离轴抛物面镜

仪器信息网离轴抛物面镜专题为您提供2024年最新离轴抛物面镜价格报价、厂家品牌的相关信息, 包括离轴抛物面镜参数、型号等,不管是国产,还是进口品牌的离轴抛物面镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离轴抛物面镜相关的耗材配件、试剂标物,还有离轴抛物面镜相关的最新资讯、资料,以及离轴抛物面镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

离轴抛物面镜相关的厂商

  • 北京大星传媒有限公司是中国从事通信天线的研发、设计、生产、销售、服务于一体的企业。主营产品有:短波天线、超短波天线、微波天线、玻璃钢天线、吸顶天线、抛物面天线、橡胶天线、车载鞭状天线、定向扇区天线、MIMO天线、美化天线、基站天线、监控安防天线、车台天线、CDMA/GSM移动基站板状天线等。产品包含了水平极化天线、垂直极化天线、圆极化天线、交叉极化天线等。经过多年的经验积累,拥有天线研究专家多名并组建了从事通信天线、电源产品的研制、开发团队; 另外具有制造、检测仪器和测试场所。研发团队不断推陈出新,研究和开发与国际市场接轨的新产品。我们的每一个产品从选料到生产都经过严格的控制、调试和检测,在研制和生产过程中全部使用美国HP网络分析仪,合格后方许可出厂。我们愿为您提供优质的天线定制,欢迎来电咨询。联系电话:13681192748郑恒(手机号同步微信)公司网址://www.dxcmai.com公司地址:北京市海淀区京江阳光写字楼A座
    留言咨询
  • 400-860-5168转2812
    北京环球恒达科技有限公司是国内为数不多采用进口技术生产胶体与界面化学类、材料科学类仪器的专业品牌生产商。本公司主要产品有:接触角测量仪、表界面张力测量仪(旋转滴界面张力仪)、Zeta电位测量仪、粒度分析仪、LB膜多功能拉膜机、界面流变仪、泡沫分析仪,粘度计等。 本公司产品遍布理工科类的“双一流”大学的实验室。比较知名的有:高校研究领域-清华大学精密测试技术及仪器国家重点实验室、北京大学天然气水合物实验室、北理工爆炸科学与技术国家重点实验室医疗设备领域-乐普医疗北京研发中心重点实验室油墨、印染研发领域- 印刷包装材料与技术北京市重点实验室金属材料领域-东北大学冶金学院重点实验室-高端金属材料特种熔炼与制备北京市重点实验室石油钻井领域-中国石油大学共建重质油国家重点实验室航空航天领域-中国航天钱学森空间技术实验室建材实验领域-北京建筑大学建筑材料实验室 建筑结构与环境修复功能材料北京市重点实验室材料研发领域-有机无机复合材料国家重点实验室 天津大学化学工程联合国际重点实验室-先进能源材料化学教育部重点实验室军工科研领域-全国人防工程防化研究试验中心胶片研发领域-乐凯新材研发中心农药研发领域-农业部农业环境重点实验室电子生产领域-京东方研发中心纳米材料领域-中国科学院、胶体、界面与化学热力学重点实验室、国家纳米中心纳米生物效应和安全性重点实验室、中国科学院北京纳米能源与系统研究所等等 地址:北京市海淀区显龙山路19号香麓雅庭1号楼电话: (010)62452600 传真: (010)62452600 手机:18211154896邮箱:interface_sci@sina.com
    留言咨询
  • 东莞市凯盟表面处理技术开发有限公司(下简称“凯盟公司”)是一家以研发金属防锈和抛光材料为方向的集研发、生产、销售为一体的高新技术公司,总部位于中国工业核心区-东莞。公司为全国范围内的各类钢铁、金属制品企业提供技术领先、品质卓越的产品和高效率的服务。主要产品分为:不锈钢表面处理系列、铜铝表面处理系列和其它化学品。随着业务市场的不断扩大公司在宁波、苏州、佛山和重庆设有业务办事机构,销售网络辐射全国。在国内同行业中享有盛誉。 凯盟公司创立于2005年,原称“东莞市凯盟化工有限公司”。2012年10月更名为“东莞市凯盟表面处理技术开发有限公司”。注册资本为人民币200万元,现有在职员工50余名,其中大专以上学历人员约占40%%。拥有固定资产700余万元。公司分别与“华中科技大学”和“中南民族大学”等国内知名高校建立了良好的合作关系,具有一流的产品研发能力。汇聚专业的研发能力,我们坚持创新,公司陆续开发出一批具有自主知识产权的新型产品,获得发明专利4项,注册商标1件。尤其在钝化领域取得了长足的发展和优异的成果。目前公司产品在:家具、餐具、医疗器械、工程装备、核电、压力容器等领域取得了广泛应用,年产能1000余吨。在新产品的带动下,截至2011年止我司实现产值连续增长4番的优秀业绩。经过公司全体同仁几年的努力创新发展,“凯盟”牌系列产品领衔同行之首,受到了众多客户的认可和赞誉。“凯盟”已名副其实的成为了国内不锈钢表面处理方面行业的知名品牌和最具竞争力的企业之一。我司是“民营科技企业”和“科技特派员驻点企业”,2012年1月获得ISO9001:2008国际质量体系认证。 十年磨一剑,厚积薄发。铸就成为钝化防锈领域的高端知名企业俨然已成为我们新的挑战。我们将继续秉承“以【质】求胜、以【德】求存、可失于【利】、不失于【信】”的经营理念,以“为客户提供一流的产品”为使命,凝心聚力,开拓进取,我们坚信凯盟公司将成为一流的钝化防锈领域高端品牌!
    留言咨询

离轴抛物面镜相关的仪器

  • TLSE1805i-EQ是基于Energetiq 公司的EQ系列宽带白光光源和&ldquo 影像谱王&rdquo 单色仪Omni-&lambda 1805i的可调单色光源;EQ系列宽带白光光源是一种超高亮度,高稳定性的激光驱动宽带光源(LDLS),因其亮度高,发光面积小,所以特别适合于窄的光谱仪狭缝,同时配合采用影像校正设计的&ldquo 影像谱王&rdquo 单色仪(Omni-&lambda 1805i),通过进口离轴抛物面镜组精心调校光学耦合,整体输出光强相比较于常规的氙灯光源可提高数倍,获得极佳的单色光输出效果。特别针对紫外波段(200-400nm),所有反射元件采用紫外增强镀膜,并可通过通氮气,减少紫外的吸收,获得更好的紫外单色光输出。 TLSE1805i-EQ采用全封闭结构,完全一体化设计。根据规格的不同,可以选择EQ99较低功率输出型和EQ1500超强功率输出型 主要规格参数表型号/参数TLSE1805i-EQ99TLSE1805i-EQ1500单色仪型号Omni-&lambda 1805i光谱范围*(nm,推荐)200-1500输出带宽**(nm,推荐)1~10输出带宽可调范围**(nm)0.3-20光栅1#1200g/mm@300nm光栅2#600g/mm@750nm滤光片使用范围(nm)200-1500光源LDLS-EQ99LDLS-EQ1500输出单色光功率 (mW)&ge 1(@1200g/mm光栅,500nm处,带宽5nm)输出光稳定性优于0.5%* 可通过选择不同规格的光栅,变更输出光谱范围** 输出带宽取决于所选光栅的刻线数和狭缝开启的宽度,标准为0.01-3mm连续可调
    留言咨询
  • 可调单色光源TLS3-X150A/X500A/T250A TLS3单色组件与GLORIA-X150A(清曜150W氙灯光源)、GLORIA-X500A(清曜500W氙灯光源)、GLORIA-T250A(金曜250W溴钨灯光源)分别组合形成TLS3-X150A、TLS3-X500A及TLS3-T250A系列标准单色光源,可应用于探测器响应测试、荧光激发、太阳能电池量子效率测试、光化学等应用领域。 TLS3-X150A/X500A/T250A系列可调单色光源光谱参数光谱带宽狭缝光谱仪(Omni 300)参数(光谱范围还决定于灯源类型)200-600nm330-1000nm800-2500nm1200g/mm-300nm600g/mm-500nm300g/mm-1250nm0.5mm1.35nm2.7nm4.1nm1mm2.7nm5.4nm8.1nm1.5mm4.1nm8.1nm12.1nm2mm5.4nm10.8nm16.2nm3mm8.1nm16.2nm24.3nm4mm10.8nm21.6nm32.4nm4.5mm12.15nm24.3nm36.5nm TLS3系列单色光源尺寸图选配附件表名称型号性能参数准直光转换器TLS-A5采用离轴抛物面镜准直光源,减小光源的像差,可以与谱仪狭缝直接连接,出射光斑最佳范围3-25mm,1.2度以内平行度。漫反射率测量附件OL-Difref-VNIR内部涂层材料:高反射率硫酸钡 (BaSO4);2个探头孔,可以同时安装两个探测器(波长从可见到近红外)。积分球均匀光OL-IS2P-200A1.可以与谱仪狭缝直接连接;2.可用于产生均匀光源,单色光或白光。订购信息型号名称信息TLS3-X150A可调单色光源TLS3-X150A已包含光源、电源、单色仪、组合底板、滤光片轮、圆形狭缝等组装配件,配合软件可直接出射单色光。TLS3-X500A可调单色光源TLS3-X500A已包含光源、电源、单色仪、组合底板、滤光片轮、圆形狭缝等组装配件,配合软件可直接出射单色光。TLS3-T250A可调单色光源TLS3-T250A已包含光源、电源、单色仪、组合底板、滤光片轮、圆形狭缝等组装配件,配合软件可直接出射单色光。更多详细信息,请咨询销售人员。
    留言咨询
  • 离轴抛物面镜规格书离轴抛物面反射镜是一种表面反射镜,其反射表面是母抛物面中截取的一部分。利用离轴抛物面反射镜可以无色散的聚焦平行光束或准直点光源,其离轴设计可以将焦点从光路中分离出来。当准直光束垂直反射镜基底底部入射时,反射光会会聚在焦点位置。在焦点处放置点光源,可得到准直光束。聚焦光束和准直光束之间的夹角称为离轴角,截取母抛物面的不同区间可以获得不同离轴角的离轴抛物面反射镜。将离轴抛物面作反射镜表面不仅能使光路方向偏转,同时还可以实现各种光束收集、光束准直和光束聚焦。其离轴设计可以使焦点从光路其他部分中分离出来,被广泛应用于天体观测光学装置、光谱检测、天文望远系统、瞄准仪、扩束镜、红外系统、聚光太阳能系统,投影系统以及发射/探测设备等领域。与透镜相比,离轴抛物面反射镜不会产生球差、色差,且不会引入相位延迟和吸收损耗,非常适用于适合飞秒激光、红外、太赫兹应用。指标参数&bull 直径:12.7 mm、25.4 mm可选&bull 通光孔径:90%&bull 反射焦距:15.0 mm-152.4 mm可选&bull 焦距公差:±1%&bull 反射率:Ravg 96%&bull 离轴角:90°/45°&bull 表面光洁度:40/20(划痕/麻点)&bull 表面平整度:λ/4(@633 nm)&bull 表面粗糙度:100 &angst 90°离抛镜型号选型目录(1寸25.4mm)(2寸50.8mm)(3寸76.2mm)(4寸101.mm)(6寸152.4mm)型号口径焦距对准孔镀膜备注LBO-11-N-Au1寸(25.4mm)1寸NAuLBO-11-Y-Au1寸Y/AuLBO-12-N-Au2寸NAuLBO-12-Y-Au2寸YAuLBO-13-N-Au3寸NAuLBO-13-Y-Au3寸YAuLBO-14-N-Au4寸NAuLBO-14-Y-Au4寸YAuLBO-21-N-Au2寸(50.8mm)1寸NAuLBO-21-Y-Au1寸YAuLBO-22-N-Au2寸NAuLBO-22-Y-Au2寸YAuLBO-23-N-Au3寸NAuLBO-23-Y-Au3寸YAuLBO-24-N-Au4寸NAuLBO-24-Y-Au4寸YAuLBO-26-N-Au6寸NAuLBO-26-Y-Au6寸YAuLBO-21-N-Au3寸(76.2mm)3寸NAuLBO-21-Y-Au3寸YAuLBO-22-N-Au4寸NAuLBO-22-Y-Au4寸YAuLBO-23-N-Au6寸NAuLBO-23-Y-Au6寸YAu备注:对准孔:锥形孔,小端直径3mm支持更多其他规格型号的定制!
    留言咨询

离轴抛物面镜相关的资讯

  • 4300万!上海科技大学硬X射线自由电子激光装置-大口径光学器件采购项目
    一、项目基本情况项目编号:310000000240126156032-00063611项目名称:上海科技大学硬X射线自由电子激光装置-大口径光学器件预算编号: 0024-J00024031 预算金额(元): 43000000元(国库资金:43000000元;自筹资金:0元)最高限价(元): 包1-33000000.00元 采购需求: 包名称:大口径光学器件 数量:1 预算金额(元):43000000.00 简要规格描述或项目基本概况介绍、用途:满足相应技术指标的大口径光学器件,主要包含大口径宽带反射镜、大口径离轴抛物面镜、大口径窗片、双色镜、球面镜和光学基板等,用于100PW激光装置的研制中。 合同履约期限: 交货期:按照技术规格说明书约定于2026年4月前完成。 本项目( 否 )接受联合体投标。二、获取招标文件时间:2024年07月26日至2024年08月02日,每天上午00:00:00-12:00:00,下午12:00:00-23:59:59(北京时间,法定节假日除外)地点:上海市政府采购网方式: 网上获取 售价(元): 0 三、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海科技大学地 址:华夏中路393号联系方式:021-206853072.采购代理机构信息名 称:上海中招招标有限公司地 址:上海市共和新路1301号D座2楼201联系方式:021-66272917,183170943353.项目联系方式项目联系人:陈永亮、唐 闽、张 佳电 话:021-66272917,18317094335
  • 高功率高重频可调谐长波飞秒中红外光源
    波长调谐范围覆盖6-20μm的高重复频率(10 MHz)、高平均功率(10 mW)飞秒激光源具有重要的应用,由于大量分子在这个波段具有振动跃迁,因此有望用于痕量气体检测以及对由气体、液体或固体组成的复合系统进行与物理、化学或生物学相关的非侵入性诊断。但由于增益介质的缺乏,这些中红外源通常利用高功率近红外飞秒激光器驱动光学差频产生(DFG)来实现:近红外激光脉冲的一部分用作泵浦脉冲,另一部分采用非线性波长转换产生波长可调的信号脉冲,泵浦脉冲和信号脉冲之间的DFG产生可调谐的中红外脉冲。利用传统非线性光学手段产生的信号光脉冲能量较低,限制了中红外光源的功率,导致长波中红外飞秒光源无法广泛应用。针对该难点,中国科学院物理研究所/北京凝聚态物理国家研究中心L07组在长期开展基于超快激光脉冲产生及波长转换的基础上,利用自相位调制的光谱旁瓣滤波(SPM-enabled spectral selection,SESS)技术,基于高功率掺铒光纤激光器在高非线性光纤中得到了波长范围覆盖1.6-1.94μm、功率高达300mW(~10nJ)的信号脉冲,再与1.55μm的泵浦脉冲在GaSe晶体中差频得到了波长覆盖7.7-17.3μm的中红外激光脉冲,最大平均功率可达58.3mW。图1. 实验装置图实验装置如图1所示,前端为自制的高功率掺铒光纤激光器系统,重复频率为32MHz,经过啁啾脉冲放大后得到平均功率为4W、脉冲能量为125nJ、宽度为 290fs的脉冲。将激光脉冲分成两份,一份作为泵浦脉冲,另一份耦合到SESS光纤中进行光谱展宽。光纤输出处的展宽光谱由二向色镜分离,长通滤波器(图中的LPF1)将最右边的光谱旁瓣过滤出来作为信号脉冲。泵浦脉冲经过时间延迟线与信号脉冲在时间上重合后聚焦到GaSe晶体上,光斑大小约为50μm。再通过另一个截止波长为4.5μm的长通滤波器,生成的中红外光束经焦距为75mm的90°离轴抛物面镜准直。利用校准的热敏功率计测量中红外脉冲的平均功率,傅里叶变换红外(FTIR)光谱仪来测量输出光谱。图2(a)为1mm-GaSe后输出光谱和功率,光谱范围为7.7-17.3μm,最大平均功率为30.4 mW。为了进一步提高输出功率,我们采用2mm厚的GaSe晶体,结果如图2(b)所示,整个光谱调谐范围内脉冲功率均大于10mW,最大平均功率达58.3mW。相比于以往基于掺镱光纤的中红外光源,本研究成果将DFG平均功率提高了一个数量级,并首次实验上观测到了工作在光参量放大机制下的高重频DFG过程。该高功率长波中红外光源基于结构紧凑的光纤激光器,可以用于实现中红外双光梳,从而推动中红外光梳在精密光谱学中的前沿应用。相关结果发表在最近的Optics Letters上(https://doi.org/10.1364/OL.482461),被选为Editor's Pick并成为当天下载量最多的5篇论文之一。图2. 在不同厚度GaSe后测量到的中红外光谱和功率:(a) 1mm-GaSe(b)2mm-GaSe。该工作得到了国家自然科学基金(批准号:No.62227822和62175255)、中国科学院国际交流项目(批准号:No. GJHZ1826)和国家重点研发计划(批准号:No. 2021YFB3602602)的支持。论文第一作者为物理所博士生刘洋,常国庆特聘研究员为通讯作者,赵继民、魏志义研究员也参与了该工作的设计和讨论。
  • 成果速递 | 超高分辨散射式近场光学显微镜在超快研究领域最新应用进展
    近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。 前期的众多研究工作表明,扫描近场光学显微镜(SNOM)已经被广泛用于稳态波导的可视化表征,非常适合评估范德瓦尔斯半导体的各向异性和介电张量。 如上所述,范德瓦尔斯材料中具有异常强烈的激子共振,这些激子共振能产生吸收和折射光谱特征,这些特征同样被编码在波导模式的复波矢量qr中,鉴于范德瓦尔斯半导体在近红外和可见光范围内对ab-平面的光学化率有重大影响,因此引起了人们的研究兴趣。 2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:”Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。 原文导读: ① 在纳米空间分辨超快光谱和成像(tr-SNOM)实验中(图1,a),研究者先将Probe探测光(蓝色)照到原子力显微镜(AFM)探针的点上,从探针点(光束A)散射回的光被离轴抛物面镜(OAPM)收集并发送到检测器。同时,WSe2材料的中的波导被激发并传播到样品边缘后,进而波导被散射到自由空间(光束B)。二个Pump泵通道(红色)可均匀地扰动样本并改变波导的传播。 通过在WSe2/SiO2界面处的近场tr-SNOM的振幅图像(图1b)可明显观察到约120 nm厚WSe2材料边缘(白色虚线)处形成的特征周期条纹—光波导电场分布。研究者进一步通过定量分析数据,分别获取了稳态和光激发态下,WSe2中波导的光波导的相速度q1,r和q1,p。图1:纳米空间分辨超快光谱和成像系统对WSe2材料中光波导的纳米成像结果。a:实验示意图(蓝色为Probe光,红色为Pump光);b:近场纳米光学成像 c: 在稳态下,WSe2边缘的近场光学振幅图像;d: 光激发态下,延迟时间 Δt=1ps的WSe2边缘的近场光学振幅图像;e: 分别对c、d进行截面分析,获取定量数据。Probe探测能量,E=1.45 eV ② 研究者通过变化Probe探测能量范围(1.46–1.70 eV)及其理论计算成功获取了WSe2晶体稳态下的色散关系和理论数据显示A-exciton所对应的能量。图2:WSe2晶体稳态动力学的时空纳米成像研究。a: 不同Probe能量的近场光学振幅;b: 傅里叶变换(FT)分析 c: Lorentz拟合的WSe2块体材料介电常数面内组成;d: 基于Lorentz模型理论计算的能量动量分布(吸收光谱)。Probe探测能量,E 1.46–1.70 eV。 ③ 为了进一步研究光激发下WSe2中波导的色散和动力学,研究者进一步在90 nm的WSe2材料上,通过探测能量E = 1.61 eV,泵浦能量E = 1.56 eV,泵浦功率1.5 mW的实验条件进行了一列的纳米空间分辨超快光谱和理论研究。研究结果表明(图3a,b),研究者成功获取到了不同延迟时间Δt与δq2和δq1的关系。结果表明:光激发后的个ps内,虚部q2(图3a)突然下降(δq20)并迅速恢复。另一方面,理论计算结果(图3,c)显示了在A-exciton附近(黑色虚线箭头),初始能量Ex处,稳态(黑色虚线)和激发态A-exciton能量Ex’(蓝色箭头)分别的色散关系。 为了弄清各种瞬态机制,微分色散关系被研究者引入。先,研究者定义了微分关系:δqj=qj,p – qj,r,(j=1,2 分别代表波矢的实部和虚部,p, pump激发态,r 稳态)。研究者的理论及实验微分色散关系结果(图3 d、e)成功显示了光诱导转变中A-exciton的动力学行为。结果表明:A-exciton附近微分色散的特征是由两个伴随效应引起的:(i)仅在Δt=0时观察到的A-exciton的7 meV蓝移; (ii)A-exciton的漂白(定义为光谱频谱展宽和/或振荡强度降低(见图3d)。 趋势(i)在1 ps内恢复,与抑制耗散的动力学一致(图3a)。因此,研究者得出结论,A-exciton共振的瞬态蓝移是由于相干的光诱导过程所引起。 趋势(ii)持续时间更长,因此归因于非相干激子动力学。图3:WSe2中波导模的微分色散和动力学研究。a: δq2与Δt曲线;b: δq1与Δt曲线 c: 平衡和非平衡条件下洛伦兹模型计算的色散关系;d: 理论微分色散关系;e: 实验微分色散关系 综上所述,波导的瞬态纳米超快成像使我们能够以亚皮秒(ps)时间分辨率来量化光诱导变化的WSe2光学特性。研究者在WSe2上成功观察到了光诱导相速度的大幅变化,这表明所观察到的效应可能在范德瓦尔斯半导体中普遍存在。此外,研究者的研究结果表明,我们可以按需调谐范德瓦尔斯半导体的光学双折射行为。另一方面,研究者的工作开创性地发展了利用tr-SNOM探测超快激子动力学的工作,并为利用波导作为定量光谱学工具研究纳米光诱导动力学铺平了道路。研究者认为这种超快泵浦探测方法的高空间和时间分辨率,可能同样适用于新奇拓扑材料中的边缘模式和边缘效应的研究。 neaspec公司利用十数年在近场及纳米红外领域的技术积累,开发出的全新纳米空间分辨超快光谱和成像系统,其Pump激发光可兼容可见到近红外的多组激光器,Probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征,可广泛用于二维拓扑材料、范德瓦尔斯(vdW)材料、量子材料的超快动力学研究。 参考文献:[1]. Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications , 11, 3567 (2020).

离轴抛物面镜相关的方案

  • 轧制复合铝_不锈钢界面金属间化合物的生长动力学
    对轧制复合铝合金/不锈钢双层复合材料进行不同温度和时间的退火,借助 Zeiss Ax10 金相显微镜、 扫描电镜、EDAX 能谱仪和 D-max X 射线衍射仪对复合界面结合区进行金相组织观察、元素成分线扫描分析、界面化合物EDS 分析及 XRD 物相鉴定,研究复合界面上金属间化合物的生长行为。结果表明:复合界面金属间化合物(IMC)主要为 Fe2Al5相,当退火温度达 773 K 时,Fe2Al5已在界面上生成;随退火时间的延长, Fe2Al5的增厚符合抛物线法则;界面金属间化合物Fe2Al5的生长激活能为162.3 kJ/mol,并获得其生长动力学模型,通过此模型可对化合物层厚度进行初步计算。
  • FIB-SEM双束电镜应用之样品的截面抛光
    截面抛光是FIB主要用途之一。所谓截面抛光就是利用离子束将样品剖开观察内部的结构,从而分析样品内部的微观组织或缺陷。如下图所示,为了分析焊接界面处的产物,需要将焊接处剖开,从而可以对界面进行成份和晶体结构进行研究。
  • 晶圆表面与溶液中微粒静电作用
    在半导体晶圆清洁中,化学机械抛光(CMP)是一个通用的工艺流程。CMP所用抛光液中微粒与晶圆表面相互作用主要是静电力导致。因此,了解固体表面电荷性质对于优化CMP工艺非常重要。Zeta电位仪可以得出固体表面电荷的性质及大小。

离轴抛物面镜相关的资料

离轴抛物面镜相关的试剂

离轴抛物面镜相关的论坛

  • 急问阴离子表面活性剂标线做得想抛物线怎么回事?

    阴离子表面活性剂标线做得想抛物线怎么回事?专家里手帮我分析分析。做过很多次都很不顺利,我觉得可能的原因是1,分液漏斗没洗干净,之前做地表水和污水,做完后用自来水和去离子水各洗3遍,没有用酒精浸泡;2、亚甲蓝加的不是特别准确,我觉得关键的试剂是氯仿,亚甲蓝是用25ml比色管加的;3、亚甲蓝配得有问题,我用的是无水的磷酸二氢钠,不过之前别人也是用同样的试剂配的,另外亚甲蓝配了有二十多天,对实验会有影响吗?4、分液漏斗上挂了好多氯仿珠,浓度越高挂的越多,有的萃取完后我用少量去离子水冲洗了一下;5、摇得不够均匀。不过每次我做平行样还是可以的,另外发现,比色时,下面的萃取液吸光度比上面的低很多,就是说比过1次,再接1点来比色,吸光度差了很多,请高手分析一下失败的原因,万分感谢!

离轴抛物面镜相关的耗材

  • 离轴抛物面镜
    离轴抛物面镜TYDEX的核心技术优势: TYDEX 镜面的制造工艺和传统工艺是不同的,它致力于为航空/防卫应用提供大批量的更廉价的镜片。传统的OAPs制造工艺是通过挖切磨制,即从大的轴对称抛物面 (母镜)进行挖切一部分下来进行抛光。显然,这种整体加工、分体割切成型的面镜磨制方案耗时长,低产量是加工成本昂贵,同时在焦距和离轴距离的组合选择上有很多制约。另一项传统的方法是抛光盘技术,主要缺点是材料局限性、表面平整度和加工精度受很大限制。我们的OAP工艺 采用的是电脑控制的点位修正抛光工艺,结合了常用的抛光手段的优点(表面光滑而且可以使用普通玻璃)和大抛光盘技术的优点(无需对整个抛物母镜进行抛光),又称为主动抛光盘技术。这是一种根据需要将抛光盘面实时地主动变形成偏轴非球面来磨制大口径非球面度高精度天文镜面的磨制技术。非球面表面的曲率不 仅各点不一致,而且同一点的径向与切向曲率也不相同。 每个研磨周期后,我们都用大型干涉仪对整个OAP镜进行测量,然后把 相关的信息反馈到计算机中,将修正过的抛光参数输入抛光机的控制单元。我们称这个工艺为润饰工艺,俄罗斯的工厂专门划出了10,000平方英尺用于这个工 艺的制造,而且有一批非常耐心而有经验的工程师一次又一次的测量和重复许多个润饰周期,直到镜面趋于完美。精确的镜面、有竞争力的价格! 应用:光收集,照明,成像,大直径天文镜面、巨型天文光学/红外望远镜的分块子镜、Dall-Kirkham和望远镜设计主要参数:询价离轴镜需提供的参数:FocalLength焦距,必须提供;FinalDiameter外径,请提供尺寸和公差,也可由厂家推荐;ClearAperture有效口径,请提供;OffAxisDistance离轴距离,用户或者提供光轴到镜子边缘的距离,或者提供光轴到镜子中心的距离,请注明清楚。SurfaceAccuracy通常为λ/10P-V,可以高达λ/45P-VWavelengthofTest633nmScratch/Dig(maximum)通常优于60/40,要求20/10可以达到Chamfer0.050"x45degrees倒角Material:材料ZerodurCoating:镀膜 关于俄罗斯Tydex公司:Tydex公司位于俄罗斯圣彼得堡,是世界上GolayCell的唯一的原产商。Tydex公司还生产离轴抛物面镜,大口径天文光学器件等产品。
  • 离轴抛物面镜
    离轴抛物面镜Spectrum Scientific的玻璃离轴抛物面(OAP)反射镜消除了在离轴条件下使用球面反射镜时存在的像差。 OAP反射镜在紧凑的设计系统中que保高分辨率,是光谱仪以及天文光学仪器的关键元件。 OAP反射镜采用轻量化的整体设计,可以直接安装镜片本身。 它在聚焦准直消除色差并且在UV应用散射极低。 Spectrum Scientific为低至120nm的深紫外以及VIS,NIR和IR应用提供优化涂层。Spectrum Scientific提供一系列标准镜。 如果我们没有满足您要求的反射镜,请联系我们的销售部门,可为你定制。Product DescriptionPart Number62mm, 10 Degrees Glass Off-Axis Parabolic MirrorOAP-10-30075mm, 10 Degrees Glass Off-Axis Parabolic MirrorOAP-10-50062mm, 10.9 Degrees Glass Off-Axis Parabolic MirrorOAP-11-40080mm, 18 Degrees Glass Off-Axis Parabolic MirrorOAP-18-267
  • TYDEX-离轴抛物面镜
    TYDEX离轴抛物面镜抛物面反射镜是光学仪器中使用的最常见的非球面反射镜。 它们没有球面像差,因此将平行光束聚焦到点或点光源到无穷远。在许多光学系统中,不需要使用完全旋转对称的孔径。 另一方面,在一些应用中,镜子的中心部分遮住了光路,因此是一场灾难。 对于这种系统,离轴反射镜与传统的抛物面相比具有许多优点。离轴抛物面镜的主要应用如下:?目标模拟器?准直仪?MTF测量系统和其他光学测试设备?光谱和FTIR系统?辐射计?扩束器?激光发散测量系统离轴抛物面镜的主要优点使用离轴光学器件使得光学工程师可以实现以下优点:?最小化系统大小?最小化系统重量?“楔形”和等厚的镜片都可用?最小化系统成本所有这一切都使系统效率和市场性得到最da化。如何指定OAP镜像图1离轴抛物面镜。描述父焦距(PFL)是父抛物面的焦距。它将曲面的形状定义为Z = R ^ 2/4 * PFL,其中R是距顶点的径向距离,Z是曲面矢状面。倾斜焦距(SFL)是OAP机械中心与抛物线焦点之间的距离。这个值可以从PFL计算,反之亦然。光学中心线是平行于母抛物线光轴并通过OAP的机械中心的线。带状半径(ZR)是父抛物面光轴与OAP的光学中心线之间的距离。离轴距离(OAD)是从母抛物线光轴到OAP内边缘的距离。这个值可以从ZR计算,反之亦然。调整平面通常粘在OAP上。它垂直于父抛物面光轴(从而与OAP中心线垂直),并有助于大大调整光学系统中的OAP。要充分描述OAP,必须指定5个参数:?PFL(或SFL),?ZR(或OAD),?CA(清晰光圈),?SA(表面精度),?和SQ(表面质量)。辅助参数是:?优选的机械尺寸和厚度(如果没有指定,我们规定直径= CA + 10毫米,厚度=直径/ 8),?优选的材料(如果没有说明,我们采用LK-7光学玻璃- Pyrex的俄罗斯类似物),?镀膜类型(如果没有指定,我们采用受保护的铝)。我们生产的OAP镜子的关键数据?可根据要求提供典型材料:LK-7(Pyrex类似物),Supermax33(SHOTT),AstroSitall CO-115M(Zerodur类似物)和K8玻璃(类似于BK7)。?在633 nm PtV,1/40 RMS时,典型表面精度为1/8。可以根据要求制作更高精度的表面。?典型的镀膜为受保护的铝,其他金属(银或金)或多层电介质镀膜可根据要求提供。?离轴角度可达45度,典型值为5-30度。?焦距从150毫米到12米。典型值为0.5-2米。?直径达640毫米。典型值是100-400毫米。所有这些参数都不是独立的。例如,较长的焦距允许较好的SA和较长的ZR使得较低的SA。文档与每个镜片一起,我们提供证明SA,SQ,PFL和ZR的测量数据以及机械尺寸的证书。表面的干涉仪图表,计算的表面误差曲线和镀膜反射光谱附于本证书。样品干涉仪图形,表面误差曲线和镀膜光谱如下所示。这些是CA 8“ZR 7镜”和FL40。图2 OAP镜的典型干涉仪图。图3表面误差轮廓重建。波前分析测量变形的单位:微米波长:0.633μm参考面:球面减像差:带状误差形式 - Zernike多项式常规误差参数D = -0.000 Lx = 0.000 Ly = -0.000 C = 0.000 RMS(W)= 0.009A = 0.013 FIA = 41.300 PV = 0.025 RMS(W-A)= 0.007 FA = 0.361B0 = 0.007 PV = 0.011 RMS(W-Z)= 0.008 FZ = 0.137B2 = -0.043B4 = 0.043C = 0.020 FIC = 5.327 PV = 0.013 RMS(W-C)= 0.008 FC = 0.074局部误差PV = 0.037RMS(M) = 0.006Characteristics of wavefrontRMSMINMAXPVSTRLSTRH0.009-0.0230.0320.0550.9980.999图4受保护的铝(Al + SiO2)镀膜的典型反射光谱。技术简述和主要优势制造技术的开发是为了提供更便宜和更高容量的镜子,用于航空/国防应用。通常,OAP是通过抛光和切片大型轴上母体抛物面制成的。显然,这种“传统”的方法是相当昂贵的,特别是当只需要1-2个镜子时。这种较旧的方法也严重限制了焦距和轴外距离的可用组合范围。另一种“传统”方法是金刚石旋转。其主要缺点是对基材(金属)的限制,较低的表面粗糙度和精度。我们的OAP设备使用了一种精密的,计算机控制的点修正抛光工艺,而不是上述的OAPs生产方法。它结合了传统抛光(光滑表面和使用普通玻璃的可能性)和金刚石旋转(可能产生OAP而不抛光全抛物面)的优点。在每次抛光后,我们使用大型干涉仪测量表面误差,精确地模拟了OAP镜的当前表面误差。然后将来自干涉仪的信息传送给抛光机的计算机控制器,计算机控制器计算紧凑的点抛光头的zui佳位置,轨迹和旋转速度。我们将这个过程命名为修饰。每个镜片通常经历大约10个周期的干涉测量循环,随后进行修饰。当然,对于zui先进的镜片,还需要更多的周期。这种独特的生产技术使我们能够以极具竞争力的价格提供精确的光学元件离轴抛物面镜的安装座镜片配有精密支架和支架,可以在设置或仪器中精确定位光学元件。每个支架都有手动和电动两种型号。改进的精密调节器和螺丝,以及锁,可根据客户要求提供。还可以提供安装座内的镜子组装和调节,带和不带安装的表面质量控制。根据光学元件的尺寸,可以提供各种支架类型。所有类型的支架和底座都有真空兼容的型号。镜面直径从50到152毫米,有水平和垂直调整的安装。 安装座由钢或铝合金制成,并有几个M6孔安装在光学平台上。 聚四氟乙烯衬垫和锁定螺钉防止在安装和操作期间损坏光学组件。光学元件直径,毫米50.876.2101.6152.4调整角度范围,°8654调整精度,arcsec6-3.45-2.34-1.83-1.5对于高达250毫米的反射镜,我们推荐带三个安装点的运动精密安装。方便定位的拇指螺丝允许镜片在水平和垂直平面上旋转。旋转范围±1.5°,灵敏度0.5 arcsec。导轨安装系统将光学元件安全地固定在适当的位置,并允许调节光轴高度。垂直旋转范围±1.52°,水平旋转范围±1.55°。 调整灵敏度为1.5 arcsec。为了容纳直径大于500毫米的大型镜片,我们开发了一种特殊的旋转支架。为了容纳直径大于500毫米的大型镜片,我们开发了一种特殊的旋转支架。 当锁定螺钉松动时,安装座允许反射镜围绕水平和垂直轴360°旋转。 转盘有一个精确的标度,以便于粗略定位。 旋转角度范围±4°,分辨率高达3 arcsec的高精度调整螺丝,精确调整。 安装系统减轻镜子的压力,保持反射波前不失真。 此支架也可用于直径达1000毫米的大尺寸天文光学和高功率激光光学元件。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制