当前位置: 仪器信息网 > 行业主题 > >

热分析联用仪

仪器信息网热分析联用仪专题为您提供2024年最新热分析联用仪价格报价、厂家品牌的相关信息, 包括热分析联用仪参数、型号等,不管是国产,还是进口品牌的热分析联用仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热分析联用仪相关的耗材配件、试剂标物,还有热分析联用仪相关的最新资讯、资料,以及热分析联用仪相关的解决方案。

热分析联用仪相关的仪器

  • 仪器简介:PerkinElmer 全新推出的同步热分析产品系列可在单台紧凑型设备中实现重量信号和热流信号的同步监测,赋予您双倍的热分析能力,满足您不同的需求。PerkinElmer 的同步热分析仪 (STA) 产品系列可实时监测样本重量以及热流信号随温度或者时间变化曲线。凭借独创的传感器技术和紧凑型炉体设计,我们的 STA 仪器可以胜任从常规品质检测到科学研究等各个领域。因此,无论您从事的是无机物材料表征、聚合物结构剖析、亦或是油品品质检测工作,STA 8000 系列产品将差热分析技术(DTA 或 DSC)与久经验证的热重分析 (TGA) 技术完美融合,您都可以获得可靠的测试结果和明确的数据阐释。技术参数:精确控温量热能力:STA 系列同步热分析仪具有宽广的工作温度区间,最低工作温度达 15º C,从而能够捕获完整的水分或溶剂挥发过程.卓越的热分析性能,高效的检测通量:本着高效的原则,STA 系列同步热分析仪均采用了垂直式炉体和天平设计方案,易于装卸样品。另外,该款仪器还集成了气体质量流量控制器,操作者可在软件中方便的进行气体流速的控制以及气体种类的切换,量热灵活性:STA 系列同步热分析仪外观小巧、结构紧凑,能够同时进行 TGA 和 DTA/DSC 测量,可为众多应用领域提供高质量的热分析数据。仪器配有质量流量控制器,可以根据您的分析需求保持稳定且精确的气体流速;如果您需要进行气体切换,Pyris 软件可以方便的将切换步骤编入温控程序中,全自动的进行气体切换操作。主要特点:强大的拓展能力联用分析技术往往可以有效简化数据分析的难度,而 PerkinElmer 提供多种不同的分析技术(红外、气质联用等等),均可以与 STA 8000 搭建联机工作站。此外,您也可以选择定制接口将其它制造商的实验室设备连接到您的 PerkinElmer STA 上。众多选择无论您从事何种行业,PerkinElmer 都能为您定制全套解决方案。高度集成STA 8000 仪器可选配自动进样器,满足您连续测试的要求,您可以在 Pyris 软件中独立的为自动进样器进行编程(Player List)。软件可以自动监测轻质炉体内的温度,并在 STA 6000/8000 准备就绪之后自动载入下一个样品进行测试。
    留言咨询
  • 到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的同步热分析仪TGA/DSC 1专业型具有很强的测试性能和经久耐用的可靠性。热重分析的核心是天平单元,TGA/DSC 1专业型同步热分析仪采用世界最好的梅特勒托利多微量或超微量天平。并采用双铂铑热电偶DSC传感器,同时测量热流变化。TGA/DSC 1专业型同步热分析仪可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC1专业型同步热分析仪是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。同步热分析仪技术参数:仪器型号:TGA/DSC 1同步热分析仪专业型温度范围:室温~1100° C或~1600° C天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)传感器热电耦数量:2对Pt-Pt/Rh热电偶量热温度分辨率:0.0001℃量热准确度(金属标样):2%同步热分析仪主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品温度范围广&ndash 从室温到1100或1600℃同步DSC 热流测量&ndash 同步测定热效应,灵敏度高密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要同步热分析仪应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。同步热分析仪主要型号: TGA/DSC1到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪查看更多信息咨询电话:4008-878-788
    留言咨询
  • 到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪早在1964年,梅特勒就上市了世界上第一台商品化的高温TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的高温热重分析仪TGA/DSC1/1600以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析仪的核心是天平单元,TGA/DSC1/1600热重分析仪采用世界最好的梅特勒托利多微量或超微量天平。并采用单盘SDTA传感器,可同时测量热流(模拟计算得到),这样可用金属标样的熔点来精确校准仪器。TGA/DSC1/1600热重分析仪可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,高温热重分析仪TGA/DSC1/1600 是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。热重分析仪技术参数:仪器型号:高温热重分析仪TGA/DSC1/1600温度范围:室温~1600° C温度准确性:+/-0. 5℃天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)空白曲线重复性:+/-10µ g(全程温度)热重支架:单盘含1对Pt-Pt/Rh热电偶热重分析仪主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品同步DSC 热流测量(模拟计算) &ndash 可精确校准温度密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要热重分析仪应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。热重分析仪主要型号: TGA/DSC1/1600到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪查看更多信息咨询电话:4008-878-788
    留言咨询
  • 到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善、提高,最新的热重分析仪TGA/DSC1/1100以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析仪的核心是天平单元,TGA/DSC1/1100采用世界最好的梅特勒托利多微量或超微量天平。并采用单盘SDTA传感器,可同时测量热流(模拟计算得到),这样可用金属标样的熔点来精确校准仪器。TGA/DSC1/1100可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,热重分析仪TGA/DSC1/1100 是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。技术参数:温度范围:室温~1100° C温度准确性:+/-0.25℃天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)空白曲线重复性:+/-10µ g(全程温度)热重支架:单盘含1对Pt-Pt/Rh热电偶主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品同步DSC 热流测量(模拟计算) &ndash 可精确校准温度密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。 主要型号: TGA/DSC1/1100到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪 查看更多信息咨询电话:4008-878-788
    留言咨询
  • 仪器简介:早在1964年,梅特勒托利多就上市了品牌首台商品化的TGA/DTA同步热分析仪。50多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,新版本的同步热分析仪TGA/DSC 3+于2015年5月8日正式在中国上市,以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 3+采用梅特勒托利多微量或超微量天平。并采用新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒托利多在同步热分析仪pinp技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 3+可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC 3+是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。 主要特点:● 梅特勒托利多超微量天平–依赖出色的天平技术● 热重分析高分辨率–对整个测量范围的超微克分辨率● 高效自动化–选配非常可靠的自动进样器能处理大量样品 ● 温度范围广–从室温到1100或1600℃● 同步DSC 热流测量–同步测定热效应,灵敏度高● 密闭测量单元–确保完全定义的测量环境;确保真空度 ● 联用技术–联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试 ● 模块化概念–量身定制的解决方案满足当前和以后的需要技术参数:● 仪器型号:TGA/DSC 3+同步热分析仪专业型● 温度范围:室温~1100°C或~1600°C● 天平灵敏度:0.1μg或0.01μg● 传感器热电耦数量:6对Pt-Pt/Rh热电偶● 量热温度分辨率:0.00003℃● 量热准确度(金属标样):1% 应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。
    留言咨询
  • 仪器简介:早在1964年,梅特勒托利多就上市了品牌首台商品化的TGA/DTA同步热分析仪。50多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,新版本的同步热分析仪TGA/DSC 3+于2015年5月8日正式在中国上市,以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 3+采用梅特勒托利多微量或超微量天平。并采用新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒托利多在同步热分析仪pinp技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 3+可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC 3+是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。 主要特点:● 梅特勒托利多超微量天平–依赖出色的天平技术● 热重分析高分辨率–对整个测量范围的超微克分辨率● 高效自动化–选配非常可靠的自动进样器能处理大量样品 ● 温度范围广–从室温到1100或1600℃● 同步DSC 热流测量–同步测定热效应,灵敏度高● 密闭测量单元–确保完全定义的测量环境;确保真空度 ● 联用技术–联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试 ● 模块化概念–量身定制的解决方案满足当前和以后的需要技术参数:● 仪器型号:TGA/DSC 3+同步热分析仪专业型● 温度范围:室温~1100°C或~1600°C● 天平灵敏度:0.1μg或0.01μg● 传感器热电耦数量:6对Pt-Pt/Rh热电偶● 量热温度分辨率:0.00003℃● 量热准确度(金属标样):1% 应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。
    留言咨询
  • 仪器简介:早在1964年,梅特勒托利多就上市了品牌首台商品化的TGA/DTA同步热分析仪。50多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,新版本的同步热分析仪TGA/DSC 3+于2015年5月8日正式在中国上市,以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 3+采用梅特勒托利多微量或超微量天平。并采用新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒托利多在同步热分析仪pinp技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 3+可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC 3+是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。 主要特点:● 梅特勒托利多超微量天平–依赖出色的天平技术● 热重分析高分辨率–对整个测量范围的超微克分辨率● 高效自动化–选配非常可靠的自动进样器能处理大量样品 ● 温度范围广–从室温到1100或1600℃● 同步DSC 热流测量–同步测定热效应,灵敏度高● 密闭测量单元–确保完全定义的测量环境;确保真空度 ● 联用技术–联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试 ● 模块化概念–量身定制的解决方案满足当前和以后的需要技术参数:● 仪器型号:TGA/DSC 3+同步热分析仪专业型● 温度范围:室温~1100°C或~1600°C● 天平灵敏度:0.1μg或0.01μg● 传感器热电耦数量:6对Pt-Pt/Rh热电偶● 量热温度分辨率:0.00003℃● 量热准确度(金属标样):1% 应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。
    留言咨询
  • TGA 的核心是天平。 我们的 TGA 仪器采用梅特勒托利多微量和超微量天平。 如果想在测量重量变化的同时同步测量热流变化, 您可以在三种不同的传感器中选择配置。 由于采用模块化设计,TGA/DSC 2 是理想的人工或自动操作仪器,可应用于从生产到质量保证和技术研发。高分辨率 – 对整个测量范围的超微克级分辨率DSC 热流测量法 - 用于同时检测热效应模块化概念 — 根据当前和未来需要量身打造的解决方案 天平自动化电极TGA- 吸附逸出气体分析 规格 - TGA/DSC 2 — 热重及同步热分析仪温度范围RT ...1100 °C 或 1600 °CHeating rate (LF/SF)0.02…150/250 K/minDynamic weighing range1/5 g(取决于型号)天平分辨率0.1/1 μg(取决于型号)Weighing accuracy0.005%Weighing precision0.0025%物料号 (s)30064101, 30064104, 30064105 创新技术TGA/DSC 2 的特点与优点 — 热重及同步热分析仪 梅特勒托利多超微量天平 – 依赖出色的天平技术供应商 高效自动化 – 非常可靠的自动进样器提供大量样品的测试 广泛的测量范围 – 大小样品均可测量 宽温度范围 – 分析样本的温度从室温到 1600 °C DSC 热流测量法 - 用于同时检测热效应 联用技术 – 联用 MS、FTIR 或 GC/MS 进行逸出气体分析 模块化概念 — 根据当前和未来需要量身打造的解决方案
    留言咨询
  • 精工是水平双臂式TG/DTA技术的先驱,EXSTAR系列TG/DTA以其卓越的性能及出色的性价比赢得了包括清华大学、北京大学、中科院、索尼、普利斯通等国内外众多用户的青睐及好评,可以通过检测每一步的样品质量损失来完成分解温度、组分分析、可燃性、氧化稳定性、相转变温度及热焓,熔融结晶,反应热等的分析与检测。精工EXSTAR系列TG/DTA仪器具有以下的特点:理想的环境控制技术 水平双臂式天平设计保证气流与称量的方向垂直,这就使得由吹扫气流的流量(即使在1000mL/min的快速吹除条件下)而产生的浮力效应、对流效应及气体密度变化对重量变化的影响降至最小。 仪器可在吹扫气体流量为1000mL/min的条件下操作,基线平稳, 提供准确可靠的测量结果。高灵敏度和准确度 EXSTAR TG/DTA提供漂移小而又稳定的基线,保证高灵敏度和准确的测量。精工先进的数字控制技术有效的控制温度过冲并具有快速响应的性能。 高品质的自动进样器 EXSTAR TG/DTA可以与AST-2自动进样器配合使用,实现全自动的无人操作。最*大30组的样品位置和机械手设计使得仪器具有不可超越的全自动操作性能及可靠性。 预校正功能 EXSTAR TG/DTA通过试用高纯度的金属标准物,提供温度直接校正功能和预校正功能。热电偶直接与样品平台面接触,保证温度数据最*大的真实性。多点预校正保证在较宽的温度范围内获得最准确的温度数值。 单插式水平双臂式天平设计 专利技术设计的单插式水平双臂式天平使得用户可以自己轻松地更换天平臂。轻质的天平臂确保EXSTAR TG/DTA具有高的灵敏度和稳定性。 反应性气体的处理 具有反应性或腐蚀性的气体可以通过单独的进气口进入系统,确保腐蚀性气体不对仪器内部产生由腐蚀而带来的不良因素。 速率控制热分析(CRTA) 速率控制热分析是以调整温度程序,以得到线形的分解速度的精工固有技术。 专利技术的“高速公路”(HighWay)技术 Highway TA技术通过尖*端的数学方法来模拟不同升温速度下的测量结果,并将重合曲线进行分离。可将样品在一定的升温速率下测量曲线,变换成仪器无法实现的升温速率下的曲线,如拟合成非常低或非常高的升温速率(0.001℃min或100000℃min)条件下的数据。该专利技术可以预测样品在不同升温速率条件下的变化,简化动力学计算并提高仪器的灵敏度和分辨率,同时缩短测试时间。随仪器标准配置的软件,包括: 1)TGA/DTA(DSC)测试软件 2)TGA/DTA(DSC)分析软件 3)高分辨率TGA软件 4)可控制转化速率热分析(CRTA)软件 5)专利技术的“高速公路”(HighWay)软件 6)动力学软件技术参数:1. 温度范围:室温-1500゜C(样品实际能够达到的测试温度) 2. 加热速率:0.01-100゜C/min 3. 冷却速率:15分钟内由1000゜C降到50゜C 4. TGA灵敏度:0.2μg 5. DTA灵敏度:0.06μV 6. 载气流量:0-1000ml/min 7. 气体环境:空气、惰性气体、真空(10E-2Torr) 8. 自动进样器:最*大30组可选用自动进样器 9. 分析软件:精工MUSE测试分析软件,可控制转化速率热分析(CRTA)软件,专利技术的“高速公路”(HighWay)软件主要特点:水平双臂天平——通过采用水平双臂式天平技术最*大限度地减少浮力、对流效应对天平称量的影响 独特的小炉体——独特的小炉体设计,具有快速的升降温速度 超大吹扫气流——可采用大流量(1000mL/min)的载气带走反应气体产物,避免炉体污染 先进控制技术——精工先进的数字控制技术有效的控制温度过冲,并改善基线的稳定性 可选联用技术——可与 MS、FTIR等联用,分析逸出气体 人性化的界面——精工EXSTAR系列热分析仪器特有的MUSE软件,为客户提供人性化的操作和分析界面专 Highway技术——精工独有的Highway TA专利技术,从现有数据外推更快或更慢升温速率下的结果,缩短测试时间,并可获得仪器无法实现的升温速率下的曲线(如0.001或100000゜C/min)
    留言咨询
  • 早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的同步热分析仪TGA/DSC 1至尊型以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 1至尊型采用世界最好的梅特勒托利多微量或超微量天平。并采用独一无二的新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒托利多在同步热分析仪技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 1至尊型可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC1至尊型 是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。技术参数:仪器型号:TGA/DSC 1同步热分析仪专业型温度范围:室温~1100° C或~1600° C天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)传感器热电耦数量:6对Pt-Pt/Rh热电偶量热温度分辨率:0.00003℃量热准确度(金属标样):1%主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品温度范围广&ndash 从室温到1100或1600℃同步DSC 热流测量&ndash 同步测定热效应,灵敏度高密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。主要型号: TGA/DSC1 查看更多信息咨询电话:
    留言咨询
  • 高灵敏度的水平差动式天平设计及先进的数字化控制技术,使得TG基线的稳定性得到提高。能够准确地检测出μg级变化的TG/DTA。特点:1. 实现了基线稳定性的提高与噪声水平的降低新开发的“数字化水平差动式”技术,除实现了基线稳定性的大幅度提高和噪声水平的降低外,还对仪器固有的特性进行自动校正,确保得到稳定的测量数据。 ● TG/DTA结构图 ●基线稳定性2. 温度追随性与加热冷却速度的提高新开发的温度控制和新冷却方式“FRONT STREAM结构”技术、通过低热容量,大幅度提高了温度追随性和加热冷却速率的高效化。 ●加热冷却速度的提高3. 自动进样器可追加新型自动进样器和质量流量计。自动进样器可以对应50个样品的自动测定。如果同事使用自动分析软件,还可实现从测定到分析,数据输出环节的自动化。4. 「Real View TG/DTA」样品实时观察系统STA72000RV,最*高可在1000 °C下进行Real View测定(样品观察测定)。RV-3TG样品观察系统可与自动进样器同时使用,实现自动测量。RV系统装载了高像素的摄像头,可以指定测量画面并放大,由此获得微小的变化。另外,使用测量工具可以明确尺寸变化。5.TG联用开发出TG-MS专用接口,装卸容易,易于TG/DTA单机或联用使用状态的切换;新传输系统,最*高可保持350℃的endurance,可将样品产生的气体高效传输到离子化部,从而提高检测灵敏度;使用于氧气气氛,可在惰性气体,氧气气氛中进行TG-MS测定。注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途
    留言咨询
  • 耐驰 STA/TG-MS 热分析与质谱联用系统 应用领域:- 材料分解机理- 氧化还原反应- 气- 固反应- 燃烧产物- 溶剂残留量- 前驱体反应- 挥发,脱气 耐驰 STA/TG-MS 热分析与质谱联用系统 产品特点:- 热重单元顶部装样立式结构,逸出产物无损失- 单步减压- 逸出气体传输全过程加热,避免冷凝- 拥有极高的检测灵敏度- 逸出产物可定量分析- 可以三维形式呈现MS信号和热分析数据- 全内核化软件,全自动软硬件同步触发工作 耐驰 STA/TG-MS 热分析与质谱联用系统 技术参数:STA/TG-MS质量范围1 … 300amu(毛细管)1 … 1024amu(SKIMMER)连接温度RT … 350°C(毛细管)RT … 2000°C(SKIMMER)质谱仪与热分析仪同步测量,亦可单独使用专利技术SKIMMER,尤其适合大分子研究详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 耐驰 STA/TG-GC-MS 热分析与气质联用系统 应用领域:- 材料分解机理- 氧化还原反应- 气- 固反应- 燃烧产物- 溶剂残留量- 前驱体反应- 挥发,脱气 耐驰 STA/TG-GC-MS 热分析与气质联用系统 产品特点:- 热重单元顶部装样立式结构,逸出产物无损失- 逸出气体传输全过程加热,避免冷凝- 全内核化软件,全自动软硬件同步出发工作- 独特的事件触发模式 耐驰 STA/TG-GC-MS 热分析与气质联用系统 技术参数:STA/TG-GC-MS连接温度RT … 350°C独特的事件驱动触发模式:将GC进样过程和热失重“事件”相关联,在失重过程中自动管理GC进样过程采用特制的气体传输管,将TGA/STA连接至GC的六通阀箱气体传输路径,包括接口、传输管和阀箱,均加热至高温,有效避免气体冷凝热分析仪、GC-MS均可独立操作使用详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 耐驰 STA/TG-FTIR 热分析与红外联用系统 应用领域:- 材料分解机理- 氧化还原反应- 气-固反应- 燃烧产物- 溶剂残留量- 前驱体反应- 挥发,脱气 耐驰 STA/TG-FTIR 热分析与红外联用系统 产品特点:- 热重单元顶部装样立式结构,逸出产物无损失- 逸出气体传输全过程加热,避免冷凝- 全内核化软件,全自动软硬件同步触发工作 耐驰 STA/TG-FTIR 热分析与红外联用系统 技术参数:STA/TG-FTIR连接温度RT … 350°C气路设计合理,避免冷凝载气流速低,稀释效应小气体滞留时间短检测灵敏度高红外光谱仪与热分析仪同步测量,亦可单独使用详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 北京恒久热重/TG-FTIR 热分析与红外联用系统 应用领域:-生物学-工程与技术科学基础学科-材料科学-纺织科学技术北京恒久热重/TG-FTIR 热分析与红外联用系统 产品特点:将热重分析仪(TG)与红外光谱仪(IR)联用是目前最常用的逸出气体分析(EGA)手段之一。通过热重加热样品,样品会因挥发物的存在或者燃烧分解出气体,这些气体被传输到红外收集池中加以识别,红外光谱的分析可以检测功能基团,可以更好地对热重结果进行分析。使用联用仪器分析时,重要的是确保从热重分析仪中出来的所有挥发分或者产物气体能够全部进入到红外收集池中,我们不仅可以提供一个完整的服务和支持系统,更有相关的专家和经验帮助您有效地使用。我公司自主研发的恒温控制装置包括:恒温红外连接头、恒温带、恒温电控箱,可充分保证挥发分和各种反应产物气体能够全部进入到红外收集池中进行红外检测。不同于简单地将气体从热重中移出,恒温控制装置的设计在于保证TG中逸出的物质通过热态保温被完全输送到红外检测中,可避免TG中逸出的物质通过外界环境的骤冷而发生固/液相的转变,从而无法进行全组分的分析。
    留言咨询
  • 耐驰 STA/TG-FTIR-GC-MS 热分析与红外气质联用系统 应用领域:- 材料分解机理- 氧化还原反应- 气- 固反应- 燃烧产物- 溶剂残留量- 前驱体反应- 挥发,脱气 耐驰 STA/TG-FTIR-GC-MS 热分析与红外气质联用系统 产品特点:- 热分析单元可与FTIR、GC-MS并联联用- FTIR、GCMS气路独立,无相互影响- 热重单元顶部装样立式结构,逸出产物无损失- 逸出气体传输全过程加热,避免冷凝- 全内核化软件,全自动软硬件同步触发工作- 独特的事件触发模式 耐驰 STA/TG-FTIR-GC-MS 热分析与红外气质联用系统 技术参数:STA/TG-FTIR-GC-MS连接温度RT … 350°C气路设计合理,避免冷凝载气稀释效应小气体滞留时间短检测灵敏度高红外光谱仪、气相色谱-质谱联用仪可与热分析仪同步测量,亦可单独使用气相色谱-质谱联用仪独特的事件驱动触发模式详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 耐驰 STA/TG-FTIR-MS 热分析与红外质谱联用系统 应用领域:- 材料分解机理- 氧化还原反应- 气- 固反应- 燃烧产物- 溶剂残留量- 前驱体反应- 挥发,脱气 耐驰 STA/TG-FTIR-MS 热分析与红外质谱联用系统 产品特点:- 热分析单元可与FTIR、MS并联联用- FTIR、MS气路独立,无相互影响- 热重单元顶部装样立式结构,逸出产物无损失- 逸出气体传输全过程加热,避免冷凝- 全内核化软件,全自动软硬件同步触发工作 耐驰 STA/TG-FTIR-MS 热分析与红外质谱联用系统 技术参数:STA/TG-FTIR-MS质量范围1 … 300amu连接温度RT … 350°C气路设计合理,避免冷凝载气稀释效应小气体滞留时间短检测灵敏度高红外光谱仪、质谱仪可与热分析仪同步测量,亦可单独使用详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 完整设计的 QMS 403 A?olos Quadro 可与 TGA、STA、DSC、DIL 系统联用QMS 403 A?olos Quadro 四级杆质谱是一款紧凑型的新型质谱仪,带有可加热的毛细管入口系统,既可用于常规气体分析,更是特别适合于热分析挥发性分解产物的分析。这套系统的优化设计使其可以连接到不同仪器,如 DSC、TGA、DIL。优化的气流设计有利于联用• 单步减压• 300°C 加热(可选350°C)可以有效降低整个气体传输管线上的局部“冷点”• 加热腔体,可以便捷、精确调节石英玻璃毛细管入口到 QMS 的距离• 设计灵活,可以进行标准热分析测量,也可以与 TGA、MS(GC-MS)、MS-FTIR 同步测量• 结实耐用、维护便捷,具有高灵敏度(可检测 μg 级别失重)• TGA-MS 可以在湿度气氛下测试• 带有预过滤器的双曲面四级杆系统可以改进高质量数(大分子)的传输,也有利于改进低质量数(如 H2、He)的检测灵敏度• 配备分立二发射极和集成式法拉第杯的 SEM 具有高的动态范围,和长的使用寿命• 可以三维形式呈现 MS 信号和热分析数据• 通过 Proteus 软件进行操作和数据分析 完善的加热传输系统和单步减压设计,可以实现无冷凝的气体传输加热至较高温度的气体传输系统,以及无减压孔的设计,可以有效避免分解产物的冷凝,保证了高的检测灵敏度,便于定量分析所识别的气体。带毛细管的入口系统还可以用于其他来源的气体(非热分析系统产生的逸出气体)分析。NETZSCH 热分析设计NETZSCH 热分析设备在设计阶段就考虑到了联用分析的可行性,在过去 40 多年中,每一次开发新产品都会考虑并优化气体传输路径:从炉体出气口、到适配器和毛细管、再到达 QMS 进气口。如今,由于冷凝导致的气体损失几乎完全被消除,只需很小的载气流量就可以将气体产物完全带出,对样品释放的挥发产物稀释程度最小,从而可以确保 TGA/STA/DIL- QMS 403 A?olos Quadro 联用系统具有高的检测灵敏度。 QMS 403 A?olos Quadro 联用的应用分解 ①脱水 ②稳定性 ③残余 ④溶剂热解气固反应 ①燃烧 ②氧化 ③ 腐蚀 ④吸附 ⑤ 脱附 ⑥催化组分分析 ①聚合物含量 ②成分计算 ③粘结剂烧失 ④脱蜡 ⑤灰分蒸发 ①蒸气压 ②升华QMS 403 A?olos Quadro - 技术参数(持续更新中)质量范围:1u ~ 300u, 可选配 512u,带自动调谐功能离子源:Cross beam El阴极/灯丝:两个涂覆 Y2O3 的铱阴极检测器:带分立二次发射极和集成式法拉第杯的 SEM真空系统:带 4 级隔膜泵的涡轮分子泵(无油)毛细管:石英玻璃(最高 300°C),可选不锈钢(最高 350°C),带加热线圈,方便更换可控温度的适配连接头:毛细管与 QMS 入口系统加热最高温度 300°C(可选350°C)减压方式:单级,从 103mbar 到 5x10-6mbar,无孔锥QMS 测量模式:模拟扫描、柱状图扫描、多离子跟踪QMS 403 A?olos Quadro - 软件功能Proteus 软件能够控制 QMS 403 A?olos Quadro 和热分析仪,这两种方法的操作控制和数据采集都通过同一个软件实现。单独编辑定义热分析相关参数(如温度程序、升温速率等)和质谱相关参数(如质量数范围、扫描方式等)同步开始或停止联用测试在 Proteus 软件中分析 MS 结果以 3D 图形式显示温度、TGA/DSC 曲线、质量数轨迹图之间的关系,包括峰值确定、不同配色主题与表面视角质谱数据可导出成 NIST 格式,便于在 NIST 数据库进行检索识别QMS 403 A?olos Quadro - 应用实例Nd2(SO4)3*5H2O 逸出气体分析29.53 mg 的 Nd2(SO4)3*5H2O 在氮气气氛、10 K/min 升温速率下加热至 1400°C。MID 曲线包括水、氧与二氧化硫三种气态产物,与 TG 曲线上的相应失重台阶对应的很好。硅晶 - 有机污染下图实例使用综合热分析仪 STA449F1 Jupiter 与四极质谱仪 QMS 403 D A?olos 相联用,对硅晶片上的微量有机污染物进行了鉴定。测量使用 1.6g 的大体积样品,放到氧化铝坩埚(5ml)中,在混合空气气氛下、以 10K/min 的升温速率加热至 800°C。由于有机成分的释放,使得样品在 700°C 之前出现了两个非常小的质量失重台阶(0.002% 和 0.008%)。作为演示,下图仅示出核质比 m/z 15, 51 和 78。硅晶的 STA-MS 测量:500-800℃之间的失重台阶产生 m/z 15, 78, 51钴酸锂正极材料 -- 热稳定性(QMS)钴酸锂被广泛地用作锂离子电池的正极材料。在设计内在更安全、更高效的电池系统时,该正极材料的热稳定性也是一个重要因素。在本例中,经过脱锂的钴酸锂材料从纽扣电池中取出,放入 NETZSCH STA449F1 Jupiter 与 QMS 403 Aeolos Quadro 联用设备中进行分析。正极材料在升温过程中显示有几个离散的分解台阶。在联用质谱的帮助下,可以很容易地理解材料的分解路径,以及正极材料经过循环后的深层结构变化。
    留言咨询
  • 耐驰 STA/TG-MS 逸出气联用分析系统 可用于:(1)材料分解机理;(2)氧化还原反应;(3)气-固反应;(4)燃烧产物;(5)溶剂残留量;(6)前驱体反应;(7)挥发,脱气。 耐驰 STA/TG-MS 逸出气联用分析系统 主要特点:• 热重单元顶部装样立式结构,逸出产物无损失• 单步减压• 逸出气体传输全过程加热,避免冷凝• 拥有极高的检测灵敏度• 逸出产物可定量分析• 可以三维形式呈现MS信号和热分析数据• 全内核化软件,全自动软硬件同步触发工作 耐驰 STA/TG-MS 逸出气联用分析系统 技术参数:• 质量范围:1 … 300amu(毛细管);1 … 1024amu(SKIMMER)• 连接温度:RT … 350°C(毛细管);RT … 2000°C(SKIMMER)• 质谱仪与热分析仪同步测量,亦可单独使用• SKIMMER技术,尤其适合大分子研究
    留言咨询
  • 耐驰 STA/TG-FTIR 逸出气联用分析系统 可用于:(1)材料分解机理;(2)氧化还原反应;(3)气-固反应;(4)燃烧产物;(5)溶剂残留量;(6)前驱体反应;(7)挥发,脱气。 耐驰 STA/TG-FTIR 逸出气联用分析系统 主要特点:• 热重单元顶部装样立式结构,逸出产物无损失• 逸出气体传输全过程加热,避免冷凝• 全内核化软件,全自动软硬件同步触发工作 耐驰 STA/TG-FTIR 逸出气联用分析系统 技术参数:• 连接温度:RT … 350°C• 气路设计合理,避免冷凝 • 载气流速低,稀释效应小 • 气体滞留时间短 • 检测灵敏度高 • 红外光谱仪与热分析仪同步测量,亦可单独使用
    留言咨询
  • 耐驰 STA/TG-GC-MS 逸出气联用分析系统 可用于:(1)材料分解机理;(2)氧化还原反应;(3)气-固反应;(4)燃烧产物;(5)溶剂残留量;(6)前驱体反应;(7)挥发,脱气。耐驰 STA/TG-GC-MS 逸出气联用分析系统 主要特点:• 热重单元顶部装样立式结构,逸出产物无损失• 逸出气体传输全过程加热,避免冷凝• 全内核化软件,全自动软硬件同步出发工作• 独特的事件触发模式 耐驰 STA/TG-GC-MS 逸出气联用分析系统 技术参数:• 连接温度:RT … 350°C• 独特的事件驱动触发模式:将GC进样过程和热失重“事件”相关联,在失重过程中自动管理GC进样过程• 采用特制的气体传输管,将TGA/STA连接至GC的六通阀箱• 气体传输路径,包括接口、传输管和阀箱,均加热至高温,有效避免气体冷凝• 热分析仪、GC-MS均可独立操作使用
    留言咨询
  • 1、仪器简介差示扫描量热法(DSC)这项技术一直被广泛应用。差示扫描量热仪既是一种例行的质量测试工具,也是一个研究工具。测量的是与材料内部热转变相关的温度、热流的关系。我公司的仪器为热流型差示扫描量热仪,具有重复性好、准确度高的特点,特别适合用于比热的精确测量。该设备易于校准,使用难度低,快速可靠,应用范围非常广,特别是在材料的研发、性能检测与质量控制上。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。我公司有多种类型差示扫描量热仪,客户根据实验参数以及实验需求选择不同的型号。差示扫描量热仪应用范围有: 高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度等。不同型号的仪器,测试不同的指标。2、产品特点:2.1全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片;2.2仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便;2.3采用 Cortex-M3 内核 ARM 控制器,运算处理速度更快,温度控制更加精准;2.4采用 USB 双向通讯,操作更便捷,采用 7 寸 24bit 色全彩 LCD 触摸屏,界面更友好;2.5采用专业合金传感器,更抗腐蚀,抗氧化;2.6支持中/英文切换。 2.7原始数据保存,分析,分析之后数据保存。 2.8超高灵敏度,源自于更平的基线和更好的信噪比. 2.9支持温度校准,调入基线,多点校准. 2.10试验进行中,可查看实时数据。 2.11支持时间/温度,(热流率 dH/dt)/温度切换。 2.12智能软件可自动记录 DSC 曲线进行数据处理、打印实验报表. 2.13数据支持导出 txt,excel,bmp 图片格式 2.14支持曲线分析,平滑,放大,缩放功能。 2.15支持多曲线打开,便于实验的重复性比较。3、仪器参数:3.1 全新的炉体结构,更好的解析度和分辨率以及基线稳定性;3.2 仪器下位机数据实时传输,界面友好,操作简便。DSCDSC-214DSC-204DSC-404DSC-214HDSC-404HDSC量程0~±600mW温度范围RT~600℃-40℃~-600℃-150℃~-600℃RT~600℃(带降温扫描)-150℃~600℃(带降温扫描)升温速率0.1~100℃/min温度精确度±0.01℃温度准确度0.001℃温度波动±0.01℃温度重复性±0.1℃DSC精确度0.001mWDSC解析度0.001mW工作电源AC220V/50Hz或定制控温方式升温、恒温、降温(全程序自动控制)程序控制可实现六段升温恒温控制,特殊参数可定制曲线扫描升温扫描、降温扫描、曲线扫描气氛控制两路自动切换(仪器自动切换)气体流量0-300mL/min(可定制其它量程)气体压力≤0.55MPa显示方式24bit色7寸LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质(锡),用户可自行矫正温度和热焓仪器热电偶三组热电偶,一组测试样品温度,一组测试内部环境温度,一组炉体过热自检传感器软 件带有温度多点校正功能设备尺寸500*500*300(mm)(长宽高)备注所有技术指标可根据用户需求调整作为现代仪器分析方法的一个重要分支,热分析方法在许多领域中获得了越来越广泛的应用。在经历了一百多年的发展之后,热分析方法已经逐渐发展成为与色谱法、光谱法、质谱法、波谱法等仪器分析方法并驾齐驱的一类重要的分析手段。热分析方法除了可以用来广泛地研究物质的各种转变(如玻璃化转变、固相转变等)和反应(如氧化、分解、还原、交联、成环等反应)之外,还可以被用来确定物质的成分、判断物质的种类、测量热物性参数(如热膨胀系数、比热容、热扩散系数)等。迄今为止,热分析方法已在矿物、金属、石油、食品、医药、化工等与材料相关的领域中获得了广泛的应用。热分析是研究物质的物理过程与化学反应的一种重要的实验技术。这种技术是建立在物质的平衡状态热力学和非平衡状态热力学以及不可逆过程热力学和动力学的理论基础之上的,该方法主要通过精确测定物质的宏观性质如质量、热量、体积等随温度的连续变化关系来研究物质所发生的物理变化和化学变化过程。根据所测量性质的不同,各种热分析技术之间也存在着不同程度的差异,通常根据其测量的性质来对每一种热分析技术进行分类。我国于2008年5月发布并于2008年11月开始实施的国家标准《热分析术语》(GB/T6425—2008)对热分析技术的定义为:“在程序控制温度和一定气氛下,测量物质的某种物理性质与温度或时间关系的一类技术。”由该定义可见,由于所测量的物理性质(如质量、热效应、体积等)多种多样,因此衍生出了不同的热分析技术。根据所测定的物理性质不同, 国际热分析与量热协会(International Confederation for Thermal Analysis and Calorimetry,ICTAC)将现有的热分析技术划分为9类17种,如表1.1所示。表1.1 热分析技术分类物理性质分析技术名称简称物理性质分析技术名称简称质量热重法TGA尺寸热膨胀法DIL等压质量变化测定力学特性热机械分析TMA逸出气体检测EGD动态热机械分析DMA逸出气体分析EGA声学特性热发声法放射热分析热声学法热微粒分析光学特性热光学法温度加热曲线测定电学特性热电学法差热分析DTA磁学特性热磁学法焓差示扫描量热法DSC本章仅对热分析技术的定义和分类进行简要介绍,详细内容见第2章。1.2 热分析技术的特点如前所述,热分析技术主要被用来研究在一定气氛和程序控温作用下,物质的物理性质与温度或时间的变化关系。与其他分析方法相比,热分析技术具有如下特点。1.2.1 热分析技术的优势概括来说,热分析技术的优势主要表现在以下10个方面。1.2.1.1对样品的要求不高,实验时样品用量较少对于大多数固态和液态的物质而言,根据实验需要不做或稍做处理即可进行热分析实验。另外,与其他常规分析方法相比,热分析实验需要的样品量一般较少。随着仪器技术的发展,热分析实验所需要的样品量越来越少。例如,与早期仪器相比, 当前的热重仪可以用来检测质量低至0.1 mg 的样品随温度变化而发生的质量变化, 而几十纳克的样品也可以用来进行量热实验。微量量热实验所需样品的量更少, 如通过微量差示扫描量热实验可用来测定质量体积浓度为1×10-5gML-1的溶液中的相转变行为。与传统分析方法相比, 使用热分析技术分析较少的样品能更真实地反映某些材料的热学特性。例如, 在加热过程中较大试样量存在试样内部与表面之间的温度差。当试样发生分解时,分解产物尤其是气体产物存在一个从内层向外层的扩散过程,在热分析技术中使用较少的试样量则可以更加方便地避免这种影响。图1.1为不同样品质量的低密度线性聚乙烯(LLDPE)的DSC实验曲2°。图1.1表明,在相同的加热速率下,样品的质量对LLDPE熔融峰的形状和位置均产生了不同程度的影响,这种差异是由于样品内部的温度梯度引起的。需要特别指出的是,有时为了与样品的真实加热处理工艺相近,分析时会有意地加入更多的样品量,这样可以更加真实地反映试样在真实环境中的热行为。使用热机械分析仪研究材料在不同温度下的机械性质时,通常需要使用具有规则形状的样品。例如,在ASTM E831-14标准中要求进行静态热机械分析实验时试样的长度应为2~10mm,且平行截面的端部的尺寸误差应在±25μm之内,横向尺寸不得超过10mm,这种尺寸要求仍远低于其他材料试验机对样品的要求。1.2.1.2 灵敏度高作为分析仪器的一个重要分支, 热分析技术具有灵敏度高的特点。一般来说, 灵敏度与仪器待测量的测量范围呈负和关的关系。灵敏度越高, 其量程越窄, 反之亦然。在进行实验时, 应根据研究目的选择具有合适的灵敏度的仪器。例如, 对于热重仪而言, 其灵敏度最高可达0.1μg,但天平的最大称质量一般不超过1g。虽然微量差示扫描量热仪的量热精度最高可达0.02μW, 但共温度范围一般不超过150℃。一些灵敏度高的等温量热仪的温度稳定性最高可达±10-4℃。用于静态热机械分析仪和动态热机械分析仪的力学测量精度最高可达0.001N,而位移的测量精度则可达0.1μm。对于常规热分析仪而言, 其主要采用热电偶测量温度,测温精度一般为±0.1℃。1.2.1.3 可以连续记录所测量的物理量在所选择的实验条件下随温度或时间变化的曲线与通过其他的光学、电学等分析方法测量材料的热性质不同, 通过热分析技术可得到试样的物理性质(如质量、热流、尺寸等)随温度(或时间)的连续变化曲线。由实验得到的曲线可以更加真实地反映材料的物理性质随温度(或时间)的连续变化情况,而通过传统的采用不同温度下等温测量的间歇式实验方法则容易遗漏材料的性质在温度变化过程中的一些重要信息。图1.2为硬脂醇与棕榈酸混合物的DSC加热和冷却曲线。图中硬脂醇的加热曲线仅显示一个吸热峰,起始温度为58.1℃,对应于其从单斜有序的γ相到α旋转相的固-固转变与熔融转变的重叠过程。然而, 硬脂醇的冷却曲线却显示了两个放热峰。第一个放热过程的起始温度为57.8℃,该过程对应于从熔融态到α旋转相的转变过程。该过程的过冷度可以忽略不计,而从γ相到α相的固-固转变则显示出5℃的过冷度。这充分表明通过DSC曲线可以实时记录下物质在温度发生变化时所经历的结构转变过程。1.2.1.4通过温度调制技术可以测量同时发生的两个转变20世纪90年代初,英国学者 M. Reading 最先提出温度调制技术。该技术最早应用于差示扫描量热仪,即温度调制差示扫描量热法(Temperature-Modulated Differential Scanning Calorimetry,TMDSC)。使用该技术可以对两个同时发生的转变进行测量。现在这种技术也可应用于热重分析法和静态热机械分析法中。这两种方法中的温度调制技术与TMDSC有很大的差别,将在本书的相关章节中进行详细的阐述。1.2.1.5 测量温度范围宽当前可以用热分析技术测量最低为8K的极低温下热性质(如比热、热流、热扩散系数、热膨胀系数等)的变化。在高温测量方面,通过一些特殊用途的热分析仪可以测量高达2800℃ 的温度变化。也就是说, 热分析技术可以用来测量-265~2800 ℃范围内的热性质的变化。显然,仅通过一台热分析仪器很难测量如此宽广的温度范围内的性质变化, 研究人员通常通过缩小仪器的工作温度范围来提高仪器的测量精度。例如,高灵敏度的微量差示扫描量热仪的温度测量范围一般为-10~130℃。此外,用来研究高温下材料热分解的热重-差热分析仪或热重-差示扫描量热仪的量热精度也远低于单一功能的差示扫描量热仪。1.2.1.6 温度控制方式灵活多样热分析技术可以在程序控制温度和一定气氛下测量材料的物理性质随温度或时间的变化。在实验过程中,如果试样发生了至少一个从特定的温度(甚至环境温度)到其他指定温度的变化,则在指定温度下进行的等温实验属于热分析的范畴。如果实验仅在室温环境下进行,则该类实验不属于热分析。温度变化(temperature altcration)意味着可以实现预先设定的温度(程序温度)或样品控制温度的任何温度随时间的变化关系。其中,样品控制的温度变化是指利用来自样品的性质变化的反馈信息来控制样品所承受的温度的一种技术。其中,程序控制温度的变化方式主要分为以下几种:①线性升/降温,如图1.3(a)和图1.3(b)所示;②线性升/降温至某一温度后等温,如图1.3(c)和图 1.3(d)所示 ③在某一温度下进行等温实验,如图1.3(e)所示;④步阶升/降温,如图1.3(f)和图1.3(g)所示;⑤)循环升/降温,如图1.3(h)所示;⑥以上几种方式的组合,如图1.3(i)所示。需要说明的是, 以上这些温度变化过程可以通过仪器的控制软件实时记录下来, 这是热分析技术有别于其他分析方法的主要优势之一。1.2.1.7 可以在较短的时间内测量材料的物理性质随时间或温度的变化对于热分析技术而言, 完成一次实验所需时间的长短取决于具体的温度控制程序。日前商品化的热分析仪器的最快升温和降温速率各有不同。例如, 热重仪可以实现的瞬时最快升温速率可以达到2000℃min-1, 最快线性加热速率为 500℃min-1。梅特勒-托利多公司的闪速差示扫描量热仪(Flash DSC)的最快升温速率可以达到 24000000℃min-1,与此相对应,对于一台比较稳定的热分析仪器而言,可以很容易实现低于1℃min-1的温度变化速率。实验时采用的温度变化程序取决于具体的实验需要。对于较慢的温度变化速率而言,其耗时很长。除非特殊的实验需要,在热分析技术的实际应用中很少采用低至2℃min-1的温度变化速率。微量量热法属于例外的情形。对于微量量热法而言, 由于实验时所用的试样(大多为溶液)量较大,因此所采用的加热/降温速率大多十分缓慢。常用的加热/降温速率一般为0.1~1℃min-1,有时还会采用更低的加热/降温速率,如每小时几摄氏度的温度变化速率。1.2.1.8 可以灵活地选择和改变实验气氛对于大多数物质而言,与试样接触的气氛十分重要,使用热分析技术可以比较方便地研究试样在不同的实验气氛下的物理性质随温度或时间的变化信息。气氛一般可以分为静态气氛和动态气氛两种。静态气氛主要指三种类型:①常压气氛,即实验时不通入其他的气体; 高压或低压气氛,即在试样周围充填静态的气氛气体;③真空气氛。动态气氛主要可以分为:①氧化性气氛,如氧气;②还原性气氛,如H2、CH4、CO、C2H4、C2H2等;③惰性气氛,如N2、Ar、He、CO2等;④腐蚀性气氛,如SO2、SO3、NH3、NO2、N2O、HCI、Cl2、Br2等;⑤其他反应性气氛,即在实验时根据需要通入可能与试样或产物发生化学反应的气体。需要说明的是,对于有些过程而言,在③中所列的惰性气氛是相对的,例如,对于大多数物质而言,CO2是惰性气体;而对于一些氧化物如CaO等而言,在一定温度下会与CO2发生反应生成CaCO3。再如,N2在高温下会与一些金属发生反应而形成氮化物。因此,在实际实验中选择实验气氛时,气氛的反应活性应引起足够的重视。实验时,应根据实际需要来灵活选择实验气氛。在现代化的大多数商品化的仪器中,可以通过仪器的控制软件十分灵活地在设定的温度或时间下切换气氛种类及流量。例如,对于一个试样的热分析实验而言,可以在一台配置了质量流量计的仪器上通过其控制软件来方便地实现以下的实验条件:(1)在N2气氛流速为50mLmin-1下,以10℃min-1的加热速率由室温升温至600℃;(2)在等温 30 min 后氮气流速由50mL min-1增加至 100mLmin-1,继续等温30 min (3)以5℃min-1的加热速率升温至800℃,等温30min;(4)实验气氛由N2切换为 70%N2+30%O2(流速为50mLmin-1), 继续等温60min (5)实验气氛再切换至N2,流速为100mLmin-1,等温30min;(6)以10℃min-1的加热速率升温至1000℃.等温30min。1.2.1.9 可以相对方便地得到转变或分解的动力学参数在热分析技术中,通过改变加热/降温速率(一般为3~5个速率)测量材料的物理性质随温度或时间的变化,根据相应的动力学模型可以得到相应的动力学参数(如指前因子A、活化能E。、反应级数或机理函数)。对于等温实验而言,一般通过测量材料在不同温度下(一般为3~5个等温温度)的实验曲线来得到动力学参数。在本书的相关章节中将详细阐述相关的动力学分析方法。1.2.1.10 方便与其他实验方法联用在现代分析方法中,仅通过一种方法得到的信息是有限的,并且实验操作也十分繁琐和耗时,样品的消耗量也较大。另外, 在对由多种方法进行独立实验所得到的结果进行对比时也很难得到相对一致的结论。例如,对试样在高温时分解得到的气体产物进行实时分析时,如果把高温的分解产物富集后再用光谱、色谱或质谱的方法对其进行分析, 由于温度的急剧变化会引起部分产物发生冷凝或进一步的反应, 在此基础上得到的分析结果往往不能反映气体产物的真实信息。如果采用热分析技术与光谱、色谱或质谱等技术进行联用的方法, 则可以实时地对分解产物的浓度和种类变化进行在线分析。图1.4 为由 TG/MS方法得到的CaC2O4H2O在氩气氛下的热分解行为的实验曲线。由该图可见,在110~150℃范围内,在热重曲线上出现了一个约5%的失重过程,图中的MS曲线显示第一阶段中的质量损失是由于H2O(m/z(荷质比)=18)引起的。在第二阶段中主要检测到了一氧化碳(m/z=28)和较少量的二氧化碳(m/z=44),而在第三阶段中则主要检测到了二氧化碳和少量的一氧化碳。当在氧气中(图1.5)而不是在氩气中加热CaC2O4H2O时,在分解的第二步所对应的过程结束时的质量下降非常明显。这可以归因于CO部分氧化成了二氧化碳,当这一步反应开始时通常会加快第二步的反应速率,由此就会导致在氩气中二氧化碳的量也比一氧化碳的量高。 表1.2中列出了目前可以实现的热分析联用方法,在本书第10章中将阐述这些方法的工作原理及应用领域。表1.2 常用的热分析联用方法联用方式联用方法简称备注同时联用技术热重-差热分析TG-DTATG-DTA和TG-DSC又称同步热分析法,简称STA热重-差示扫描量热法TG-DSC差热分析-热机械分析法DTA-TMA热重-差热分析-热机械分析法TG-DTA-TMA差热分析-X射线衍射联用法DTA-XRD差热分析-热膨胀联用法DTA-DIL显微差示扫描量热法OM-DSC差示扫描量热仪和光学显微镜联用仪,用于物质的结构形态研究光照差示扫描量热法Photo-DSC也称光量热计差示扫描量热-红外光谱联用法DSC-IR差示扫描量热-拉曼光谱联用法DSC-Raman动态热机械-介电分析联用法DMA-DEA由动态热机械分析仪和介电分析仪两个主要部分组成,并由相应的配件和软件连接动态热机械-流变联用法DMA-Rheo串接联用法热重/质谱联用法TG/MS同步热分析/质谱联用法STA/MS热重-红外光谱联用法TG/IR同步热分析/红外光谱联用法STA/IR热重/红外光谱/质谱联用发TG/IR/MS同步热分析/红外光谱/质谱联用法STA/IR/MS间接联用法热重/气相色谱联用法TG/GC同步热分析/气相色谱联用法STA/GC热重/气相色谱/质谱联用法TG/GC/MS同步热分析/气相色谱/质谱联用法STA/GC/MS复合联用法热重/(红外光谱-质谱联用法)TG/(IR-MS)同步热分析/(红外光谱-质谱联用法)STA/(IR-MS)热重/[红外光谱-(气相色谱/质谱联用法)]TG/[IR-(GC/MS)]同步热分析/[红外光谱-(气相色谱/质谱联用法)]STA/[IR-(GC/MS)]注:①间歇联用法可以看做串接联用法中的一种,由于其分析对象为某一温度或时间下的气体产物,且其分析时间较长,故单独将其列为一种联用方法②由于同步热分析目前以一种独立的仪器形式存在,STA与质谱和红外光谱的联用形式通堂归于串接式联用法。1.2.2 热分析方法的局限性以上列举了热分析技术相对其他分析方法的优势,然而热分析技术作为一种唯象的宏观性质测量技术,其本身还存在着一定的局限性。在应用该类方法时,使用者必须清醒地认识到这些局限性,以免在方法选用和数据分析时误入歧途。一般来说,热分析方法主要存在着以下局限性。1.2.2.1 方法缺乏特异性由热分析技术得到的实验曲线一般不具有特异性。例如,在使用差热分析法分析试样的热分解过程时,若一个试样在分解过程中同时伴随着吸热和放热两个相反的热过程,则在最终得到的DTA曲线上有时会只呈现出一个吸热或放热过程,曲线的形状取决于这两个吸热和放热过程的热量的大小。如果吸热过程的热量大于放热过程的热量,则DTA曲线最终会表现为吸热峰,反之放热峰。如果这两个相反的过程不同步,但温度相近,得到的DTA曲线会发生变形,呈现不对称的“肩峰”现象。一般通过改变实验条件或与其他方法联用来克服热分析技术的这一局限性。1.2.2.2 影响因素众多如前所述,在测量材料的物理性质时,在实验中可以改变温度和气氛等实验条件。然而,在实际的实验中,温度的变化方式(加热速率和加热方式)和实验气氛(包括气体种类和流速)等均会对试样在不同温度或时间时的性质变化产生不同程度的影响。此外,试样的状态(如尺寸、形状、规整度等)和用量也对实验曲线有不同程度的影响。值得注意的是,除了以上几种因素之外,在实验时采用的仪器结构类型、热分析技术种类(如热重法、差热分析、热机械分析等)以及不同的操作人员等因素均会给实验结果带来不同程度的影响。客观地说,热分析技术的这些影响因素给数据分析和具体应用带来了不少麻烦。但是任何事物都具有两面性,热分析技术的这些影响因素恰恰反映了其自身的灵活性和多样性,实验时可以通过改变实验条件来分析这些因素对实验结果的影响程度, 从而可以深入探讨试样在不同条件下物理性质的变化, 使研究者对试样在不同温度或时间下的性质变化规律有更深入的理解,获得试样在不同的温度下与性质相关的更多信息。例如,很多非等温热分析动力学方法主要通过获取三条以上不同的加热/降温曲线,并由此得到转变或分解过程的动力学信息。1.2.2.3曲线解析复杂如上所述,热分析实验受到实验条件(主要包括温度程序、实验气氛、制样等)、仪器结构等的影响,由此得到的曲线之间的差异也很大。在实验结束后对曲线进行解析时,应充分考虑以上影响因素,对于所得到的曲线进行合理的解析。在本书的相关章节中,将结合实例对曲线的解析方法进行阐述。1.3 热分析仪器的组成当前的商品化热分析仪主要由仪器主机(主要包括程序温度控制系统、炉体、支持器组件、气氛控制系统、物理量测定系统)、辅助设备(主要包括自动进样器、湿度发生器、压力控制装置、光照、冷却装置、压片密封装置等)、仪器控制、数据采集及处理组成。热分析仪的结构框图如图1.6所示。在本书第5章中将详细介绍热分析仪器的每一组成部分及其功能。1.4 热分析技术的应用领域热分析技术自问世至今已有一百多年的历史,在过去的一百多年中,经过几代人的努力,目前热分析仪器已经日趋成熟,其在各个领域的应用也逐渐日益扩大并向更深层次发展。现在热分析技术从最初应用于黏土、矿物以及金属合金领域至今已经扩展到几乎所有与材料相关的领域。在所有学科门类中,热分析技术在历史学(主要为科技考古领域)、理学、工学、农学、医学等学科中有广泛的应用。在一级学科中,热分析技术已经在考古学、物理学、化学、地理学、地质学、生物学、力学、材料科学工程、冶金工程、动力工程及工程热物理、建筑学、化学工程与技术、石油与天然气工程、纺织科学与工程、环境科学与工程、生物医学工程、食品科学与工程、生物工程、安全科学与工程、公安技术、作物学、畜牧学、水产、草学、林学、药学、中药学、军事装备学等学科中得到了不同程度的应用,当前热分析技术应用较多的是物理学、化学、生物学、地质学、环境科学与工程、化学工程学等学科中与材料相关的石油、冶金、矿物、土壤、纤维、塑料、橡胶、食品、生物化学、物理化学等领域。1.5 热分析技术的发展前景展望未来热分析仪器的发展将主要在以下几个方面有所突破。1.5.1提高仪器的准确度灵敏度以及稳定性提高仪器的灵敏度和稳定性是热分析仪器研发人员多年来一直努力的目标, 随着电子技术和自动化技术的发展,这些性能指标还有进一步提升的空问。1.5.2 扩展仪器功能对于任何一种商品化的分析仪器而言,在实际的应用过程中应结合实际的需求来对仪器的功能进行拓展。对于绝大多数热分析仪器而言,主要从以下几个方面来拓展其功能:(1)在不影响灵敏度的前提下拓宽温度范围;(2)可实现超快的加热/降温速率、温度调制、热惯性小的快速等温实验:(3)配置自动进样装置来提高仪器的利用率;(4)开发适用于仪器的光照装置、温度控制装置、高压实验装置、真空实验装置、电磁场装置等特殊用途的实验附件。1.5.3加强并推广与其他分析方法的联用目前,热分析仪已经实现了与红外光谱、质谱、气相色谱、气相色谱/质谱联用仪、拉曼光谱、显微镜、X射线衍射仪等技术的联用。由于联用时连接部件的不完善以及成本和应用领域等多方面的限制,联用技术自20世纪五六十年代出现以来,直到近二十年才开始快速发展。由于这类方法的功能较常规仪器强大,因此其有着十分远大的发展前景。1.5.4 拓展软件功能随着计算机的硬件和软件的飞速发展,实验数据的记录和分析显得越来越方便。随着热分析技术在不同领域的应用不断深入,人们对热分析的数据处埋的要求尤其是动力学方法对软件的要求越来越高。日前虽然存在一些商品化的动力学分析软件,但由于动力学方法本身的复杂性和快速发展,一款成型的商品软件很难满足大多数的要求,这就要求商品化的动力学软件具有较为强大的功能并且可以及时地反映出动力学的最新发展情况。1.5.5 开发可以满足特殊领域需求的新型热分析仪为了满足一些特殊的测试需求,近年来不断出现新型的热分析仪,如Mettler Toledo 公司推出的一种可以实现每分钟几百万摄氏度加热速率的闪速差示扫描量热仪。这些仪器有的已经实现商品化, 有的仅限于实验室使用, 使用这些新型仪器完成的科研论文在一些学术期刊中经常可以见到。1.5.6 在不影响仪器性能的前提下减小仪器的体积、节约成本、提升产品的竞争力美国 TA 仪器公司于2010年推出了Discovery系列热分析仪器,仪器的电路部分适用于热重分析仪、热重-差热分析仪、差示扫描量热仪、静态热机械分析仪和动态力学热分析仪,可以实现几台仪器共用一种控制单元,这样对于需要购买多台仪器的用户降低了成本,提升了仪器的竞争力。TA公司的这种方法代表了今后分析仪器的一种发展趋势。随着科学研究的进一步发展,热分析技术有望在一些较新的领域中发挥其独特的作用。我们有充分的理由相信,在全球热分析工作者的共同努力下,热分析技术将继续保持现有的高速发展势头,其在各领域中将得到更加广泛和深入的应用。
    留言咨询
  • 早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。40多年来,梅特勒-托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的同步热分析仪TGA/DSC 1专业型具有很强的测试性能和经久耐用的可靠性。热重分析的核心是天平单元,TGA/DSC 1专业型同步热分析仪采用世界最好的梅特勒-托利多微量或超微量天平。并采用双铂铑热电偶DSC传感器,同时测量热流变化。TGA/DSC 1专业型同步热分析仪可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC1专业型同步热分析仪是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。同步热分析仪技术参数:仪器型号:TGA/DSC 1同步热分析仪专业型温度范围:室温~1100°C或~1600°C天平灵敏度:0.1μg(百万分子一)或0.01μg(千万分子一)传感器热电耦数量:2对Pt-Pt/Rh热电偶量热温度分辨率:0.0001℃量热准确度(金属标样):2%同步热分析仪主要特点:梅特勒-托利多超微量天平–依赖领先的天平技术热重分析高分辨率–对整个测量范围的超微克分辨率高效自动化–选配非常可靠的自动进样器能处理大理样品温度范围广–从室温到1100或1600℃同步DSC 热流测量–同步测定热效应,灵敏度高密闭测量单元–确保完全定义的测量环境;确保真空度联用技术–联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念–量身定制的解决方案满足当前和以后的需要同步热分析仪应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。同步热分析仪主要型号: TGA/DSC1
    留言咨询
  • 到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的同步热分析仪TGA/DSC 1专业型具有很强的测试性能和经久耐用的可靠性。热重分析的核心是天平单元,TGA/DSC 1专业型同步热分析仪采用世界最好的梅特勒托利多微量或超微量天平。并采用双铂铑热电偶DSC传感器,同时测量热流变化。TGA/DSC 1专业型同步热分析仪可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC1专业型同步热分析仪是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。同步热分析仪技术参数:仪器型号:TGA/DSC 1同步热分析仪专业型温度范围:室温~1100° C或~1600° C天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)传感器热电耦数量:2对Pt-Pt/Rh热电偶量热温度分辨率:0.0001℃量热准确度(金属标样):2%同步热分析仪主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品温度范围广&ndash 从室温到1100或1600℃同步DSC 热流测量&ndash 同步测定热效应,灵敏度高密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要同步热分析仪应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。同步热分析仪主要型号: TGA/DSC1到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪查看更多信息咨询电话:4008-878-788
    留言咨询
  • 一、仪器简介:优异的性能STA 2500 Regulus 性能高效可靠,温度范围宽广。顶部装样,独特的自补偿式差动天平设计仪器为顶部装样系统,气体流向自然,可自动保护天平免受冷凝沉积与污染。这套量身定做的微天平系统消除了浮力效应与对流因素的影响,使得操作更加简单。气氛类型多样测量可在惰性气氛,氧化气氛和真空情况下进行。气氛可为动态或静态。内置的质量流量控制器(MFC)由软件控制,根据测试需要可以随时改变并记录气体流量。适合进行逸出气体分析STA 的顶部装样设计便于连接气体分析系统,如 FTIR(傅立叶变换红外光谱仪),MS(质谱仪),或 GC-MS(气相色谱-质谱联用)。在进行热分析的同时,可以对逸出气体成分进行同步分析。二、技术参数:温度范围:室温到 1100℃/1600℃(两种易于更换的炉体)升温速率:0.001 ... 100 K/min / 0.001 ... 50 K/min温度精度:0.3 K称量范围:± 250 mg样品量:最大 1 g热重分辨率:0.03 μg热电偶:S 型真空密闭性:最高 10-4 mbar (10-2 Pa)气氛:惰性, 氧化性, 真空气体控制:内置质量流量控制器三、软件功能:STA 2500 Regulus - 软件功能STA 2500 Regulus 的测量与分析软件是基于 MicroSoft Windows 系统的 Proteus 软件包,它包含了所有必要的测量功能和数据分析功能。这一软件包具有极其友善的用户界面,包括易于理解的菜单操作和自动操作流程,并且适用于各种复杂的分析。Proteus 软件既可安装在仪器的控制电脑上联机工作,也可安装在其他电脑上脱机使用。热重:TGA 曲线,以绝对质量变化(mg)或相对质量变化(%)的形式显示自动化的质量变化步骤与特征温度分析外推起始点和终止点分析峰值温度,一阶微分,二阶微分TGA 稳定性检查速率控制失重量热:测量热效应,单位 uV,uV/mg 或 mW/mg分析热效应的起始点,峰温,拐点与终止点自动峰搜索吸放热方向可选(适应 DIN 或 ASTM 标准)转化率计算相关的高级软件:峰分离软件动力学软件四、相关附件:样品盘、坩埚与套入式平台仪器可配备氧化铝、白金、铝、石英等多种材质坩埚,并有不同形状和尺寸规格可选。STA 2500 Regulus标准配备的套入式平台,支持几乎全部坩埚类型。大体积坩埚则需要较大尺寸的套入式平台。与逸出气体分析仪联用通过将 STA 2500 Regulus 与气体分析系统如 FT-IR(傅立叶变换红外光谱仪)、QMS(四级杆质谱仪)或 GC-MS(气相色谱-质谱仪)联用,可以获取样品在不同时间/温度下的逸出气体类型信息。由此可以获得关于待测材料的更详细信息,甚至可能获得关于材料成分的特征性信息。
    留言咨询
  • 到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪早在1964年,梅特勒就上市了世界上第一台商品化的高温TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的高温热重分析仪TGA/DSC1/1600以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析仪的核心是天平单元,TGA/DSC1/1600热重分析仪采用世界最好的梅特勒托利多微量或超微量天平。并采用单盘SDTA传感器,可同时测量热流(模拟计算得到),这样可用金属标样的熔点来精确校准仪器。TGA/DSC1/1600热重分析仪可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,高温热重分析仪TGA/DSC1/1600 是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。热重分析仪技术参数:仪器型号:高温热重分析仪TGA/DSC1/1600温度范围:室温~1600° C温度准确性:+/-0. 5℃天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)空白曲线重复性:+/-10µ g(全程温度)热重支架:单盘含1对Pt-Pt/Rh热电偶热重分析仪主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品同步DSC 热流测量(模拟计算) &ndash 可精确校准温度密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要热重分析仪应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。热重分析仪主要型号: TGA/DSC1/1600到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪查看更多信息咨询电话:4008-878-788
    留言咨询
  • 到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善、提高,最新的热重分析仪TGA/DSC1/1100以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析仪的核心是天平单元,TGA/DSC1/1100采用世界最好的梅特勒托利多微量或超微量天平。并采用单盘SDTA传感器,可同时测量热流(模拟计算得到),这样可用金属标样的熔点来精确校准仪器。TGA/DSC1/1100可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,热重分析仪TGA/DSC1/1100 是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。技术参数:温度范围:室温~1100° C温度准确性:+/-0.25℃天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)空白曲线重复性:+/-10µ g(全程温度)热重支架:单盘含1对Pt-Pt/Rh热电偶主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品同步DSC 热流测量(模拟计算) &ndash 可精确校准温度密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。 主要型号: TGA/DSC1/1100到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪 查看更多信息咨询电话:4008-878-788
    留言咨询
  • 用途:同步热分析仪系统将DSC和TGA结合,可以在完全相同的测试条件下,研究样品的热量变化和质量变化。由于配备多种不同温度范围的加热炉,耐驰同步热分析仪的应用领域涵盖绝大多数材料,包括塑料、橡胶、合成树脂、纤维、涂料、油脂、陶瓷、玻璃、水泥、耐火材料、金属及合金、燃料、炸药、医药、食品等。性能:-STA2500性能高效可靠,温度范围宽广; -仪器为顶部装样系统,气体流向自然,可自动保护天平免受冷凝沉积与污染。这套量身定做的微天平系统消除了浮力效应与对流因素的影响,使得操作更加简单; -测量可在惰性气氛,氧化气氛和真空情况下进行。气氛可为动态或静态。内置的质量流量控制器(MFC)由软件控制,根据测试需要可以随时改变并记录气体流量; -STA的顶部装样设计便于连接气体分析系统,如FTIR(傅立叶变换红外光谱仪),MS(质谱仪),或GC-MS(气相色谱-质谱联用)。在进行热分析的同时,可以对逸出气体成分进行同步分析。*价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 差热分析仪(DTA)是一种广泛应用的热分析技术,可以提供多种样品信息。Linseis DTA PT 1600具有优异的量热灵敏度,很短的时间常数和无冷凝样品室。这些特点保证了仪器在整个寿命内优异的分辨率和基线稳定性,是材料开发、研发和质量控制一个不可或缺的工具。Linseis差热分析仪(DTA)的仪器设计具有分辨率高、功能强大和易于使用的优点。 系统的模块化设计概念可以通过可更换炉体实现-150°C到2400°C温度范围的测试,因此配置了多种不同类型的传感器和坩埚。该真空密封设计可以实现使现10E- 5 mbar的真空下或纯净气氛的环境下焓和Cp (比热)的定量测定。此外,各种配件方便系统和MA、FTIR等仪器的同步联用。温度范围:-150°C — 500/700/1000°C室温 — 1400/1500/1600/1650/1750/2000/2400°C加热速率: 0.001 K/min— 50 K/min冷却速率: 0.001 K/min— 50 K/min热电偶:E/K/S/B/W气氛: 还原性,氧化性,惰性气氛 (静态,动态)真空度:10-5mbar测量支架:TG-DTA*价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询。我们定会将竭尽全力为您制定完善的解决方案。
    留言咨询
  • 仪器简介:Setsys Evolution同步热分析仪STA是SETARAM热分析的旗舰产品!系统高度模块化,可扩展性极强,满足各种苛刻条件下的测试需要,如:100 %腐蚀性气氛,氧化/还原性气氛,及水蒸气气氛工作条件。系统采用独特的上天平、悬挂式载样设计,单一石墨炉体全程快速升温,装配专业热分析光电天平,传感器采用即插即用式接口,加热炉配备水冷系统。应用领域:高温及超高温样品热分析,如:金属高温氧化及腐蚀、高性能陶瓷、催化及其他高端研发领域。技术参数:温度范围:-150℃ ~2400℃程控升温速率:0 ~ 100K/min(全程)TG最 大样品量:35/100gTG 分辨率:0.002 /0.02&mu gTG基线重复性:10&mu g(室温~1750℃)DSC分辨率:1&mu WDTA分辨率:0.4&mu W气路设计:3 路载气与 1 路辅助/反应气。配备电磁阀及MFC(质量流量计),全部软件控制气氛:100 % 惰性,氧化,还原,水蒸汽、腐蚀性气体;静态,动态高真空密闭系统:真空度最 高可达 10E-4mbar (10E-2torr),逸出气体分析(EGA):可与质谱,红外,气相联用主要特点:? 单炉体即可实现室温至2400℃全程测试? 高度模块化,不同的测试方式(DTA、DSC、TGA、TMA及TGA-DSC/DTA同步热分析)在同一平台实现? 加热炉配备水冷系统,可在高温区长期稳定工作。? 独有的TG上天平、悬挂式传感器设计,无可比拟的TG及DSC基线重复性? TG基线噪音低至0.03ug,准确探测微弱质量变化? 独有的三对热电偶DTA测试杆,灵敏度远高于其他DTA及DSC传感器? 耐腐蚀DTA测试杆,实现对复杂未知样品的安全测试? 3路载气及1路辅助/反应气,由质量流量计控制,可以任意比例混合两路气体? 可与湿度发生仪(Wetsys)联用,精确控制相对湿度(RH)? 可选配相关套件,实现SO2,NH3,H2S等腐蚀性气氛下的测试? 独有针对氢气气氛下测试的安全系统,确保操作人员安全? 标准逸出气体分析接口:与质谱(MS)、傅立叶红外光谱(FT-IR)、气相色谱(GC)等设备联用
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制