超高真空系统

仪器信息网超高真空系统专题为您提供2024年最新超高真空系统价格报价、厂家品牌的相关信息, 包括超高真空系统参数、型号等,不管是国产,还是进口品牌的超高真空系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高真空系统相关的耗材配件、试剂标物,还有超高真空系统相关的最新资讯、资料,以及超高真空系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超高真空系统相关的厂商

  • 登弗真空设备(上海)有限公司旗下拥有中国自主高端品牌-登弗真空。公司致力于中国本土实验室真空产品第一品牌, 目前已经研究开发生产出一系列真空产品:完全抗化学腐蚀隔膜真空泵、活塞真空泵、抗腐蚀型螺旋(涡旋)真空泵、旋片真空泵、超高真空分子泵机组(实验室级/带推车)、真空金属辅件(金属法兰、转接头等)。严格质量控制,同等德国的工艺技术。公司提供粗真空、高真空、超高真空方案设计、项目实施搭建、 项目验收、售后维修一条龙服务。 目前服务客户主要为化学、制药、物理、半导体、催化化学、化工、交叉学科的高校科研院所。产品应用在真空烘箱、旋转蒸发仪、离心浓缩仪、冷冻干燥、镀膜PVD、CVD、PLD、MBE、STM、催化BET、香料SAFE提纯等多种场合。作为一家研发技术型公司,生产研发基地分别位于上海金山、浙江杭州、浙江海盐,营销中心位于上海。公司提供产品服务包括在选型初期的专业支持、商务上的良好合作以及全面的售后服务。公司立志成为一家中国的高新科技型企业。
    留言咨询
  • 沈阳科友真空技术有限公司专门从事真空设备和仪器的研究开发和制造。法人代表为渠洪波总经理,公司成立于2006年,前身为沈阳市科友真空技术研究所,经过科友人十几年不懈的努力与奋斗,至今已发展成为集科研开发与设计制造为一体的综合性企业。 企业新址坐落于沈阳市苏家屯区,地靠沈营公路,附近可直接转接桃仙机场、沈环高速等,地理位置优越,交通便利。我公司现有职工50余人,拥有现代化工业厂房、办公搂及其它辅助设施共6200㎡ ,拥有各种先进的加工设备和检测仪器50余台。 公司产品及经营范围主要包括: 真空设备设计解决方案;高真空、超高真空薄膜制备设备 ;真空冶炼和热处理设备 ;飞行时间质谱仪, 光电子成像设备, 激光质谱仪等分析仪器;纳米材料制备设备;工业产品制造设备;离子束刻蚀设备;真空阀门, 真空部件;电控、高压、温控、电源等部件;此外,承接其他真空设备或仪器,设计,产品,技术服务。 公司秉承以技术为优先,实力作为保障,诚挚为客户提供最佳的设计方案、最优良的产品、最满意的售后服务。 企业拥有一批长期从事真空设备研制的专业化队伍,产品主要面向科研院所、大专院校及高新技术企业。十几年来先后为北京大学,清华大学,香港大学,南京大学、中国科学院大连化学物理研究所、化学研究所、安徽光学精密机械研究所等等国际知名学府和科研单位及高新技术企业研制开发各种真空应用设备及仪器几十种类300多台套,有丰富的设计、制造能力和经验。与中国科技大学合作开发的“低温超高真空扫描遂道显微镜(LT-UHV-STM)”,获国家科技部2001年科技型中小企业技术创新基金支持;并已于2006年通过国家验收,与中国科学院大连化物所合作申请的“大气细粒子连续监测技术与设备”获2001年国家技术研究发展计划(863计划)基金支持,现在也已经通过验收;与中国科学院安徽光机所合作申请的“快速测量可挥发性有机污染物的光电离便携式质谱技术研究”获2002年863前沿探索性项目基金支持,也已通过验收。与中国科学院化学所合作申请的富勒烯连续制备和提纯设备获得科学院的资助。 2004年企业通过了ISO9001质量管理体系认证,如今沈阳科友真空技术有限公司已经发展成拥有一支优秀技术队伍和具备一定生产规模的高新技术企业,已经具备在本行业中有较强技术优势和市场认可度的状态。企业的产品随着逐步发展进入国际市场,已经出口到新加坡、美国、澳大利亚、日本等国家。 公司立足点于中小型高新技术企业,始终坚持以技术创新作为企业发展重心,以产品质量作为企业生存根本,大力培养人才作为企业的血液补充。公司拥有多位曾在中国科学院从事十几年、二十几年真空技术工作的同志和一批受过高等院校教育的年青人做为企业的技术骨干,同时又有一支优秀的技术工人队伍作为产品品质的保障。“一定在不远的将来赶上和超过世界先进水平”是科友人致力于真空行业科技研发的终极目标,也是科友人坚持前进不懈的动力。 科友就是科学家之友,科友人将继续秉承奋发向上,不断开拓的进取精神,为用户提供精良的科学仪器。科友乐于,也敢于作为真空行业的一面崭新旗帜,为国家在全国科技大会上提出的加快推进国家创新体系建设做出自己的贡献。
    留言咨询
  • 合肥迪泰真空技术有限公司是一家新兴的高新技术企业。专门从事氦质谱检漏、真空箱氦检漏系统以及真空应用产品的研发、制造和销售为一体的现代化企业。 公司拥有专业化的研发团队和科技人才队伍。所生产的新一代全自动高灵敏度氦质谱检漏仪采用多项国际先进技术。真空箱氦检漏系统系列设计科学,产品性能稳定。氦质谱检漏广泛应用于航天航空,汽车制造,真空应用等领域。 公司本着“诚实,进取,创新,发展”的经营理念为广大客户提供优质产品和完善的售后服务。
    留言咨询

超高真空系统相关的仪器

  • 超高真空光学显微镜/光谱仪测试系统Ultra-high Vacuum (UHV) Optical / SpectroscopicMicroscope System将光学显微镜或光谱仪模组对接于超高真空系统,可以作为超高真空互联系统的检测节点之一,用于材料和器件在不同制备环节之间对外延的薄膜或者转移沉积的二维材料等样品的质量进行快速无损检测。产品特性和核心技术模块化设计,光学部分相对独立。&bull 包含光学显微镜、激光离焦量传感器、自动调焦和共聚焦耦合光路等等在内的全部光学部分全部集成于一个光学模组之中,作为整体置于超高真空腔体之外,透过视窗玻璃聚焦于真空腔内的样品表面。&bull 不污染真空内环境。&bull 超高真空系统烘烤时可以整体取走,并在烘烤完毕之后方便地定位安装。&bull 可根据用户需求,灵活配置激光器、单色仪、探测器和物镜等光学组件。视窗玻璃厚度像差的补偿校正。&bull 拉曼光谱的高收集效率和分辨率。性能参数:注:上述表格中的激光波长、物镜和单色仪等部件可以根据客户需求调整。测试案例:超高真空长工作距离(120 mm)显微测试
    留言咨询
  • 安捷伦真空(原瓦里安)提供全套 VacIon 离子泵产品系列,具有多种抽速供选择 (0.4–1000 L/s)。安捷伦离子泵和控制器具有多种可定制配置,以满足您多样化的真空需求。非常适合必须保证稳定的超高或极高真空 (UHV 或 XHV) 条件的应用,例如实验室、大型研究机构、医疗设备、扫描电子显微镜和表面分析设备。配备三极离子泵、二极离子泵和惰性气体二极离子泵抽气单元,以为不同气体提供最佳抽速配备 ConFlat 非旋转型法兰、额外 ConFlat 孔、双端和侧孔,可选不同方向的真空穿导件(Fischer、King、DESY、Varian、Safeconn)无活动部件,确保在高灵敏度应用中无振动运行低漏电流可提供稳定的真空压力读数低磁场可最大程度减少系统干扰在 400 °C 的条件下进行真空处理,并在真空下夹止,确保安装前的清洁度和真空密封性可定制不同的高压真空穿导件、泵体几何形状、额外孔和抽气单元布局,还可配备光学挡板、外部加热器和屏蔽磁体,满足您的需求
    留言咨询
  • 超高真空多腔体镀膜系统——按照客户要求,加工订制;——一对一专业出图设计;——可配套指定真空机组系统;——耐高温、耐腐蚀;——高质量、高精度;加工工艺,采用真空焊接技术拼装焊接;先进的真空捡漏设备,更加保证产品的质量;我公司采用三维建模软件,按照实际比例建立三维模型,根据客户文字、语言草图等需求描述,专业设计出适合客户所需产品方案(在方案定稿之前所有设计不收取任何费用)。为了生产出最匹配客户需求的产品,需要告知我公司以下几个问题点:1、产品在使用过程中是否有温度产生,高温和低温分别是多少摄氏度,是否需要通水或液氮冷却等内外在因素。2、对产品材质是否有特殊要求,真空领域腔体常用材质为:碳钢、铝、304不锈钢、316不锈钢等3、产品的链接方式,抽真空的方式,抽真空所用的真空泵等4、腔体真空度的要求,腔体抽完真空以后是否需要冲入保护气体或其他气体。通常常见真空腔体技术性能:材质:304不锈钢或客户指定材质。腔体适用温度范围:-190℃~+1200℃密封方式:氟胶“O”型圈或金属无氧铜密封圈出厂检测事项:1、真空漏率检测:标准检测漏率:1.3*10-8PaL/S 2、水冷水压检测:标准检测压力:8公斤24小时无泄漏检测。内外表面处理:拉丝抛光处理、喷砂电解处理、酸洗处理、电解抛光处理和镜面抛光处理等。实验室真空系统,真空腔体,真空探针台超高真空多腔体镀膜系统
    留言咨询

超高真空系统相关的资讯

  • 武汉大学预算430万元购买1套超高真空扫描隧道/原子力显微镜系统
    4月29日,武汉大学公开招标购买1套超高真空扫描隧道/原子力显微镜系统,预算430万元。  项目编号:HBT-13210048-211202  项目名称:武汉大学超高真空扫描隧道/原子力显微镜系统采购项目  预算金额:430.0000000 万元(人民币)  最高限价(如有):430.0000000 万元(人民币)  采购需求:  超高真空扫描隧道/原子力显微镜系统(进口)1套。  合同履行期限:交货期为合同签订并图纸确认后10个月,质保期两年。  本项目( 不接受 )联合体投标。  开标时间:2021年05月21日 09点30分(北京时间)
  • 中科院科研装备研制项目“从超高真空到常压的 表面光谱原位表征系统”顺利验收
    p  5月26日,中国科学院新疆理化技术研究所承担的中科院科研装备研制项目“从超高真空到常压的表面光谱原位表征系统”通过了中科院条件保障与财务局组织的专家验收。/pp  项目负责人邱恒山向专家组详细汇报了项目的实施情况和仪器装备最终所达到的性能指标。测试组专家到现场进行了各项性能指标的实际测试,验收组专家审阅了项目的相关验收材料和经费使用情况。经过测试组专家和验收组专家的综合评议,专家组给予高度评价并一致认为该研制装备的各项性能指标均达到预期目标。/pp  该项目将表面谱学的方法引入到了光催化领域的研究中,通过大量的创新性设计,实现真空腔体本底真空度优于3× 10-10 mbar,高压腔内真空度在10-9 mbar到1000 mbar之间可变并可由质谱原位检测 可传样样品则可以实现加热(1000 K)、冷却(100 K)和测温 通过高压腔与真空红外谱仪的密封连接,装备最终可以实现样品在高压腔内不同气体压力、不同温度和不同光照条件下的真空(偏振)红外谱的原位检测。与会专家一致认为该项目的实施有助于开展气固(光)催化反应机理的系统研究,在分子水平上获得反应的微观信息,是对现有研究方法的重要补充和全新发展。/pp  中科院条财局装备办公室主任张红松、新疆理化所副所长崔旺诚出席会议。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/9309c784-241c-4d39-944f-95765aa8d3d7.jpg" title="W020170531466982123675.jpg"//pp style="text-align: center "从超高真空到常压的表面光谱原位表征系统/ppbr//p
  • 国内首套超高真空无液氦低温STM与样品制备联合系统成功落户复旦大学物理学院
    近日,由美国RHK公司研发的超高真空无液氦低温STM系统与样品制备联合系统在复旦大学物理学院顺利完成安装使用。 图1 RHK超高真空无液氦低温STM系统该多功能联合系统兼备了样品制备、处理与表征于一体,同时配有高精度的原为CCD,可实现2um的空间分辨,满足特殊用户对二维材料等体系的原位快速寻找和测试。除此之外,该联合系统中的样品制备与处理部分,可实现样品原位高温烘烤,电子束轰击(配有Ar枪),可配备XPS、LEED等表征测量选件,同时Manipulator可原位加热(高于1000K)和低温(低于100K)处理样品,并配有使用不同构型的多个sample holders。该系统样品生长部分可以扩展多个生长源,可实现MBE 分子束蒸发,热蒸发等多种模式选择。 该联合制备表征系统中STM表征部分,除兼具RHK PanScan Freedom-LT之前已有的优异的隔振性能和无液氦制冷的操作简便性外,还新研发推出了可在低温扫描头温度屏蔽罩外侧加装原位低温样品储藏架,可长时间不间断低温(低于40K)存储特殊低温需要的样品。图2 超高真空无液氦低温STM与样品制备联合系统现场安装调试图3 RHK公司 Adam先生向用户现场介绍并进行讨论RHK公司产品以其技术创性和稳定性、高的精度和良好的用户体验得到了国内外众多表面科学、低温、真空等研究领域著名科学家和研究组的认可和青睐。相关产品及链接:1、 RHK无液氦UHV LT STM/ AFM-qPlus系统:http://www.instrument.com.cn/netshow/C205015.htm2、 RHK 超高真空扫描探针显微镜系统:http://www.instrument.com.cn/netshow/C44442.htm3、 UHV PAN式低温扫描探针显微镜系统:http://www.instrument.com.cn/netshow/C159540.htm4、 R9扫描探针显微镜控制器:http://www.instrument.com.cn/netshow/C159539.htm5、 R9plus扫描探针显微镜控制器:http://www.instrument.com.cn/netshow/C44532.htm

超高真空系统相关的方案

超高真空系统相关的资料

超高真空系统相关的试剂

超高真空系统相关的论坛

  • 【求助】超高真空系统中一些真空部件的加工

    最近想改造XPS中的样品杆不知道哪个地方有可加工的陶瓷出售或者直接替我们加工好陶瓷部件另外还有无氧铜部件和绝缘材料的螺丝这些部件都是用于超高真空系统中的所以要求材料本身不能放大量的气特别是绝缘材料的螺丝,可能还需要有一定强度从国外带回来过这种绝缘材料的螺丝表面颜色是暗绿色的手感有些塑料橡胶之类的感觉在超高真空系统中也不放气不知道哪位大侠知道这是一种什么材料另外还想购置一台恒压电源就是给样品加偏压的那种要求电压的稳定性要比较好20伏的电压值应该就足够用了各位板油门都用的是什么牌子的恒压电源啊?谢谢大家了!

  • 电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    [size=16px][color=#000099]摘要:超高真空度的控制普遍采用具有极小开度的可变泄漏阀对进气流量进行微小调节。目前常用的手动可变泄漏阀无法进行超高真空度的自动控制且不准确,电控可变泄漏阀尽管可以实现自动控制但价格昂贵。为了实现自动控制且降低成本,本文提出了手动可变泄漏阀与低漏率电控针阀组合的解决方案,结合真空压力PID控制器可实现超高真空度自动控制。[/color][/size][align=center][size=16px][/size][/align][size=16px][/size][align=center][color=#000099]~~~~~~~~~~~~~~~~~~~~~[/color][/align] [b][size=18px][color=#000099]1. 问题的提出[/color][/size][/b][size=16px] 超高真空一般是指10-7Pa~10-2Pa范围的真空度,相应的超高真空技术应用也十分广泛,特别是对于芯片级原子钟(CSACs)、电容膜片规(CDGs)、显微镜、质谱仪和和新型金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积(MOCVD)等需要超高真空环境的设备,其真空度控制的稳定性通常非常重要。[/size][size=16px] 超高真空度控制的基本原理如图1所示,可采用开环和闭环两种控制形式,基本控制原理是固定真空泵的抽速,通过调节进气流量来实现不同真空度的控制。对于超高真空控制,要求进气量非常微小,所以一般采用可变泄漏阀(varible leakage valve)进行调节进气量。[/size][align=center][size=16px][color=#000099][b][img=01.超高真空度控制系统结构示意图和各种可变泄漏阀,650,493]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272211542322_7977_3221506_3.jpg!w690x524.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 超高真空度控制的基本原理和各种可变泄漏阀[/b][/color][/size][/align][size=16px] 如图1所示,目前常用的可变泄漏阀有手动和自动两种形式,但在实际应用中存在以下两方面的问题:[/size][size=16px] (1)手动可变泄漏阀只能组成开环控制回路,需要人工调节泄漏阀开度并同时观察真空计读数进行超高真空度控制。这种开环控制方法很难实现真空度的稳定,气源和真空腔体内稍有扰动就会带来严重的波动,另外就是在多个真空度点控制时很难操作和控制。[/size][size=16px] (2)自动可变泄漏阀是在手动泄漏阀上配置了一个电子致动器和PID控制器,与真空计可构成闭环控制回路,可实现超高真空度的精密控制,但存在的问题是价格昂贵,自动可变泄漏阀要比手动泄漏阀贵三倍左右。[/size][size=16px] 针对目前可变泄漏阀具体使用中存在的上述问题,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是采用价格相对较低的手动可变泄漏阀以提供微小的很定进气流量,然后再配备低漏率的电控针阀对此微小进气流量进行电动调节,以实现最终超高真空度的自动控制,由此构成的超高真空度控制系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=02.手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图,600,267]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272212262679_3036_3221506_3.jpg!w690x308.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 由图2所示的控制系统可以看出,整个系统由手动泄漏阀、电控针阀、真空计和PID真空压力控制器构成,并形成闭环控制系统。在具体控制过程中,首先将手动泄漏阀调节到某一固定位置使其保持恒定的微小进气流量,真空压力控制器根据采集到的真空计信号与设定值比较后对电控针阀进行动态调节。由于电控针阀自身有很小的真空漏率,所以电控针阀的开度变化相当于是对手动泄漏阀进气流量的进一步调节,由此电动针阀与手动泄漏阀配合可实现对进入腔体的流量进行调节而最终实现超高真空度的控制。[/size][size=16px] 在图2所示的控制系统中,真空计采用了组合式皮拉尼真空计,真空度测试范围可以从一个大气压到5×10-8Pa,全量程真空度对应的模拟信号输出为0~10V。此真空计信号可以直接被真空压力PID控制器接收,PID控制器具有24位AD、16位DA和0.01%最小输出百分比技术指标,并带有程序控制和RS485通讯功能,可很好的进行超高真空度的全量程自动控制。[/size][size=16px] 此解决方案除了可以满足小型真空腔室的超高真空度控制之外,也可以用于较大腔室的控制,所需的只是改变手动可变泄漏阀开度大小。[/size][align=center][size=16px][color=#000099]~~~~~~~~~~~~~~~~[/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align]

  • 彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    [size=16px][color=#339999]摘要:针对晶体生长和CVD等半导体设备中对0.1%超高精度真空压力控制的要求,本文对相关专利技术进行了分析,认为采用低精度的真空度传感器、调节阀门和PID控制器,以及使用各种下游控制方法基本不太可能实现超高精度的长时间稳定控制。要满足超高精度要求,必须采用0.05%左右精度的传感器和相应精度的PID控制器,结合1s以内开合时间的高速电动针阀和电动球阀,同时还需采用上游进气控制模式。另外,本文提出的超高精度解决方案中,还创新性的提出了进气混合后的减压恒压措施,消除进气压力波动对超高精度控制的影响。[/color][/size][align=center][size=16px][img=彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制,690,290]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071124469579_383_3221506_3.jpg!w690x290.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在晶体生长和CVD等半导体设备领域,普遍要求对反应腔室的真空压力进行快速和准确控制。目前许多半导体工艺设备的真空压力基本在绝对压力10~400Torr的真空度范围内,通过使用下游节流阀(电动球阀或电动蝶阀)的开度自动变化来调节抽气速率基本能达到1%以内的控制精度。但对于有些特殊晶体生长等生产工艺,往往会要求在0.1~10Torr真空度范围内进行控制,并要求实现0.1%的更高精度控制。[/size][size=16px] 最近有用户提出对现有晶体生长炉进行技术升级的要求,希望晶体炉的真空压力控制精度从当前的1%改造升级到0.1%,客户进行改造升级的依据是宁波恒普真空科技股份有限公司的低造价的压力控制系统,且技术指标是“公司研发的压力传感器和控制阀门及配套的自适应算法,可将压力稳定控制在±0.3Pa(设定压力在100~500Pa间)”。[/size][size=16px] 我们分析了宁波恒普在真空压力控制方面的两个相关专利,CN115113660A(一种通过多比例阀进行压力控制的系统及方法)和CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),认为采用所示的专利技术可能无法实现100~500Pa全量程范围内0.1%的长时间稳定的控制精度,最多只可能在个别真空点和个别时间段内勉强内达到。本文将对这两项专利所设计的控制方法进行详细技术分析说明无法达到0.1%控制精度的原因,并提出相应的解决方案。[/size][b][size=18px][color=#339999]2. 专利技术分析[/color][/size][/b][size=16px] 宁波恒普公司申报的发明专利“一种通过多比例阀进行压力控制的系统及方法”,其压力控制系统结构如图1所示,所采用的控制技术是一种真空压力动态平衡控制方法中典型的下游控制模式,即固定进气流量,通过调节排气流量实现真空压力控制。[/size][align=center][size=16px][color=#339999][b][img=01.通过双比例阀进行压力控制的系统的示意图,500,244]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071128351485_5277_3221506_3.jpg!w690x338.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 通过双比例阀进行压力控制的系统的示意图[/b][/color][/size][/align][size=16px] 在动态平衡法控制中,这种下游模式的特点是: (1)非常适用于10~760Torr范围内的高气压精确控制,抽气流量的变化可以很快改变真空腔体内部气压的变化,不存在滞后性,这对于高精度的高压气体控制非常重要,因此这种下游控制模式也是目前国内外绝大多数晶体炉的真空压力控制方法。 (2)并不适用于0.1~10Torr范围内低气压控制,这是因为在低气压控制过程中,抽气速率对低气压变化的影响较为缓慢,存在一定的滞后性,调节抽气速率很难实现低气压范围内的真空度高精度控制。因此,对于低气压高真空的精密控制普遍采用的是上游控制模式,即调节进气流量,利用了低气压对进气流量非常敏感的特性。 宁波恒普公司所申报的发明专利“一种通过多比例阀进行压力控制的系统及方法——CN 115113660A”,如图1所示,所采用的下游控制模式是通过分程(或粗调和细调)形式来具体实现,即通过次控制阀开度改变抽气口径大小后,再用主控制阀开度变化进行细调,本质还是为了解决抽气速率的精细化调节问题。 这种抽气速率分段调节的类似方法在国内用的比较普遍,较典型的如图2所示的浙江晶盛公司专利“一种用于碳化硅炉炉腔压力控制的控压装置——CN210089430U”,采用的就是多个分支管路进行下游模式控制,多个分支管路组合目的就是调节抽气口径大小。[/size][align=center][b][size=16px][color=#339999][img=02.下游控制整体结构示意图,500,450]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071129101289_1324_3221506_3.jpg!w690x621.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图2 下游多支路真空压力控制结构示意图[/color][/size][/b][/align][size=16px] 宁波恒普公司另一个实用新型专利CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),如图3所示,也是采用下游控制模式。[/size][align=center][b][size=16px][color=#339999][img=03.晶体生长炉的压力串级控制系统的结构示意图,450,361]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071132344137_9996_3221506_3.jpg!w690x555.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图3 下游串级控制系统结构示意图[/color][/size][/b][/align][size=16px] 在晶体生长和其他半导体工艺的真空压力控制中,国内外普遍都采用下游控制模式而很少用上游控制模式,主要原因如下:[/size][size=16px] (1)绝大多数工艺对气氛环境的要求是高气压(低真空)范围内控制,如10~500Torr(绝对压力),且控制精度能达到1%即可。这种要求,最适合的控制方法就是下游模式。[/size][size=16px] (2)绝大多数半导体工艺都需要输入多种工作气体,而且各种工作气体还要保持严格的质量和比例,所以进气控制基本都采用气体质量流量计。如果在质量和比例控制之后,再对进气流量进行控制,一是没有必要,二是会增加技术难度和设备成本。[/size][size=16px] (3)在下游控制模式中安装节流阀(电动蝶阀)比较方便,可以在真空泵和腔体之间的真空管路上安装节流阀,而且对节流阀的拆卸和清洗维护也较方便。[/size][size=16px] 国内有些厂家在下游模式中采用上述分程控制方法的动机主要是为了规避使用高速和高精度但价格相对较贵的下游节流阀(电动蝶阀),这种高速高精度下游节流阀主要是具有1秒以内的全程闭合时间,直接使用这种高速蝶阀就可以在高气压范围内实现低真空度控制。而绝大多数国产真空用电动球阀和电动蝶阀尽管价格便宜,但响应速度普遍在几十秒左右,这使得压力控制的波动性很大。所以为了使用国产慢速电动蝶阀,且保证控制精度,只能在下游管路上想办法。[/size][size=16px] 如果采用高速电动球阀或电动蝶阀,且真空计和控制器达到一定精度,则采用任何形式的下游模式控制方式都可以在低气压范围内轻松实现1%的控制精度,但无法达到0.1%的控制精度。而如果采用低速阀门和上述专利所述的控制方法,也有可能达到1%控制精度,但更是无法实现更高精度0.1%的真空压力控制。[/size][b][size=18px][color=#339999]3. 超高精度真空压力控制方法及其技术[/color][/size][/b][size=16px] 晶体生长炉的真空压力控制也是一种典型的闭环PID控制回路,回路中包括真空泵、真空计、电动阀门和PID控制器。其中真空泵提供真空源,真空计作为真空压力测量传感器,电动阀门作为执行器调节进气或出气流量,PID控制器接收传感器信号并与设定值进行比较和PID计算后输出控制信号给执行器。[/size][size=16px] 这里我们重点讨论在0.1~10Torr的低气压(高真空)范围内实现0.1%超高精度的控制方法和相关技术。依据动态平衡法控制理论以及大量的实际控制试验和成功应用经验,如果要实现上述低压范围内(0.1~10Torr)的高精度控制,必须满足以下几个条件,且缺一不可:[/size][size=16px] (1)真空泵要具备覆盖此真空度范围的抽取能力,并尽可能保持较大的抽速,由此在高温加热过程中的气体受热膨胀压力突增时,能及时抽走多余的气体。[/size][size=16px] (2)真空计和PID控制器要具有相应的测量和控制精度。[/size][size=16px] (3)采用上游控制模式,并需采用高速电动针阀自动和快速的调节进气流量大小。[/size][size=16px] 国内外晶体生长炉和半导体工艺的真空压力控制,普遍采用的是薄膜电容真空计,价格在一万元人民币左右的这种进口真空计,测量精度基本在0.25%左右。这种真空计完全可以实现0.5 ~ 1%的控制精度,但无法满足更高精度控制(如0.1%)中的测量要求,更高精度的真空度测量则需要采用0.05%以上精度的昂贵的薄膜电容真空计。[/size][size=16px] 同样,对于PID控制器,也需要相应的测量精度和控制精度。如对于0.25%精度的真空计,采用16位AD、12位DA和0.1%最小输出百分比的PID控制器,可以实现1%以内的控制精度,这在相关研究报告中进行过专门分析和报道。若要进行更高精度的控制,则在采用0.05%精度真空计基础上,还需采用24位AD、16位DA和0.01%最小输出百分比的PID控制器。[/size][size=16px] 宁波恒普公司在其官网的压力控制技术介绍中提到,采用恒普自己研发的压力传感器和控制阀门及配套的自适应算法,在绝对压力100~500Pa范围内可将国内外现有技术的±3Pa压力波动(控制精度在1%左右)提升到±0.3Pa(控制精度在0.1%左右),控制精度提高了一个数量级。我们分析认为:在绝对压力100~500Pa的低压范围内,如果不能同时满足上述的三个条件,基本不太可能实现0.1%的超高精度控制。[/size][b][size=18px][color=#339999]4. 超高精度真空压力控制技术方案[/color][/size][/b][size=16px] 对于超高精度真空压力控制解决方案,我们只关心前述条件的第二和第三点,不再涉及真空泵内容。[/size][b][color=#339999] (1)超高精度真空计的选择[/color][/b][size=16px] 目前国际上能达到0.05%测量精度的薄膜电容真空计有英福康和MKS两个品牌,如图4所示。这类超高精度的真空计都有模拟信号0~10V输出,数模转换是20位。[/size][align=center][b][size=16px][color=#339999][img=04.超高精度薄膜电容真空计,550,240]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130184466_8776_3221506_3.jpg!w690x302.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图4 超高精度0.05%薄膜电容真空计 (a)INFICON Cube CDGsci;(b)MKS AA06A[/color][/size][/b][/align][size=16px][b][color=#339999] (2)超高精度PID控制器的选择[/color][/b] 从上述真空计指标可以看出,真空计的DAC输出是20位的0~10V模拟型号,那么真空压力控制器的数据采集精度ADC至少要20位。为此,解决方案选择了目前最高精度的工业用PID控制器,如图5所示,其中24位AD、16位DA和0.01%最小输出百分比。所选控制器具有单通道和双通道两种规格,这样可以分别用来满足不同真空度量程的控制,双通道控制器可以用来同时采集两只不同量程的真空计而分别控制进气阀和抽气阀实现真空压力全量程的覆盖控制。另外PID控制器还具有标准的RS485通讯和随机配套计算机软件。[/size][align=center][b][size=16px][color=#339999][img=05.高速电动阀门和超高精度PID调节器,650,237]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130375986_9640_3221506_3.jpg!w690x252.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图5 超高精度PID真空压力控制器和高速电动阀门[/color][/size][/b][/align][size=16px][b][color=#339999] (3)高速电动阀门选择[/color][/b] 高速电动阀门主要包括了真空用电动针阀和电动球阀,都有极小的漏率。如图5所示,其中电动针阀用于微小进气流量的快速调节,电动球阀用于大排气流量的快速调节,它们的全程开启闭合速度都小于1s,控制电压都为0~10V模拟信号。[b][color=#339999] (4)超高精度0.1%压力控制技术方案[/color][/b] 基于上述关键部件的选择,特别是针对0.1~10Torr范围内的0.1%超高精度真空压力控制,本文提出的控制系统具体技术方案如图6所示。[/size][align=center][b][size=16px][color=#339999][img=06.超高精度真空压力控制系统结构示意图,600,325]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071131004546_6716_3221506_3.jpg!w690x374.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图6 超高精度真空压力控制系统结构示意图[/color][/size][/b][/align][size=16px] 如前所述,在0.1~760Torr的真空压力范围内,分别采用了量程分别为10Torr和1000Torr的两只超高精度真空计,并分别对应上游和下游控制模式来进行覆盖控制,真空源为真空泵。[/size][size=16px] 在10~750Torr范围内,采用下游控制模式,即控制器的第一通道用来控制电动针阀的进气开度保持固定,第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动球阀的开度变化实现准确控制。[/size][size=16px] 在0.1~10Torr范围内,采用上游控制模式,即控制器的第二通道用来控制电动球阀的进气开度保持固定(一般为全开),第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动针阀的开度变化实现准确控制。[/size][size=16px] 由于电动针阀调节的是总进气流量,所以在具体工艺中需要将多种工作气体先进行混合后再流经电动针阀,而且多种工作气体通过相应的气体质量流量计(MFC)来控制各种气体所占比例,然后进入混气罐。在0.1~10Torr范围内的超高精度控制中,进气压力的稳定是个关键因素。为此,解决方案中增加了一个减压恒压罐,并采用正压控制器对混合后的气体进行减压,使恒压罐内的压力略高于一个大气压且恒定不变。[/size][size=16px] 解决方案中的超高精度PID控制器具有RS485接口并采用标准的MODBUS通讯协议,可以通过配套的计算机软件直接对控制器进行各种设置和操作运行,并显示、存储和调用各种控制参数的变化曲线,这非常便于整个工艺控制过程的调试。工艺参数和过程调试完毕后,可连接PLC上位机进行简单的编程就能与工艺设备控制软件进行集成。[/size][size=16px] 综上所述,本文设计的解决方案,结合相应的超高精度和高速的传感器、电动阀门和PID控制器,能够彻底解决超高精度且长时间的真空压力控制难题,可以满足生产工艺需要。[/size][b][size=18px][color=#339999]5. 总结[/color][/size][/b][size=16px] 晶体生长和半导体材料的生产过程往往需要较长的时间,工艺过程中的真空压力控制精度必须还要考虑长时间的控制精度,仅仅某个真空度下或短时间内达到控制精度并不能保证工艺的稳定和产品质量。[/size][size=16px] 在本文的解决方案中,特别强调了一是必须采用相应高精度和高速的传感器、执行器和控制器,二是必须采用相应的上游或下游控制方式,否则,如果仅靠复杂PID控制算法根本无法通过低精度部件实现高精度控制,特别是在温度对真空压力的非规律性严重影响下更是如此,这在太多的温度和正压控制中得到过证明,也是一个常识性概念。[/size][size=16px] 对于超高精度的真空压力控制,本文创新性的提出了稳定进气压力的技术措施,其背后的工程含义也是先粗调后细调,尽可能消除外界波动对控制精度的影响,这在长时间内都要求进行超高精度稳定控制中尤为重要。[/size][size=16px] 这里需要说明的是,实现超高精度控制的代价就是昂贵的硬件装置,如超高精度的电容真空计。尽管在高速电动阀门和超高精度PID控制器上已经取得技术突破并降低了价格,但在薄膜电容真空计方面国内基本还处于空白阶段。除非在超高精度电容真空计上的国内技术取得突破,可以使得造价大幅降低,否则将不可避免使得真空压力控制系统的成本增大很多,而目前在国内还未看到这种迹象。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~[/size][/align]

超高真空系统相关的耗材

  • Flexar超高压液相色谱系统 NFLR0210,N2910640,N2910641,N2600581
    ? 产品名称:Flexar超高压液相色谱系统仪器厂商:PerkinElmer/美国 珀金埃尔默 价格:面议 库存:是 说明 零件编号 Flexar FX-10超高压液相色谱平台 NFLR0210 Flexar FX-10超高压液相色谱泵 N2910640 Flexar FX-10超高效主泵 N2910641 “Flexar溶剂瓶管理系统,三通道真空脱气”溶剂托盘套件 N2600581 ?
  • 多模光纤跳线,兼容超高真空和高温
    多模光纤跳线,兼容超高真空和高温多模光纤跳线特性 兼容超高真空(UHV):真空水平低至1 x10-10Torr无护套光纤设计zui大程度地减少了表面区域,以减少气体释放使用兼容真空的环氧树脂和304不锈钢SMA905接头所有产品经过清洁,然后以双层真空密封的包装形式发货兼容Thorlabs的SMA真空馈通 兼容高温:镀聚酰亚胺膜的光纤,能够在zui高250 °C下连续工作耐热元件和跳线设计 数值孔径0.22的阶跃折射率光纤纤芯?100、?200、?400或?600 μm波长范围180 nm - 1150 nm(高羟基)或380 nm - 2200 nm(低羟基)库存标准产品长度有0.5 m和1 m 提供定制长度和纤芯尺寸;Thorlabs兼容超高真空和高温的多模光纤跳线属于兼容真空的系列产品,适用于气压低至10-10Torr的UHV环境及zui高250 °C下的连续工作。高羟基跳线的工作范围为180 - 1150 nm,而低羟基跳线的工作范围为380 - 2200 nm。库存纤芯?100、?200、?400或?600 μm的标准跳线长度有0.5 m和1 m。低羟基和高羟基兼容UHV高温跳线的光纤衰减数据兼容超高真空这些跳线具有无护套光纤设计,zui大程度地减少了表面区域,以减少低至10-10Torr真空环境下的气体释放速率。每根跳线两端都有兼容真空的SMA905接头和由304不锈钢制成的套管。跳线中使用的环氧树脂(型号353NDPK)经过NASA测试适合低释气应用。组装的跳线同样经过严格测试,确保在这些UHV环境下释气zui少(详情请看工作标签)。这些跳线可与我们的SMA真空馈通和ADASMAV兼容真空的匹配套管配合使用。兼容高温对于高温条件,这些跳线经过设计和测试,能够在zui高250 °C的环境下连续工作(8小时)或在zui高280 °C的环境下间歇使用(一分钟只一小时)。组成跳线的材料都是耐热的;我们使用镀聚酰亚胺膜的光纤、304不锈钢光纤接头和耐高温的环氧树脂。产品在高温炉中经过测试,确保跳线满足高温条件下的光学规格(详情请看工作标签)。每根跳线有两个金属保护盖,防止插芯端受到灰尘污染或其他损害。SMA905终端跳线更换用的CAPM(橡胶)和CAPMM(金属)保护盖单独提供。请注意,保护盖既不兼容真空,也不耐热。定制兼容UHV和高温的跳线这些光纤跳线为需要在高真空或高温环境中工作的应用提供了一种集成光纤的解决方案。为了兼容大量的实验设备,我们可以生产不同纤芯尺寸或不同长度的光纤跳线。请注意,我们仅提供SMA接头。In-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMAFC/PCFC/PC to SMASquare-Core FC/PC and SMAAR-Coated SMAHR-Coated FC/PCBeamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PCLightweight SMARotary Joint FC/PC and SMAHigh-Power SMAUHV, High-Temp. SMAArmored SMASolarization-Resistant SMAFC/PCFC/PC to LC/PC工作这些兼容超高真空和高温的跳线经过严格测试,确保在极端的环境下能够维持机械完整性和光学性能。组装和测试过程中确定连续工作和间歇工作的zui高温度和真空条件。连续工作连续工作定义为在指定真空或高温条件下连续使用时间超过8小时。为了测试这种用途,我们将跳线放置在高真空(1 x 10-9 Torr)或高温(250 °C)环境8小时,并监测插入损耗。在这些条件下,对跳线进行跳线粘合和插入损耗测试,以分别确定机械完整性和光学性能。间歇工作间歇工作是指在指定的温度条件下1分钟至1小时的使用时间。这些条件是根据光纤跳线制造和组装中使用的材料特性而不是基于测试来确定的。因此,如果在这些条件下长时间使用,Thorlabs无法保证跳线的机械性能和光学性能。多模光纤教程弯曲损耗因光纤的外部和内部几何发生变化而产生的损耗称之为弯曲损耗。通常包含两大类:宏弯损耗和微弯损耗。宏弯损耗造成的衰减微弯损耗造成的衰减宏弯损耗一般与光纤的物理弯曲相关;例如,将其卷成圈。如右图所示,引导的光在空间上分布在光纤的纤芯和包层区域。以某半径弯曲光纤时,在弯曲外半径的光不能在不超过光速时维持相同的空间模分布。相反,由于辐射能量会损耗到周边环境中。弯曲半径较大时,与弯曲相关的损耗会比较小;但弯曲半径小于光纤的推荐弯曲半径时,弯曲损耗会非常大。光纤可以在弯曲半径较小时进行短时间工作;但如果要长期储存,弯曲半径应该大于推荐值。使用恰当的储存条件(温度和弯曲半径)可以降低对光纤造成yong久性损伤的几率;FSR1光纤缠绕盘设计用来zui大程度地减少高弯曲损耗。微弯损耗由光纤的内部几何,尤其是纤芯和包层发生变化而产生。光纤结构中的这些随机变化(即凸起)会破坏全内反射所需的条件,使得传播的光耦合到非传播模中,造成泄露(详情请看右图)。与由弯曲半径控制的宏弯损耗不同,微弯损耗是由制造光纤时在光纤内造成的yong久性缺陷而产生。包层模虽然多模光纤中的大多数光通过纤芯内的TIR引导,但是由于TIR发生在包层与涂覆层/保护层的界面,在纤芯和包层内引导光的高阶模也可能存在。这样就产生了我们所熟知的包层模。这样的例子可在右边的光束分布测量中看到,其中体现了包层模包层中的光强比纤芯中要高。这些模可以不传播(即它们不满足TIR的条件),也可以在一段很长的光纤中传播。由于包层模一般为高阶模,在光纤弯曲和出现微弯缺陷时,它们就是损耗的来源。通过接头连接两个光纤时包层模会消失,因为它们不能在光纤之间轻松耦合。由于包层模对光束空间轮廓的影响,有些应用(比如发射到自由空间中)中可能不需要包层模。光纤较长时,这些模会自然衰减。对于长度小于10 m的光纤,消除包层模的一种办法就是将光纤缠绕在半径合适的芯轴上,这样能保留需要的传播模式。在FT200EMT多模光纤与M565F1 LED的光束轮廓中,展现了包层而不是纤芯引导的光。入纤方式多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(10 - 20 m)时,对衰减较为敏感的高阶模会消失。损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / GlassInterfaceaTypeTheoretical DamageThresholdbPractical SafeLevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。SMA-SMA光纤跳线,兼容超高真空和高温,?100 μm,数值孔径0.22Item #PrefixFiberOperatingRangeCoreDiameterCladdingDiameterCoatingDiameterNABend RadiusVacuum LevelaContinuous OperatingTemperatureaMV11LHigh OH,Polyimide Coated180 - 1150 nmb100 ± 3 μm120 ± 3 μm140 ± 4 μm0.22≥6 mm (Short Term)≥11 mm (Long Term)1 x 10-10Torr250 °C (Max)MV12LLow OH,Polyimide Coated380 - 2200 nm这些跳线可以在低至10-10Torr的真空环境和zui高250 °C的温度下连续工作(8小时)。它们也可以在zui高280 °C的温度下间歇工作(1分钟至1小时)。在波长300 nm以下时可能发生负感现象。我们还提供抗负感多模光纤。产品型号公英制通用MV11L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?100 μm,数值孔径0.22,高羟基,0.5米MV11L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?100 μm,数值孔径0.22,高羟基,1米MV12L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?100 μm,数值孔径0.22,低羟基,0.5米MV12L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?100 μm,数值孔径0.22,低羟基,1米SMA-SMA光纤跳线,兼容超高真空和高温,?200 μm,数值孔径0.22Item #PrefixFiberOperatingRangeCoreDiameterCladdingDiameterCoatingDiameterNABend RadiusVacuum LevelaContinuous OperatingTemperatureaMV21LHigh OH,Polyimide Coated180 - 1150 nmb200 ± 4 μm220 ± 4 μm239 ± 5 μm0.22≥11 mm (Short Term)≥22 mm (Long Term)1 x 10-10Torr250 °C (Max)MV22LLow OH,Polyimide Coated380 - 2200 nm这些跳线可以在低至10-10Torr的真空环境和zui高250 °C的温度下连续工作(8小时)。它们也可以在zui高280 °C的温度下间歇工作(1分钟至1小时)。在波长300 nm以下时可能发生负感现象。我们还提供抗负感多模光纤。产品型号公英制通用MV21L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?200 μm,数值孔径0.22,高羟基,0.5米MV21L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?200 μm,数值孔径0.22,高羟基,1米MV22L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?200 μm,数值孔径0.22,低羟基,0.5米MV22L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?200 μm,数值孔径0.22,低羟基,1米SMA-SMA光纤跳线,兼容超高真空和高温,?400 μm,数值孔径0.22Item #PrefixFiberOperatingRangeCoreDiameterCladdingDiameterCoatingDiameterNABend RadiusVacuum LevelaContinuous OperatingTemperatureaMV41LHigh OH,Polyimide Coated180 - 1150 nmb400 ± 8 μm440 ± 9 μm480 ± 7 μm0.22≥22 mm (Short Term)≥44 mm (Long Term)1 x 10-10Torr250 °C (Max)MV42LLow OH,Polyimide Coated380 - 2200 nm这些跳线可以在低至10-10Torr的真空环境和zui高250 °C的温度下连续工作(8小时)。它们也可以在zui高280 °C的温度下间歇工作(1分钟至1小时)。在波长300 nm以下时可能发生负感现象。我们还提供抗负感多模光纤。产品型号公英制通用MV41L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?400 μm,数值孔径0.22,高羟基,0.5米MV41L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?400 μm,数值孔径0.22,高羟基,1米MV42L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?400 μm,数值孔径0.22,低羟基,0.5米MV42L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?400 μm,数值孔径0.22,低羟基,1米SMA-SMA光纤跳线,兼容超高真空和高温,?600 μm,数值孔径0.22Item #PrefixFiberOperatingRangeCoreDiameterCladdingDiameterCoatingDiameterNABend RadiusVacuum LevelaContinuous OperatingTemperatureaMV63LHigh OH,Polyimide Coated180 - 1150 nmb600 ± 10 μm660 ± 10 μm710 ± 10 μm0.22≥33 mm (Short Term)≥67 mm (Long Term)1 x 10-10Torr250 °C (Max)MV64LLow OH,Polyimide Coated380 - 2200 nm这些跳线可以在低至10-10Torr的真空环境和zui高250 °C的温度下连续工作(8小时)。它们也可以在zui高280 °C的温度下间歇工作(1分钟至1小时)。在波长300 nm以下时可能发生负感现象。我们还提供抗负感多模光纤。产品型号公英制通用MV63L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?600 μm,数值孔径0.22,高羟基,0.5米MV63L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?600 μm,数值孔径0.22,高羟基,1米MV64L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?600 μm,数值孔径0.22,低羟基,0.5米MV64L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?600 μm,数值孔径0.22,低羟基,1米
  • 小型超高真空插板阀
    产品型号小型超高真空插板阀主要用途此系列阀门分为手动、气动两种驱动方式,在结构设计上合理,在外形上美观,并具有动作平稳、体积小、使用可靠、密封性能好和寿命长等优点,能广泛应用于超高真空设备中产品特点轴封为波纹管密封,无润滑剂设计;阀体材料为不锈钢,整体刚性好,体积小,外形美观;采用双导轨轴承滚轮机构,运动平稳;阀板内整体式结构,支撑力均匀。主要参数适用范围:1×10-6Pa~1.2×105Pa打开时插板上的压差:≤3×103Pa任意方向阀体和阀座漏率:1.3×10-7PaLs-1建议首次维修前循环次数:10,000次阀体烘烤温度:打开时≤200℃;关闭时≤150℃安装位置:任意电源:-气动驱动:交流220V 50Hz,6W或直流24V,3W(除了上述规格外,特殊规格可定做)压缩空气(只适用于气动)0.4~0.7MPa阀门开启或关闭时间-气动驱动: ≤3s;阀门位置指示-手动驱动:带有启闭位置指示(机械式)-气动驱动:带有启闭位置指示开关(磁性开关)规格尺寸
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制