维帕他韦共聚维酮

仪器信息网维帕他韦共聚维酮专题为您提供2024年最新维帕他韦共聚维酮价格报价、厂家品牌的相关信息, 包括维帕他韦共聚维酮参数、型号等,不管是国产,还是进口品牌的维帕他韦共聚维酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合维帕他韦共聚维酮相关的耗材配件、试剂标物,还有维帕他韦共聚维酮相关的最新资讯、资料,以及维帕他韦共聚维酮相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

维帕他韦共聚维酮相关的资料

维帕他韦共聚维酮相关的论坛

  • 【分享】共聚焦显微镜与普通光学显微镜的比较

    共聚焦显微镜与普通光学显微镜的比较显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。普通光学显微镜与激光共聚焦显微镜同属于光学显微镜。  一、普通光学显微镜  普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。  显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨力(resolution)有关,分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率,用公式表示为:  R=0.61λ /N.A. N.A.=nsinα/2  式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率(numeric aperture)。镜口角总是要小于180?,所以sina/2的最大值必然小于1。  制作光学镜头所用的玻璃折射率为1.65~1.78,所用介质的折射率越接近玻璃的越好。对于干燥物镜来说,介质为空气,镜口率一般为0.05~0.95;油镜头用香柏油为介质,镜口率可接近1.5。  普通光线的波长为400~700nm,因此显微镜分辨力数值不会小于0.2μm,人眼的分辨力是0.2mm,所以一般显微镜设计的最大放大倍数通常为1000X。

  • 高温共聚焦显微镜

    高温共聚焦显微镜

    http://ng1.17img.cn/bbsfiles/images/2013/12/201312100936_481428_2810587_3.jpg 本系统由含多项技术专利的高温加热炉和激光共聚焦显微镜两大部分组成。 常温下可以对试样的表面进行实时的三维观察、记录和存储。 高温下可实现对材料组织结构变化(熔融、凝固、结晶等)的实时、原位以及高清晰观察与分析,不需对试样进行预先处理(导电、非导电试样均可直接观察、测定,不需繁杂的事先处理,同时避免了试样预处理造成的失真)。特点:◆ VL2000DX为紫色激光,波长为408nm。它可以实现最快120桢/秒的高速扫描;◆ 真空度可达 10-2Pa;◆ 最高加热温度可以达到1750 ℃;◆ 加热速度快,可以达到1000℃/min,◆ 采用He气急冷时最快可以达到-100℃/sec的急速冷却;◆ 温度控制精度0.1℃;◆ 鲜明模式:增强对比度低的材料(如陶瓷等)的对比度,更清晰地观察;◆ 具备系统拓展功能(可根据需要,拓展高温拉伸/压缩/三点弯曲等高温机械性能的观察功能)。应用:★ 可用于金属材料研究: ※可实时观察金相组织的变化; ※实时观察金属材料的熔融凝固过程; ※可用于夹杂物的分析研究。★ 可用于耐火材料和陶瓷烧结的研究;★ 本系统可供拓展,如添加高温拉伸/压缩、三点弯曲等功能,可配置高温拉曼光谱仪、差热分析DTA装置 ;★ 常温时可做三维测量: ※断口观察; ※表面粗糙度测量 ※表面金相组织观察等。

维帕他韦共聚维酮相关的方案

  • 凯氏定氮仪测定聚维酮K12中的氮含量
    聚维酮K12是一种超低相对分子质量水溶性高分子产品,简称PVPK12,是以N-乙烯基吡咯烷酮为单体聚合的低相对分子质量聚合物。到目前为止,聚维酮已发展成为均聚物、共聚物、交联聚合物三大类,有工业级、医药级、食品级三种规格及数百个品种,应用领域也由最初的人造血浆增溶剂发展到医药、化妆品、食品、涂料、黏接剂、印染助剂、分离膜、感光材料等领域。本实验参照《美国药典》中的方法对聚维酮K12中的氮含量进行测定。
  • 共聚焦显微镜 方解石解理面溶解过程观察
    利用共聚焦显微镜的微分干涉法,实时观察方解石解理面在柠檬酸溶液中的溶解过程
  • 微波辅助开环共聚和聚碳酸酯的特性
    ?NO.101前言近来,在有机和高分子合成化学领域,微波辅助加热方法已成为一种常用的环境友好型加热技术。一系列的聚(5,5-二甲基三甲基碳酸酯-co-2-phenyl-5,5-bis[oxymethyl] trimethylenecarbonate)(P[DTC-co-PTC])是通过微波辅助开环合成的。微波辅助开环聚合5,5-二甲基碳酸三甲酯(DTC)和2-苯基-5,5-双(氧甲基)碳酸三甲酯(PTC),使用2-乙基己酸锡(II)和异丙氧基铝的催化剂。这些共混碳酸盐在钯碳催化剂(Pd/C催化剂。10%)来制造部分脱保护的聚碳酸酯(HPDPC)。这两种共混碳酸盐通过凝胶渗透色谱法、1HNMR,傅里叶变换红外光谱、紫外线、差示扫描量热法和自动接触角测量。微波辐照的影响微波照射时间、微波功率、单体进料摩尔比、不同的催化剂以及单体/催化剂进料摩尔比对共聚碳酸酯分子量的影响也被研究。体外吸水、降解和药物释放试验表明,部分脱保护的共聚碳酸酯HPDPC具有更大的亲水性、更快的降解率和更快的药物释放率,而不是相应的P(DTC-co-PTC)。因此,微波辅助聚合是一种清洁和廉价的的加热方法,可用于碳酸盐的开环共聚。它能提高脂肪族聚碳酸酯的亲水性和生物降解率。

维帕他韦共聚维酮相关的资讯

  • 冷冻共聚焦光电联用实现三维定位
    冷冻共聚焦显微镜及其在冷冻电子断层扫描中的价值 Cryo ET(电子断层扫描)是一种专用的透射电子显微镜技术,可以重建观察区域的三维体积。借助先进的冷冻EM(电子显微镜),图像分辨率可以提升到令人难以置信的亚纳米等级。因此,可以在细胞内的原生环境中研究蛋白质以及其他生物分子,从而揭示尚未探明的分子机制。由于细胞和组织必须薄到能够透过电子,样品必须进行切片以获取足够薄的样品体积(薄层)。为对样品中的靶区进行精确的三维定位,冷冻共聚焦显微镜是必不可少的工具。 以下部分,我们将描述冷冻电子断层扫描工作流程的主要步骤,以及如何通过冷冻共聚焦显微镜定位靶区并进行切片,以提高整个工作流程的可靠性。 在EM网格上培养细胞 通常,在涂有多孔碳膜(例如 QuantifoilR)或二氧化硅(SiO2)膜的金质或钛金网格上植入急性分离或培养的细胞(图1,Mahamid等人,2019)在后续步骤中,钛金属和二氧化硅似乎更加坚硬而且稳定,无需额外添加碳层(Toro-Nahuelpan 2019) 网格通过Poly-L-Lysin或纤连蛋白(Fibronectin)实现生物激活,胰蛋白酶解离细胞在前一晚植入,以便在后续步骤中附着在碳层表面(Mahamid等人,2019)。 图1:采用12纳米厚多孔二氧化硅膜(R 1.2/20,即孔径1.2微米,间距20微米)的3毫米EM金质(Au)网格的反射图像拼接图。HeLa细胞已经植入并玻璃化。实心箭头:定位用的中心标记;空心箭头:聚焦离子束进入的切片槽;虚线箭头:空的网格方格。一个网格方格的边长:90微米。 添加微型图案 为进入细胞样品以成功实现FIB切片并在冷冻TEM中开展后续分析,必须确保相关细胞位于网格方格的中心位置或其附近。但细胞喜欢在网格条上生长或者集簇生长,因此不适合进行FIB切片和电子透射分析。为了克服这一挑战,微型图案技术允许用户控制细胞在碳膜(图2)上的位置和分布,提高相关工作流程的可靠性。 网格表面涂有聚乙二醇(PEG),可防止生物材料附着。利用紫外激光移除该涂层,即可对细胞的黏附进行针对性控制,保证FIB切片以及TEM的可操作性(Toro-Nahuelpan 2019)。此外,可以创建特定图案,从而影响整个细胞结构并且有助于使用冷冻电子显微镜研究生物力学现象。 图2:有/无微型图案的细胞分布情况左图:分布不均的细胞(小鼠A9成纤维细胞,使用Alexa Fluor 488 Phalloidin标记,以显示纤维状肌动蛋白)。右图:网格方格中心定位精确的细胞,可进行FIB(成纤维细胞黏附在纤维蛋白原微型图案表面;图片由Alvéole与德国汉堡CSSB中心教授Kay Grünewald博士共同提供。) 投入冷冻 为在固定用于电子显微镜检查的同时确保样品接近原生状态,细胞必须极速冷冻,以免产生破坏性的冰晶。这个过程称为玻璃化,因为冰片变成无结晶的玻璃状(玻璃体) 为让样品细胞达到这种效果,网格必须快速投浸到适当的冷冻剂(通常为乙烷,或者乙烷和丙烷)中。1981年,Jacques Dubochet发表了首个手动吸液和投入冷冻方法,该方法仍获广泛使用以获取出色的结果(Dubochet, J.以及McDowall, A. W.,1981)。 在投入冷冻之前,必须去除多余的液体。标准技术是使用滤纸实现受控吸液(图3,Dubochet, J等人,1982;Bellare等人,1988;Frederik, P. M.等人,1989)。 图3:在投入冷冻前,通过吸液处理对多余液体进行受控移除。使用镊子固定网格,并通过单独步骤将吸液纸移向网格。吸液传感器可以自动并反复执行该过程。 市面上有多种不同的吸液设备,例如用于自动吸液和投入冷冻的Leica EM GP2。根据不同样品类型的多种需求,可以使用多种涉及吸液步骤的样品制备方案(另见此处)。 冷冻状况下的存储、装载和转移 玻璃化之后,样品必须在整个工作流程期间处于冷冻状况下。因此,必须对从存储到转移至不同成像系统的所有步骤进行冷冻处理,以免样品析晶和/或污染这尤其困难,因为这种低温冷冻样品会像磁铁一样吸引附近的湿气和灰尘。研究人员和制造商付出巨大的努力来开发并提供解决方案,以便在工作流程的不同步骤中保证样品安全。 样品通常以四个为一组存储在网格盒内,而网格盒又保存在大型液氮(LN2)罐中的Falcon多孔试管中。还可以使用更为复杂的冰球系统。 转移并装载到样品架时,通常使用液态氮(LN2)。不幸的是,LN2往往会在一段时间后,因为空气中的水分而产生结晶冰污染。在转移时,这些冰晶可能会附着到网格上,干扰随后的切片和成像过程。此外,LN2内部的能见度很低,因为它在不断移动,而且始终会有条纹。 因此,最好在LN2上部的气相部分装载并转移样品以保持冷冻条件,同时为装载步骤(图4)提供出色的可见性。 徕卡显微系统在提供GN2(气态氮)装载和转移设备方面拥有30多年的悠久历史。新的冷冻显微镜套件就在这些经验的基础上开发而成,同时融合众多客户的反馈意见打造出先进的转移舱和夹具系统。 图4:在冷冻显微镜套件转移舱的GN2(气态氮)环境中装载网格。转移舱的可见度在冷冻条件下不受干扰。 检查样品质量和靶分布 在冷冻工作流程中,一般而言,EM操作时间尤其宝贵,因此对样品进行早期质量检查至关重要。许多因素会关系到样品能否转移到下一个工作流程步骤,包括碳箔的结构完整性、玻璃化的质量(包括冰层的厚度及其分布)、目标细胞的存在、分布和可及性,以及目标结构的存在和定位。 所有这些参数均可通过基于相机的冷冻光学显微镜(例如THUNDER Imager EM Cryo-CLEM)或使用STELLARIS冷冻共聚焦显微镜上的相机模式来检查(图5)。 透射模式显示网格、箔膜和细胞质量,反射图像显示网格表面,尤其是呈现玻璃化质量和冰层厚度,而荧光图像可以提供有关不同靶蛋白的表达水平及其分布情况的信息。 图5:不同模式呈现出网格的完整性以及靶分布。A——网格表面的反射图像可以显示碳膜或二氧化硅层的缺陷以及冰层的厚度。B——绿色荧光(线粒体)。C——液滴分布以实现高精度关联D——通过Hoechst标记的细胞核E——所有模式的叠加图像细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。一个网格方格的边长:90微米。 在LAS X Coral Cryo软件工作流程中,用户可以在引导下,通过不同图像模式对整个网格自动创建清晰的合焦概览图像。 标记标志点、薄片点以及液滴中心 为了关联冷冻LM(光学显微镜)的3D图像以及后续的冷冻FIB-SEM/TEM图像,首先需要获取网格的概览图像以便大致对齐两种模式的图像(图6)。这里,反射图像非常重要,因为它们类似于SEM图像,但也可以使用透射图像。中心标记以及其他标志点(例如碳层中的缺陷)有助于快速定位并对齐概览图。 图6:以不同模式获取整个网格的合焦概览图像,用于识别网格缺陷、对齐标记和靶分布。中心标记用实心箭头表示,二氧化硅层中的主要缺陷用空心箭头突出显示。HeLa细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。蓝色 – Hoechst染料,细胞核;绿色 — 线粒体绿色荧光探针,线粒体;红色 - 深红色液滴和Bodipy荧光染料,脂滴。一个网格方格的边长:90微米。完整网格直径:3毫米。 其次,需要超分辨率的共聚焦3D图像。这些图像堆栈用于在潜在薄片位置的范围内执行高精度关联。完成概览图对齐后,可以找到3D共聚焦堆栈的正确位置以便后续进行高精度关联这样做的前提是必须提供图像相对于概览图以及相对于彼此的位置。这就是Coral Cryo软件工作流程之后的处理步骤(图7)。 图7:相机概览图像与共聚焦Z-堆栈相机和共聚焦图像的组合含有XY坐标位置,因此可以匹配。所有图像都包含在Coral Cryo软件工作流程期间创建的相关项目文件夹中。HeLa细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。蓝色 – Hoechst染料,细胞核;绿色 — 线粒体绿色荧光探针,线粒体;红色 - 深红色液滴和Bodipy荧光染料,脂滴。一个网格方格的边长:90微米。完整网格直径:3毫米。 必须组合相机概览图像和超分辨率3D图像以检索靶区位置并在FIB-SEM上定义切片位置。这个步骤非常重要,因为在标准FIB-SEM中,无法看到荧光以及相应的靶区点位。 EM(电子显微镜)制造商近期研发出一种集成了FIB-SEM功能的荧光显微镜,可以作为在切片过程中通过检查荧光来提高工作流程的可靠性和准确性的一种绝佳选择。不过,这些系统并不具备必要的分辨率以及采集模式的灵活性,无法像单独的共聚焦系统那样实现精确的3D定位。 如何关联并检索薄片位置 作为常用的最低标准,研究人员使用LM图像的屏幕截图在EM上检索靶区的XY坐标。不幸的是,并排比较图像不仅费力耗时而且很容易出错,因此并不可靠。身为工作流程提供商,徕卡显微系统致力于通过THUNDER Imager EM Cryo-CLEM来改善这种情况。研究人员可以在图像上定位标志点和靶区标记,然后以开放EM格式的完整坐标集导出。首先,这个流程适用于2D图像,因此合乎逻辑的下一步骤就是提高分辨率并将坐标系扩展到3D坐标。 对于高精度关联和3D定位,目前广泛采用的是基于液滴的方法(Alegretti等人,2020;Klumpe等人,2021年;Bieber, A.,Capitanio, C等人,2021)液滴通常在玻璃化之前添加到细胞中,可在LM和EM中观察到,用于通过XYZ坐标对齐图像堆栈,作为图像数据相关性的基础,从而正确定位FIB切片窗口(图8)。 典型液滴的尺寸为1微米,完全呈球形,这使其中心坐标能够进行亚衍射拟合。通过SEM中的背散射电子,可以更清晰地观察到含有金属的微滴,从而将它们与大小相似的冰晶区分开来。优先选择液滴,使其荧光发射不同于实际靶的荧光发射,以便能够更好地分辨。 图8:3D共聚焦图像(左)和俯视SEM图像(右)的最大投影。荧光液滴(1微米)在两种模式中均可以观察到,因此可以用于对齐数据。SEM图像细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung和Ievgeniia Zagoriy友情提供。一个网格方格的边长:90微米。 要使用来自冷冻LM和FIB-SEM的3D数据,在冷冻LM的引导下,进行薄片制备,可以使用一款开源软件(3D关联工具箱,简称3DCT,Jan Arnold等人,2016)。 将冷冻LM图像载入到在FIB-SEM上运行的该软件中。二维LM概览图和SEM图像之间的三点关联用于初步定位。之后,使用离子束获取相关视场,并手动点击LM堆栈和FIB图像中的相同液滴图10显示了一张LM图像和一张FIB图像,其中的靶区点位以及液滴可以在定位软件中重现其排列组合。 图9:在LM和FIB图像中关联标记。左图:点击观察结构周围的液滴,并在3D图像中执行质心定义(白圈中的绿点)计算得到的位置随后投影到FIB图像(右图)上根据液滴标记,计算目标结构的位置并标记到FIB图像中(红圈中的红点)。离子束图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:20微米。 该软件通过对X、Y、Z信号进行高斯拟合,精准确定液滴的中心。近期的改进增加了半自动液滴检测功能以及其他功能,从而更加方便地执行冷冻FIB工作流程。(SerialFIB, Klumpes等人,2021)。 在网格条上选择围绕最终目标结构的几处液滴,作为切片处理的坐标系。基本计算方法是考虑缩放、旋转以及平移之后的线性仿射变换最后,在LM图像中选择目标结构并叠加到FIB图像上。 根据目标结构的位置,就可以定位切片窗口(图10)。 图10:定位切片窗口左:离子束细胞图像,含有标记液滴和目标结构根据目标结构的计算位置,在所用FIB-SEM的切片软件中,交互定位上下切片窗口的位置(细薄条纹上方和下方的红色方块)。图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:20微米。 Coral Cryo工作流程具有哪些优势? Coral Cryo软件工作流程旨在为基于液滴的靶区定位工作流程提供支持。它可以提供创建合焦相机概览图像所需的成像作业(图6和图7)。所有必要的自动对焦功能均可以正确调整并分配,并且可以标记潜在薄片位置,同时能够在定义的位置执行超分辨率共聚焦Z-堆栈。 在定位管理器(图11)中,可以确定所有必要的坐标标记,并且以开放格式(*.xml)提供。此类图像会自动保存,其数据格式可以导入任何FIB-SEM软件。 图11:Coral Cryo软件模块标记点、薄片和液滴标记均可以在软件工作流程中定义。反射图像中细胞的顶部和底部坐标值可以作为在FIB SEM中正确计算靶区3D位置的额外参考。本文前述部分图像中的相同细胞经过突出显示,用于标记定义。 对齐标记用于使用相机概览图像对标记点进行初步的粗略对齐。薄片标记具有双重用途:作为进行超分辨率共聚焦3D扫描的位置标记,或者在图像采集后,作为靶结构的精确3D标记。亚像素插值确保该阶段可以在3D图像内进行高精度定位。最后,插值方法还用于标记液滴坐标,以便在FIB-SEM上进行后续液滴关联。 冷冻FIB切片 进行必要的关联并设置切片窗口,薄片位置通常会粗略切薄至大约1微米,随后进行最终的抛光步骤以达到电子透明(图12)。 图12:目标薄片的离子束图像以及SEM俯视图图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:10微米。 采用两步方法的原因在于冰污染和/或切片材料可能会沉积在薄片上。为避免在最终薄片上发生冰污染,建议采用快速抛光工艺(Schaffer M.等人,2017)。还可以采用开源的商业软件,以自动方式进行切片。 冷冻透射电子显微镜 进行冷冻FIB切片之后,含有薄片的网格转移至冷冻TEM,通过对网格(连同薄片)逐渐倾斜,采集一系列断层扫描图像。图像经过计算处理以重建所记录体积的3D断层扫描图像。通过对样品的多个图像取平均值,可以降低固有噪点,从而对蛋白质或蛋白质复合物等颗粒获得更高分辨率的结构。这种处理方式称为亚断层图像平均(Wan和Briggs,2016;Zhang 2019)。从概念上说,这相当于通过单颗粒成像(SPA),在原位实现对大分子的亚纳米分辨率。 总 结 本文旨在表明冷冻共聚焦显微镜是冷冻工作流程中的一个重要组成部分,用于评估EM网格上玻璃化样品的质量和靶分布。在冷冻条件下记录的高分辨率共聚焦数据使科学家能够在3D荧光下识别目标结构。此外,3D体积可作为相关方法的参考,以便在FIB-SEM中检索靶结构进行切片,然后在冷冻TEM中进行电子断层扫描,以获得靶区的亚纳米分辨率图像。 Coral Cryo工作流程搭配新的共聚焦平台STELLARIS,再加上Coral Cryo软件,可以帮助新手用户创建网格概览图像、超分辨率3D图像以及精确的坐标标记,为后续的FIB切片和冷冻电子断层扫描奠定坚实基础。 参考文献:(上下滑动查看更多) 1.Allegretti M, Zimmerli CE, Rantos V, Wilfling F, Ronchi P, Fung HKH, Lee CW, Hagen W, Turoňová B, Karius K, Börmel M, Zhang X, Müller CW, Schwab Y, Mahamid J, Pfander B, Kosinski J, Beck M.: In-cell architecture of the nuclear pore and snapshots of its turnover. Nature. 2020 Oct 586(7831):796-800. doi: 10.1038/s41586-020-2670-5. Epub 2020 Sep 2. PMID: 32879490. 2.Arnold, J., Mahamid, J., Lucic, V., de Marco, A., Fernandez, J., Laugks, T., Mayer, T., Hyman, A. A., Baumeister, W., Plitzko, J. M., Biophysical Journal, Vol. 110, Feb. 2016, pp 860-869. 3.Bellare, J. R., Davis, H. T., Scriven, L. E. & Talmon, Y.: Controlled environment vitrification system: an improved sample preparation technique. J. Electron Microsc. Tech. 10, 87–111 (1988). 4.Bieber, A., Capitanio, C., Wilfling, F., Plitzko, J., Erdmann, P.S.: Sample Preparation by 3D-Correlative Focused Ion Beam Milling for High-Resolution Cryo--Electron Tomography. J. Vis.Exp. (176), e62886, doi:10.3791/62886 (2021). 5.Dubochet, J. & McDowall, A. W.: Vitrification of pure water for electron microscopy. J. Microsc. 124, RP3–RP4 (1981) 6.Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A. & Homo, J. ‐C.: Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219–237 (1982) 7.Frederik, P. M., Stuart, M. C. A. & Verkleij, A. J.: Intermediary structures during membrane fusion as observed by cryo-electron microscopy. Biochim. Biophys. Acta 979, 275–278 (1989). 8.Klumpe, S., Fung, Herman K. H., Goetz, Sara K., Zagoriy, I., Hampoelz, B., Zhang, X., Erdmann, Philipp S., Baumbach, J., Müller, C. W., Beck, M., Plitzko, J. M., Mahamid, J. A.: Modular Platform for Streamlining Automated Cryo-FIB Workflows. bioRxiv 2021.05.19.444745 doi: https://doi. org/10.1101/2021.05.19.444745 9.Mahamid J, Tegunov D, Maiser A, et al.: Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proceedings of the National Academy of Sciences of the United States of America. 2019 Aug 116(34):16866-16871. DOI: 10.1073/ pnas.1903642116. PMID: 31375636 PMCID: PMC6708344. 10.Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM.: Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J Struct Biol. 2017 197(2):73-82 doi: 10.1016/j.jsb.2016.07.010 11.Toro-Nahuelpan, M., Zagoriy, I., Senger, F. et al.: Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat Methods 17, 50–54 (2020). https://doi.org/10.1038/s41592-019-0630-5 12.Wan, W., Briggs, J. A. G.: Cryo-Electron Tomography and Subtomogram Averaging. Methods Enzymol. 2016 579:329-67. Doi: 10.1016/ bs.mie.2016.04.014. 13.Zhang, P.: Advances in cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struct Biol. 2019 Oct 58:249-258. Doi: 10.1016/j.sbi.2019.05.021. 相关产品 UC Enuity 超薄切片机 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 2012激光共聚焦扫描显微学研讨会举行
    北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会顺利举行  仪器信息网讯 2012年3月27日,为推动北京市及周边省市激光共焦扫描显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进激光共焦扫描显微学在生命科学等领域中的应用和发展,北京理化分析测试技术学会和北京市电镜学会在北科大厦成功举办了“北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会”。来自高校、科研院所、企业的100余名专家学者参加了本次会议。会议现场军事医学科学研究院张德添教授北京大学医学部生物医学分析中心何其华高工  会议由军事医学科学研究院张德添教授,北京大学医学部生物医学分析中心何其华高工主持。Cdc42在小鼠卵母细胞减数分裂成熟中的作用中国科学院动物研究所孙青原研究员  孙青原研究员现任中国科学院动物研究所计划生育生殖生物学国家重点实验室主任,他在报告中介绍了利用Zeiss LSM710激光共聚焦显微镜、珀金埃尔默Ultra VIEW VOX活细胞实时成像系统等仪器研究Cdc42在小鼠卵母细胞减数分裂成熟中的作用,Cdc42作为一种细胞骨架和细胞极化的重要调节物,在减数分裂和卵母细胞成熟过程中有重要的作用。毫米级多光子显微镜荧光成像奥林巴斯(中国)有限公司位鹏先生  采集更明亮和更清晰地标本深层图像,对于更好的开展生命科学研究工作来说十分重要。位鹏先生介绍了奥林巴斯在这方面所能提供的解决方案:利用日本理学院Miyawaki博士研发的组织、器官透明液处理小鼠大脑样本,结合奥林巴斯的XLPLN25×SVMP镜头可以观察到深度达4mm处的深层图像。目前奥林巴斯还推出了一款新型的镜头,观察深度可达8mm,不过还未正式推向市场,可接受定制。超高分辨率显微镜技术中国显微图像网秦静女士  在生命科学研究中科学家总希望看到更加细微的结构,从细胞到细胞器、再到蛋白质等生物大分子,这些结构的尺度都在纳米量级远远超出了常规的光学显微镜的分辨极限,电子显微镜虽然能提供纳米级的分辨率,但不适合观察活细胞,为了解决这一难题,超高分辨显微镜技术应时而生。在报告中秦静女士详细介绍了四种基于不同原理的超高分辨显微镜:4Pi显微镜、STED(受激发射损耗显微镜)、PALM(光激活定位显微镜)、STORM(随机光学重建显微束),并分析了各类显微镜的性能及优缺点。多光子技术的新进展徕卡仪器有限公司王怡净博士  王怡净博士从单分子探测(SMD)、相干反斯托克斯拉曼散射(CARS)、光参量振荡器(OPO)等三个方面介绍了多光子技术的最新进展。王怡净博士介绍说如果想观察分子的运动或分子的识别,采用普通的共聚焦技术就比较困难,所以单分子探测技术就应用而生。相干反斯托克斯拉曼散射技术是一种基于分子固有的振动特性的观察方法,样品无需进行荧光标记,避免了荧光漂白等问题,该技术是由华裔科学家谢晓亮发明,徕卡公司购买了该技术并将其产品化。光参量振荡器是一种新型红外激光器,它的激发波长可以达到1300nm,由于激发波长变长,因而散射更小,观测深度更深、对样品损伤更小。现代荧光显微镜学在生命科学中的应用蔡司光学仪器(上海)国际贸易有限公司张宁博士  张宁博士介绍了在生命科学研究中,不同的样品分析对于仪器的灵活性、观察深度、扫描速度,以及分辨率等都有不同的需求,蔡司根据不同的需求能够提供相应的仪器:如果对深度要求比较高,可以选择多光子显微镜 如果要进行瞬态分析,可以选择转盘式共聚焦显微镜、纯内反射荧光显微镜等 如果对分辨率要求非常高,可以选择光活化定位系统、结构光学照明系统等。此外,张宁博士还介绍了蔡司最新的780点扫描激光共聚焦系统,以及在2011年7月蔡司将光学显微镜部门和电镜部门进行了整合。激光共聚焦扫描技术在神经发育中的作用研究北京大学医学部王韵博士  神经系统是机体最重要、最复杂的系统。王韵博士在报告中介绍了激光共聚焦扫描显微技术在神经细胞增殖和分化中的应用;胚胎电转结合Confocal技术观察神经细胞的迁移;利用Confocal技术研究神经元极性、观察轴突导向;利用双光子Confocal技术观察培养的海马脑片中单个树突棘长时程结构可塑性改变时分子激活的时空变化、观察活体动物皮层神经元树突棘随外界刺激而出现的数目消长等。Volocity——3D活细胞时代的成像分析软件珀金埃尔默仪器(上海)有限公司公司焦磊博士  焦磊博士介绍了珀金埃尔默推出的Volocity细胞三维结构分析软件,该软件包括多个功能模块,用户可以在同一软件环境下完成图像获取、分析和数据发表的全过程。Volocity软件的Acquisition模块可以实现多通道、多位点3D图像的精确定位和自动实时采集 Visualization模块可为用户提供多种图像展现方式,用户可以在高分辨率、完全交互的3D模式下实时解决样品构造 Quantitation模块提供了丰富的工具可以在3D模式下对物体进行测量、分析和跟踪描绘 Restoration模块设计用于三维或四维图像的反卷积计算,以提高图像的分辨率。超高分辨率显微镜的引进与发展态势分析中科院生物物理所纪伟博士  纪伟博士介绍了目前不同的提高分辨率的成像方法的原理及其分辨能力,以及各种方法对样品制备的要求和在实际应用当中的优劣势。采用光敏定位技术的超分辨率显微镜采用大功率激光器和快速采样EMCCD,可以很好的观察活细胞 利用片层光扫描结合光敏定位成像技术可以观察厚样品 具有更高的分辨率,可以研究百nm尺度的细胞器细节结构。最后纪伟博士总结说,更高的分辨率、更快的分析速度以便观察活细胞、以及与其他技术的融合:如TIRF-STED、PALM-EM、STED-AFM、FCS-STED、STORM-AFM等。  会议中,与会人员同专家及企业人员进行了充分的互动和交流,通过会议大家对于激光共聚焦扫描显微技术的最新进展有了更多的认识和了解。
  • 腐蚀在激光共聚焦扫描显微镜眼中的璀璨形貌
    p  strong腐蚀形貌常用表征方法/strong/pp  在腐蚀研究和工程中,腐蚀形貌是判断各种腐蚀类型、评价腐蚀程度、研究腐蚀规律与特征的重要依据。腐蚀形貌表征最常用的方法便是宏观观察、扫描电子显微镜观察和金相显微镜观察等,这些方法容易受主观因素影响。/pp  strong激光共聚焦扫描显微镜/strong/pp  激光共聚焦扫描显微镜(LSCM)以激光作为光源,采用共轭成像原理,沿x、y方向逐点扫描试样表面,合成图像切片,再移动z周,采集多层切片,形成图像栈,将所有图像栈的信息进行合成,形成可以测量垂直高度和表面粗糙度及轮廓的三维表面形貌图像,是一种高敏感度与高分辨率的显微镜技术。/pp  该技术已广泛应用于形态学、生理学、免疫学、遗传学等分子细胞生物学领域。由于采用激光共聚焦扫描显微镜表征腐蚀形貌具有较好的客观性,因此其在材料腐蚀中也有较好的应用前景。/pp  strong试验材料/strong/pp  试验试剂为乙醇、丙酮(分析纯,国药集团化学试剂有限公司)。试验钢为油田现场用N80钢管,其化学成分(质量分数)为:0.22%C,1.17%Mn,0.21%Si,0.003%S,0.010%P,0.036%Cr,0.021%Mo,0.028%Ni,0.018%V,0.012%Ti,0.019%Cu,0.006%Nb,余量Fe。/pp  strong试验仪器/strong/pp  红外碳硫分析仪,直读光谱仪,电子天平,M273A恒电位仪,扫描电镜,激光共聚焦扫描显微镜。/pp  strong腐蚀试验/strong/pp  span style="color: rgb(0, 176, 240) "(1)全面腐蚀/span/pp  将N80钢管加工成挂片试样,用350号金相试纸对试样进行打磨,然后再用丙酮除油和乙醇清洗,最后吹干。/pp  依据标准ASTM G170-06(R2012)《实验室中对油田及炼油厂缓蚀剂评价及鉴定的标准指南》和SY/T 5405-1996《酸化用缓蚀剂性能试验方法及评价指标》,采用静态腐蚀挂片法对N80钢进行全面腐蚀试验。/pp  试验在高温高压反应釜中进行。试验介质为15%(质量分数)的N,N' -二醛基哌嗪缓蚀剂,试验温度90℃,试验时间为4h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的缓蚀剂膜和腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。/pp  span style="color: rgb(0, 176, 240) "(2)沟槽腐蚀/span/pp  将N80钢管加工成15mm× 5mm圆片试样,焊缝位于试样的中央,试验前采用350号金相砂纸打磨试样,再用丙酮除油和乙醇清洗,最后吹干,并采用光栅尺测量圆片尺寸。/pp  依据标准Q/SY-TGRC 26-2011《ERW 钢管沟腐蚀实验室测试方法》,对N80钢进行沟槽腐蚀试验,得到沟槽腐蚀的试样。/pp  试验采用电化学极化法(三电极体系),在1000mL玻璃电解池(带石英窗口)内进行。试验介质为3.5%(质量分数)的NaCl溶液。饱和甘汞电极为参比电极,N80钢为工作电极,铂电极为辅助电极。/pp  试验时对试样施加-550 mV的恒电位(相对于参比电极),极化144h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。/pp  strong结果与讨论/strong/pp  span style="color: rgb(0, 176, 240) "1 全面腐蚀/span/pp  全面腐蚀试验后试样的宏观照片、扫描电镜图和LSCM图分别如图1—3所示。对比这三幅图可以看到:宏观和扫描电镜观察显示试样表面均匀腐蚀,无点蚀坑 LSCM观察显示,试样表面有两处点蚀坑,两处点蚀坑的直径分别为10.24,11.65μm,深度分别为13.78μm和19.83μm。由此可见,LSCM不仅可获得试样的表面三维图,还可客观迅速地找到局部腐蚀处,并可对局部腐蚀处进行简单测量处理。/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/8531e939-7799-465b-a201-8006f8ee75f1.jpg" title="图1 全面腐蚀试验后试样的宏观照片.jpg" alt="图1 全面腐蚀试验后试样的宏观照片.jpg"/br/br//strongstrong图1 全面腐蚀试验后试样的宏观照片/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/9fc9d4b0-37e5-4403-bc07-0e25c5a3291f.jpg" title="图2 全面腐蚀试验后试样的扫描电镜图.jpg" alt="图2 全面腐蚀试验后试样的扫描电镜图.jpg" width="378" height="406" border="0" vspace="0" style="width: 378px height: 406px "//strong/pp style="text-align: center "strong图2 全面腐蚀试验后试样的扫描电镜图/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/c4ecb6b1-a0e5-4322-b1de-903eca0143be.jpg" title="图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" alt="图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" width="400" height="271" border="0" vspace="0" style="width: 400px height: 271px "//strong/pp style="text-align: center "strong图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图/strong/pp  span style="color: rgb(0, 176, 240) "2 沟槽腐蚀/span/pp  由于N80钢管为焊管,其母材与焊缝的显微组织不一样,在腐蚀环境中易产生电位差,使得焊缝熔合线处易出现深谷状的凹槽,如图4所示。沟槽腐蚀敏感系数α是判断焊管焊缝抗腐蚀的一个重要参数,其计算方法如式(1)所示。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201809/uepic/3507e746-8170-4721-a27d-d203442685a6.jpg" title="式(1).png" alt="式(1).png"//pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/613be5a5-5c15-45e0-a6d8-6ee416278e9d.jpg" title="图4 沟槽腐蚀试验后试样的宏观照片.jpg" alt="图4 沟槽腐蚀试验后试样的宏观照片.jpg"//strong/pp style="text-align: center "strong图4 沟槽腐蚀试验后试样的宏观照片/strong/pp  式中:h1为原始表面和腐蚀后表面的高度差 h2为原始表面和点蚀坑坑底的高度差,如图5所示。h1和h2均取3次测量的平均值,当α 1.3时,表示焊管焊缝对沟槽腐蚀不敏感 当α≥1.3时,表示焊管焊缝对沟槽腐蚀敏感,需采取措施减少沟槽腐蚀。/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/8e59d50c-bea6-49da-8f6a-d2448171379f.jpg" title="图5 沟槽腐蚀试验参数测定.png" alt="图5 沟槽腐蚀试验参数测定.png"//strong/pp style="text-align: center "strong图5 沟槽腐蚀试验参数测定/strongbr//pp  沟槽腐蚀试验后试样的金相图和LSCM图分别如图6和图7所示。通过金相图和LSCM图得到参数h1和h2,并根据式(1)计算沟槽腐蚀敏感系数,结果如表1所示。/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/75c010b6-db01-472f-ae3d-cff23f615d7c.jpg" title="图6 沟槽腐蚀试验后试样的金相图.jpg" alt="图6 沟槽腐蚀试验后试样的金相图.jpg"//strong/pp style="text-align: center "strong图6 沟槽腐蚀试验后试样的金相图/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/467f4cb3-f842-418c-af0d-e067c5e4ee20.jpg" title="图7 沟槽腐蚀试验后试样的LSCM图.jpg" alt="图7 沟槽腐蚀试验后试样的LSCM图.jpg"//strong/pp style="text-align: center "strong图7 沟槽腐蚀试验后试样的LSCM图/strong/pp style="text-align: center "strong表1 不同方法得到的沟槽腐蚀敏感系数/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/15d8299e-3916-4241-bf81-692270f87d04.jpg" title="表1 不同方法得到的沟槽腐蚀敏感系数.png" alt="表1 不同方法得到的沟槽腐蚀敏感系数.png"//strong/pp  采用金相显微镜测h2和h1时,需根据主观判断找到3个深度最深的腐蚀坑,然后将其局部放大,并采用仪器标尺测量h2和h1 而采用LSCM测h2和h1时,沟底层处便是腐蚀坑深度,且测量标尺为LSCM自带,因此该方法更便捷、直观和客观,由此计算的α也更可靠。br//pp  strong结论/strong/pp  (1)激光共聚焦扫描显微镜表征腐蚀形貌以三维图方式显示,局部腐蚀处可一眼看到,更直观。/pp  (2)用激光共聚焦扫描显微镜表征沟槽腐蚀,可以直观和客观地找到腐蚀坑深处,仪器自带标尺可直接测量坑深,数据测量更便捷,由此计算的敏感系数也更可靠。/p

维帕他韦共聚维酮相关的仪器

  • LSM 880 with Airyscan 快速低光毒性的共聚焦成像新标准您检测分析的样品往往结构非常小、移动速度非常快或极易受光漂白作用的影响。或者,同时兼具上述三个特征。为能从活细胞或其他采用微弱光信号标记的样品中获取无偏差的数据,则要求显微系统拥有更高的灵敏度、更出色的分辨率或更快的速度。样品发出的每一个信号都十分的宝贵。在样品采集方案的选择上, Airyscan 技术将助您一臂之力:同时拥有快速的超高分辨率成像,以及高灵敏度的图像采集。可以使用任意标记的样品进行多色成像,并同时获得优异的图像质量。与传统共聚焦检测器成像质量相比,这种新型检测器设计优良,即使是厚样本也能获得分辨率为120nm( x, y)和350nm( z)的一个完美的光学切面,并能将信噪比( SNR)提升4–8倍。在您进行单光子或多光子实验时,使用这种新颖的探测器设计获得更高的灵敏度,分辨率和速度,27fps(480 x 480像素)。一切都取决于您。共聚焦成像新世界提高所有实验的灵敏度,分辨率和速度。 成像时几乎没有光毒性或漂白现象 - 不改变您的工作流程,样本标记或系统操作。Airyscan独特的快速模式可以将您的成像速度提高四倍。 这相当于共振扫描共聚焦显微镜的速度,却又不牺牲灵敏度或分辨率。Airyscan在横向120nm和轴向350nm的尺度上提供了高灵敏度的完美光学截面和超高分辨率。这超越了去卷积方法,保留了在封闭针孔中通常被屏蔽了的宝贵的发射光信号,并实现了更高的分辨率。提高实验的重复性将Airyscan的快速模式与Z-Stacks及拼图结合起来,可对大样本做高质量成像。一次性收集所有荧光信号。 并行采集可让您在较短的时间内检测多个荧光标记物,并配备更多数量的共聚焦探测器。利用并行光谱采集和高速GPU去卷积的独特组合,提高图像质量。以最大的视野和最高的线速扫描共聚焦 - 蔡司LSM 880 with Airyscan在快速模式下以480x480像素采集速度高达27 fps。选择灵活的共聚焦根据您的研究需求,选择超高分辨率模式,灵敏度模式或新的快速模式。去除自发荧光,并在单次扫描中区分荧光信号高度重叠的部分。 这将减小样品中的光毒性。与单分子技术共聚焦成像获得流动性/浓度/寡聚状态信息(FCS / FCCS / RICS / PCH)。选择Airyscan的快速模式,可以在样品深处多光子成像
    留言咨询
  • 中图仪器VT6000共聚焦三维光学轮廓显微镜以共聚焦技术为原理,具有很强的纵向深度的分辨能力,能够清晰地展示微小物体的图像形态细节,显示出精细的细节图像。它具有直观测量的特点,能够有效提高工作效率,更加快捷准确地完成日常任务。借助共聚焦显微镜,能有效提高工作效率,实现更准确的操作。应用领域测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等参数,对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。VT6000共聚焦三维光学轮廓显微镜基于光学共轭共焦原理,一般用于略粗糙度的工件表面的微观形貌检测,分析粗糙度、凹坑瑕疵、沟槽等参数。在材料生产检测领域中,对大坡度的产品有更好的成像效果,在满足精度的情况下使用场景更具有兼容性。产品功能1)3D测量功能:设备具备表征微观3D形貌的轮廓尺寸及粗糙度测量功能;不同应用场景下的3D形貌VT6000共聚焦三维光学轮廓显微镜主要应用于半导体、光学膜材、显示行业、超精密加工等诸多领域中的微观形貌和轮廓尺寸检测中,其次是对表面粗糙度、面积、体积等参数的检测中。2)影像测量功能:设备具备二维平面轮廓尺寸的影像测量功能,可进行长度、角度、半径等尺寸测量;影像测量功能界面3)自动拼接功能:设备具备自动拼接功能,能够实现大区域的拼接缝合测量;4)数据处理功能:设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;5)分析工具功能:设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;6)批量分析功能:设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;7)便捷操作功能:设备配备操纵杆,支持操纵杆进行所有位置轴的操作及速度调节、光源亮度调节、急停等;8)光源安全功能:光源设置无人值守下的自动熄灯功能,当检测到鼠标轨迹长时间未变动后会自主降低熄灭光源,防止光源高亮过热损坏,并有效延长光源使用寿命;9)镜头安全功能:设备配备压力传感器,并在镜头处进行了弹簧结构设计,确保当镜头碰撞后弹性回缩,进入急停状态,大幅减小碰撞冲击力,有效保护镜头和扫描轴,消除人为操作的安全风险。自设计之初,VT6000便定下了“简单好用"四字方针的目标。1)结构简单:仪器整体由一台轻量化的设备主机和电脑构成,控制单元集成在设备主机之内,亦可采用笔记本电脑驱动,实现了“拎着走"的便携式设计;2)真彩图像:配备了真彩相机并提供还原的3D真彩图像,对细节的展现纤毫毕现;3)操作便捷:采用全电动化设计,并可无缝衔接位移轴与扫描轴的切换,图像视窗和分析视窗同界面的设计风格,实现了所见即所得的快速检测效果;4)采用自研的电动鼻轮塔台,并对软件防撞设置与硬件传感器防撞设置功能进行了优化,确保共聚焦显微镜在使用高倍物镜仅不到1mm的工作距离时也能应对。部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • 共聚焦显微镜 400-860-5168转2045
    简介:C2共聚焦显微镜系统主要包含了作为实验室核心设备的新一代尼康共聚焦仪器。它超常的稳定性和操作便利性以及卓越的光学性能使其广受称赞。C2以其强大的数据采集功能和种类繁多的图像分析能力而成为完美的新型显微镜工具,或者说成为了尼康成像系统家族中新的一员。C2采用了尼康专利所有的NIS-Elements成像软件,它完美的集成了图像获取和数据分析功能,在业界享有很高的声誉,赢得了用户的信赖。NIS-Elements使得C2具有和A1高级共聚焦显微镜系统相同的操作便利性,有效增强了C2的可用性、功能性,并拥有了更为广泛的分析能力。主要特点:&bull 图像质量 尼康卓绝的光学系统和经受时间考验的高性能光学设计可在最长的工作距离上提供最明亮且最清晰的图像。 高效扫描头和探测器 C2适合市场上所有采用最小扫描头的尼康显微镜。C2采用高精度镜头和理想的光学圆形针孔,可实现无噪点、高对比度且高质量的共 聚焦成像。通过32通道同时获取C2的光谱探测器可实现高速成像。由于许多精确校正光谱数据方面的创新,在实现真实色彩荧光光谱 成像的同时,保证信号损失被降到最低。 高性能光学系统 CFI复消色差S系统通过在较宽的波长范围(从紫外线至红外线)内的色差校正,这些高NA物镜非常适合共聚焦成像。尼康专用纳 米水晶镀膜技术的使用增强了透射性能。 CFI复消色差TIRF系列这些物镜具有引以为傲的NA 1.49(使用标准盖玻片和液浸油),是最高分辨率的尼康物镜。温度校正环可 在23° C范围内对成像画质进行温度校正。 高清晰透射DIC图像 C2可同时处理3通道荧光或3通道+透射DIC观察。将高质量DIC图像和荧光图像进行叠加可有助于定位荧光标记等图像分析。&bull 高性能 尼康著名的成像软件NIS-Elements可实现所有尼康软件设备和周边设备的直观操作。具备适合该级别非常多的 分析功能,C2全面支持常规的实验室研究活动。 多模式性能 所有尼康硬件均有与顶级共聚焦系统A1相同的软件控制在一个软件包内完全(同时)控制所有硬件(及软件模块)!您可在一个 软件包中进行全部共聚焦、宽视场、TIRF、光活化获取、处理、分析和显示。&bull 操作灵活 C2可结合正置、倒置、生理学和宏观成像显微镜,并配备组合多种顶尖实验系统的配件。所以一切均可由 NIS-Elements软件控制。 多模式成像系统TIRF/光活化C2 TIRF激光照明模块和光活化模块经过集成,以实现极高信噪比的单分子成像以及光活化和光转换银光蛋白的荧光特性变化成像。 宏观共聚焦显微镜系统AZ-C2 由于视图的高清晰宽视场(大于1cm,采用前所未有的高信噪比),AZ-C2可在单张照片上实现完整样本(例如胚胎等)的成像。 组合了低倍率和高倍率物镜、光学变焦和共聚焦扫描变焦功能,以实现宏观至微观的连续成像。另外,AZ-C2可供体内完整样 本的深层成像。规格:激光*兼容激光固定激光:405nm、440(445)nm、488nm561(594)nm、638(640)nmAr激光(457nm/488nm/514nm)、HeNe水平(543nm)激光单元3激光模块(AOM或手动调制),4激光模块(AOTF调制)探测器标准探测器荧光探测器:3通道PMT,透射探测器:1通道PMT光谱探测器(可选)通道数:32,波长分辨率:2.5nm/5nm/10nm,与之前模块C1si-Ready兼容扫描头扫描参数采用3通道荧光探测器: 像素尺寸:最大2048x2048像素 扫描速度:1fps(512x512像素,单向),最快23fps(512x32像素,双向,4倍变焦)采用光谱探测器: 像素尺寸:最大1024x1024像素 扫描速度:0.5fps(512x512像素,单向),最快6fps(64x64像素,单向)扫描模式X-Y、XY旋转、变焦、ROL、XYZ时间序列、行、激励、多点、图像拼接(大图)针孔圆形,6种尺寸兼容显微镜ECLIPSE Ti-E/Ti-U倒置显微镜,ECLIPSE 90i/80i正置显微镜,ECLIPSE FN1固定载物台显微镜,AZ100多功能变焦显微镜软件NIS-Elements C主要功能显示/图像处理/分析 2D/3D/4D分析、时间序列分析、 3D容积显示/正交、空间滤波器、图像拼接、 多点时间序列、光谱解混、 实时解混、虚拟滤波器、去卷积、AVI图像文件输出应用:FRAP、FLIP、FRET、光活化、共定位*兼容激光和可用波长因所用激光单元而异
    留言咨询

维帕他韦共聚维酮相关的耗材

  • Confocal共聚焦显微镜纳米标尺
    产品特点:GATTA-Confocal 系列的纳米标尺为传统显微镜使用者设计,它有两个荧光标记端,均含有量子效率高的染料分子。标记点的距离为350nm。GATTA-Confocal纳米标尺有如下颜色可选:红色(ATTO 647N),黄色(Alexa Fluor 568),绿色(ATTO 532)或蓝色(Alexa Fluor 488),或者红/黄/蓝组合(ATTO 647N/ Alexa Fluor 568/ Alexa Fluor 488),红/绿/蓝组合(ATTO 647N/ ATTO 532/ Alexa Fluor 488)纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺技术参数:
  • 微瓶工具和聚乙烯瓶/瓶盖工具
    产品名称:微瓶工具和聚乙烯瓶/瓶盖工具仪器厂商:PerkinElmer/美国 珀金埃尔默价格:面议库存:是说明包装零件编号聚乙烯微瓶工具&ndash 500个包括:300L锥形旋盖瓶(500个) 蓝色聚乙烯9mm瓶盖w/粘合的硅胶/聚四氟乙烯隔垫 (500片)500N93060801.5mL聚乙烯琥珀旋盖瓶,带填充线,Teflon / 硅胶隔垫和单缝瓶盖100N93017351.5mL聚乙烯透明旋盖瓶,带填充线Teflon® / 硅胶隔垫和单缝瓶盖100N9301736
  • 空气发生器的维护工具包和更换催化剂塔
    Parker Balston Zero空气发生器的维护工具包和更换催化剂塔订货信息:维修组件(包含一年期耗材:前滤芯和后滤芯)—单件货号Parker货号维修组件用于75-83NA—kit21646MK7583维修组件用于HPZA-3500, HPZA-7000, HPZA-18000,—kit21647MK7840催化塔Model #容量单件货号Parker货号催化塔用于75-83NA1,000 cc/min单件2200575394催化塔用于HPZA-35003,500 cc/min单件2200476810催化塔用于HPZA-70007,000 cc/min单件2200676820催化塔用于HPZA-1800018,000 cc/min单件2200776811催化塔用于HPZA-3000030,000 cc/min单件2200876821

维帕他韦共聚维酮相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制