技术,为能源材料研究提供了热力学基础数据与量热方法;开发了多功能-可穿戴-智能化相变材料体系与应用器件,实现了其在热量管理与温度控制方面的应用;在国内外学术期刊上发表论文160余篇,申请及授权专利100余项,主持多项国家及省部级科研项目。河北大学主任/教授 屈红强屈红强, 教授,博士研究生导师,河北省阻燃材料与加工技术创新中心主任,河北省化学会常务理事,《中国塑料》、《上海塑料》杂志编委。迄今为止,在Journal of Hazardous Materials、Composites Part B、IECR、Applied Surface Science及Polymer Degradation and Stability等国内外重要刊物发表学术论文100余篇,其中SCI收录论文60余篇;获授权中国发明专利 12项,先后主持了国家自然科学基金青年基金项目及面上项目、河北省应用基础研究计划重点基础研究项目、河北省创新能力提升计划项目“京津冀”协同创新共同体专项、河北省自然科学基金重点项目及各类横向项目等10余项课题。西北大学副院长/教授 徐抗震徐抗震,男,西北大学三级教授,博士生导师,副院长。中国化学会高级会员、中国化工学会专业会员、陕西省化工学会理事。航天165所兼职研究员。《含能材料》、《火炸药学报》、《兵器装备工程学报》等期刊编委。先后在香港科技大学和美国密苏里大学进行访学。主要从事新型含能材料、纳米复合材料、固体推进剂功能助剂以及热分析等研究工作,先后主持国家自然科学基金、国防科技基础计划、军委装发部项目等40余项,发表高水平论文140余篇,出版专著教材4部。授权中国发明专利13件,成果转化4项。获得陕西省科学技术奖二等奖、三等奖等省部级奖励6项。指导学生荣获第十三届“挑战杯”中国大学生创业计划竞赛全国金奖。南京大学(胡文兵教授团队)博士研究生 任晓宁任晓宁,博士研究生,南京大学胡文兵教授团队。热分析研究方向:(1)高分子材料结晶研究;(2)高速扫描量热技术研究;(3)含能材料热性能热分析研究。1999-2003年,就读于长安大学化学工程与工艺专业,分析化学方向;2016-2019年,就读于西北大学化学工程专业,热分析方向;2021年-至今,就读于南京大学高分子化学与物理专业,受导师胡文兵教授悉心指导,深入钻研高分子材料结晶相关研究和量热技术原理、应用与开发等科研训练。主持在研(完成)10余项国家级科研项目,作为主要人员参与完成多项国家级科研项目。在含能材料热分析行业领先开展高速量热系列研究、热分解气体产物的热质联用定量表征与应用研究、组分反应边界特性及相互作用的热分析研究等,作为技术负责人修订热分析相关国军标1项、制定企业标准12项,以第1作者/通讯作者发表SCI/EI/核心期刊等论文30余篇、授权专利5项,获省部级奖5项。报名方式:扫码报名

热分析联用仪相关的方案

  • PerkinElmer:热分析和光谱联用技术在表征纳米粒子和有机污染物相互作用中 的应用
    PerkinElmer 联用技术解决方案是将两种或两种以上的仪器连接使用,最大程度地提高单次实验的分析能力和获取的数据信息并节省操作时间。PerkinElmer TGA 8000TM 或STA 系统与FTIR,MS 和(或者)GC/MS 相连,代表了行业最完整和先进的联用技术平台,可应用于聚合物材料表征,制药,化工,石油,橡胶和食品等领域。其应用包括检测土壤中的有害化学物质,定量测定聚合物中的成分,确定产品包装中是否有可能污染产品的溢出物质,检测PVC 样品中的邻苯二甲酸酯。我们了解客户和市场独特和多样化的需求,我们是行业内唯一一家能够提供全套联用系统的生产,技术支持和售后服务的公司,简化从样品的处理到结果分析、传递的整个过程并使其更加流畅。PerkinElmer 的联用技术将为您的实验室提供创新和科学探索的新途径。
  • 基于STA8000同步热分析仪的瓷土分析
    瓷土在加热到黄热温度之后其成分会发生一系列的变化,无论是生产陶瓷商品,还是进行艺术创作,制瓷者都需要确保最终产品的质量, 而这很大程度上决定于瓷土在烧制过程中的物理和化学变化。同步热分析(STA)技术可以分析样品在特定温度和气氛中的质量变化和热量得失。STA技术可以通过多种方式阐释瓷土的烧制过程。根据质量损失曲线可以跟踪脱水过程和碳酸盐分解过程,并且计算其动力学参数。根据热流数据可以检测融化和结晶过程。此外,观察到的玻璃化转变可以表明无定形态的软化温度范围。
  • STA8000同步热分析仪在研究合金相图中的应用
    合金相图分析需要分析仪器具备准确测定温度和熔融能量的能力,另外还需要仪器在分析过程中除氧完全——必要时还需具备快速除氮——的能力。测定合金的组成通常使用差示扫描量热仪或差热分析仪,本文创新性地使用STA 8000型同步综合热分析仪来进行测定。结果证明,该方法不仅可以准确测定样品热性能和重量变化数据,而且还具备快速置换气体能力。本文主要采用两种高温熔融体系进行讨论,包括对氧极其敏感的铁镍合金样品。

热分析联用仪相关的资料

热分析联用仪相关的试剂

热分析联用仪相关的论坛

  • 同步热分析仪都是TGA和DTA联用吗?

    大家用的同步热分析仪都是TGA和DTA联用吗?有没有TGA和DSC联用的?DSC测的信号和DTA测的信号有何不同?不都是直接测的温度,间接求的热量吗?

热分析联用仪相关的耗材

  • 热分析样杯支架 仪器配件
    仪器配件热分析样杯支架热分析样杯支架 碳杯支架 定碳杯支架 浇口杯支架定碳杯支架各部件采用螺纹结构装配,可以很方便的进行组装和拆解,只需更换样杯座就可以适合方型定碳杯和园型定碳杯使用,成套的定碳杯支架不仅具备牢固的金属结构件和耐高温的方形或圆形样杯座,还包括美国进口欧米茄K型热电偶专用插头,德国进口超软硅橡胶高精度补偿导线,这种组合使热分析仪的精度得到了很大的提高,测试数据准确可靠,重复性能好,能使温度飘移带来的误差降低到更小。仪器配件热分析样杯支架定碳杯支架配合南京联创公司生产的LC-TS3、LC-TS3D、LC-TS5、LC-TS6等各型铸造炉前分析仪,碳硅分析仪,铁水分析仪,碳当量分析仪,铁水质量管理仪,铁液质量管理仪,以铸铁组织形成过程的凝固温度曲线为被测对象,对凝固温度曲线进行数学分析,得到不同成份下曲线的特征点。根据预先确认后的数学模型计算出铁水的碳当量(CE),碳含量(C%),硅含量(Si%)等指标,是铸铁生产中炉前使用的简洁、快速、准确的仪器。热分析仪检测时间约为2分钟,在铁水可等待的时间内完成检测,并可通过计算得出增碳剂、硅铁、废钢投放量对铁水成份进行调整,得到合适的铁水成份后进行浇注。仪器配件热分析样杯支架
  • --请选择-- 热分析耗材 其他物性测试仪配件
    热销宝贝梅特勒氧化铝坩埚/陶瓷/热分析坩埚/样品皿/sample pan/瑞士¥5.00TA/PE/耐驰/梅特勒/岛津/铝坩埚/固体/热分析坩埚/样品皿/DSC¥2.50PE铝坩埚/固体/热分析坩埚/样品皿/DSC/sample pan/美国¥3.00德国耐驰/铝坩埚/液体/固体/热分析坩埚/样品皿/NETZSCH/DSC/坩锅¥3.00瑞士梅特勒/平底铝坩埚/液体/固体/热分析坩埚/样品皿/DSC/40ul¥3.00TA/铝样品盘/Q20/固体/热分析坩埚/样品皿/DSC/sample pan/美国¥3.00耐驰氧化铝坩埚/陶瓷/热分析坩埚/样品皿/sample pan/德国¥5.50不锈钢坩埚/液体/固体/热分析坩埚/样品皿/耐驰/梅特勒/TA¥6.00耐驰氧化铝坩埚/异形/热分析/样品皿/8*23mm/德国¥8.00TGA,热重分析仪,差示扫描量热仪,氧化铝坩埚,铝坩埚,液氮制冷¥156000.00瑞士梅特勒/定位铝坩埚/液体/固体/热分析坩埚/样品皿/40ul坩锅¥3.00DSC200L/差示扫描量热仪/低温/高压/相转变/结晶/熔融/诱导期¥220000.00此模板由精准推广王提供,我也要免费出现在这里我公司专业生产DSC差示扫描量热仪,SDTA差热分析仪,TGA热重分析仪等各种热分析仪专用的铝制、氧化铝、不锈钢、金属镍、铂金和石英材质的样品盘/坩锅,且最小壁厚可达到0.2~0.3mm;适用于美国PE,美国TA(原杜邦),德国耐驰NETZSCH,瑞士梅特勒Mettler,法国塞塔拉姆SETARAM,日本岛津Shimadzu,日本Rigaku,日本精工SII,德国布鲁克AXS等,并提供来样来图加工定制,本公司是国内唯一一家引进进口工艺加工生产的坩埚生产厂家,专供出口,非国内其他厂商的不良产品。样品盘分类:为确保样品与传感器之间高效率的热交换,请选用优质的、适合温度范围的样品盘/坩锅做实验,从而达到最佳的实验效果。1.不锈钢样品盘/坩锅适用温度范围为室温到300℃2.金属铝样品盘/坩锅适用温度范围为室温到550℃3.金属镍样品盘/坩锅适用温度范围为室温到700℃4.铂铑合金样品盘/坩锅可以使用到1800℃5.石墨、钨样品盘/坩锅可以使用到2400℃主要特点:★铝样品盘和样品盖:适用于非挥发性固体样品,例如聚合物和药物,通常用于聚合物、热塑性材料和热固性材料的聚合物熔化、结晶及玻璃化转变的研究;样品皿为卡口式,但并未密封。★为了避免样品盘/坩锅和样品反应可以使用惰性样品盘/坩锅,如铂铑合金样品盘/坩锅。★铜制或铂铑样品盘/坩锅可以起到催化剂效应,也多用于大多数材料的TGA分析。★高压样品盘:整个实验样品在样品盘/坩锅的密封环境中进行,抑制了挥发性物质的挥发;密封防止溶剂蒸发或将挥发反应产物包含在内,从而消除汽化热的干扰。★高质量的样品盘/坩锅可以帮助扩大DSC的应用范围,使用大体积的样品盘/坩锅放入更多的样品可以测定微弱的热效应,想获得好得分辨率可以使用轻质、热传导性好的样品盘/坩锅。其他规格来图或来样定制加工,价格及起订量面议。成交记录
  • --请选择-- 热分析耗材 其他物性测试仪配件
    热销宝贝梅特勒氧化铝坩埚/陶瓷/热分析坩埚/样品皿/sample pan/瑞士¥5.00TA/PE/耐驰/梅特勒/岛津/铝坩埚/固体/热分析坩埚/样品皿/DSC¥2.50PE铝坩埚/固体/热分析坩埚/样品皿/DSC/sample pan/美国¥3.00德国耐驰/铝坩埚/液体/固体/热分析坩埚/样品皿/NETZSCH/DSC/坩锅¥3.00瑞士梅特勒/平底铝坩埚/液体/固体/热分析坩埚/样品皿/DSC/40ul¥3.00TA/铝样品盘/Q20/固体/热分析坩埚/样品皿/DSC/sample pan/美国¥3.00耐驰氧化铝坩埚/陶瓷/热分析坩埚/样品皿/sample pan/德国¥5.50不锈钢坩埚/液体/固体/热分析坩埚/样品皿/耐驰/梅特勒/TA¥6.00耐驰氧化铝坩埚/异形/热分析/样品皿/8*23mm/德国¥8.00TGA,热重分析仪,差示扫描量热仪,氧化铝坩埚,铝坩埚,液氮制冷¥156000.00瑞士梅特勒/定位铝坩埚/液体/固体/热分析坩埚/样品皿/40ul坩锅¥3.00DSC200L/差示扫描量热仪/低温/高压/相转变/结晶/熔融/诱导期¥220000.00此模板由精准推广王提供,我也要免费出现在这里我公司专业生产DSC差示扫描量热仪,SDTA差热分析仪,TGA热重分析仪等各种热分析仪专用的铝制、氧化铝、不锈钢、金属镍、铂金和石英材质的样品盘/坩锅,且最小壁厚可达到0.2~0.3mm;适用于美国PE,美国TA(原杜邦),德国耐驰NETZSCH,瑞士梅特勒Mettler,法国塞塔拉姆SETARAM,日本岛津Shimadzu,日本Rigaku,日本精工SII,德国布鲁克AXS等,并提供来样来图加工定制,本公司是国内唯一一家引进进口工艺加工生产的坩埚生产厂家,专供出口,非国内其他厂商的不良产品。样品盘分类:为确保样品与传感器之间高效率的热交换,请选用优质的、适合温度范围的样品盘/坩锅做实验,从而达到最佳的实验效果。1.不锈钢样品盘/坩锅适用温度范围为室温到300℃2.金属铝样品盘/坩锅适用温度范围为室温到550℃3.金属镍样品盘/坩锅适用温度范围为室温到700℃4.铂铑合金样品盘/坩锅可以使用到1800℃5.石墨、钨样品盘/坩锅可以使用到2400℃主要特点:★铝样品盘和样品盖:适用于非挥发性固体样品,例如聚合物和药物,通常用于聚合物、热塑性材料和热固性材料的聚合物熔化、结晶及玻璃化转变的研究;样品皿为卡口式,但并未密封。★为了避免样品盘/坩锅和样品反应可以使用惰性样品盘/坩锅,如铂铑合金样品盘/坩锅。★铜制或铂铑样品盘/坩锅可以起到催化剂效应,也多用于大多数材料的TGA分析。★高压样品盘:整个实验样品在样品盘/坩锅的密封环境中进行,抑制了挥发性物质的挥发;密封防止溶剂蒸发或将挥发反应产物包含在内,从而消除汽化热的干扰。★高质量的样品盘/坩锅可以帮助扩大DSC的应用范围,使用大体积的样品盘/坩锅放入更多的样品可以测定微弱的热效应,想获得好得分辨率可以使用轻质、热传导性好的样品盘/坩锅。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制