克利西丁磺酰甲胺

仪器信息网克利西丁磺酰甲胺专题为您提供2024年最新克利西丁磺酰甲胺价格报价、厂家品牌的相关信息, 包括克利西丁磺酰甲胺参数、型号等,不管是国产,还是进口品牌的克利西丁磺酰甲胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合克利西丁磺酰甲胺相关的耗材配件、试剂标物,还有克利西丁磺酰甲胺相关的最新资讯、资料,以及克利西丁磺酰甲胺相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

克利西丁磺酰甲胺相关的资料

克利西丁磺酰甲胺相关的论坛

  • 【原创大赛】银黄颗粒质量标志物评价研究

    【原创大赛】银黄颗粒质量标志物评价研究

    [b][/b][align=center][b]银黄颗粒质量标志物评价研究[/b][/align][b] 摘要[/b]目的:以黄芩药材、金银花药材、黄芩提取物、金银花提取物、银黄制剂为研究对象,考察并优化了样本在前处理环节的回流提取溶剂的体积、回流提取时间和提取溶剂的温度等。方法:采用高效液相色谱法,色谱柱为Venusil MP C[sub]18[/sub](4.6mm × 250 mm,5μm), Venusil MP C[sub]18[/sub](4.6mm × 250 mm,3μm)和 Agela MP S/N。以乙腈一0.3% 磷酸溶液为流动相进行梯度洗脱,流速为0.7 mLmin[sup]-1[/sup],检测波长为235 nm。结果和结论:通过各方面的考察,确定了银黄颗粒、黄芩药材和金银花药材在样品前处理环节的工艺优化参数,为银黄颗粒质量标志物研究提供借鉴指导。结论: 建立的提取方法稳定、可靠,有效成分达到最大提取效率,可用于银黄颗粒溯源检测的质量控制和综合评价。[b] 关键词:[/b]银黄颗粒;质量标志物;高效液相;黄芩;金银花[b] [/b][align=center][b][color=#333333]Evaluation of Quality Markers of Yinhuang Granules[/color][/b][/align]Objective: To investigate and optimize the volume ofreflux solvent, reflux extraction time and temperature of extraction solvent inthe pretreatment of samples, taking Scutellaria baicalensis, honeysuckle,Scutellaria baicalensis extract, honeysuckle extract and Yinhuang preparationas research objects. METHODS: High performance liquid chromatography was usedwith Venusil MP C18 (4.6 mm *250 mm, 5 micron), Venusil MP C18 (4.6 mm *250 mm,3 micron) and Agela MP S/N as chromatographic columns. The gradient elution was carried out with acetonitrile-0.3% phosphoric acid solution as mobile phase.The flow rate was 0.7 mL/min and the detection wavelength was 235nm. RESULTS AND CONCLUSION: The process optimization parameters of Yinhuanggranules, Radix Scutellariae baicalensis and Flos Lonicerae in samplepretreatment were determined through various aspects of investigation, whichcould provide reference and guidance for the study of quality markers ofYinhuang granules. CONCLUSION: The established extraction method is stable andreliable, and the effective ingredients can reach the maximum extractionefficiency. It can be used for quality control and comprehensive evaluation oftraceability detection of Yinhuang granules.Keywords: Yinhuang granules quality markers high performance liquidchromatography Scutellaria baicalensis honeysuckle[b]一、前言[/b] 银黄颗粒组方由金银花和黄芩构成,具有清热疏风、利咽解毒的功效,用于外感风热、肺胃热盛所致的咽干、咽痛、喉核肿大、口渴、发热急慢性扁桃体炎、急慢性咽炎、上呼吸道感染等症。该复方原料金银花为忍冬科植物忍冬的干燥花蕾或带初开的花,主产于山东、河南和河北等地。该复方原料黄芩为唇形科[url=https://baike.baidu.com/item/%E9%BB%84%E8%8A%A9%E5%B1%9E][color=windowtext]黄芩属[/color][/url]多年生草本植物,产于河北,河南,陕西,山西,山东等地。黄芩提取物的主要活性成分为黄芩苷、汉黄芩苷、黄芩素及汉黄芩素,金银花提取物是从金银花中提取的有机酸类活性成分。该制剂及其原料药成分复杂,生产厂家及产地众多,样品存在差异。中药质量标志物(Q-marker)已广泛应用于中成药的质量评价与控制。近年来越来越多的研究使用不同种类的分析仪器,密切联系中药有效性-物质基础- Q-marker研究,建立了丰富的中成药系统质量控制方法,为探讨建立中药全过程质量控制及质量溯源体系奠定了基础。[b]二、材料与方法1仪器与试剂、试药1.1仪器[/b] Waters e2695高效液相色谱仪(美国Waters公司),Waters 2998紫外检测器(美国Waters公司),Waters Empower色谱工作站(美国Waters公司);AGBP210S电子天平(Sartorius公司);MILLIPORE纯水机(MILLIPORE公司);高速万能粉碎机(北京市永光明医疗仪器有限公司,FW-80型);SB4200DTS超声波双频清洗机(宁波新芝生物科技股份有限公司);KDM-A控温电热套(金坛市医疗仪器厂);Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,5 μm)和Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm)。[b]1.2 试剂与试药[/b] 乙腈(上海星可高纯溶剂有限公司,色谱纯);甲醇(天津市科密欧化学试剂有限公司,色谱纯);其余试剂均为分析纯,水为超纯水。对照品来源:葛根素(批号:110752-200912)购自中国食品药品检定研究院。2样品的收集与前处理[b]2.1样品的收集[/b] 本研究从全国范围内收集黄芩、金银花药材各50批,分别制备相应的黄芩提取物和金银花提取物各50批,并制备银黄颗粒样品至少50批。(共计不少于250批样品)。[b]2.2黄芩、金银花药材的处理[/b] 对收集到的各批样品,均按照《中国药典》2015年版(第四部)药材取样法,四分法取样,1/4留样,剩余药材粉碎,使粉末分别过60目和20目筛,并按比例称重。所有黄芩、金银花药材样品均装袋密封,保存于冰柜(-20℃)中,备用。[b]2.3黄芩提取物的制备[/b] 取黄芩约100 g,置于1000 ml容量瓶中,加热回流两次,每次2 h,将滤液置于烧杯中浓缩至200 ml,用2 mol/L的盐酸调PH至1.0-2.0,80 ℃保温1 h,静置24 h.减压抽滤,沉淀加一倍量水混匀,用40 %氢氧化钠调节PH至7.0,加等量乙醇,搅拌溶解,滤过,滤液用2 mol/L的盐酸调PH 1.0-2.0, 60 ℃保温1 h,静置24 h,滤过,沉淀物加水洗至PH 5.0,95%乙醇洗至中性,挥尽乙醇,干燥,即得。[align=center]表1 黄芩提取物的提取[/align][align=center][img=,579,348]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091021374879_6392_3255306_3.png!w579x348.jpg[/img][/align][b]2.4金银花提取物的制备[/b] 称取金银花50.05 g置于圆底烧瓶中,加纯水回流提取三次,第一次8倍量水400 ml回流提取1 h,滤过,残渣加8 倍量水400 ml二次回流提取1 h,滤过,合并煎液,残渣加6倍量水300 ml,合并煎液,浓缩成浸膏,加浸膏量50%的淀粉混匀,置于烘箱中,60 ℃干燥,粉碎成粉,即得。[align=center]表2 金银花提取物的提取[/align][align=center] [img=,552,347]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091021550706_5584_3255306_3.png!w552x347.jpg[/img][/align][b]3供试品溶液方法考察的制备3.1供试品溶液制备方法考察3.1.1提取溶剂的选择[/b] 根据银黄颗粒的服用说明,该样品采用水为溶媒制备供试品溶液,由于临床应用中黄芩,金银花多采用水煎内服的用法,因此研究中以水作为提取溶媒,制备样品溶液。[b]3.1.2内标物溶液的制备[/b] 经查阅大量文献,本实验适用的内标物为葛根素。取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg*mL[sup]-1[/sup]的内标溶液[b]3.2银黄颗粒供试液制备方法考察3.2.1银黄颗粒不同料液比的考察[/b] 银黄颗粒研细后精密称取细粉1.0 g,称四份,置于100 ml或250 ml的圆底烧瓶中,分别精密加入煮沸的蒸馏水25 ml、50 ml、100 ml、150 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后0.5 ml等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表3、图1。[align=center]表3 银黄颗粒不同料液比单位质量色谱峰面积比较[/align][align=center] [img=,289,425]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091023281381_1955_3255306_3.png!w289x425.jpg[/img][/align][align=center]图1 银黄颗粒不同料液比单位质量色谱峰面积比较[/align][align=center][img=,289,123]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091023402582_6283_3255306_3.png!w289x123.jpg[/img][/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取体积为100 ml时值最大,最终选择回流提取体积为100 ml。[b]3.2.2银黄颗粒不同提取时间的考察[/b] 银黄颗粒研细后精密称取细粉1.0 g,称四份分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水25 ml于圆底烧瓶中,称重,分别加热回流20 min、30 min、40 min、60 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后0.5 ml等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表4、图2。[align=center]表4 银黄颗粒不同提取时间单位质量色谱峰面积比较[/align][align=center] [img=,292,421]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091024007921_8570_3255306_3.png!w292x421.jpg[/img][/align][align=center][img=,577,251]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091024513811_6890_3255306_3.png!w577x251.jpg[/img][/align][align=center]图2 银黄颗粒不同提取时间单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取时间为30 min时值最大,最终选择回流提取时间为30 min。[b]3.2.3银黄颗粒冷热水的考察[/b] 银黄颗粒研细后精密称取细粉1.0 g,称两份分别置于250 ml的圆底烧瓶中,第一份精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,第二份精密加入100 ml常温蒸馏水,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表5、图3。[align=center]表5 银黄颗粒冷热水单位质量色谱峰面积比较[/align][align=center][img=,287,427]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091025490101_4911_3255306_3.png!w287x427.jpg[/img][/align][align=center][img=,574,270]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091026003331_9248_3255306_3.png!w574x270.jpg[/img][/align][align=center]图3 银黄颗粒冷热水单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取溶剂为热水时值最大,最终选择提取溶剂为热水。[b]3.3黄芩药材供试液制备方法考察 3.3.1黄芩药材不同料液比的考察[/b] 按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.57 g,称取三份,置于100 ml或250 ml的圆底烧瓶中,分别精密加入煮沸的蒸馏水25 ml、50 ml、100 ml于圆底烧瓶中,称重,加热回流30 min ,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表6、图4。[align=center]表6 黄芩药材不同料液比单位质量色谱峰面积比较[/align][align=center][img=,291,425]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091026251557_1424_3255306_3.png!w291x425.jpg[/img][/align][align=center][img=,567,260]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091026352391_8450_3255306_3.png!w567x260.jpg[/img][/align][align=center]图4 黄芩药材不同料液比单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取体积为50ml时值最大,最终选择50ml为最佳提取容积。[b]3.3.2黄芩药材不同提取时间的考察[/b] 按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.57 g,称取四份,分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水25 ml于圆底烧瓶中,称重,分别加热回流20 min、30 min、40 min、60 min ,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表7、图5。[align=center]表7 黄芩药材不同提取时间单位质量色谱峰面积比较[/align][align=center][img=,289,424]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091027053867_9448_3255306_3.png!w289x424.jpg[/img][/align][align=center][img=,605,240]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091027125561_9333_3255306_3.png!w605x240.jpg[/img][/align][align=center]图5 黄芩药材不同提取时间单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取时间为40 min时值最大,最终选择40 min为最佳提取时间。[b]3.3.3黄芩药材冷热水提取的考察[/b] 按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.57 g,称取二份,置于100 ml的圆底烧瓶中,第一份精密加入煮沸的蒸馏水50 ml于圆底烧瓶中,第二份精密加入50 ml常温蒸馏水,分别称重,加热回流40 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表8、图6.[align=center]表8 黄芩药材冷热水单位质量色谱峰面积比较[/align][align=center][img=,287,424]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091027401011_8981_3255306_3.png!w287x424.jpg[/img][/align][align=center][img=,619,293]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091027478961_1794_3255306_3.png!w619x293.jpg[/img][/align][align=center][/align][align=center]图6 黄芩药材冷热水单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取溶剂为热水时值最大,最终选择热水提取是最佳的。[b]3.4金银花药材供试液制备方法考察3.4.1金银花药材不同料液比的考察[/b] 按比例称取2 0~60目和过60目筛的金银花药材粉末,共0.5 g,称取三份,置于100 ml或250 ml的圆底烧瓶中,分别精密加入煮沸的蒸馏水50 ml、100 ml、200 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表9、图7。[align=center]表9 金银花药材不同料液比单位质量色谱峰面积比较[/align][align=center][img=,358,511]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091031346401_7706_3255306_3.png!w358x511.jpg[/img][/align][align=center][img=,636,256]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091031349941_1562_3255306_3.png!w636x256.jpg[/img][/align][align=center]图7 金银花药材不同料液比单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取容积为100 ml,200 ml时值较大,100 ml与200 ml比较,两者的成分含量差别不大,所以选择100 ml提取较好。[b]3.4.2金银花药材不同提取时间的考察[/b] 按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.5 g,称取四份,分别置于250 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,分别加热回流20 min、30 min、40 min、60 min ,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算各共有峰的单位质量的峰面积值,比较其差异,结果见表10、图8。[align=center]表10 金银花药材不同提取时间单位质量色谱峰面积比较[/align][align=center][img=,290,424]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091030005792_6136_3255306_3.png!w290x424.jpg[/img][/align][align=center][img=,555,215]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091030053727_8053_3255306_3.png!w555x215.jpg[/img][/align][align=center][/align][align=center]图 9 金银花药材冷热水提取单位质量色谱峰面积比较[/align] 由上述表图分析:各主要共有峰的单位质量峰面积在提取溶剂为热水时值最大,最终选择热水提取最佳。[b]3.5 黄芩提取物,金银花提取物供试液制备方法考察[/b] 通过实验得知黄芩提取物,金银花提取物供试液制备方法考察同银黄颗粒供试液制备方法考察一致。[b]3.6 含葛根素内标的银黄颗粒、黄芩药材、金银花药材、黄芩提取物、金银花提取物供试液配制方法的确定3.6.1含葛根素内标银黄颗粒供试品溶液的配制[/b] 银黄颗粒研细后精密称取细粉1.0 g,置于250 ml圆底烧瓶内,精密加入煮沸的蒸馏水100 ml,称重,加热回流30 min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]3.6.2含葛根素内标黄芩药材供试品溶液的配制[/b] 从冰柜中取出黄芩药材粉末,放置室温。采用四分法取样,按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.57 g,置于100 ml圆底烧瓶中,精密加入煮沸的蒸馏水50 ml,称重,加热回流40 min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]3.6.3含葛根素内标金银花药材供试品溶液的配制[/b] 从冰柜中取出金银花药材粉末,放置室温。采用四分法取样,按比例称取2 0~60目和过60目筛的黄芩药材粉末,共0.25 g,置于100 ml圆底烧瓶中,精密加入煮沸的蒸馏水50 ml,称重,加热回流30 min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]3.6.4含葛根素内标金银花提取物供试品溶液的配制[/b] 从冰柜中取出金银花提取物粉末,按比例精密称取0.2 g,置于250 ml圆底烧瓶中,精密加入煮沸的蒸馏水100 ml,称重,加热回流30min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]3.6.5含葛根素内标黄芩提取物供试品溶液的配制[/b] 从冰柜中取出黄芩提取物粉末,按精密称取0.04 g,置于250 ml圆底烧瓶中,精密加入煮沸的蒸馏水100 ml,称重,加热回流30 min(提前打开电热套预热),放冷,补重,过滤,取续滤液。另取葛根素对照品适量精密称定,以水超声溶解并定容制成浓度为30 μg• mL-1的内标溶液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液。[b]三、结论[/b] 实验考察了银黄颗粒在样本处理环节的回流提取溶剂的体积、回流提取时间和提取溶剂的温度等。最终选择回流提取体积为100 ml,选择回流提取时间为30 min,选择提取溶剂为热水。考察了黄芩药材在样本处理环节的回流提取溶剂的体积、回流提取时间和提取溶剂的温度等。最终选择50ml为最佳提取容积,选择40 min为最佳提取时间,选择热水提取是最佳的。考察了金银花药材在样本处理环节的回流提取溶剂的体积、回流提取时间和提取溶剂的温度等。最终选择100 ml体积提取溶剂,选择30 min提取是最佳的,选择热水提取最佳。本实验还确定了含葛根素内标的银黄颗粒、黄芩药材、金银花药材、黄芩提取物、金银花提取物供试液配制方法。[align=left][b]参考文献[/b][/align] 王亚丹,杨建波,戴忠,等.中药金银花的研究进展.药物分析杂志,2014,34(11):1928-1935 中国药典.一部.2015:1498 王彩芳,张楠,黄龙,等. HPLC法测定不同厂家银黄颗粒中黄芩苷的含量.医药论坛杂志,2006,27(24):27-28 王彩芳,黄龙,程茜,等.高效液相色谱法测定不同厂家银黄颗粒中绿原酸的含量.时珍国医国药,2007,18(5):1143-1144黄雄,黄嬛,王峻,等.银黄颗粒的HPLC特征图谱分析.药物分析杂志,2009,29(8):1320-1323 肖小河,王永炎.从热力学角度审视和研究中医药.国际生物信息与中医药论丛.新加坡:新加坡医药卫生出版社,2004:74 贺福元,罗杰英,刘文龙,等.中药谱效学研究方向方法初探.世界科学技术-中医药现代化,2004,6(6):44-50 赵渤年,于宗渊,丁晓彦,等.黄芩质量评价谱-效相关模式的研究.中草药,2011.42(2):380-383 高燕,赵渤年,于宗渊等.金银花抗流感病毒毒谱-效相关质量评价模式的研究.中华中医药杂志,2013.28(12):3508-3511 Ke Li, Wei Cheng, Xiao-Jian Liu, hu-Bin Li, En-Guang Hou, Yan Gao, Liang Wang, Qing Liu, Bo-Nian Zhao, Zong-Yuan Yu, Mathematical Modelling for the Quality Evaluation of BaikalSkullcap Root, Applied Mechanics and Materials, 2011 王荣梅,徐丽华,林永强.HPLC法同时测定银黄含片中6个咖啡酰奎宁酸类成分的含量.药物分析杂志,2012,32(1):57-60 高苏亚,范涛,王黎等.红外光谱技术结合化学计量学方法在中药研究中的应用.应用化工,2012,41(2):324-328 王鹏,王振国,薛付忠等.基于支持向量机法的中药性状与药性相关性研究. 江西中医药,2012,43(355):65-68 Cifford MN, Johnston KL, Knight S et al. Hierarchical scheme for [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] identification ofchlorogenic acids.J Agric Food Chem,2003 51(10):2900-2910张倩,张加余,隋丞琳,等. HPLC-DAD-ESI-MS/MS研究金银花水提工艺中绿原酸类成分的变化规律.中国中药杂志,2012 37(23):3564-3567 沈红,段金廒,钱大玮,等.黄芩及复方野马追胶囊中黄酮类成分的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析.药物分析杂志,2009 29(9):1425-1429 赵胜男,李守拙.黄芩药材中黄酮类成分的HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]研究.承德医学院学报2012 29(4):345-347 Chkoshi E, Nagashima T, Sato H, et al. Simple preparation ofbaicalin from Scutellariae Rdixi. JChromatogr A,2009 1216(11): 2192 -2194高燕,吕凌,王亮,等.银黄颗粒HPLC指纹图谱与模式识别分析.中华中医药杂志,2017,32(09):4238-4242 丁晓彦,刘青,李岩,等.丹参脂溶性成分的HPLC指纹图谱及模式识别研究.中华中医药杂志,2016,3(6):2254-2256

  • 二甲胺基磺酰氯的检测

    由二甲胺与磺酰氯合成二甲胺基磺酰氯,产品计划用气相做检测,柱子是se-30的,结果不理想,大家给些意见,尤其是关于该产品的文献极少,在知网上没有几篇。也可能太简单了。

  • 【原创大赛】一种银黄颗粒HPLC指纹图谱的检测方法及其应用

    【原创大赛】一种银黄颗粒HPLC指纹图谱的检测方法及其应用

    [align=center][b]一种银黄颗粒HPLC指纹图谱的检测方法及其应用[/b][/align]摘要目的:本研究介绍了银黄颗粒及其原料药黄芩和金银花的指纹图谱的建立方法,包括供试品溶液的制备、高效液相色谱仪测定及对数据和图谱的处理,以及由该方法制备得到的相应指纹图谱。方法:使用Venusil MP C18(4.6 mm × 250 mm,5 μm)+ Venusil MP C18(4.6 mm × 250 mm,3 μm)色谱柱在紫外235 nm吸收波长,选用流动相:乙腈(A)-0.3%磷酸(B)梯度洗脱,0~103 min,17%ACN 103~142 min,17%→27%ACN;142~156 min,27%→29%ACN;156~179 min,29%→41%ACN;179~219min,41%→80%CAN。结果:在测定的不同厂家 10 批次样品的色谱图中,选择90%以上批次样品均有的色谱峰为共有峰,银黄颗粒。黄芩药材、金银花药材分别确定了22,22,21 个共有峰。结论:为银黄颗粒定性鉴别提供借鉴。关键词:银黄颗粒;黄芩;金银花;指纹图谱[align=center][b]A Method for Detecting Fingerprint of Yinhuang Granules by HPLC and ItsApplication[/b][/align]Abstract Objective: To introduce the method ofestablishing fingerprint of Yinhuang granules and its raw materials,Scutellaria baicalensis and Lonicera japonica, including the preparation ofsample solution, determination by high performance liquid chromatography andthe treatment of data and chromatogram, as well as the correspondingfingerprint obtained by this method. METHODS: Venusil MP C18 (4.6 mm×250 mm, 5 mm) + Venusil MP C18 (4.6 mm×250mm, 3 mm) column was used at 235 nmultraviolet absorption wavelength. The mobile phase was selected: acetonitrile(A) - 0.3% phosphoric acid (B) gradient elution, 0-103 min, 17% ACN, 103-142min, 17% to 27% ACN, 142-156 min, 27% to 29% ACN, 156-179 min, 29% to 4% ACN.1% ACN 179 ~ 219 min, 41%80% CAN. RESULTS: In the chromatograms of 10 batchesof samples from different manufacturers, more than 90% of the samples hadcommon peaks, Yinhuang granules. Scutellaria baicalensis and Lonicera japonicahave 22, 22 and 21 peaks respectively. CONCLUSION: It can provide reference forthe qualitative identification of Yinhuang Granules.Key words: Yinhuang granules Scutellaria baicalensis Honeysuckle Fingerprint[b] 一、前言[/b]银黄颗粒组方由金银花和黄芩构成,具有清热疏风、利咽解毒的功效,用于外感风热、肺胃热盛所致的咽干、咽痛、喉核肿大、口渴、发热急慢性扁桃体炎、急慢性咽炎、上呼吸道感染等症。该复方原料金银花为忍冬科植物忍冬的干燥花蕾或带初开的花,主产于山东、河南和河北等地。该复方原料黄芩为唇形科[url=https://baike.baidu.com/item/%E9%BB%84%E8%8A%A9%E5%B1%9E][color=windowtext]黄芩属[/color][/url]多年生草本植物,产于河北,河南,陕西,山西,山东等地。黄芩提取物的主要活性成分为黄芩苷、汉黄芩苷、黄芩素及汉黄芩素,金银花提取物是从金银花中提取的有机酸类活性成分。该制剂及其原料药成分复杂,生产厂家及产地众多,样品存在差异。中药 HPLC 指纹图谱技术被认为是当前能较全面反映中药材及复方整体化学成分信息的方法,能更有效地评价中药的质量信息。本研究在分析上述研究背景的基础上,收集来源于不同产地的各50批金银花和黄芩药材,并制成银黄颗粒成品,再采用HPLC法同时建立金银花药材,黄芩药材和相应批次银黄颗粒的指纹图谱,选出各自的共有峰,从而确定不同产地,不同厂家的的药材共有物质及其数量。[b]二、材料与方法1仪器与试剂、试药1.1仪器[/b]Waters e2695高效液相色谱仪(美国Waters公司),Waters 2998紫外检测器(美国Waters公司),Waters Empower色谱工作站(美国Waters公司);AGBP210S电子天平(Sartorius公司);MILLIPORE纯水机(MILLIPORE公司);高速万能粉碎机(北京市永光明医疗仪器有限公司,FW-80型);SB4200DTS超声波双频清洗机(宁波新芝生物科技股份有限公司);KDM-A控温电热套(金坛市医疗仪器厂);Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,5 μm)和Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm)。[b]1.2 试剂与试药[/b]乙腈(上海星可高纯溶剂有限公司,色谱纯);甲醇(天津市科密欧化学试剂有限公司,色谱纯);其余试剂均为分析纯,水为超纯水。对照品来源:葛根素(批号:110752-200912)购自中国食品药品检定研究院。[b]2方法2.1 HPLC色谱条件的考察2.1.1不同流动相的考察[/b]比较了乙腈--0.05%甲酸、乙腈-0.4%甲酸、乙腈-0.3%甲酸的流动相系统进行洗脱。见图1。 [align=center][img=,671,271]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091124382201_5843_3255306_3.png!w671x271.jpg[/img][/align][align=center]乙腈--0.05%甲酸[/align][align=center][img=,610,288]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091124499241_4585_3255306_3.png!w610x288.jpg[/img][/align][align=center]乙腈-0.4%甲酸[/align][align=center][img=,690,286]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091124589941_1562_3255306_3.png!w690x286.jpg[/img][/align][align=center]乙腈-0.3%甲酸[/align][align=center][img=,610,286]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091125102591_3301_3255306_3.png!w610x286.jpg[/img][/align][align=center]图1 不同流动相系统下银黄颗粒指纹图谱[/align]结果表明,前二者分离度均相对较差,且乙腈-0.05%甲酸均基线噪音大。最终选用乙腈-0.3%磷酸作为流动相系统,所得色谱峰型较好,基线平稳,分离效果最佳。[b]2.1.2 梯度洗脱条件的选择[/b]本实验考察了不同比例的乙腈-磷酸的洗脱条件,尽可能多且全面展现银黄颗粒样品的峰信息,考察了以下4个洗脱程序。梯度条件一:流动相:乙腈(A)-0.1%磷酸(B)梯度洗脱,0~70 min,17%ACN;70~100 min,17%→20% ACN;100~110 min,20%→25% ACN;110~140 min,25%→55% ACN;140~150 min,55%→70%ACN。梯度条件二:流动相:乙腈(A)-0.1%磷酸(B)梯度洗脱,0~80min,17%ACN;80~139min,17% →34% ACN;139~159 min,34% →64% ACN;159~170min,64% →80% ACN。梯度条件三:流动相:乙腈(A)-0.1%磷酸(B)梯度洗脱,0~103min,17%ACN;103~142min,17%→24%ACN;142~165min,24%→33%ACN;165~195 min,33%ACN;195~280min,33%→70%ACN。梯度条件四:流动相:乙腈(A)-0.3%磷酸(B)梯度洗脱,0~103 min,17%ACN 103~142min,17%→27%ACN;142~156 min,27%→29%ACN;156~179 min,29%→41%ACN;179~219min,41%→80%CAN。结果梯度条件四下的指纹图谱,色谱图中采集的色谱峰形好,峰数多且分离度良好,基线较平稳,能展现最多的谱图信息,故确定为最终梯度条件,见图2。[align=center][img=,607,284]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091125509322_7749_3255306_3.png!w607x284.jpg[/img][/align][align=center]梯度条件一[/align][align=center][img=,607,287]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126035685_7140_3255306_3.png!w607x287.jpg[/img][/align][align=center]梯度条件二[/align][align=center][img=,608,287]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126106612_24_3255306_3.png!w608x287.jpg[/img][/align][align=center]梯度条件三[/align][align=center][img=,690,282]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126155801_3154_3255306_3.png!w690x282.jpg[/img][/align][align=center]梯度条件四[/align][align=center]图2 不同洗脱条件下银黄颗粒指纹图谱[/align][b]2.1.3 不同流速的选择 [/b]分别考察同一样品供试液,以梯度条件四下的方法,测定其流速在0.9 mLmin[sup]-1[/sup]、 0.8 mLmin[sup]-1[/sup]、 0.7mLmin[sup]-1[/sup]时的分离效果。结果表明,流速在0.9 mLmin[sup]-1[/sup]和0.8mLmin[sup]-1[/sup]时,130min附近两峰分离效果不理想,而0.7 mLmin[sup]-1[/sup]时峰形及分离情况均比较理想。综合考虑,选择0.7 mLmin[sup]-1[/sup]流速。见图3。[align=center][img=,690,283]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126346021_2490_3255306_3.png!w690x283.jpg[/img][/align][align=center]流速:0.9 mLmin[sup]-1[/sup][/align][align=center][sup][img=,690,264]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091126456661_6012_3255306_3.png!w690x264.jpg[/img][/sup][/align][align=center]流速:0.8 mLmin[sup]-1[/sup][/align][align=center][sup][img=,690,286]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091127029111_5432_3255306_3.png!w690x286.jpg[/img][/sup][/align][align=center]流速:0.7 mLmin[sup]-1[/sup][/align][align=center]图3 不同流速下银黄颗粒指纹图谱[/align][b]2.1.4 测定波长的选择 [/b]对同一银黄颗粒样品供试液在235~295 nm波长范围内,每隔20 nm测定一次,选择最佳吸收波长。其色谱图结果见图4。[align=center][img=,690,285]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091127570951_5526_3255306_3.png!w690x285.jpg[/img][/align][align=center]235 nm[/align][align=center][img=,690,283]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091128103641_8767_3255306_3.png!w690x283.jpg[/img][/align][align=center]255 nm [/align][align=center][img=,690,284]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091128182679_3036_3255306_3.png!w690x284.jpg[/img][/align][align=center]275 nm[/align][align=center][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091128256647_2872_3255306_3.png!w690x236.jpg[/img][/align][align=center]295 nm[/align][align=center] 图4 不同波长下银黄颗粒指纹图谱[/align]由图4结果可知,在235 nm时,色谱图中峰形佳,各峰间比例协调,基线较平稳,且呈现的峰信息量大。因此,选用235 nm作为测定波长。[b]2.2 不同色谱柱的考察[/b]考虑到银黄颗粒中主要是黄酮类成分,故选用C[sub]18[/sub]柱,对色谱柱进行考察,分别使用VenusilMP C[sub]18[/sub](4.6 mm × 250 mm,5 μm),Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm),Agela MP S/N.三根色谱柱及其不同组合,在同一梯度条件下分别对同一银黄颗粒供试液进行指纹图谱峰的采集,结果前四根色谱柱分离度相对较差,Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,5 μm)+ Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm)组合柱分离出的色谱峰较多,峰型较好,对流动相条件进行微调后,进行色谱图的采集。见图5。[align=center][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091131336001_8004_3255306_3.png!w690x236.jpg[/img][/align][align=center]Agela MP S/N(4.6 mm × 250 mm,3 μm)[/align][align=center][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091131265708_7298_3255306_3.png!w690x236.jpg[/img][/align][align=center]Agela MP S/N(4.6 mm × 250 mm,3 μm) [/align][align=center][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091131195130_7680_3255306_3.png!w690x233.jpg[/img][/align][align=center]Venusil MP C[sub]18[/sub](4.6 mm× 250 mm,3 μm) [/align][align=center][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091131092861_3850_3255306_3.png!w690x233.jpg[/img][/align][align=center]Agela MP S/N(4.6 mm × 250 mm,3 μm)+Venusil MP C[sub]18[/sub](4.6 mm× 250 mm,5 μm) [/align][align=center] [img=,690,285]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091130395070_4225_3255306_3.png!w690x285.jpg[/img][/align][align=center]Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,5 μm)+ Venusil MP C[sub]18[/sub](4.6 mm × 250 mm,3 μm)[/align]图5 不同色谱柱银黄颗粒指纹图谱[b]2.3 方法学考察2.3.1 仪器精密度考察 [/b]取银黄颗粒同一样品供试液,10 μL进样,连续进样 5次,按“4.1”项下的色谱条件进样测定,以葛根素为参照峰,计算共有峰的峰面积和相对保留时间比值。结果显示各共有峰的相对峰面积RSD<3 %,相对保留时间RSD<3%,表明仪器精密度良好。见表1、2。[align=center]表1 银黄颗粒指纹图谱精密度(相对峰面积)[/align][align=center][img=,348,494]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091132223573_3518_3255306_3.png!w348x494.jpg[/img] [/align][align=center]表2 银黄颗粒指纹图谱精密度(相对保留时间)[/align][align=center][img=,352,511]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091132363167_2471_3255306_3.png!w352x511.jpg[/img] [/align][b]2.3.2 重复性试验 2.3.2.1银黄颗粒重复性实验考察[/b]银黄颗粒研细后精密称取细粉1.0 g,称取五份分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表3、4的25个峰的RSD值都接近3%,由此可以得出结论,银黄颗粒的重复性良好。[align=center]表3 银黄颗粒指纹图谱重复性(相对峰面积)[/align][align=center][img=,294,424]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091133158091_6693_3255306_3.png!w294x424.jpg[/img][/align][align=center] 表4 银黄颗粒指纹图谱重复性(相对保留时间)[/align][align=center][img=,301,407]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091133264387_6060_3255306_3.png!w301x407.jpg[/img][/align][b]2.3.2.2黄芩药材重复性实验考察[/b]黄芩药材研细后精密称取细粉0.57 g,称取五份分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水50 ml于圆底烧瓶中,称重,加热回流40 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表5、6的15个峰的RSD值都接近3 %,由此可以得出结论,黄芩药材的重复性良好。[align=center][b] [/b]表5黄芩药材指纹图谱重复性(相对峰面积)[/align][align=center][img=,521,450]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091134133924_7231_3255306_3.png!w521x450.jpg[/img][/align][align=center]表6 黄芩药材指纹图谱重复性(相对保留时间)[/align][align=center][img=,526,450]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091134223683_8185_3255306_3.png!w526x450.jpg[/img][/align][b]2.3.2.3金银花药材重复性实验考察[/b]金银花药材研细后精密称取细粉0.5 g,称取五份分别置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表7、8的15个峰的RSD值都接近3%,由此可以得出结论,金银花药材的重复性良好。[align=center] 表7 金银花药材指纹图谱重复性(相对峰面积)[/align][align=center][img=,521,453]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091135202061_4447_3255306_3.png!w521x453.jpg[/img][/align][align=center]表8 金银花药材指纹图谱重复性(相对保留时间)[/align][align=center][img=,520,450]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091135276281_796_3255306_3.png!w520x450.jpg[/img][/align][b]2.4.3 稳定性试验 2.4.3.1银黄颗粒稳定性实验考察[/b]银黄颗粒研细后精密称取细粉1.0 g置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表9、10的25个峰的RSD值都接近3 %,由此可以得出结论,银黄颗粒的稳定性良好。[align=center]表9 银黄颗粒指纹图谱稳定性(相对峰面积)[/align][align=center][img=,284,411]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091135513432_6898_3255306_3.png!w284x411.jpg[/img] [/align][align=center]表10 银黄颗粒指纹图谱稳定性(相对保留时间)[/align][align=center][img=,285,423]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091135598981_6279_3255306_3.png!w285x423.jpg[/img][/align] [b]2.4.3.2黄芩药材稳定性实验考察[/b]黄芩药材研细后精密称取细粉0.57 g置于50 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流40 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表11、12的25个峰的RSD值都接近3 %,由此可以得出结论,黄芩药材的稳定性良好。[align=center] 表11 黄芩药材指纹图谱稳定性(相对峰面积)[/align][align=center][img=,534,451]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091136295090_8710_3255306_3.png!w534x451.jpg[/img][/align][align=center] 表12 黄芩药材指纹图谱稳定性(相对保留时间)[/align][align=center][img=,468,403]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091136437515_7524_3255306_3.png!w468x403.jpg[/img][/align][b]2.4.3.3金银花药材稳定性实验考察[/b]金银花药材研细后精密称取细粉1.0 g置于100 ml 的圆底烧瓶中,精密加入煮沸的蒸馏水100 ml于圆底烧瓶中,称重,加热回流30 min,回流后放冷,补重,过滤,取续滤液。将样品溶液与内标溶液经0.45 μm微孔滤膜滤过后等体积混匀,作为供试品溶液,注入高效液相色谱仪,按照既定方法采集色谱指纹图谱,计算相对峰面积值和相对保留时间值,结果见表13、表14,25个峰的RSD值都接近3 %,由此可以得出结论,金银花药材的稳定性良好。[align=center]表13 金银花药材指纹图谱稳定性(相对峰面积)[/align][align=center][img=,452,406]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091137142831_7122_3255306_3.png!w452x406.jpg[/img][/align][align=center]表14 金银花药材指纹图谱稳定性(相对保留时间)[/align][align=center][img=,441,402]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091137227371_5231_3255306_3.png!w441x402.jpg[/img][/align][b]2.5 样品共有峰的确定[/b]对10 批不同厂家的银黄颗粒及黄芩和金银花药材供试液进行分析,采集指纹图谱,并以葛根素作为参考峰,银黄颗粒选取标定了22个共有峰,见图6。黄芩药材选取标定了22个共有峰,见图7。金银花药材选取标定了21个共有峰,见图8。[align=center][img=,690,265]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091137498881_3854_3255306_3.png!w690x265.jpg[/img][/align][align=center]图6 10 批次的银黄颗粒共有特征峰[/align][align=center][img=,690,259]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091138017531_1112_3255306_3.png!w690x259.jpg[/img][/align][align=center]图7 10 批次的黄芩共有特征峰[/align][align=center][img=,690,247]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091138139735_5366_3255306_3.png!w690x247.jpg[/img][/align][align=center]图8 10 批次金银花药材的共有特征峰[/align][b]三、结果与分析[/b]本研究介绍了银黄颗粒及其原料药黄芩和金银花的指纹图谱的建立方法,包括供试品溶液的制备、高效液相色谱仪测定及对数据和图谱的处理,以及由该方法制备得到的相应指纹图谱。在测定的不同厂家 10 批次样品的色谱图中,选择90 %以上批次样品均有的色谱峰为共有峰,银黄颗粒。黄芩药材、金银花药材分别确定了22,22,21 个共有峰。[b]四、讨论与结论[/b]本研究的指纹图谱构建方法操作简单,稳定可靠,精密度高,分离度好,指纹图谱的稳定性和重现性较好,且信息量大,采用指纹图谱找出不同产地,不同厂家的同一药材的共有峰为质量控制手段,既避免了因只测定一、两个化学成分而判定制剂整体质量的片面性,又减少了为质量达标而人为处理的可能性,通过对多个批次的样品进行系统分析,能更加全面、科学评价银黄颗粒的质量,从而使产品的质量和疗效得到保证。参考文献王亚丹,杨建波,戴忠,等.中药金银花的研究进展.药物分析杂志,2014,34( 11):1928-1935 中国药典.一部.2015:1498 王彩芳,张楠,黄龙,等. HPLC法测定不同厂家银黄颗粒中黄芩苷的含量.医药论坛杂志,2006,27 (24):27-28 王彩芳,黄龙,程茜,等.高效液相色谱法测定不同厂家银黄颗粒中绿原酸的含量.时珍国医国药,2007,18(5):1143-1144黄雄,黄嬛,王峻,等.银黄颗粒的HPLC特征图谱分析.药物分析杂志,2009,29(8):1320-1323 肖小河,王永炎.从热力学角度审视和研究中医药.国际生物信息与中医药论丛.新加坡:新加坡医药卫生出版社,2004:74 贺福元,罗杰英,刘文龙,等.中药谱效学研究方向方法初探.世界科学技术-中医药现代化,2004,6(6):44-50 赵渤年,于宗渊,丁晓彦,等.黄芩质量评价谱-效相关模式的研究.中草药,2011.42(2):380-383 高燕,赵渤年,于宗渊等.金银花抗流感病毒毒谱-效相关质量评价模式的研究.中华中医药杂志,2013.28(12):3508-3511 Ke Li, Wei Cheng, Xiao-Jian Liu,hu-Bin Li, En-Guang Hou, Yan Gao, Liang Wang, Qing Liu, Bo-Nian Zhao, Zong-Yuan Yu, Mathematical Modelling for the Quality Evaluation of Baikal Skullcap Root, Applied Mechanics and Materials, 2011 王荣梅,徐丽华,林永强.HPLC法同时测定银黄含片中6个咖啡酰奎宁酸类成分的含量.药物分析杂志,2012,32(1):57-60 高苏亚,范涛,王黎等.红外光谱技术结合化学计量学方法在中药研究中的应用.应用化工,2012,41(2):324-328 王鹏,王振国,薛付忠等.基于支持向量机法的中药性状与药性相关性研究. 江西中医药,2012,43(355):65-68 Cifford MN, Johnston KL, Knight S et al. Hierarchical scheme for [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] identification of chlorogenic acids.J Agric Food Chem,2003 51(10):2900-2910张倩,张加余,隋丞琳,等. HPLC-DAD-ESI-MS/MS研究金银花水提工艺中绿原酸类成分的变化规律.中国中药杂志,2012 37(23):3564-3567 沈红,段金廒,钱大玮,等.黄芩及复方野马追胶囊中黄酮类成分的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析.药物分析杂志,2009 29(9):1425-1429 赵胜男,李守拙.黄芩药材中黄酮类成分的HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]研究.承德医学院学报2012 29(4):345-347 Chkoshi E, Nagashima T, Sato H, et al. Simple preparation of baicalin from Scutellariae Rdixi. J Chromatogr A,2009 1216(11): 2192 -2194高燕,吕凌,王亮,等.银黄颗粒HPLC指纹图谱与模式识别分析.中华中医药杂志,2017,32(09):4238-4242 丁晓彦,刘青,李岩,等.丹参脂溶性成分的HPLC指纹图谱及模式识别研究.中华中医药杂志,2016,3(6):2254-2256

克利西丁磺酰甲胺相关的方案

克利西丁磺酰甲胺相关的资讯

  • 欧盟修订氟胺磺隆允许使用条件
    3月30日,欧盟委员会发布(EU) No 287/2012号法规,修订 (EU) No 540/2011号指令中氟胺磺隆(triflusulfuron)的允许使用条件。将氟胺磺隆的纯度要求修改为≥ 960 g/kg,允许使用条件修改为"仅限作为除草剂",新法规将自公布20天后生效,适用于所有欧盟成员国。
  • 五月枇杷黄似橘 | 蜜枇杷叶配方颗粒
    五月枇杷黄似橘 | 那年枇杷黄澄澄枇杷果の夏天眼下正是枇杷的成熟季节,个个都是黄澄澄的,皮薄多汁,酸甜可口。枇杷全身都是宝,果实,枇杷花,枇杷叶等都有各自的功效。蜜枇杷叶配方颗粒蔷薇科枇杷属植物枇杷的叶经蜜制后并按标准汤剂的主要质量指标加工制成的配方颗粒,具有润肺止咳、养胃止渴等功效。此次使用日立Primaide高效液相色谱仪和技尔InertSustain C18色谱柱,参照国家药品监督管理局国家药品标准对蜜枇杷叶配方颗粒进行测定。实验仪器及耗材液相色谱仪:日立Primaide色谱柱:InertSustain C18 250×4.6mm, 5μm(P/N:5020-07346)GL Filter针式过滤器(GLS0604 25mm×0.22μm Nylon)GL Vial样品瓶(GLS0008 2mL透明瓶 带刻度+GLS0143 红膜白胶垫片)特征图谱色谱条件色谱柱:InertSustain C18 250×4.6mm, 5μm (P/N:5020-07346)流动相A:乙腈 流动相B:0.4%磷酸水溶液※完全符合标准流速:1.0 mL/min柱温:35℃检测波长:UV 300 nm进样量:10 μL柱压:6.8 MPa仪器型号:日立 Primaide溶液配置对照品溶液的制备:取绿原酸对照品适量,精密称定,加50%甲醇制成每1mL含30μg的溶液,即得。供试品溶液的制备:取本品适量,研细,取约0.2g,精密称定,置具塞锥形瓶中,精密加入50%甲醇25ml,密塞,称定重量,超声处理(功率600W,频率40kHz)30分钟,放冷,再称定重量,用50%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。系统适用性要求供试品色谱中应呈现6个特征峰,其中峰3、峰4、峰5、峰6应与对照药材参照物色谱中的4个特征峰保留时间相对应,与绿原酸参照物峰相对应的峰为S峰,计算各特征峰与S峰的相对保留时间,其相对保留时间应在规定值的±10%范围之内。规定值为:0.339(峰1)、0.454(峰2)、0.742(峰3)、0.939(峰4)、1.061(峰6)。 实验结果含量测定色谱条件以十八烷基硅烷键合硅胶为填充剂(250×4.6mm, 5μm);以乙腈为流动相A,以0.4%磷酸溶液水流动相B,按下表中的规定进行梯度洗脱;柱温为35℃,检测波长为327nm。溶液配置对照品溶液的制备:取绿原酸对照品适量,精密称定,加50%甲醇制成每1mL含30μg的溶液,即得。供试品溶液的制备:取本品适量,研细,取约0.2g,精密称定,置具塞锥形瓶中,精密加入50%甲醇25ml,密塞,称定重量,超声处理(功率600W,频率40kHz)30分钟,放冷,再称定重量,用50%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。系统适应性要求理论板数按绿原酸峰计算应不低于5000。实验结果标准品供试品重现性以绿原酸计:说明:此实验根据国家药品标准进行,无改动。结论蜜枇杷叶配方颗粒按照国家药品标准测定。特征图谱测定中,各特征峰的相对保留时间在规定值的±10%之内。含量测定中,绿原酸理论塔板数皆大于70000,且5次实验重复性良好。实验结果表明,使用日立Primaide高效液相色谱仪和技尔InertSustain C18色谱柱完全满足蜜枇杷叶配方颗粒的检测需求。THE END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 超高效液相色谱/电喷雾串联质谱(UPLC/MS/MS)分析16种磺酰脲除草剂
    超高效液相色谱/电喷雾串联质谱(UPLC/MS/MS)分析16种磺酰脲除草剂蔡麒、黄静、Yap Swee Lee 沃特世科技(上海)有限公司介绍 磺酰脲类除草剂品种的开发始于70年代末期。1978年Levitt 等报道,氯磺隆(chlorsulfuron)以极低用量进行苗前土壤处理或苗后茎叶处理,可有效地防治麦类与亚麻田大多数杂草。紧接着开发出甲磺隆,随后又开发出甲嘧磺隆、氯嘧磺隆、苯磺隆、阔叶散、苄嘧磺隆等一系列品种。磺酰脲类除草剂由芳香基、磺酰脲桥和杂环三部分组成,在每一组分上取代基的微小变化都会导致生物活性和选择性的极大变化。 磺酰脲类除草剂的活性极高,属于超高效除草剂。这类除草剂用量很低,其用药量由传统除草剂的公斤级降为以克为单位。此类除草剂发展极快,已在各种作物地使用,有些已成为一些作物田的当家除草剂品种。而且,新的品种还在不断地商品化。 随着除草剂的大量应用和新品种的不断开发,带来了相应的环保问题。主要表现为除草剂的毒性问题、残留问题、生态问题、环境污染等问题。由于磺酰脲类农药的高效性,微量即可产生良好除草效果,但若使用不当就会对环境和其他作物产生危害。有些磺酰脲类除草剂的品种,如氯嘧磺隆、绿磺隆、甲磺隆、胺苯磺隆等在土壤中主要通过酸催化的水解作用及微生物降解而消失,土壤的温度、pH值、湿度、有机质含量对水解作用及微生物降解均有很大影响。 本文介绍了使用沃特世公司超高效液相色谱(UPLC)和串联质谱(MS/MS)分析16中磺酰脲除草剂的分析方法。 2004年沃特世(Waters)推出的ACQUITY UPLC,使用了具有1.7&mu m 颗粒粒径固定相的色谱柱,可以在高压下使用(最大压力 15,000 psi)。高压与极细颗粒的结合提供了快速、高分离度的分离,提高了灵敏度,减少了基质干扰。 2008年沃特世推出的Xevo TQ MS是新一代的串联四极杆质谱,改进了离子源的设计,改善了离子化效率,提高了灵敏度。Xevo TQ MS由于采用了专利的Scanwave技术和MS、MS/MS快速切换技术,大大改善了传统四极杆在进行MS Scan和Daughter Scan灵敏度低的问题,并且增加了实验选择性。 使用UPLC/Xevo TQ MS分析16种磺酰脲除草剂方法仅需要6分钟,而常规HPLC分析时间需要超过40多分钟的,因此UPLC更快的运行速度不仅提高了仪器的高通量,也减少了方法的开发时间。 超高效液相色谱ACQUITY UPLC 以及新一代串联四极杆质谱仪Xevo TQ MS实验部分 色谱条件 系统: ACQUITY UPLC 超高效液相色谱系统 色谱柱: ACQUITY UPLC BEH C18,1.7um, 2.1x50mm P/N: 186002577 流动相A: 10mM AcNH4&bull H2O (含0.1%甲酸) 流动相B: 乙腈(含0.1%甲酸) 流速: 0.5mL/min 柱温: 35 ˚ C 进样体积: 5 µ L 分析总周期: 6 min UPLC梯度 质谱条件 MS系统: Xevo TQ MS 串联四极杆质谱仪 离子化模式: ESI+ 毛细管电压: 1.0Kv 源温度: 150 ˚ C 雾化气温度: 450 ˚ C 雾化气流速: 800L/h 锥孔气流速: 50L/h 碰撞气流速: 0.18ml/min 多反应监测条件如表1所示 表1:ES+模式下16种磺酰脲除草剂MRM离子对参数 结果和讨论 图1给出了16种磺酰脲除草剂在UPLC中的分离色谱图。6分钟可以完成16种磺酰脲除草剂的分析,与普通 HPLC 40min-50min 的分析时间相比,缩短了将近7倍,大大增加了实验室样品的通量,同时节约了试剂成本和人力成本。分析时间大大缩短的同时,仍然保留了高效的分离能力。从TIC色谱图上可以得到14种基线分离的色谱峰,另外两种由于极性相似度非常高,没有基线分离,但是通过质谱MRM通道可以完全分开,因此本方法在寻求快速分析的同时,兼顾了色谱分离的要求,降低基质影响的效果。 图1:16种磺酰脲除草剂TIC图 图2,图3给出了具有代表性的卞嘧磺隆(Bensulfuron)和环氧嘧磺隆(Oxasulfuron)在浓度范围1-200ng/mL的标准曲线,本标准曲线是用溶剂空白以及相应浓度标准检测绘制的。 图 2. 卞嘧磺隆(Bensulfuron)标准曲线 表 3. 环氧嘧磺隆(Oxasulfuron)标准曲线 表2给出的是16种磺酰脲除草剂1ppb的信噪比(Peak to Peak)和 1,5,10,50,200ng/ml的线性相关系数。 表2. 磺酰脲除草剂的1ppb信噪比和线性相关系数 图4给出的是最低检测限浓度(0.01ng/ml)附近的化合物谱图。从分析结果来看,仪器的标准检测限除苯磺隆外基本可以达到0.01ng/mL甚至更低。 图4. 16种磺酰脲除草剂0.01mg/mL谱图 结论 ACQUITY UPLC系统提高了磺酰脲除草剂分析的选择性和灵敏度,同时运行时间显著缩短。现在科学工作者们已经跨越了传统HPLC限制的障碍,可以使用UPLC将分离化学延伸和扩展到更多应用中。

克利西丁磺酰甲胺相关的仪器

  • H1-16型自动换膜颗粒物在线采样器产品介绍H1-16型自动换膜颗粒物在线采样器,和诚环保科技公司最新研发的专门用于空气中的PM10、PM2.5等不同粒径颗粒物采集的采样器,最多支持16张滤膜的自动更换采样,同时可对采集到的样品进行低温保存,有效防止样品中的挥发性有机物的损失,可以充分满足对环境空气中颗粒物质量浓度、无机阴阳离子、 无机元素、有机碳及有机物分类分析的需求。依据标准《HJ 618-2011环境空气PM10和PM2.5的测定重量法》《HJ 656-2013环境空气颗粒物(PM2.5)采样器技术要求和检验方法》《HJ 93-2013环境空气颗粒物(PM10和PM2.5)手工监测方法(重量法)技术规范》产品特点&bull 采用纯机械式设计的滤膜传送装置,长期使用不卡膜;&bull 滤膜匣最多放置16个滤膜夹,弹簧固定式设计,可有效防止样品的逸散;&bull 内置4G数据无线传输模块,可以实现采样过程和采样数据的远程监控;&bull 标配环境温度、湿度、大气压传感器 ,同时可选配风向、风速传感器,实现气象参数与颗粒物质量浓度的综合分析;&bull 内置帕尔贴冷却滤膜储存单元,可保证存储空间内的温度始终低于20℃,有效防止采集样品中易挥发性物质的损失;&bull 具备定时时间、定周期等多种采样模式,满足不同采样的需求。技术参数项目参数流量范围(1.0~3.5)m3/h,可设置额定流量16.67 L/ min(1.0 m3/h)流量精度24小时内偏差小于2.0%采样时间1min~999h,可设置电源要求220 V±10%,50 Hz滤膜直径47mm滤膜数量16个仪器尺寸(长×宽×高)538mm×266mm×1734mm仪器重量61kg工作温度(-30~+50)℃工作湿度(0~100)%RH防护等级IP 55
    留言咨询
  • 名称:聚丙烯酰胺产地:浙江衢州是否进口:否目数:100型号:BTJX-003A品牌:博特化学成份:H2=CHCONH2(CH2CHCONH2)外观:白色结晶有效物质含量:99(%)含量:99(%)包装规格:25KGPH值使用范围:5-8执行质量标准:国标CAS:9003-05-8是否危险化学品:否分子量:1200万/1800万 聚丙烯酰胺(PAM)是一种高分子的聚合物,它具有较强聚合度和水溶性,分子量在600-2000(万)之间,其分子链中含有很 性基子,能快速通过吸附水中悬浮的固体粒子,使粒子间架桥快速凝聚形成大的絮凝物,便于过滤和分离,从而促进污水的过滤,阴离子聚丙烯酰胺不溶于有机溶剂易溶于水。主要应用各种工业废水的絮凝沉降,沉淀澄清处理,如钢铁厂废水处理,冶炼厂废水处理,洗煤厂废水处理等。还可用于饮用水的净化澄清处理。由于其分子链中含有一定数量的很 性基团,他能吸附水中悬浮的固体颗粒,使离子间架桥或通过电荷中和使颗粒凝聚成大的絮凝物,可以加速悬浮颗粒的沉降加快溶液的澄清,促进过滤效果。 聚丙烯酰胺的用途:1. 主要用作絮凝剂:对于悬浮颗粒,较粗,浓度高,离子带阳电荷,水的PH值为中性和碱性的污水,由于该产品分子链中含有一定量的很 性基团能吸附水中的悬浮高固体颗粒,使粒子间架桥形成大的絮凝物。可以加速悬浮颗粒的沉降加快溶液的澄清,促进过滤效果。阴离子聚丙烯酰胺广泛应用于化学工业废水,废液的处理。洗煤,选矿,冶金,钢铁,锌铝加工业,等水处理。2. 用于石油工业:采油,钻井泥浆,废泥浆处理,防止水窜,降低摩擦阻力,提高采收率,三次采油*广泛的应用。3. 用于造纸工业:可以提高填料的,颜料的留着率,降低原料的流失,提高纸张的强度,还可以提高纸张的抗撕性和多孔性,以改进视觉和印刷 性能。4. 用于纺织印染工业:可作为织物处理的上浆剂,整理剂,以生成柔顺,防皱,防霉菌的保护层。用作印染助剂时,可使产品附着牢固大,鲜艳度高,还可作为漂白的非硅高分子稳定剂。5. 用于制香行业:由于其具有:溶解性好,粘度大,韧性好,易燃少烟,无毒无味等特点,产品性能稳定。使用该产品生产的香制品外观光滑平整,无断裂,无霉斑,抗折力强,烘干后不褪色,,可燃性强,燃烧时间长,可提高和减少香制品在烘干过程中的损失,同时可以减轻工人的劳动强度,提高工作效率。经济效益:使用本产品可减少原料成本5%--10%,节约能耗20%左右。6.用于其他行业:食品行业,用于甘蔗糖,甜菜糖生产中蔗汁澄清及糖浆磷浮法的提取。还可以用于饲料蛋白的回收,回收的蛋白对鸡的成活率和增重,产蛋无不良影响。合成树脂涂料,土建灌浆材料堵水,建材工业,建筑业胶黏剂,填缝修复及毒水剂,土壤改良,电镀工业等。
    留言咨询
  • 山东云唐智能科技有限公司生产的盐酸克伦特罗检测仪可现场快速检测盐酸克伦特罗、莱克多巴胺、沙丁-胺醇、己烯-雌酚、喹乙醇等。仪器预留其他项目检测程序和端口,根据日后需求可进行远程设备升级。日后可升级为检测抗生素、兽药残留、动物疫病等检测项目的综合类型仪器。  该瘦肉精检测仪为集成化食品安全快速检测分析设备,目前已于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业及检验检疫部门等单位广泛使用。  云唐盐酸克伦特罗检测仪主要技术性能:  1、仪器采用10.1英寸液晶触摸屏显,搭配运行安卓智能操作系统,主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,性能更强。  2、仪器功能包括:胶体金检测模块、数字化管理模块、无线通讯模块等,可以满足同一软件下实现所有检测项目的检测,并在同一窗口展示检测结果。  3.一体化便携式快检设备,采用交直流两用供电方式,可连接车载电源,配备6ah大容量充电锂电池,可以满足现场及流动检测使用的需求。仪器尺寸:43×35×20cm, 主机净重:5.1kg  4、系统自带数据集成模块,设备首页自动统计检测数据包含:周检测数据、月检测数据,全部检测总数量,均包含检测总数,合格数,不合格数,以及相关柱形分析图,对各项检测数据清晰掌握,无需电脑查询,更加快捷直观。  5、仪器具有任务预设模块,可在样品送检前提前预设样品名称、检测指标、送检单位等信息,样品送检时一键调取保存信息,检测更加方便快捷。  6、胶体金检测模块:  轨道式自动传输扫描方式,可实时显示金标卡实时图像,系统自动分析并呈现出CT曲线图,CT线自动识别,无需手动调整,完成检测后自动退出检测卡。  结果判定线可修改,对照值标定值可保存,断电不丢失数据。  兼容市场上其他胶体金卡,使用耗材不受限制,极大增强用户使用体验。  7、仪器检测系统拥有庞大数据库,并且构建了完善的检索、修订功能。食品库涵盖多种样品名称,可按需添加或删除、编辑样品名称 产品数据库以及历史检测记录支持一键检索功能。  8、系统打印自定义化,打印格式多样化,产品合格证(国家标准要求),二维码,抽样信息、检测信息,受检信息、复核信息、抽样日期、检测日期等信息结果,可按需求自行设置打印内容。  9、A4纸版本报告打印功能(可选配):设备拥有两种结果展示方式,可以自动生成A4打印模板和小票打印模板两种样式,可通过WiFi及网线等方式链接外置打印机可进行打印  10、仪器具有 wifi 联网上传、RJ45网线连接功能,可以快速上传数据。同步对接监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警。  11、设备支持U盘存储,标准USB接口,免驱动安装。检测结果存储容量20万条以上,可生成Excel表格,进行一键拷贝,并具有登录保护功能,可设置用户名及密码,规范不同人员操作权限,防止非工作人员操作,并且可以进行重新校准、锁定、恢复出厂设置功能。仪器固件可升级,后期检测项目可扩充。  12、仪器具备远程升级功能,可定向分客户分仪器更新,开机后自动更新,并可持续性免费更新系统版本,无需像传统产品返厂更新,节省时间及人力成本并避免了物流运输返厂升级导致设备损坏的潜在风险。
    留言咨询

克利西丁磺酰甲胺相关的耗材

  • 磺酰脲类分子印迹固相萃取柱
    农药残留类磺酰脲类分子印迹固相萃取柱该产品可同时净化、富集基质中的 29 种磺酰脲类农药,其中 27 种回收率在 70% ~ 106% 之间,缩短了前处理时间,提高了效率。 检测项目:胺苯磺隆、吡嘧磺隆、苄嘧磺隆、苯磺隆、烟嘧磺隆、甲磺隆、氯磺隆、氟磺隆、氯嘧磺隆、噻吩磺隆、氟胺磺隆、单嘧磺隆、甲嘧磺隆、氟嘧磺隆、氯吡嘧磺隆、甲基二磺隆、甲基碘磺隆钠盐、醚苯磺隆、乙氧磺隆、磺酰磺隆、甲酰胺磺隆、氟吡磺隆、环丙嘧磺隆、醚磺隆、酰嘧磺隆、氟唑磺隆、噻苯隆、嘧苯胺磺隆、砜嘧磺隆。 适用样品:油菜籽、糙米、大米、小麦、大豆、花生仁、玉米、棉籽、黄瓜、葡萄、甜瓜、稻谷、马铃薯等。
  • SLB-IL60色谱柱丙基膦基烷双三氟甲磺酰基亚胺29504-U Supelco
    29504-USupelcoSLB® -IL60 Capillary GC ColumnL × I.D. 20m × 0.18mm, df0.14μm 美国Supelco SLB-IL60离子液体毛细管气相色谱柱是Slb-il59系列色谱柱的修改(非活化)版本提供了更好的惰性,选择性比聚乙二醇 / 蜡相更为极性,形成独特的洗脱模式, (摄氏300度,而270至280度), 替代现有的钉蜡柱的最--佳选择gcxgc列也是个不错的选择。2012年发布。Usp编码: 非相: • 非键合• 1,12-二(三丙基膦基)十二烷双(三氟甲磺酰基)亚胺临时体系。温度: 35 c 至300 c (等温或程序控制)slb 是 sigma-aldrich co. llc 的注册商标产品描述:General descriptionApplication: Modified (deactivated) version of SLB-IL59 provides better inertness. Selectivity more polar than PEG/wax phases, resulting in unique elution patterns. Higher maximum temperature than PEG/wax columns (300 oC compared to 270-280 oC). Excellent alternative to existing PEG/wax columns. Also a good GCxGC column choice. Launched in 2012.USP Code: NonePhase:• Non-bonded• 1,12-Di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imideTemp. Limits:• 35 °C to 300 °C (isothermal or programmed)SLB is a registered trademark of Sigma-Aldrich Co. LLC 美国Supelco SLB-IL60离子液体毛细管气相色谱柱,分离选择性优于传统的非离子液体类色谱柱,耐温温度更高。对水气和氧气的易感性不敏感,柱流失更低,高热稳定性,减少样品分析时间,从而更多高沸点的物质可被分析。具独特的选择性,对更多不同功能基团化合物分析峰形更优,分辨率更加出色,可向更强极性区间扩展。因其工程正交性及高热稳定性,柱型选择余地更广,目前美国Supelco SLB-IL60离子液体色谱柱已应用于食品检测、石化检测等多个领域中。订货信息:29503-U SLB® -IL60 Capillary GC ColumnL × I.D. 15 m × 0.10 mm, df 0.08 μm (Supelco)29504-U SLB® -IL60 Capillary GC ColumnL × I.D. 20 m × 0.18 mm, df 0.14 μm (Supelco)29505-U SLB® -IL60 Capillary GCColumnL × I.D. 30 m × 0.25 mm, df 0.20 μm (Supelco)29506-U SLB® -IL60 Capillary GC ColumnL × I.D. 60 m × 0.25 mm, df 0.20 μm (Supelco)29508-U SLB® -IL60 Capillary GC ColumnL × I.D. 30 m × 0.32 mm, df 0.26 μm (Supelco)29509-U SLB® -IL60 Capillary GC ColumnL × I.D. 60 m × 0.32 mm, df 0.26 μm (Supelco)29505UINT SLB® -IL60 Capillary GC ColumnL × I.D. 30 m × 0.25 mm, df 0.20 μm (Supelco)material fused silicaparameter 35-300 °C temperature (isothermal or programmed)Beta value 313df0.14μmapplication(s) gas chromatography (GC): suitable (fast GC)gas chromatography (GC): suitableL × I.D. 20m × 0.18mm
  • SLB-IL60色谱柱丙基膦基烷双三氟甲磺酰基亚胺29506-U Supelco
    29506-USupelcoSLB® -IL60 Capillary GC ColumnL × I.D. 60m × 0.25mm, df0.20μm 美国Supelco SLB-IL60离子液体毛细管气相色谱柱是Slb-il59系列色谱柱的修改(非活化)版本提供了更好的惰性,选择性比聚乙二醇 / 蜡相更为极性,形成独特的洗脱模式, (摄氏300度,而270至280度), 替代现有的钉蜡柱的最--佳选择gcxgc列也是个不错的选择。2012年发布。Usp编码: 非相: • 非键合• 1,12-二(三丙基膦基)十二烷双(三氟甲磺酰基)亚胺临时体系。温度: 35 c 至300 c (等温或程序控制)slb 是 sigma-aldrich co. llc 的注册商标产品描述:General descriptionApplication: Modified (deactivated) version of SLB-IL59 provides better inertness. Selectivity more polar than PEG/wax phases, resulting in unique elution patterns. Higher maximum temperature than PEG/wax columns (300 oC compared to 270-280 oC). Excellent alternative to existing PEG/wax columns. Also a good GCxGC column choice. Launched in 2012.USP Code: NonePhase:• Non-bonded• 1,12-Di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imideTemp. Limits:• 35 °C to 300 °C (isothermal or programmed)SLB is a registered trademark of Sigma-Aldrich Co. LLC 美国Supelco SLB-IL60离子液体毛细管气相色谱柱,分离选择性优于传统的非离子液体类色谱柱,耐温温度更高。对水气和氧气的易感性不敏感,柱流失更低,高热稳定性,减少样品分析时间,从而更多高沸点的物质可被分析。具独特的选择性,对更多不同功能基团化合物分析峰形更优,分辨率更加出色,可向更强极性区间扩展。因其工程正交性及高热稳定性,柱型选择余地更广,目前美国Supelco SLB-IL60离子液体色谱柱已应用于食品检测、石化检测等多个领域中。订货信息:29503-U SLB® -IL60 Capillary GC ColumnL × I.D. 15 m × 0.10 mm, df 0.08 μm (Supelco)29504-U SLB® -IL60 Capillary GC ColumnL × I.D. 20 m × 0.18 mm, df 0.14 μm (Supelco)29505-U SLB® -IL60 Capillary GC ColumnL × I.D. 30 m × 0.25 mm, df 0.20 μm (Supelco)29506-U SLB® -IL60 Capillary GC ColumnL × I.D. 60 m × 0.25 mm, df 0.20 μm (Supelco)29508-U SLB® -IL60 Capillary GC ColumnL × I.D. 30 m × 0.32 mm, df 0.26 μm (Supelco)29509-U SLB® -IL60 Capillary GC ColumnL × I.D. 60 m × 0.32 mm, df 0.26 μm (Supelco)29505UINT SLB® -IL60 Capillary GC ColumnL × I.D. 30 m × 0.25 mm, df 0.20 μm (Supelco)parameter 35-300 °C temperature (isothermal or programmed)Beta value 313df0.20μmapplication(s) gas chromatography (GC): suitablegas chromatography (GC): suitableL × I.D. 60m × 0.25mmmatrix active group Non-bonded 1,12-Di(tripropylphosphonium)dodecane bis(trifluoromethanesulfonyl)imide phase

克利西丁磺酰甲胺相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制