染色体光学显微镜

仪器信息网染色体光学显微镜专题为您提供2024年最新染色体光学显微镜价格报价、厂家品牌的相关信息, 包括染色体光学显微镜参数、型号等,不管是国产,还是进口品牌的染色体光学显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合染色体光学显微镜相关的耗材配件、试剂标物,还有染色体光学显微镜相关的最新资讯、资料,以及染色体光学显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

染色体光学显微镜相关的厂商

  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询
  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询

染色体光学显微镜相关的仪器

  • [ 产品简介 ]在对较大样本进行荧光成像时,非焦平面的杂散光往往会使图像模糊,从而降低对比度和分辨率。全新蔡司结构照明Apotome 3光学切片成像组件,可搭载在开方式倒置荧光显微镜、研究级正置荧光显微镜和大视野宏观变倍显微镜等宽场显微镜上。Apotome 3可以自动识别物镜放大倍数,将与之匹配的栅格移动到光路中,利用结构照明,将栅格结构投影到样品的焦平面上,消除样本非焦平面的杂散光,再通过蔡司特有的算法生成更清晰锐利的光学切片,让您获得出色分辨率和高对比度图像。与传统宽场荧光显微图像相比Apotome 3 能够显著提高轴向分辨率,您可以获得支持三维渲染的优质光学切片,厚的样品也不例外。[ 产品特点 ]&bull 优质的光学切片:蔡司Apotome3具有三种不同几何性状的栅格,无论您选择何种放大倍率,都可以保证高分辨率, &bull 自由选择光源和染料:蔡司Apotome 3可适应荧光团和光源。因此,当实验的复杂性和需求发生变化时,您也可以灵活应对。&bull 更多结构化信息:凭借结构照明的专利算法,您甚至可通过反卷积进一步改善图像质量。更好地识别所检查对象的重要结构。[ 应用领域 ]&bull 组织学样品二维、三维荧光光切成像&bull 活细胞样品二维、三维荧光光切成像&bull 全胚胎大视野荧光光切成像 皮质神经元DNA和微管染色的宽场图像(DAPI,A488),Z stack,40X物镜(左图未使用Apotome拍摄,右图使用 Apotome拍摄)
    留言咨询
  • [ 产品简介 ]蔡司研究级倒置显微镜Axio Observer结合了V型光路设计和自动化组件,能够保证测量结果的精确性,可靠性以及可重复性。人机工程学的设计能使您的实验分析和测试工作更加简便舒适,是实验室材料研究的显微分析解决方案。灵活开放的蔡司研究级倒置显微镜Axio Observer,同样适用于对活体标本细胞和固定样标本进行要求严苛复杂的多模态成像,满足您对显微图像质量的高要求。Axio Observer配置灵活,预留多个接口,具备丰富的扩展功能。结合细胞培养装置,为您提供活细胞研究的完美平台,可以精确获取活细胞的信息,并可根据实验需求选择不同的电动以及自动化程度,让科研更轻松。在Axio Observer上搭载全新蔡司人工智能样品识别系统,省去了耗时的手动调整步骤,直接访问所有样本区域,从而比以往更快地开始实验,将成像时间从几分钟缩短到几秒钟,大大提高实验效率。[ 产品特点 ]&bull IC2S 色差反差双重校正光学系统&bull 复消色差荧光光路,荧光光陷阱技术&bull 高效率”V”型光路设计,光程最短&bull Z轴精度最高10nm&bull 高灵活性和高稳定性&bull 人工智能样品自动识别系统&bull 样品放置空间大&bull 人机工程学的设计,操作舒适,工作效率高[ 应用领域 ] &bull 生物学 &bull 医学和兽医学 &bull 微生物学&bull 植物学&bull 航天航空&bull 汽车行业&bull 金属原材料&bull 医疗器械&bull 机械加工老鼠细胞(蛋白用Alexa 488染色,细胞核用DAPI染色),荧光皮质神经元进行DNA、微管和微管相关蛋白染色,Z堆栈,荧光芯片表面局部,50X物镜,反射暗场
    留言咨询
  • [ 产品简介 ]蔡司研究级倒置显微镜Axio Observer结合了V型光路设计和自动化组件,能够保证测量结果的精确性,可靠性以及可重复性。人机工程学的设计能使您的实验分析和测试工作更加简便舒适,是实验室材料研究的显微分析解决方案。灵活开放的蔡司研究级倒置显微镜Axio Observer,同样适用于对活体标本细胞和固定样标本进行要求严苛复杂的多模态成像,满足您对显微图像质量的高要求。Axio Observer配置灵活,预留多个接口,具备丰富的扩展功能。结合细胞培养装置,为您提供活细胞研究的完美平台,可以精确获取活细胞的信息,并可根据实验需求选择不同的电动以及自动化程度,让科研更轻松。在Axio Observer上搭载全新蔡司人工智能样品识别系统,省去了耗时的手动调整步骤,直接访问所有样本区域,从而比以往更快地开始实验,将成像时间从几分钟缩短到几秒钟,大大提高实验效率。[ 产品特点 ]&bull IC2S 色差反差双重校正光学系统&bull 复消色差荧光光路,荧光光陷阱技术&bull 高效率”V”型光路设计,光程最短&bull Z轴精度最高10nm&bull 高灵活性和高稳定性&bull 人工智能样品自动识别系统&bull 样品放置空间大&bull 人机工程学的设计,操作舒适,工作效率高[ 应用领域 ] &bull 生物学 &bull 医学和兽医学 &bull 微生物学&bull 植物学&bull 航天航空&bull 汽车行业&bull 金属原材料&bull 医疗器械&bull 机械加工老鼠细胞(蛋白用Alexa 488染色,细胞核用DAPI染色),荧光皮质神经元进行DNA、微管和微管相关蛋白染色,Z堆栈,荧光芯片表面局部,50X物镜,反射暗场
    留言咨询

染色体光学显微镜相关的资讯

  • iPad出新技能 通过显微镜头检测染色体
    近日台湾创业公司Aidmics便为iPad开发出一套新技能——用iPad检查自己祖传染色体的品质,该技能是通过一个名为iSperm的设备实现的,其中包含一个200倍光学放大器与1微米解析度的显微镜头、一个生物微流晶片以及一个精子分析App,只需要短短17秒便可让我们这种毫无医学知识的小白感受到祖先的荣光。  当然这17秒绝对不包括你自己的事前准备,其中7秒用于视频的载入,10秒用于分析处理,不过由于医学管理方面的相关规定,该设备最早也要等到明年才能进入千万家庭中,售价大约在100美元-200美元之间,适合那些想要宝宝的家庭使用,那种每天数蝌蚪的生活真是连想都不敢想!
  • 240万!山东省千佛山医院染色体全自动扫描显微镜和图像分析系统采购项目
    项目编号:SDGP370000000202202006132 项目名称:山东第一医科大学第一附属医院(山东省千佛山医院)染色体全自动扫描显微镜和图像分析系统采购项目 预算金额:240.0万元 最高限价:240.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)A染色体全自动扫描显微镜和图像分析系统 1 详见附件 240.000000 合同履行期限:详见招标文件 本项目不接受联合体投标。
  • X染色体失活新机制:液-液相分离的成核作用
    性别决定过程中会出现X染色体失活(X chromosome inactivation,XCI)现象,其中涉及到一个非常关键的长非编码RNA Xist,在XCI过程中Xist由两条X染色体中的一个转录出来,覆盖在X染色体之上对X染色体进行沉默【1,2】。Xist通过招募染色质修饰蛋白、转录沉默因子以及其他的RNA结合蛋白,启动基因沉默并对X染色体进行大规模的重塑,形成非活性X染色体中心(inactive X chromosome,Xi)【3,4】。但X染色体上需要被沉默的基因有一千多个,而Xist只有几十个,并不与需要沉默的基因数量级相对应,因此X染色体的沉默的具体机制还不得而知。2021年11月4日,美国加州大学洛杉矶分校Kathrin Plath研究组与Tom Chou研究组以及Yolanda Markaki(第一作者)合作发文题为Xist nucleates local protein gradients to propagate silencing across the X chromosome,揭开了Xist通过对局部蛋白进行成核作用,促进Xist以及相关蛋白在X染色体上的覆盖,从而导致X染色体失活的分子机制。为了检测Xist如何介导X染色体失活,作者们将雌性小鼠胚胎干细胞分化形成外胚层类似细胞(Epiblast-like cells,EpiLCs),此时会促进Xist的表达以及X染色体失活的诱导(图1)。在分化培养的第二天D2到D4是基因沉默的关键时期。通过RNAs-seq,作者们对所有的X染色体相关的基因进行了检测,确认D2-D4是Xist发挥作用的时间框,与其相互作用蛋白一起促进了基因的逐渐沉默。因此,作者们将D2时期的X染色体称为pre-Xi,而将D4时期的染色体称为Xi。图1 外胚层类似细胞中Xist诱导X染色体失活通过对D2-D4转换过程中Xist覆盖体积的统计,作者们发现pre-Xi与Xa的体积相似,而D4的时候Xi的体积与体细胞中凝缩程度相似。而且通过原位杂交实验,作者们发现pre-Xi到Xi的过程中结构出现了显著变化,因此X染色体失活过程中出现了染色体高阶结构的不同。那么首先作者们想知道X染色体失活过程中Xist的数量具体是多少,为此作者们使用三维结构照明显微镜(Three-dimensional structured illumination microscopy,3D-SIM)对Xist的数量进行了统计,利用MS2-MCP实验系统【5】作者们发现Xist的数量大约是50个,每个点中包含两个Xist分子,在pre-Xi到Xi的过程中Xist的数量也没有出现显著的变化。但Xist点联合起来将X染色体上1000多个基因进行了沉默,Xist与被沉默的基因之间庞大的数量差引起了作者们的兴趣。能做到这一点的其中一个可能性是靶标基因之间可以通过快速扩散和瞬时的相互作用而被沉默。为了对这一假设进行检测,作者们检验了Xist点的移动性。作者们惊讶地发现,Xist点的位置几乎没有明显的融合和分裂,说明Xist点的信号位置是被严格限制的,而且主要位于开放的A-compartment之中。图2 Xist招募蛋白效应因子促进超复合体的形成那么Xist是如何做到沉默X染色体上的基因的呢?为此作者们想知道Xist点是否是通过招募其他的效应因子蛋白而导致在X染色体上的沉默的。作者们诱导基因沉默的效应因子蛋白进行检测,发现Xist点会招募其他效应因子比如SPEN等在Xist存在的局部区域形成大分子复合体(图2),增加局部蛋白质浓度形成Xi。SPEN能够形成大分子复合体依赖于其中存在内在无序序列【6】,通过敲除该内在无序序列,作者们发现SPEN蛋白招募进入Xist形成的复合体中也依赖于其内在无序序列,同时该序列对于X染色体失活过程也是非常关键的。Xist与形成的超复合体逐渐对X染色体进行塑形,促进X染色体上基因的沉默,形成X染色体失活中心区域(X-inactivation center,Xic),该区域包含正是Xist基因所存在的区域。图3 工作模型总的来说,该工作发现X染色体失活并非Xist通过扩散到整个染色体上促进基因沉默的,而是通过招募相关的效应因子蛋白形成大规模的、动态的蛋白质复合体(图3),促进X染色体高阶结构变化,逐渐凝缩并最终导致X染色体上的基因沉默。原文链接:https://doi.org/10.1016/j.cell.2021.10.022

染色体光学显微镜相关的方案

  • 植物有丝分裂染色体压片实验
    实验方法原理:细胞的有丝分裂是一个连续动态的变化过程,但可以通过它的形态变化,特别是细胞核中的染色体行为,人为地划分阶段,并进行比较研究。在自然状态下,一大群处于各个分裂期的细胞混杂在一起。必须仔细观察,寻找有丝分裂过程各期典型形态特征的细胞,从而建立起细胞周期的概念。植物的分生组织(如根尖分生区、茎尖生长点等)细胞,能够通过有丝分裂增加其数目。依据植物细胞分裂周期中各个时期细胞中染色质或染色体的形态、数目、位置变化,确定该细胞所处的时期。为了看清染色体或染色质,要用碱性染料将其染色。
  • 通过释放基因改良的酵母细胞来获得蛋白质在使用人类染色体组方法解码人类DNA中的应用
    自从Cellera公司通过人类染色体组方法解码人类DNA后,人们开始广泛的从事基因方面的研究。 德国Fritsch公司也为这项新颖而有意义的课题提供了更多的广泛性参考价值。本文着重介绍了德国Fritsch公司与位于德国海德尔堡的Cellzome AG公司开展的协作实验。使用德国Fritsch公司的 ”pulverisette 5” 四罐行星式高能球磨机和 ”pulverisette 6” 单罐行星式高能球磨机,通过释放基因改良的酵母细胞来获得蛋白质。 德国Fritsch公司的行星式高能球磨仅仅运行了3-4分钟,通过显微镜的观测,就可以获得酵母细胞已经充分破碎的结论。 具体的研磨粉碎实验方法及相关实验数据,欢迎您来电话与北京飞驰科学仪器有限公司取得联系。
  • 人抗染色体抗体(anti-chromosome Ab)检测试剂盒
    人抗染色体抗体(anti-chromosome Ab)检测试剂盒人抗染色体抗体(anti-chromosome Ab)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人抗染色体抗体(anti-chromosome Ab)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人抗染色体抗体(anti-chromosome Ab)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人抗染色体抗体(anti-chromosome Ab)抗原、生物素化的人抗染色体抗体(anti-chromosome Ab)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人抗染色体抗体(anti-chromosome Ab)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度

染色体光学显微镜相关的资料

染色体光学显微镜相关的试剂

染色体光学显微镜相关的论坛

  • 分散染色体观测用分散物镜是什么

    想买台显微镜测试石棉,国标GB/T 23263里要求物镜为分散染色体观察用分散物镜,问了几家显微镜厂家都不知道是什么东西?哪位高人可以指点下啊。

  • 染色体芯片技术大幅提高试管婴儿成功率

    目前,我国试管婴儿技术的成功率平均仅为50%多,最大瓶颈就在于产前染色体异常的筛查。记者昨日获悉,今年3月成立的染色体芯片产前诊断联合实验室(CMA),利用针对中国人群定制的染色体芯片,能够检测出在常规染色体检测中显微镜下无法识别的基因缺陷,可筛查出200多种已知的染色体微缺失或微重复引起的疾病。这一技术不仅可通过产前诊断达到优生目的、降低流产率,而且将会使试管婴儿的成功率整体提高两成达70%,尤其是将会使高龄女性做试管婴儿的成功率提高五成。http://www.ibioo.com/data/attachment/portal/201308/25/094237zntmsn8tmz7tzmit.jpg技术:染色体芯片技术可查缺陷基因据广州医科大学附属第三医院广东省产科重大疾病重点实验室主任、广州妇产科研究所副所长孙筱放教授介绍,随着强制婚检的取消,近年来新生儿出生缺陷率明显升高。目前已知的出生时严重出生缺陷婴儿染色体异常的比率只有10%。而国外学者通过高通量、高分辨率的染色体芯片技术研究发现,大量以前无法确定遗传改变的出生缺陷,实际上都是由常规染色体检查显微镜下无法识别的基因组微缺失和微重复引起的。“正是这个原因,我们与香港中文大学成立了染色体芯片产前诊断联合实验室。”她说,“我们现在已经可以检测出200多种已知的染色体微缺失或微重复引起的各种疾病。我们还可以结合DNA测序技术对已知各种单基因疾病进行诊断。这项技术在全国范围内都属于领先的。”故事1:十次试管婴儿都失败来自湖北的阿丹和阿强(均为化名)结婚十年来一直没有怀上孩子,两人为此焦虑不已。近年来,求子心切的他们居然连续做了十次试管婴儿,但都以失败而告终。每次将胚胎植入之后,他们都满怀希望地等待,但无一例外,没有一次能够怀到“瓜熟蒂落”。漫长的求子之路,让他们身心俱疲。尤其是阿丹,经历了十次“煎熬”之后,精神“几近崩溃”,身体也经受了太多的损伤。他们为什么总不成功?他们还有希望吗?他们抱着最后一线希望来到广医三院。专家解读:植入前做检测 妊娠率可达80%“对于做试管婴儿的夫妻来说,压力之大非外人所能想象,尤其是做了几次不成功的夫妻。”广州医科大学附属第三医院生殖医学中心主任刘见桥教授介绍,“在传统的技术中,胚胎植入前遗传学诊断只能检测少数几条染色体是否异常。但事实上,每一条染色体都有可能发现异常,只是以前很多其他的染色体异常没有筛查出来,所以即使不健康的胚胎也会被植入。”刘见桥说,目前,该院与美国休斯敦生殖医学中心合作,率先开展了利用染色体芯片技术对植入前胚胎筛查,可以检测全部染色体组的异常数目。“通过这种筛选的胚胎,妊娠率可提高到80%。”“目前我们可以做到的是,在胚胎植入前就可以对全部染色体组进行检测,然后进行筛查,再把健康的胚胎植入体内。”刘见桥说,无论是什么年龄阶段的女性,最后的成功率都可达70%,这就大大减少对女性身心的伤害,也为患者免去了许多不必要的经济损失,尤其是对于高龄女性而言,成功率更提高了五成。故事2:孕妈担心再生先心娃今年30岁的周洁(化名)怀孕20周了,然而,新生命并未给她带来多少喜悦,相反,更多的是忐忑和纠结。原因就是她曾经生育过一个患有一种先天性心脏畸形而且面部发育也不正常的女儿。第二个孩子会不会也出现畸形呢?这个胎儿究竟是去还是留呢?周洁来到广医三院的生殖医学中心,医生抽了她患病的女儿外周血和腹中胎儿的羊水分别进行染色体芯片检查。结果发现她女儿的3号染色体有一段较长的微重复,正是这一重复区域,导致了她的先天性疾病。而她腹中胎儿的染色体芯片结果并没有跟她女儿相同的变异区域,说明胎儿再患这种先天性心脏畸形的概率较低。目前,她腹中的胎儿的确也发育良好,未见明显畸形。她终于可以放心地把孩子怀下去了。专家解读:可对比染色体差异并作去留判断“在常规的染色体检测中,一般只是显微镜下识别基因缺陷,有很多缺陷是无法识别的。”广医三院妇产科研究所实验部副主任、CMA实验室负责人范勇介绍,而使用该院正在使用的染色体芯片,不仅能够检测和比较患儿和胎儿的染色体差异,更重要的是,通过结果分析,可能对胎儿的去留作出准确的判断,消除了妊娠者及其家属的顾虑。“染色体芯片技术与传统染色体分析技术相比,具有集高通量和高分辨率的优势,目前已被加拿大遗传学会、欧洲遗传学会和美国遗传学会推荐作为遗传学诊断的首选手段。”范勇说,染色体芯片分析还可以进一步地检测患者双亲,以明确某一类的先天性缺陷的致病变异来源。“这对于指导患者再次怀孕具有很重大的临床意义。”范勇说,实验室成立三个月以来,已为230多名孕妇进行了该项技术检查,确诊十余例染色体结构异常胎儿。

  • 【资料】光学显微镜的发展历程

    早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。 1611年 Kepler(克卜勒):提议复合式显微镜的制作方式。 1655年 Hooke(虎克):「细胞」名词的由来便由虎克利用复合式显微镜观察软木塞上某区域中的微小气孔而得来的。 1674年 Leeuwenhoek(李文赫克):发现原生动物学的报导问世,并于九年后成为首位发现「细菌」存在的人。1833年 Brown(布朗):在显微镜下观察紫罗兰,随后发表他对细胞核的详细论述。 1838年 Schlieden and Schwann(雪莱敦及史汪):皆提倡细胞学原理,其主旨即为「有核细胞是所有动植物的组织及功能之基本元素」。1857年 Kolliker(寇利克):发现肌肉细胞中之粒线体。 1876年 Abbe:剖析影像在显微镜中成像时所产生的绕射作用,试图设计出最理想的显微镜。 1879年 Flrmming(佛莱明):发现了当动物细胞在进行有丝分裂时,其染色体的活动是清晰可见的。1881年 Retziue(芮祖):动物组织报告问世,此项发表在当世尚无人能凌驾逾越。然而在20年后,却有以Cajal(卡嘉尔)为首的一群组织学家发展出显微镜染色观察法,此举为日后的显微解剖学立下了基础。 1882年 Koch(寇克):利用苯安染料将微生物组织进行染色,由此他发现了霍乱及结核杆菌。往后20年间,其它的细菌学家,像是Klebs and Pasteur(克莱柏和帕斯特)则是藉由显微镜下检视染色药品而证实许多疾病的病因。1886年 Zeiss(蔡氏):打破一般可见光理论上的极限,他的发明--阿比式及其它一系列的镜头为显微学者另辟一新的解像天地。 1898年 Golgi(高尔基):首位发现细菌中高尔基体的显微学家。他将细胞用硝酸银染色而成就了人类细胞研究上的一大步。 1924年 Lacassagne(兰卡辛):与其实验工作伙伴共同发展出放射线照相法,这项发明便是利用放射性钋元素来探查生物标本。 1930年 Lebedeff(莱比戴卫):设计并搭配第一架干涉显微镜。另外由Zernicke(卓尼柯)在1932年发明出相位差显微镜,两人将传统光学显微镜延伸发展出来的相位差观察使生物学家得以观察染色活细胞上的种种细节。1941年 Coons(昆氏):将抗体加上萤光染剂用以侦测细胞抗原。 1952年 Nomarski(诺马斯基):发明干涉相位差光学系统。此项发明不仅享有专利权并以发明者本人命名之。 1981年 Allen and Inoue(艾伦及艾纽):将光学显微原理上的影像增强对比,发展趋于完美境界。 1988年 Confocal(共轭焦)扫瞄显微镜在市场上被广为使用。

染色体光学显微镜相关的耗材

  • 显微镜载玻片, 病理级血涂片, 抛光边, 45°角, 适配Sysmex、Beckman Coulter等全自动血液推片染色机
    显微镜载玻片, 病理级血涂片, 抛光边, 45°角, 适配Sysmex、Beckman Coulter等全自动血液推片染色机
  • 数字全息显微镜
    瑞士Lyncee Tec SA www.lynceetec.com 瑞士Lyncee Tec SA公司的数字全息显微镜&ldquo DHM(Digital Holographic Microscopy)是划时代性的高科技技术产品,科学史上第一次, 数字全息显微镜可以直接观测到纳米尺度的分辨率,即时得到样品三维型貌,并且是无接触式的无损测量。 DHM 1000 Family将波长630nm的半导体激光分成照射到试料的光和参照光两部分来使用。共包括两大品种,一种是试料反射光与参照光进行干涉的&ldquo 技术参数: 测量原理: 反射式数字全相术干涉显微镜 (R1000系列) 或 穿透式数字全相术干涉显微镜(T1000 系列) 取像型式: 强化与量化的相位对比影像 光源: 单波长雷射光源 样品台: 手动3 轴, x, y, z 各可位移25毫米 选配:较大位移的样品台 选配:软件自动控制的2轴或3轴样品台 照相机: 1392 x 1040 像素, 8 bits 可选物镜: 1.25x, 2.5x, 5x, 10x, 20x, 50x, 63x, 100x 选配:长工作距离物镜, 油浸渍物镜 物镜安装: 单物镜安装, 双物镜的滑动块或四物镜的转盘安置 计算机: 应为DHM配置含最新的Pentium? 处理器和视窗XP 专业版个人电脑为佳, 显示则需19寸, 1280 x 1024 像素的显示屏 软件: Lyncee Tec专利的&ldquo 袋熊"经典软件, 是利用C++ 和 .NET技术,专为在视窗XP?的3维表面成型, 曲面测量, 步进高度与粗度测量写成的. 选配工作模式: 垂直扫描与频闪观测模式 性能 垂直的分辨率(*) 瞬间:0.2° (在空气中0.2奈米) 空间:0.6° (在空气中0.6奈米) 垂直数字聚焦范围 视区50倍深度(取决于物镜) 垂直测量范围: 对平滑样品, 取决於测量区域的深度 340 奈米 (用选配的垂直扫描模式, 范围可以测得更高) 横向的分辨率 (**): 取决于物镜: 用油浸渍的物镜(1.4 NA), 最低可测到300奈米, 可视区域: 取决于物镜可达到4.40毫米 横向取样: 1024 x 1024 像素 (全像照相) 撷取影像速率 实时影像:15 fps (512 x 512 像素), 4 fps (1024 x 1024像素) 离线重建:15 fps (1024 x 1024) (10000 fps速率为选配) 样品照明: 低至 1?W/cm2 最大样品尺寸: H x W:200毫米 x 123毫米 (R1000系列) 50毫米 x 150毫米 (T1000 系列) 工作距离: 取决于物镜:从 0.30毫米 至 20毫米 取样反射率 (R1000系列): 低至小於1% 撷取时间: 单一影像撷取, 低至小於 1微秒 (无扫描机械装置, 无相位移) 主要特点: 实时监测影像 获取与重建速率(标准15 fps, 大于15 fps为选配) 非常快速, 使得影像可以实时监看. 观看动态事件的过程和活细胞的相互作用现象由此变为可能. 坚固 & 稳定 非常短的取像时间 (数微秒) 使得此设备在测量时, 几乎不受外在的振动影响, 用防震台面也变得不需要. DHM? 的坚固与稳定性, 允许非常微弱, 缓慢的变形或移动, 需稳定性非常好或时间超常的测量. 高分辨率 沿着垂直 (Z) 轴的分辨率,小于1奈米. 横向的分辨率 (在XY平面) 取决于物镜的数值孔徑 (用油浸渍的物镜可测得300奈米), 像传统的光学显微镜. 非接触式 & 完全非侵入式测量 低功率可见光的样品照明 (至少低于共焦式显微镜10"000倍), 与试片表面不接触, DHM? 可以保存你样品完整的特性. 此外, 生物试片可以直接观看不需染色, 因此可以防止化学性或物理性的危害. 值得有效的解决方案 DHM? 的安装费与操作费用都非常低廉. 适应性与弹性使它们在高分辨率显微镜领域非常有竞争性. 这些特性使DHM?在研发和制程品管上, 成为非常值得, 有效的工具. 友善的操作 无须样品准备, 无须特别的环境 (温度, 真空, ...), 样品不需高精准度的位置与方向摆放, DHM? 简化技术, 让使用者可以非常容易并快速的获得准确的测量. 功能强大三维空间处理软件 可以用相同的仪器, 不同的操作模式去延伸你的应用范围. DHM-提供了无与伦比特有的数字工具, 改善了仪器使用的容易性与耐用性, 也增加了测量的准确性与稳定性. 标准和先进的量测接口, 使外在控制可在欢乐和弹性的环境中达成. 瑞士Lyncee Tec SA公司的数字全息显微镜&ldquo DHM(Digital Holographic Microscopy)是划时代性的高科技技术产品,科学史上第一次, 数字全息显微镜可以直接观测到纳米尺度的分辨率,即时得到样品三维型貌,并且是无接触式的无损测量。DHM 1000 Family将波长630nm的半导体激光分成照射到试料的光和参照光两部分来使用。共包括两大品种,一种是试料反射光与参照光进行干涉的&ldquo R1000 series&rdquo ,另一种是试料透过光与参照光进行干涉的&ldquo T1000 series&rdquo 。照射到试料上的光线与参照光产生的干涉图案使用CCD相机,作为数字数据保存下来,由此算出三维数据。计算三维数据时使用的是专用软件&ldquo Koala Software&rdquo 。 应用: 其主要应用是在MEMS研发中用于测量工作,以及在生产线用于缺陷检测。与上述用途中现在经常使用的共焦显微镜相比,在同行分辨率下能够更高速地进行测量。垂直方向的分辨率为0.6nm,水平方向为200nm~300nm(取决于物镜)。使用1.25倍率的物镜时视野为4mm× 4mm,可以15视野/秒的速度进行测量。因此,1cm见方的试料几分钟即可完成观察。使用现有共焦显微镜时,同等范围的观察则需要几个小时~10小时。 此次的产品最大可将观察速度扩展至1万视野/秒。由于摄影速度快,因此不需除震台,可用来检测流水线上的产品。 u 材料科学 u MEMS/MOEMS 微型词典系统 u Micro-optics 显微光学 u Semiconductor 半导体 u Nanotechnology纳米技术 u 生命科学 u Cellular biology 细胞生物 u Biochips生物芯片 u Bio-sensors生物传感器
  • 光学显微镜灯泡大全 其他金相耗材
    PHILIPS飞利浦卤素灯 型号  规格  通用代码  主要应用  产地 7387  6V10W米泡 ESA/FHD  显微镜  欧洲进口 7388  6V20W米泡  ESB  光学设备  欧洲进口 5761  6V30W米泡      欧洲进口 7027  12V50W米泡  BRL/BCD  内窥镜  欧洲进口 7023  12V100W米泡  FCR  投影仪  欧洲进口 6834  12V100W杯泡    显微镜         欧洲进口 Zeiss蔡司荧光显微镜灯泡 灯泡型号: HBO50W/3HBO50W/ACHBO100W/2HBO103W/2HBO200W/2HBO200W/4 HBO200W XBO75W/2XBO75W/2OFRXBO150W/1XBO150W/1OFRXBO450WOFR OLYMPUS奥林巴斯显微镜灯泡 灯泡机型 LS156V15WBHCBHMBHMJVM-LSG.STM LS306V30WBHABHBIMT 6V10WCHACHB 6V20WCHK2CHSCH20CH30CK2 6V30WBX41BX40CX40CX2IX50BHTCK30/40 12V100WBX12BX50BX60BHS 220V20WSBCHK HBO50WCHCXCX2CK40 HBO100WBX2BXBH2 HBO200W 型号: HBO50W/ACHBO100W/2HBO200W XBO75W/2XBO150W/1OFRBHF Leica莱卡显微镜灯泡 型号: HBO50W/ACHBO1000W/2HBO200WHBO200W/2HBO200W/DCHBO200W/4 XBO75W/2XBO75W/2XBO100WOFRXBO150W/1XBO450WOFR OSRAM荧光显微镜灯泡HBO100W/2HBO100W/2 OLYMPUS倒置显微镜灯泡LS-30 NIKON显微镜灯杯6V20WJCRM6V20W OLYMPUS显微镜灯GB-4GB-4 Leica/Leitz显微镜灯泡仪器型号如下,灯泡型号: ZEISS灯泡39-01-536V25W ZEISS灯泡38-01-776V15W Zeiss荧光显微镜灯泡如表 BAUSCH&LOMB灯泡71-71-506V25W LEICA手术显微镜灯泡38464312V50W OSRAM荧光显微镜灯泡HBO103W/2HBO103W/2 Zeiss显微镜灯泡38-01-776V15W OSRAM荧光显微镜灯泡HBO50WACHBO50W/AC NARVA灯泡551476V25W Nikon荧光显微镜灯泡见表 ZEISS显微镜灯泡6V15W 各品牌显微镜灯泡OLYMPUS/Storz/Zeiss/Leitz/Nicon/Wolf ZEISS定位机灯泡38-61-07SL1206V OLYMPUS倒置显微镜灯泡LS-15 OLYMPUS显微镜灯泡TB-16V5A6V5ATB-1 OLYMPUS荧光显微镜灯泡见表 手术显微镜灯泡12V60W ZEISS灯泡39-01-766V15W 220V30W奥林巴斯灯泡 380018-252012V60W Standard014-380018-1740.6V15W StandardWL-380018-1730.6V15W 380018-2520Zeiss12V60W XTL-3100(E,F)连续变倍体视显微镜灯泡:卤素灯泡12V10W XTJ-4000D体视显微镜灯泡:卤素灯泡12V10W XTX-3C体视显微镜灯泡:卤素灯泡12V10W XTD-6分档变倍体视显微镜灯泡:卤素灯泡12V20W --------------------------------------------- MMDS-SP倒置金相显微镜灯泡:卤素灯泡6V30W D5000透反射倒置金相显微镜灯泡:卤素灯泡6V30W BDS系列(BDS200-FL,BDS200,BDS200-PH)倒置显微镜灯泡:卤素灯泡12V20W -------------------------------------------- MDJ系列金相显微镜灯泡:卤素灯泡6V/20W MIT100反射金相显微镜灯泡:6V20W卤素灯 MC006-6XB正置三目金相显微镜灯泡:卤素灯泡6V20W MPC-850金相显微镜灯泡:卤素灯泡6V20W MC006-5XB正置双目金相显微镜灯泡:卤素灯泡6V20W 6XB-PC型金相显微镜灯泡:卤素灯泡6V20W MDS-SP金相显微镜灯泡:卤素灯泡6V/30W, MDS系列实验室倒置金相显微镜6V/30W ------------------------------------------- SMZ-B2双目体式显微镜灯泡:卤素杯灯12V/15W XTD-406B体视显微镜灯泡:卤素灯泡12V10W XTD-406C体视显微镜灯泡:卤素灯泡12V10W XTJ-4400体视显微镜灯泡:卤素灯泡12V10W XTL3400体视显微镜灯泡:卤素灯泡12V10W XTL-2600体视显微镜灯泡:卤素灯泡12V10W XTL-2400体视显微镜灯泡:卤素灯泡12V10W XTJ4600体视显微镜灯泡:卤素灯泡12V10W --------------------------------------------- XLE-1大平台金相检测显微镜灯泡:卤素灯泡6V20W XLE-2大平台金相检测显微镜灯泡:卤素灯泡6V20W XLE—3大平台金相检测显微镜灯泡:卤素灯泡12V/50W ---------------------------------------------- BK-POL偏光显微镜灯泡:卤钨灯泡12V50W BK-POLR偏光显微镜灯泡:卤钨灯泡12V50W XPT-7单目偏光显微镜灯泡:卤钨灯泡灯泡:6V15W XP400D型偏光显微镜灯泡:卤钨灯泡6V20W XP400B型偏光显微镜灯泡:卤钨灯泡6V20W XP400C型偏光显微镜灯泡:卤钨灯泡6V20W POL-280偏光显微镜灯泡:卤钨灯泡12V20W XP500C偏光显微镜灯泡:6V15W XP1D实验室透射偏光显微镜灯泡:卤钨灯泡6V15W 59X普及偏光显微镜灯泡:卤钨灯泡12V30W ---------------------------------------------- BK-FL24荧光显微镜泡:卤素灯泡6V20W BK-FL4荧光显微镜泡:卤素灯泡6V20W 奥林巴斯BX51-FL荧光显微灯泡:卤素灯泡12V100W ------------------------------------------------ XSP-15C生物倒置显微镜灯泡:卤素灯泡12V50W SMART系列生物显微镜灯泡:卤素灯泡6V20W 奥林巴斯CX21生物显微镜灯泡:卤素灯泡6V20W 奥林巴斯CX41/CX31系列生物显微镜灯泡:卤素灯泡6V30W XDS1C电脑型倒置生物显微镜灯泡:卤素灯泡12V50W XDS1D数码型倒置生物显微镜灯泡:卤素灯泡12V50W. 万能研究级正置奥林巴斯BX41生物显微镜灯泡:卤素灯泡6V30W L1100型生物显微镜灯泡:卤素灯泡6V20W
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制