紫杉醇纯度标准物质

仪器信息网紫杉醇纯度标准物质专题为您提供2024年最新紫杉醇纯度标准物质价格报价、厂家品牌的相关信息, 包括紫杉醇纯度标准物质参数、型号等,不管是国产,还是进口品牌的紫杉醇纯度标准物质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫杉醇纯度标准物质相关的耗材配件、试剂标物,还有紫杉醇纯度标准物质相关的最新资讯、资料,以及紫杉醇纯度标准物质相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

紫杉醇纯度标准物质相关的资料

紫杉醇纯度标准物质相关的论坛

  • 紫杉醇有关物质检测主峰出峰问题

    紫杉醇有关物质检测主峰出峰问题

    各位同行,请教下,我按照中国药典做紫杉醇有关物质时,进样浓度500μg/ml,主峰一般在37.8min左右出峰,其中一次进样,20-30min出了好几个峰,主峰响应值也比平时要低,峰面积加起来和正常进样(只有37.8min出峰时)那个峰面积差不多的,这是从来没有过的,奇怪的是,隔天同样样品再次进样这几个峰就没了,原因有没可能是紫杉醇样品分段出峰了?是不是柱子问题,还是其他原因?有没大佬帮忙分析下,不胜感激。[img=,690,320]https://ng1.17img.cn/bbsfiles/images/2022/08/202208091546131480_9156_5567255_3.png!w690x320.jpg[/img]

  • 【转帖】整合代谢工程和合成生物学大肠杆菌合成紫杉醇重要前体

    众所周知,紫杉醇是重要的抗癌药物,其作用机制是抑制癌细胞的有丝分裂。紫杉醇对包括乳腺癌在内的多种癌症有很好的治疗效果,其最高销售额曾超过10亿美元。虽然随着专利的到期,其售价有了较大幅度的降低,但是其价格仍然相当昂贵,一个疗程的价格超过1万美元。 紫杉醇是植物来源的抗癌药物,最初治疗一个病人需要4-5棵太平洋红豆杉的树皮。由于太平洋红豆杉数量非常有限,生长周期很长,并且剥去红豆杉树皮后回导致红豆杉的死亡,因此使用红豆杉树皮来提取紫杉醇治疗癌症病人面临很强的伦理困境。面对此两难境地,科学家发挥科学创新精神,开发出了红豆杉植物细胞培养技术来获取紫杉醇,随着研究是深入,科学家发现可将使用decorative yew的树叶提取紫杉醇的前体,使用化学合成的方法合成紫杉醇。由于decorative yew树叶来源很广,使用树叶也不会杀死树木本身,加之后续合成的高效性,这种提取加合成的方法称为紫杉醇的主要来源。化学全合成是获得化合物的主要手段之一,科学家经过努力也成功地合成了紫杉醇,由于紫杉醇结构复杂,化学合成需要35-50步,得率很低,因此紫杉醇的化学全合成科学意义很大,实际应用的价值不大。  微生物具有底物利用广泛,生长速度快,研究深入,大规模生产容易等优点,非常适合药物的生产,与紫杉醇同为萜类化合物的青蒿素已经通过精确的途径改造和优化,已经实现了工业化生产,这表明通过代谢工程和合成生物学手段在微生物中合成宿主本身不产生的复杂小分子是可行的,也为后续的相关研究提供可供借鉴的策略和经验。 美国麻省理工大学和Tufts大学科学家沿着这个思路,合成紫杉醇的前体taxadiene和 taxadiene-5-alpha-ol。虽然大肠杆菌并不能够产生这两种物质,但是合成他们的前体IPP是大肠杆菌生理代谢过程中的一个中间产物,IPP能够通过两部的酶促反应合成taxadiene。催化后续两部反应的酶类已经从植物中克隆出来。  美国科学家首先优化了IPP的生物合成,以大量生成IPP为后续的酶促反应提供底物。 IPP的生物合成有8个步骤,研究发现其中的四个步骤是限速步骤,通过提高限速步骤的酶量,控制整个催化的效率,大量的合成了IPP。接着讲植物的催化酶引入到工程菌株中,优化催化酶的密码子和表达水平,产生了大量的taxadiene。与只加入催化酶没有进行相关优化相比,其产量提高了1500倍,也比已有的文献报道的产量提高了1000倍。接着科学家有加入能够催化taxadiene合成 taxadiene-5-alpha-ol的酶类,将合成紫杉醇的途径有往前迈了一步。  虽然离合成能够化学转化的前体浆果赤霉素(baccatin III)还有比较远的距离,但是本研究表明在弄清楚紫杉醇的合成途径后,使用大肠杆菌合成紫杉醇很有潜力。 本研究中使用的平台技术和手段对合成其他化合物具有通用性,因此使用代谢工程结合合成生物学手段将开启动植物来源的活性小分子微生物表达的大门。  Source: “Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli” by Parayil Kumaran Ajikumar, Wen-Hai Xiao, Keith E. J. Tyo, Yong Wang, Fritz Simeon, Effendi Leonard, Oliver Mucha, Too Heng Phon, Blaine Pfeifer, Gregory Stephanopoulos. Science, 1 October, 2010. Funding: Singapore-MIT Alliance, National Institutes of Health and a Milheim Foundation Grant for Cancer Research

紫杉醇纯度标准物质相关的方案

紫杉醇纯度标准物质相关的资讯

  • 沃特世经典Symmetry色谱柱适用于中国药典方法紫杉醇及其注射液含量测定
    紫杉醇(Paclitaxel)最初是从红豆杉科红豆杉属(Taxus)植物的树皮中提取得到的二萜类化合物,具有独特抗癌活性,曾被美国国立癌症研究所认为是近15~20年来肿瘤化疗的最重要的进展。紫杉醇注射液功效主治:卵巢癌和乳腺癌及NSCLC的一线和二线治疗;头颈癌、食管癌,精原细胞瘤,复发非何金氏淋巴瘤等。 中国药典对紫杉醇[1]以及紫杉醇注射液[2]规定了有关物质检测及含量测定方法。 有关物质检测方法要求使用C18柱,以水-乙腈进行梯度洗脱,检查三杉尖宁碱(杂质I)与7-表-10-去乙酰基紫杉醇(杂质II)等杂质。使用沃特世经典高纯硅胶色谱柱Symmetry C18(5um, 4.6x250mm, PN WAT054275)按药典方法可得如下谱图,充分满足紫杉醇峰与杂质II峰之间的分离度大于1.2的药典方法系统适应性要求:对于实际样品检测杂质的效果图:药典方法要求,维持初始流动相乙腈-水(40:60)不变,待紫杉醇主峰洗脱完毕后再进行梯度洗脱,时间较长,使用沃特世UPLC技术可以帮助提高通量效率并节约样品耗量及溶剂消耗量。 含量测定要求使用C18柱,以甲醇-水-乙腈(23:41:36)为流动相等度洗脱。使用同上Symmetry C18柱进行分离,得到谱图如下,充分满足紫杉醇峰与杂质I峰及杂质II峰的分离度均大于1.0的药典方法系统适应性要求。 药代研究参考:中国新药研究者也已经使用UPLC技术开展了对红豆杉属植物根须的代谢轮廓分析[3]以及对紫杉醇衍生物(NPD-103)和紫杉醇脂质体的药物动力学分析[4-5]。 关于沃特世Symmetry系列色谱柱产品:1994年以来的制药行业内标杆产品,高纯度、高品控,全程依从cGMP生产规范!质优价中,优惠后仅为三千,帮助您平衡对数据品质和对成本的双重要求!具有最广泛的文献引用,多达百余个USP方法使用(可垂询),多达170多个应用的应用手册,即索即得 [1][2]中国药典2010版,二部,1007-1008页。[3] 红豆杉属植物根须的UPLC-ESI-MS代谢轮廓分析。沃特世液相色谱质谱通讯,第47期,23-28页。 葛广波等。[4] Determination of a novel paclitaxel derivative (NPD-103) in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatograr. 2009 May 23(5): 510-5. Zhang SQ, et al.[5] Clinical pharmacokinetics of paclitaxel liposome with a new route of administration in human based on the analysis with ultra performance liquid chromatography. J Pharm Sci. 2010 Nov 99(11): 4746-52. Wang X, et al.
  • 我国科学家突破“抗癌明星药”紫杉醇生物合成难题
    素有“植物大熊猫”之称的红豆杉是我国一级珍稀濒危保护植物,其生长速度极慢,一般成树需要几十年甚至上百年,人工种植也非常不易。但这一树种却是全球知名抗癌药物紫杉醇的提取来源。中国农业科学院深圳农业基因组研究所闫建斌团队近日牵头发现紫杉醇生物合成途径中关键的未知酶,设计并重构了紫杉醇生物合成新路线,为开发我国自主的紫杉醇提取生产技术提供重要抓手,从而为中国的紫杉醇绿色制造产业化铺平道路。相关研究成果于北京时间1月26日在国际期刊《科学》上发表。中国科学院院士赵国屏对此评价:该研究成功解析了紫杉醇合成途径中尚未被发现的若干关键催化酶,并利用植物底盘实现了合成路线的人工重构,结束了阐明紫杉醇生物合成途径的漫长研究历史,也生动代表着我国一批中青年科学家,在合成生物学领域探索奋斗近二十年所达到的里程碑式新高度。闫建斌研究员介绍,紫杉醇是一种结构异常复杂且独特的四环二萜类天然产物,由红豆杉中提取,在世界上被广泛应用于多种癌症的临床治疗。在我国,紫杉醇原料药主要依靠从人工种植的红豆杉中提取紫杉醇前体分子——巴卡亭Ⅲ,再通过简单的化学合成修饰,实现大规模生产。但这高度依赖于珍稀而有限的红豆杉资源,使得紫杉醇药物生产成本高昂,还可能引发生态破坏和耕地占用等问题。因此,如何提高紫杉醇的生物合成效率、开发绿色可持续的新型生产策略,以替代天然提取,成为亟待解决的焦点、难点问题。长期以来,世界各国都在积极推动紫杉醇相关研究与产业发展。特别是美国,自20世纪60年代开始至今,一直主导着紫杉醇的科技前沿。当前,最先进的紫杉醇前体巴卡亭Ⅲ等的提取技术、核心的红豆杉细胞生产技术和基因工程技术等,依然掌控在欧美制药公司手中。中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)组织国内外多家单位,开展了多年攻关。研究人员从58个关键候选基因中,发现了一个关键的蛋白酶。这种酶的发现与反应机制的阐明,重塑了科学界对于紫杉醇内部独特结构的分子反应机制的理解。随后,研究团队证明了巴卡亭Ⅲ分子可由9个核心基因合成,绘制出了巴卡亭Ⅲ的完整生物合成过程。以上发现突破了合成生物学技术实现紫杉醇绿色可持续生物制造的关键瓶颈,将为紫杉醇合成生物学制造提供关键基因。
  • 沃特世最新PFP(全氟苯基)色谱柱适用于USP方法紫杉醇及其注射液含量测定
    紫杉醇(Paclitaxel)最初是从红豆杉科红豆杉属(Taxus)植物的树皮中提取得到的二萜类化合物,具有独特抗癌活性,曾被美国国立癌症研究所认为是近15~20年来肿瘤化疗的最重要的进展。紫杉醇注射液功效主治卵巢癌和乳腺癌及NSCLC的一线和二线治疗。头颈癌、食管癌,精原细胞瘤,复发非何金氏淋巴瘤等。 USP对紫杉醇[1]以及紫杉醇注射液[2]的含量测定系统方法(系统方法参见色谱621通则*):流动相:水-乙腈 11:9(即 55:45),如需要时可适当调整比例。洗脱:等度,1.5mL/min[1]色谱柱:5um, 4.6[1] 或 4.0[2] mmID x 250mmL,L43(即:PFP,全氟苯基)检测:UV227nm要求:拖尾因子0.7-1.3范围内[1];紫杉醇峰的保留时间在6.0-10.0min范围内[2] *USP Chromatography 621允许调整范围如下而仍具有法规依从性:- 色谱柱粒径可减小(但减小程度最多为50%)- 柱长度可调整± 70%- 流速可调整± 50% 使用沃特世最新产品XSelect&trade HSS PFP色谱柱(3.5um, 4.6x150mm, PN186005862),流速1mL/min,可对混标得到如下分离效果,满足对紫杉醇定量分析的要求。沃特世公司也提供更多规格XSelect HSS PFP色谱柱以满足不同应用与需要。 适当调整流动相,如降低乙腈浓度至42%v/v,即可获得更完全可靠的紫杉醇分离度如下: 关于沃特世XSelect&trade HSS PFP柱产品:是目前市场上稳定性最好的、最具重现性的PFP(全氟苯基)柱基于沃特世HSS(高强度硅胶)颗粒,有完全对等的ACQUITY UPLC亚二微米柱,可供未来无忧升级至UPLC技术平台独特的PFP(全氟苯基)键合相对碱性化合物和平面状芳香族化合物具有独特选择性(产品手册请见:http://www.waters.com/waters/library.htm?cid=511436&lid=134643659,欢迎垂询索取中文资料) [1] USP34, 3798, Assay of Paclitaxel Monograph.[2] USP34, 3799, Assay of Paclitaxel Injection Monograph.

紫杉醇纯度标准物质相关的仪器

  • Omni - 箱内明场/荧光多孔板活细胞成像平台 - 细胞毒性检测细胞毒性测试能反映某种物质对细胞的致死性或毒性程度。用它处理样本可能会抑制细胞的生长和代谢活动并最终导致其死亡。而药物细胞毒性筛选则是通过掌握细胞和组织的一些重要生理过程来评估药物的安全性,或者是在体外模拟疾病进展以开发针对性治疗的新策略。 Axion系列活细胞成像平台能帮助科学家们计算样品中的活细胞浓度,并监测化学制剂对细胞生长和活力的影响,以洞察复杂的生理和病理过程。实时、自动化的细胞毒性检测适用于: 评估化疗药物抗癌疗法的细胞毒性 直接在培养箱中分析细胞死亡的全程,避免移动培养皿带来的干扰 使用明场或荧光成像,非侵入性地探索细胞在活力、代谢活动和增殖等方面的状态◆ ◆ ◆ ◆应用案例◆ ◆ ◆ ◆化疗药物毒性评估在肿瘤治疗方案开发中的应用 在癌症的新疗法、药物筛选和毒理学研究中,细胞活力和毒性的分析都是至关重要的。利用CytoSMART系列活细胞成像系统的先进图像分析工具(比如汇合模块),您就能在定量及定性双维度上评估药物毒性并目睹细胞的死亡全程。 这里用梯度浓度下的药效分析测试来做一个举例说明。药物为紫杉醇,其作用对象为共培养的2种胰管腺癌细胞(PACO7和PACO43)。将无药物处理组的细胞汇合度作为归一化计算的基准,在70小时内多次对全板样本快速自动扫描成像后,Omni多孔板活细胞工作站会将这些数据自动上传CytoSMART云服务器,并通过汇合模块计算功能给出如上图所示的实时药效曲线,供您做进一步的分析。 经过组间比对,我们能发现所有受测浓度(5.1nM-100μM共11个浓度)的紫杉醇都能不同程度地延缓肿瘤细胞的生长,并有着明显的浓度依赖性。137nM以下浓度的药物能够有效减缓细胞的增殖速度;0.4μM-33μM浓度间的紫杉醇则能在加药25-40小时后完全抑制住肿瘤的增殖并维持相当长的时间;而在100μM紫杉醇作用下,细胞归一化汇合度数值在70小时内一直未见增加,意味着在这个条件下两种肿瘤细胞的线粒体活动等重要生理过程很可能为药物毒性所破坏,但仍未达到致死的程度。该定性定量结果对后续的药物作用机理研究提供了重要的提示,并能有效降低疾病模型实验动物的使用成本。FAQOmni 是如何工作的? LED光源位于样本上方,数据采集由样本台下方的可移动镜头完成。在明场通道下,您可以设定让镜头对整个台面依次开展连续成像,最终将生成约7850张快照图片。随后,通过软件的自动拼接,您就能得到一张尺寸为86 mm × 124 mm 的“全景”照片了。当在做荧光实验时,用户则可以精确定义系统对单个孔内某一位置拍照的次数。不管是哪种情况,照片都将被上传到CytoSMART云端服务器。在那里,数据分析将通过我们的图像算法或者是第三方软件去完成。我可以使用什么类型的图像分析模块? 您可以选择购买如下的算法模块:明场/荧光细胞汇合分析算法、划痕实验(比如研究细胞的群体迁移)分析算法、克隆形成分析算法和荧光计数。当然,您也可以随时下载原始数据然后在第三方软件上做一些特殊的分析。 Omni 平台可以在细胞培养箱内使用吗? 可以。它的设计就是依照箱内使用的要求来开展的。所有的硬件和电子器件都能在5-40°C及 20-95% 的湿度环境下运行。该系统可以兼容哪些细胞培养容器? 任何高度小于 55 mm(样本台到光源下沿的距离)的透明培养容器均可兼容。比如说 6-384孔多孔培养板、培养皿、T25 -T225培养瓶等等。重要的是,您要记得Omni的扫描区域尺寸是86 mm × 124 mm哦,这才是真正有效的成像范围。 PART III 相关应用肿瘤球 复杂实体瘤的体外建模及相应新型治疗方案的效力评估。 细胞增殖 追踪细胞生长,洞悉细胞的健康状况及行为变化。克隆形成实验全板克隆计数及生长追踪。细胞毒性定量细胞死亡程度并实时描绘药物的细胞毒特性。肿瘤免疫测定CAR-T细胞和其他免疫疗法的效力。 划痕及细胞迁移实验用于转移潜力或伤口愈合能力评估。细胞转染与转导了解细胞的转染或转导效率并追踪相关蛋白的表达。 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • Omni - 箱内明场/荧光多孔板活细胞工作站 - 细胞毒性检测细胞毒性测试能反映某种物质对细胞的致死性或毒性程度。用它处理样本可能会抑制细胞的生长和代谢活动并最终导致其死亡。而药物细胞毒性筛选则是通过掌握细胞和组织的一些重要生理过程来评估药物的安全性,或者是在体外模拟疾病进展以开发针对性治疗的新策略。 Axion系列活细胞成像平台能帮助科学家们计算样品中的活细胞浓度,并监测化学制剂对细胞生长和活力的影响,以洞察复杂的生理和病理过程。实时、自动化的细胞毒性检测适用于: 评估化疗药物抗癌疗法的细胞毒性 直接在培养箱中分析细胞死亡的全程,避免移动培养皿带来的干扰 使用明场或荧光成像,非侵入性地探索细胞在活力、代谢活动和增殖等方面的状态◆ ◆ ◆ ◆应用案例◆ ◆ ◆ ◆化疗药物毒性评估在肿瘤治疗方案开发中的应用 在癌症的新疗法、药物筛选和毒理学研究中,细胞活力和毒性的分析都是至关重要的。利用Axion系列活细胞成像系统的先进图像分析工具(比如汇合模块),您就能在定量及定性双维度上评估药物毒性并目睹细胞的死亡全程。 这里用梯度浓度下的药效分析测试来做一个举例说明。药物为紫杉醇,其作用对象为共培养的2种胰管腺癌细胞(PACO7和PACO43)。将无药物处理组的细胞汇合度作为归一化计算的基准,在70小时内多次对全板样本快速自动扫描成像后,Omni多孔板活细胞工作站会将这些数据自动上传CytoSMART云服务器,并通过汇合模块计算功能给出如上图所示的实时药效曲线,供您做进一步的分析。 经过组间比对,我们能发现所有受测浓度(5.1nM-100μM共11个浓度)的紫杉醇都能不同程度地延缓肿瘤细胞的生长,并有着明显的浓度依赖性。137nM以下浓度的药物能够有效减缓细胞的增殖速度;0.4μM-33μM浓度间的紫杉醇则能在加药25-40小时后完全抑制住肿瘤的增殖并维持相当长的时间;而在100μM紫杉醇作用下,细胞归一化汇合度数值在70小时内一直未见增加,意味着在这个条件下两种肿瘤细胞的线粒体活动等重要生理过程很可能为药物毒性所破坏,但仍未达到致死的程度。该定性定量结果对后续的药物作用机理研究提供了重要的提示,并能有效降低疾病模型实验动物的使用成本。FAQOmni 是如何工作的? LED光源位于样本上方,数据采集由样本台下方的可移动镜头完成。在明场通道下,您可以设定让镜头对整个台面依次开展连续成像,最终将生成约7850张快照图片。随后,通过软件的自动拼接,您就能得到一张尺寸为86 mm × 124 mm 的“全景”照片了。当在做荧光实验时,用户则可以精确定义系统对单个孔内某一位置拍照的次数。不管是哪种情况,照片都将被上传到CytoSMART云端服务器。在那里,数据分析将通过我们的图像算法或者是第三方软件去完成。我可以使用什么类型的图像分析模块? 您可以选择购买如下的算法模块:明场/荧光细胞汇合分析算法、划痕实验(比如研究细胞的群体迁移)分析算法、克隆形成分析算法和荧光计数。当然,您也可以随时下载原始数据然后在第三方软件上做一些特殊的分析。Omni 平台可以在细胞培养箱内使用吗? 可以。它的设计就是依照箱内使用的要求来开展的。所有的硬件和电子器件都能在5-40°C及 20-95% 的湿度环境下运行。该系统可以兼容哪些细胞培养容器? 任何高度小于 55 mm(样本台到光源下沿的距离)的透明培养容器均可兼容。比如说 6-384孔多孔培养板、培养皿、T25 -T225培养瓶等等。重要的是,您要记得Omni的扫描区域尺寸是86 mm × 124 mm哦,这才是真正有效的成像范围。 PART III 相关应用肿瘤球 复杂实体瘤的体外建模及相应新型治疗方案的效力评估。 细胞增殖 追踪细胞生长,洞悉细胞的健康状况及行为变化。克隆形成实验全板克隆计数及生长追踪。细胞毒性定量细胞死亡程度并实时描绘药物的细胞毒特性。肿瘤免疫测定CAR-T细胞和其他免疫疗法的效力。 划痕及细胞迁移实验用于转移潜力或伤口愈合能力评估。细胞转染与转导了解细胞的转染或转导效率并追踪相关蛋白的表达。 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • 15升高纯度氮气发生器纯度99.9%产品说明:氮气发生器是一种先进的气体分离技术,以韩国进口膜分离空气制取高纯度的氮气,空气经压缩机压缩过滤后进入高分子膜过滤器,由于各种气体在膜中溶解度和扩散系数不同,导致不同气体在膜中相对渗透速率不同,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维护量更少、产气更快(≤3分钟)、增容方便等优点。 主要特征:1. 韩国进口膜分离,纯度高,使用寿命长,无耗材更换 2. 内置专业除水分离器,确保吸附剂的使用寿命长 3. 三级独立过滤系统,颗 粒0.01um&0.003mg/m3,确保机器产气连续性 4. 氮气纯度显示,可清晰观察机器产氮气的纯度,精度高 5. 内置压缩机,无需外配,且采用悬空隔音系统,噪音小 6. 双重压力值可调系统,操作简单方便 15升高纯度氮气发生器纯度99.9%技术参数:型号AYAN-2LAYAN-5LAYAN-10LAYAN-15LAYAN-20LAYAN-30LAYAN-60L出气量2L5L10L15L20L30L60L纯度值99%压力值0-0.6mpa漏点-45°C过滤系统三级总功率450W500W1000W1600W2600W3200W3800W工作电压220V 50HZ380V氮气发生器可订制各种流量,纯度分别为99%,99.9%,99.99%,99.999%,99.9999%的氮气发生器,欢迎选购! 高纯氮气发生器是一种的气体分离技术,是根据电催化空气分离的原理制成的。其中,电解电池是使用燃料电池的逆向工艺设计的,当空气以稳定的压力和纯净的原料进入电解池时,空气中的氧气被吸附在阴极上以获取电子并与水相互作用以生成氮氧化物离子并迁移到阳极。电子在阳极损失,氧气释放。因此,空气中的氧气被连续分离,仅剩下氮气。经过后级过滤,电压稳定和稳流处理后,可获得高纯度氮气。  高纯氮气发生器的全过程:  1、当使用碳分子筛作为吸附剂时,碳分子筛对氧气和氮气的吸附速度变化很大。在高压下,空气进入碳分子筛后,在很短的时间内,氧气的吸附速度大大超过了氮的吸附速度(碳分子筛还具有对二氧化碳的吸附能力等),从而将气体从空气中富含氮的成分。  2、氮气流出后,通过减压,使吸附在分子筛表面的氧分子解吸并排出,从而可以再生吸附剂。  通过变压吸附法生产的氮气的纯度在95.0%至99.9%之间,并且可以获得纯度大于99.9995%的氮气。一般而言,如果需要更高纯度的氮气,则需要添加氮气净化设备,并且在其他条件不变(例如输入气体量)的情况下,氮气的纯度越高,氮气的输出量就越小。氮气发生器到底是选择PSA变压吸附还是膜分离技术?关于如何选择氮气发生器(也称制氮机),选择哪种制氮技术好的问题?可以说目前从技术角度上讲,氮气发生器制氮技术基本上就是三种,有碳分子筛变压吸附、中空纤维膜分离法、电化学制氮法,这三种技术各有优劣,用途更广还要数PSA变压吸附和膜分离这两种。氮气发生器(也称制氮机)运用这两种技术的较多,今天就和大家一起来说说这两种技术的制氮原理以及各自特点,如有不准确的地方,望大家留言补充:变压吸附技术变压吸附是以空气为原料,以碳分子筛为吸附剂的一种制氮技术,是一种多孔疏松的碳颗粒,当压缩空气通过碳分子筛时,不同的气体分子直径以及气体本身的分子属性,会通过碳分子筛进行吸附,如空气中的水汽和氧气,然而氮气却不会被吸附,从而达到被分离被收集的目的;变压吸附的过程就是吸附解压-再吸附解压的重生过程。膜分离技术然而膜分离技术也是以空气为原料,压缩空气通过中空纤维膜,由于不同气体分子直径不同,当空气通过膜的时候,分子直径较小的氧气、二氧化碳和水蒸汽会通过中空纤维膜管道上的小孔,进而排到大气中去。在膜的出口,大分子直径的氮气分子和惰性气体氩气都被收集起来,从而完成氮气的提取过程。从上面简述来看,基本可以看到它们的一些区别,但还不是很明显,下面我们就各自特点来做个分析比较,如纯度,流量、大小、噪音等。两种技术对比来说:1、纯度氮气在不同分析仪器中所起的作用不同,所以对纯度的需求也不同,在同等条件状态下,如进气量、压力、气源质量、过滤系统等,变压吸附所能达到的大纯度比膜分离技术高得多;目前市场技术膜分离技术纯度在99.5%这个位置,碳分子筛变压吸附基本能到59的纯度了,无限接近钢瓶气了。2、流量和体积大小不管是采用碳分子筛还是膜分离技术的氮气发生器,其大小都是和氮气流量有关系,流量越大,其占用空间也会越大,不过流量小的时候膜分离空间占优势,如果是流量大的话应该还是分子筛的变压吸附更占优势。3、露点或含水量从理论上来看,变压吸附的除水能力较优于膜分离,对于碳分子筛的变压吸附,如果前端处理不当,不仅除水能力下降,还会导致碳分子筛粉化弱化甚至失去吸附能力,对于膜分离而言,那就是怕水怕油啦,处理不当的话纤维膜也会失去吸附能力,纤维膜也得作废。4、噪音介于PSA变压吸附还是膜分离制氮技术都是以空气源作为原料来提取氮气,那么在噪音或者空压机养护方面就是一样的啦,好坏更多的可能就是取决于空气压缩机的质量了。结合以上方方面面,所以在选择氮气发生器(也称制氮机)时,具体选择哪种技术更好更合适要取决于应用场景和流量需求,不能一概而论,各自都是自身的优势,纯度、压力、流量都能达到自己的需求就可以了,哪种技术不是重要的,当然不管后选择哪种,空气源的洁净度都有要求,都要进行前端处理,如果前端除油除水效果不佳或者不定期进行维护,碳分子筛和氮气膜的分离效果会随着使用年限的增加而慢慢失效。
    留言咨询

紫杉醇纯度标准物质相关的耗材

  • 紫杉醇Silicycle正相硅胶
    北京绿百草科技专业提供分离紫杉醇Silicycle正相硅胶。紫杉醇(Paclitaxel)是从紫衫的树皮中提出的一种化合物,Silicycle正相硅胶适合分离紫杉醇,货号为R12030B,粒径40-63&mu m,孔径60Å 。绿百草科技现货供应Silicycle正相硅胶填料。
  • 五氟苯基柱,紫杉醇分析专用色谱柱
    用氟原子取代反相固定相碳链上的氢原子,含氟固定相除了对含氟和含卤素化合物有较高的选择性外,也可作为普通的反相固定相使用,用于分离不含氟或卤素的化合物,提供与C-H烷基固定相不同的选择性。在生物制药、天然产物和环境分析中近年来应用广泛。 氟代固定相比烷基固定相有更强的离子交换和极性作用的分离特性,对一些极性的代谢产物有很好选择性。另外含氟固定相有很强的几何尺寸和立体形状选择性,能分离一些结构相似、用烷基固定相很难分离的物质。 用于含氟化合物以及紫杉醇类的天然产物的分离,由于苯环的存在,和其它氟烷基固定相不同,PFP对芳香族化合物也有很高的选择性。
  • 液相色谱柱 SUPELCOSIL LC-F( 紫杉醇的专用分析柱)
    液相色谱柱 SUPELCOSIL LC-F( 紫杉醇的专用分析柱)货号59158产品描述SUPELCOSIL LC-F 色谱柱键合有五氟苯基官能团/封尾。对卤代化合物、酯类、酮类、碱和紫杉烷类包括紫杉醇的分离,该色谱柱具有与传统反相色谱柱不同的特殊选择性。应用特点紫杉醇的专用分析柱型号规格250*4.6mm,5&mu m

紫杉醇纯度标准物质相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制