当前位置: 仪器信息网 > 行业主题 > >

离轴抛物面镜

仪器信息网离轴抛物面镜专题为您提供2024年最新离轴抛物面镜价格报价、厂家品牌的相关信息, 包括离轴抛物面镜参数、型号等,不管是国产,还是进口品牌的离轴抛物面镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离轴抛物面镜相关的耗材配件、试剂标物,还有离轴抛物面镜相关的最新资讯、资料,以及离轴抛物面镜相关的解决方案。

离轴抛物面镜相关的资讯

  • 4300万!上海科技大学硬X射线自由电子激光装置-大口径光学器件采购项目
    一、项目基本情况项目编号:310000000240126156032-00063611项目名称:上海科技大学硬X射线自由电子激光装置-大口径光学器件预算编号: 0024-J00024031 预算金额(元): 43000000元(国库资金:43000000元;自筹资金:0元)最高限价(元): 包1-33000000.00元 采购需求: 包名称:大口径光学器件 数量:1 预算金额(元):43000000.00 简要规格描述或项目基本概况介绍、用途:满足相应技术指标的大口径光学器件,主要包含大口径宽带反射镜、大口径离轴抛物面镜、大口径窗片、双色镜、球面镜和光学基板等,用于100PW激光装置的研制中。 合同履约期限: 交货期:按照技术规格说明书约定于2026年4月前完成。 本项目( 否 )接受联合体投标。二、获取招标文件时间:2024年07月26日至2024年08月02日,每天上午00:00:00-12:00:00,下午12:00:00-23:59:59(北京时间,法定节假日除外)地点:上海市政府采购网方式: 网上获取 售价(元): 0 三、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海科技大学地 址:华夏中路393号联系方式:021-206853072.采购代理机构信息名 称:上海中招招标有限公司地 址:上海市共和新路1301号D座2楼201联系方式:021-66272917,183170943353.项目联系方式项目联系人:陈永亮、唐 闽、张 佳电 话:021-66272917,18317094335
  • 高功率高重频可调谐长波飞秒中红外光源
    波长调谐范围覆盖6-20μm的高重复频率(10 MHz)、高平均功率(10 mW)飞秒激光源具有重要的应用,由于大量分子在这个波段具有振动跃迁,因此有望用于痕量气体检测以及对由气体、液体或固体组成的复合系统进行与物理、化学或生物学相关的非侵入性诊断。但由于增益介质的缺乏,这些中红外源通常利用高功率近红外飞秒激光器驱动光学差频产生(DFG)来实现:近红外激光脉冲的一部分用作泵浦脉冲,另一部分采用非线性波长转换产生波长可调的信号脉冲,泵浦脉冲和信号脉冲之间的DFG产生可调谐的中红外脉冲。利用传统非线性光学手段产生的信号光脉冲能量较低,限制了中红外光源的功率,导致长波中红外飞秒光源无法广泛应用。针对该难点,中国科学院物理研究所/北京凝聚态物理国家研究中心L07组在长期开展基于超快激光脉冲产生及波长转换的基础上,利用自相位调制的光谱旁瓣滤波(SPM-enabled spectral selection,SESS)技术,基于高功率掺铒光纤激光器在高非线性光纤中得到了波长范围覆盖1.6-1.94μm、功率高达300mW(~10nJ)的信号脉冲,再与1.55μm的泵浦脉冲在GaSe晶体中差频得到了波长覆盖7.7-17.3μm的中红外激光脉冲,最大平均功率可达58.3mW。图1. 实验装置图实验装置如图1所示,前端为自制的高功率掺铒光纤激光器系统,重复频率为32MHz,经过啁啾脉冲放大后得到平均功率为4W、脉冲能量为125nJ、宽度为 290fs的脉冲。将激光脉冲分成两份,一份作为泵浦脉冲,另一份耦合到SESS光纤中进行光谱展宽。光纤输出处的展宽光谱由二向色镜分离,长通滤波器(图中的LPF1)将最右边的光谱旁瓣过滤出来作为信号脉冲。泵浦脉冲经过时间延迟线与信号脉冲在时间上重合后聚焦到GaSe晶体上,光斑大小约为50μm。再通过另一个截止波长为4.5μm的长通滤波器,生成的中红外光束经焦距为75mm的90°离轴抛物面镜准直。利用校准的热敏功率计测量中红外脉冲的平均功率,傅里叶变换红外(FTIR)光谱仪来测量输出光谱。图2(a)为1mm-GaSe后输出光谱和功率,光谱范围为7.7-17.3μm,最大平均功率为30.4 mW。为了进一步提高输出功率,我们采用2mm厚的GaSe晶体,结果如图2(b)所示,整个光谱调谐范围内脉冲功率均大于10mW,最大平均功率达58.3mW。相比于以往基于掺镱光纤的中红外光源,本研究成果将DFG平均功率提高了一个数量级,并首次实验上观测到了工作在光参量放大机制下的高重频DFG过程。该高功率长波中红外光源基于结构紧凑的光纤激光器,可以用于实现中红外双光梳,从而推动中红外光梳在精密光谱学中的前沿应用。相关结果发表在最近的Optics Letters上(https://doi.org/10.1364/OL.482461),被选为Editor's Pick并成为当天下载量最多的5篇论文之一。图2. 在不同厚度GaSe后测量到的中红外光谱和功率:(a) 1mm-GaSe(b)2mm-GaSe。该工作得到了国家自然科学基金(批准号:No.62227822和62175255)、中国科学院国际交流项目(批准号:No. GJHZ1826)和国家重点研发计划(批准号:No. 2021YFB3602602)的支持。论文第一作者为物理所博士生刘洋,常国庆特聘研究员为通讯作者,赵继民、魏志义研究员也参与了该工作的设计和讨论。
  • 成果速递 | 超高分辨散射式近场光学显微镜在超快研究领域最新应用进展
    近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。 前期的众多研究工作表明,扫描近场光学显微镜(SNOM)已经被广泛用于稳态波导的可视化表征,非常适合评估范德瓦尔斯半导体的各向异性和介电张量。 如上所述,范德瓦尔斯材料中具有异常强烈的激子共振,这些激子共振能产生吸收和折射光谱特征,这些特征同样被编码在波导模式的复波矢量qr中,鉴于范德瓦尔斯半导体在近红外和可见光范围内对ab-平面的光学化率有重大影响,因此引起了人们的研究兴趣。 2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:”Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。 原文导读: ① 在纳米空间分辨超快光谱和成像(tr-SNOM)实验中(图1,a),研究者先将Probe探测光(蓝色)照到原子力显微镜(AFM)探针的点上,从探针点(光束A)散射回的光被离轴抛物面镜(OAPM)收集并发送到检测器。同时,WSe2材料的中的波导被激发并传播到样品边缘后,进而波导被散射到自由空间(光束B)。二个Pump泵通道(红色)可均匀地扰动样本并改变波导的传播。 通过在WSe2/SiO2界面处的近场tr-SNOM的振幅图像(图1b)可明显观察到约120 nm厚WSe2材料边缘(白色虚线)处形成的特征周期条纹—光波导电场分布。研究者进一步通过定量分析数据,分别获取了稳态和光激发态下,WSe2中波导的光波导的相速度q1,r和q1,p。图1:纳米空间分辨超快光谱和成像系统对WSe2材料中光波导的纳米成像结果。a:实验示意图(蓝色为Probe光,红色为Pump光);b:近场纳米光学成像 c: 在稳态下,WSe2边缘的近场光学振幅图像;d: 光激发态下,延迟时间 Δt=1ps的WSe2边缘的近场光学振幅图像;e: 分别对c、d进行截面分析,获取定量数据。Probe探测能量,E=1.45 eV ② 研究者通过变化Probe探测能量范围(1.46–1.70 eV)及其理论计算成功获取了WSe2晶体稳态下的色散关系和理论数据显示A-exciton所对应的能量。图2:WSe2晶体稳态动力学的时空纳米成像研究。a: 不同Probe能量的近场光学振幅;b: 傅里叶变换(FT)分析 c: Lorentz拟合的WSe2块体材料介电常数面内组成;d: 基于Lorentz模型理论计算的能量动量分布(吸收光谱)。Probe探测能量,E 1.46–1.70 eV。 ③ 为了进一步研究光激发下WSe2中波导的色散和动力学,研究者进一步在90 nm的WSe2材料上,通过探测能量E = 1.61 eV,泵浦能量E = 1.56 eV,泵浦功率1.5 mW的实验条件进行了一列的纳米空间分辨超快光谱和理论研究。研究结果表明(图3a,b),研究者成功获取到了不同延迟时间Δt与δq2和δq1的关系。结果表明:光激发后的个ps内,虚部q2(图3a)突然下降(δq20)并迅速恢复。另一方面,理论计算结果(图3,c)显示了在A-exciton附近(黑色虚线箭头),初始能量Ex处,稳态(黑色虚线)和激发态A-exciton能量Ex’(蓝色箭头)分别的色散关系。 为了弄清各种瞬态机制,微分色散关系被研究者引入。先,研究者定义了微分关系:δqj=qj,p – qj,r,(j=1,2 分别代表波矢的实部和虚部,p, pump激发态,r 稳态)。研究者的理论及实验微分色散关系结果(图3 d、e)成功显示了光诱导转变中A-exciton的动力学行为。结果表明:A-exciton附近微分色散的特征是由两个伴随效应引起的:(i)仅在Δt=0时观察到的A-exciton的7 meV蓝移; (ii)A-exciton的漂白(定义为光谱频谱展宽和/或振荡强度降低(见图3d)。 趋势(i)在1 ps内恢复,与抑制耗散的动力学一致(图3a)。因此,研究者得出结论,A-exciton共振的瞬态蓝移是由于相干的光诱导过程所引起。 趋势(ii)持续时间更长,因此归因于非相干激子动力学。图3:WSe2中波导模的微分色散和动力学研究。a: δq2与Δt曲线;b: δq1与Δt曲线 c: 平衡和非平衡条件下洛伦兹模型计算的色散关系;d: 理论微分色散关系;e: 实验微分色散关系 综上所述,波导的瞬态纳米超快成像使我们能够以亚皮秒(ps)时间分辨率来量化光诱导变化的WSe2光学特性。研究者在WSe2上成功观察到了光诱导相速度的大幅变化,这表明所观察到的效应可能在范德瓦尔斯半导体中普遍存在。此外,研究者的研究结果表明,我们可以按需调谐范德瓦尔斯半导体的光学双折射行为。另一方面,研究者的工作开创性地发展了利用tr-SNOM探测超快激子动力学的工作,并为利用波导作为定量光谱学工具研究纳米光诱导动力学铺平了道路。研究者认为这种超快泵浦探测方法的高空间和时间分辨率,可能同样适用于新奇拓扑材料中的边缘模式和边缘效应的研究。 neaspec公司利用十数年在近场及纳米红外领域的技术积累,开发出的全新纳米空间分辨超快光谱和成像系统,其Pump激发光可兼容可见到近红外的多组激光器,Probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征,可广泛用于二维拓扑材料、范德瓦尔斯(vdW)材料、量子材料的超快动力学研究。 参考文献:[1]. Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications , 11, 3567 (2020).
  • 俄新型定位仪:精准万里"追星" 避免太空"撞车"
    8月22日消息,为了避免在同一条近地轨道内相距很近的人造卫星发生太空“撞车”情况,俄罗斯航天测控机构日前启用一套供地面站点使用的新型卫星精准定位仪,可使定位精度比原先提高40%至60%。  负责研发无线电探测技术的莫斯科电力研究所特种设计局在其网站介绍说,该机构专家研制出“节奏-M”型“对比相位”空间定位仪。以该仪器为圆心、半径25米范围内共有5台卫星天线为其服务。这些天线形似炒锅的“抛物面”可将卫星发射的微弱无线电信号,反射到天线中央的信号放大装置中进行“整理”,然后再将信号传输到“节奏-M”型定位仪的测算装置中。该装置有一套特制测算程序,可计算出同一颗卫星的信号投射到5台天线上的延迟时间,再根据多个延迟数据换算出卫星相对于地球自转方向的角度坐标。  这套定位仪的实用效果显示,它在追踪距地高度4万公里、信号频率不超过8.5千兆赫兹的卫星时,能将其定位精度由原先的10角秒提高到 4至6角秒。参与这项研发的俄罗斯专家解释说,如果将手表的表盘刻度均分为360度,再将其中1度均分为3600份,其中的一份就是1角秒。为相距很近的卫星精确定位,才能确保其相安无事并正常工作,在必要时还能为这些卫星机动调整运行轨道,躲避太空垃圾撞击。  目前,莫斯科电力研究所特种设计局设在莫斯科郊区的一所航天通信中心,正借助“节奏-M”定位仪对俄罗斯一颗对地观测卫星、数颗中继通信卫星进行测控。据测控人员反映,“节奏-M”定位仪能在所有气象条件下正常工作,而传统光学探测定位仪器会受天空云量、光照明暗度等多种因素干扰。  按照俄罗斯航天部门的规划,未来与“节奏-M”类似的定位仪将被分布于欧洲、西伯利亚和远东数家俄罗斯航天测控站采用,从而实现24小时不间断地为各种卫星定位,并且协助测控运载火箭发射的各个阶段。
  • 最大射电望远镜落成 中国科学家参与研制
    智利北部阿塔卡玛沙漠,阿塔卡玛射电望远镜在星辉斑斓中屹立     近日,世界上迄今为止规模最大的地面射电望远镜阵列项目――阿塔卡玛射电天文望远镜全部落成并投入使用,揭开遮蔽我们视野的宇宙大幕。它可以帮助天文学家捕捉到宇宙中更加寒冷的天体(分子气体、星尘、大爆炸辐射等)并提供正在形成当中的星系、恒星或者行星的图像。建成后的66个抛物面天线作为1架巨大的射电望远镜工作,拥有0.01角秒的分辨率,相当于能看清500多公里外的一分硬币,其视力超过“哈勃”太空望远镜10倍。  66个抛物面天线组成  它的建设工程始于2002年,是由东亚、欧洲和北美一些国家参与的国际项目。天线阵的建设地是智利北部海拔5000米的阿塔卡玛沙漠,整个天线阵有总计66个抛物面天线。望远镜将主要用于获得有关星系和行星演变的数据,寻找新天体以及探寻宇宙中是否存在能进化成生命的物质。  就在去年,这一设备的观测结果确认在一颗褐矮星,即所谓“失败的恒星”周围存在一个原行星尘埃盘。同时还对围绕北落师门(南鱼座α)运行的行星进行了观测,并确认这些行星比原先认为的更小。  66台望远镜全部建成之后,天文学家们预计将会有更多更大的发现。这台设备在毫米波段工作,这是一种波长比无线电波更短但是比可见光更长的电磁波。在这一波段科学家们将可以窥见围绕年轻恒星的低温尘埃带,并观察原始行星的形成。  可观测地球大小行星  美国国家科学基金会天文学分部主管詹姆斯・ 列维斯塔德在本月5日的一次新闻发布会上表示,利用这一设备,天文学家们将可以探测到地球大小的行星。他表示:“阿塔卡玛望远镜已经观测到在恒星周围存在尘埃环,这些尘埃环非常窄,模型显示这些狭窄的尘埃环间隙中存在行星体。”他说:“尽管你看不到这些行星本身,但是你可以看到这些行星造成的影响。而这也将是阿塔卡玛望远镜设备进行系外行星观测的主要方式。”  自从1995年发现第一颗系外行星以来,科学家们已经找到了数千颗可能是系外行星的疑似目标。仅仅是美国宇航局一家,其发射的专用于搜寻系外行星的开普勒空间望远镜迄今已经发现2740颗这类疑似目标。在搜寻活动的早期,科学家们最先发现的是那些木星大小的系外行星体,而随着技术的进步以及观测时间的积累,科学家们逐渐开始发现地球大小的系外行星。  而在这其中所缺失的环节便是行星形成的早期阶段。现有科学理论认为太阳系是在早期的原始太阳星云中形成的。随着这些尘埃颗粒之间的相互碰撞,积聚,成长,原始的行星开始形成。然而年轻的恒星系统周围往往“云遮雾绕”,在光学或可见光波段难以窥见其全貌。而这便是阿塔卡玛望远镜设备的施展其能力的舞台。  这一设备在归属上由欧洲南方天文台管理。欧南台阿塔卡玛望远镜项目主管沃尔夫冈・ 怀尔德表示:“我们将会目睹闻所未闻的宇宙场景。”他表示,阿塔卡玛望远镜将目睹低温气体逐渐形成原行星,并了解行星从恒星周围的尘埃盘中逐渐形成的过程。  中国科学家参与超导探测器研制  ――――专访中科院紫金山天文台研究员单文磊  问:阿塔卡玛望远镜阵列落成有何意义?和哈勃望远镜相比,有何优势?  答:在宇宙学研究中,观测设备与其说叫“望远镜”,不如说是“望古镜”。距离我们越遥远的天体发射的光需要更漫长的时间才能被我们接收到。因此看得越远,意味着越能够穿越时空,看到宇宙早期的模样。阿塔卡玛望远镜不但在分辨能力上高于哈勃望远镜,而且能够看到哈勃望远镜看不到的早期宇宙的图景。这是因为宇宙膨胀造成早期宇宙中的光线波长变长(科学上叫红移)而落入望远镜的观测频段。  正因为如此,阿塔卡玛望远镜是研究一百亿年以前宇宙从黑暗时期破壳而出的第一代恒星和星系的最好观测设备。对于距离我们较近的天体,阿塔卡玛望远镜凭借其高分辨率,能够揭示正在形成的幼年恒星的模样,而且能够发现那些幼年恒星周围正在形成的行星。这些行星中的一些将必然孕育地外生命和文明。除此之外,阿塔卡玛望远镜还有一个重要特点,它能够通过高精度光谱分析出被观测天体组成的化学成分,探知宇宙这个化学实验室的运行和演化规律。  问:阿塔卡玛望远镜的分辨率达到0.01角秒,相当于什么概念?  答:望远镜的分辨本领取决于被探测光的波长和天线口径的比例。波长越短,口径越大,望远镜的分辨本领越高。如果将人的眼睛当作望远镜的话,阿塔卡玛望远镜所观测的光的波长要比人眼看到的光的波长要长,大约是300微米(人的头发直径约是50微米)至3毫米,要达到人眼的分辨率,需要2米至20米的口径。  然而阿塔卡玛望远镜最大等效口径达到了18公里,分辨率比人眼高1千万倍,达到了0.01角秒。这个分辨率足够在北京看到南京的一辆普通小轿车,超过了哈勃望远镜的0.02角秒的分辨率。技术上建造这样大的高精度单天线望远镜是不可能的。目前最大的单天线射电望远镜是美国的阿雷西博望远镜,口径305米。我国正在贵州建造一个更大的单天线望远镜口径为500米。  问:为什么建在高海拔的智利沙漠高原?  答:望远镜建造在海拔5000米的智利阿塔卡玛高原上。这个地方海拔高,水汽少,附近南美洲西岸的低温洋流更使得这里异常干燥。  在这里建造是因为水汽对望远镜有显著的影响,对毫米波、亚毫米波有强烈的吸收。存在较多水汽时,好像隔着毛玻璃看星空,观测效果会大打折扣。因此这个波段的望远镜都建造在水汽少,海拔高的地方。我国的大口径毫米波望远镜是紫金山天文台的德令哈13.7米口径望远镜,就坐落在青海省德令哈市附近海拔3000米的地点。  问:中国科学家在阿塔卡玛望远镜项目中有贡献吗?  答:阿塔卡玛望远镜是灵敏度最高的观测设备,能够探知宇宙深处原子的扰动。这得益于每一面天线后面的高灵敏度超导探测器。这些探测器被冷却到接近绝对零度(零下270摄氏度),在这样的低温下,组成探测器的原子几乎凝结不动,热噪声被消除,来自天体的微弱信号才能够被感知。  超导探测器类似人视网膜上的灵敏的感光细胞,是阿塔卡玛望远镜的核心器件之一,而这种超导探测器技术恰好是中国科学院紫金山天文台的特长。阿塔卡玛望远镜是国际大科学工程,由欧洲、北美和亚洲共同出资建造。中国虽然没有正式加入该项目,但中国科学院紫金山天文台于2004年与日本国立天文台签署关于阿塔卡玛望远镜共同研究的备忘录,并以单文磊研究员、史生才研究员为主参与阿塔卡玛两个波段的超高灵敏度接收机的研制工作。中国科研人员在这两个波段超导探测器的研制工作中起到了关键作用,所设计的探测器被阿塔卡玛望远镜所应用。在66面阿塔卡玛望远镜的每一个中都包含中国科学家的贡献。
  • ACCSI 2015科学仪器研发成果转化推进研讨会举行
    仪器信息网讯 2015年4月22日,2015(第九届)中国科学仪器发展年会(ACCSI 2015)在北京举行。为调动科研人员积极性,推动创新成果转化为现实生产力,促进大众创业、万众创新,本届年会特别增设了&ldquo 科学仪器研发成果转化推进研讨会&rdquo 分论坛。会议由首都科技条件平台联合ACCSI 2015主办方中国仪器仪表行业协会、中国仪器仪表学会、中国仪器仪表学会分析仪器分会、仪器信息网(instrument.com.cn)共同举办。会议现场北京科学仪器装备协作服务中心副主任孙月琴主持会议  会议特别邀请了科技部的相关负责人为大家分析解读《促进科技成果转化法修正案》(草案),还有来自清华大学、上海理工大学、中科院理化技术研究所等单位的多位院士课题组的骨干科研人员,以及来自中科院化学所、北京师范大学、和鑫生技公司的研究人员介绍了最新的仪器技术成果。中国科学技术发展战略研究院综合发展研究所副所长 陈宝明  2014年11月,国务院常务会通过《促进科技成果转化法》修订案,并报送全国人大开始审议。这是我国近20年来首次修订该法案。新法案会给科技成果转化打开怎样的新局面?中国科学技术发展战略研究院综合发展研究所副所长陈宝明在报告中从法案修订的背景意义、修订当中的若干考虑、以及主要突破点等方面做了全面的介绍。并重点对新法案当中对于产学研的合作形式、人员交流、奖励机制、金融支持、科技中介服务等方面做了细致介绍。中科院理化技术研究所激光物理与技术研究中心激光工程技术研究部副部长 张申金  张申金介绍了中科院理化所深紫外全固态激光源(DUV-DPL)的研制、相关前沿装备研发以及前沿应用的主要进展。中科院理化所拥有KBBF晶体生长技术,并发明了其关键使用技术&mdash &mdash 棱镜耦合器件,使我国成为世界上唯一能够研制实用化、精密化DUV-DPL的国家。目前,课题组已成功研发了177.3 nm 固定波长和170~232 nm宽调谐深紫外全固态激光源,并与相关单位合作开发出多种光源与前沿装备的对接技术,研制成功9类9台基于DUV-DPL技术的国际前沿装备。当前,课题组正在进一步研发高精准、短波长(170nm)、窄线宽(~0.88pm)、大功率(100mW)的新型深紫外全固态激光光源,并于近期首次实现基频源8倍频最短波长167.75 nm和164.83 nm倍频输出。张申金表示欢迎大家使用DUV-DPL,开拓其应用领域。清华大学精密仪器系副系主任 谭峭峰  谭峭峰介绍了光学设计在光谱仪器研发中的重要作用及典型案例。采用恰当的光学设计可以提升仪器性能,减小仪器体积,使得仪器更加简便易用。据介绍,课题组通过光学设计,成功开发了折叠光路长光程差分吸收光谱仪,该仪器体积小、易便携,能在狭小空间内完成测量任务,有着广阔的应用前景。还有通过光路设计改进的傅里叶变换光谱技术用于高分辨率大气成分监测仪,实现了CH4、N2O、O3等10余中大气成分探测。另外课题组还研发了基于超环面的反射式原子吸收光谱仪光路设计,实现无色差、高通量、光谱范围达190nm~900nm,分辨率达0.1nm 采用双抛物面镜设计了消像差的中阶梯交叉色散光路,主波长268.9nm处分辨率可达7pm。和鑫生技开发股份有限公司策略长 郭菁菁  郭菁菁介绍了和鑫生技开发股份有限公司穿透式X光管技术的特点,及其在人类癌症治疗、动物癌症治疗、低辐射医疗影像、非破坏性检测等领域的应用。据介绍,和鑫生技成立于2007年,接收美国国家科学院院长Dr.Seitz所创立的NanoDynamisc-88实验室的X光技术转移与专利授权,在台湾进行产品的研发与量产,是目前国内唯一拥有开发穿透式X光管技术的公司。和鑫生技的商业运营模式以发展核心技术为主,目前在人类癌症治疗、动物癌症治疗、低辐射医疗影像、非破坏性检测等领域积极寻求合作对象。上海理工大学光电学院教授 张学典  张学典介绍了上海理工大学光电学院在光电传感器技术研究及仪器产品开发应用方面的进展情况。其在医疗影像领域的相关成果有:胶囊内镜导航技术,单细胞操纵、测序和实时成像技术、医学影像高分辨、超高速成像技术,以及正在开展的3D可视微创手术系统研发、太赫兹人体安检系统等。波谱仪器方面的研发成果有:基于光谱技术的水质检测仪器开发、太赫兹波谱技术及其应用、手持式拉曼光谱仪、高性能光谱仪器关键分光及接收部件研发等。接下来,课题组将继续推进胶囊内镜机器人、太赫兹核心器件研制、高分辨超高速成像等方面的技术开发。中国科学院化学研究所副研究员 孙红霞  孙红霞介绍了针对糖尿病并发症&ldquo 套餐式&rdquo 快速检测试剂及仪器的研发情况。据介绍,我国现有糖尿病患者1亿人左右,糖尿病人几乎都伴随有高血压、心血管疾病、肾脏损伤、失明、足部溃疡等并发症。但我国市场上除血糖仪产品外,罕见用于糖尿病并发症检测的快速检测产品。课题组将高特异和高灵敏的纳米超分子探针技术与生物传感器技术和微纳器件加工技术相结合,针对糖尿病并发症三个重要监测指标:血清总胆固醇、尿微量白蛋白和钾离子,开发相应的快速检测试条,并研制了可检测上述试条的 &ldquo 套餐式&rdquo 快速检测设备(检测时间&le 10min,标准偏差&le 15%,误差&le 20%),为广大糖尿病患者有效预防和及早发现并发症提供了便利。  此外,在研讨会上北京师范大学郭非介绍了李玉德教授课题组在毛细管光学元件方面的研究情况。据介绍,课题组在国内首次研制了适合衍射实验站一次聚焦光源的锥形单毛细管,在国际上首次研制了适用于高压XAFS的毛细管X光透镜,解决了金刚石的衍射干扰和DAC对低能X射线的吸收。同时针对目前航空航天工业的合金类材料的焊接件、精密仪器仪表和汽车工业等领域的小钢珠、工程常用的细线径圆柱螺旋弹簧等材料残余应力检测中的难点,课题组开发了相应的毛细管透镜,并取得了成功应用。  除了在此次研讨会的报告中展示的仪器成果,为了更好地推进大专院校、科研院所与科学仪器研发企业的科技合作交流,研讨会主办方还特别印制发行了《ACCSI 2015暨首都科技条件平台 科学仪器研发成果集》,以便于推介、宣传和企业选用,该成果集共包括来自15家大专院校、科研院所的48项仪器成果转化项目。
  • 圆环阵太阳射电成像望远镜通过工艺测试
    27日,记者从中国科学院国家空间科学中心获悉,由该院牵头建设的国家重大科技基础设施“空间环境地基综合监测网”(子午工程二期)标志性设备之一——圆环阵太阳射电成像望远镜(以下简称圆环阵)顺利通过工艺测试。这一状如“千眼天珠”的国之重器,不仅能监测太阳“打喷嚏”,还可成功探测脉冲星,为我国太阳物理和空间天气研究提供高质量的自主观测数据。此次工艺测试表明,圆环阵实现了最大视场达到10个太阳半径的连续稳定的太阳射电成像与频谱观测能力,各项技术指标达到或优于初步设计报告的指标要求。被当地居民称作“千眼天珠”的圆环阵,坐落于海拔3820米的四川稻城,由313部直径6米的抛物面天线构成,均匀分布在直径为1公里的圆环上,是目前全球规模最大的综合孔径射电望远镜。它不但能监测太阳的各种爆发活动,还能监测太阳风暴进入行星际的过程,这对于理解太阳爆发机制和日地传播规律,预测太阳活动对地球的影响具有重要作用。中国科学院国家空间科学中心供图要实现圆环阵的科学观测目标,313部天线和626条接收链路都要具有非常好的幅度和相位一致性。在建设过程中,项目团队攻克了一系列关键核心技术,提出了原创的圆环阵列构型和中心定标总体方案,突破了单通道多环绝对相位定标等关键技术。圆环阵太阳射电成像望远镜项目负责人、中国科学院国家空间科学中心研究员阎敬业说,为保证建设质量和工期,项目采取了“三步走”的研制方案,即2单元技术摸底、16单元成像实验和313单元系统建设。本着“边建设、边调试、边运行”的原则,自2022年3月起,16单元成像实验系统就已开始获取太阳成像数据,迄今已积累了大量太阳活动图像和频谱数据。值得关注的是,2023年3月,还处于系统调试阶段的圆环阵,开展了我国首次基于射电图像序列的脉冲星探测实验,从连续射电图像中成功识别出脉冲星闪烁;5月,圆环阵与欧洲低频阵列开展了联合观测实验,实现了交叉验证;7月,圆环阵已具备连续稳定高质量监测太阳活动的能力,脉冲星成像等射电天文观测能力得到初步验证,开启了科学试观测。记者获悉,下阶段,圆环阵将在白天观测太阳活动,为太阳物理和空间天气研究提供长时间序列高质量数据,并与子午工程的其他监测设备开展联合观测。“考虑到监测太阳每天需要8小时左右,为充分发挥国家重大科技基础设施的综合效能,圆环阵还将与500米口径球面射电望远镜‘中国天眼’、‘中国复眼’雷达阵列、三亚非相干散射雷达等国家重大科技基础设施开展联合观测,有望在低频射电巡天、脉冲星、快速射电暴和行星防御监测预警等领域发挥重要作用。”阎敬业说。
  • 我国首台大功率太阳炉聚光器竣工
    记者日前从中科院电工所获悉,由该所太阳能热发电实验室承担研制的大功率太阳炉聚光器近日在宁夏惠安堡镇竣工,其成功研制表明我国科研工作者已掌握了大型高精度聚光器的核心技术和制作工艺。  “太阳能聚集供热方法的研究及成套设备的开发”是国家“973”项目和“863”太阳能制氢课题子课题。大功率太阳炉聚光器经过近3年的研制,各项技术参数经过精心调试,已达到合同要求,并在太阳能制氢试验试运行中产出氢气。  据介绍,该太阳炉系统由3个平整度为1毫米的120平方米的正方形定日镜、跟踪控制系统、300平方米大型高精度抛面聚光器、太阳炉和制氢系统组成。其中,定日镜边长11米,成三角形排列,后面一座高出前面两座1.8米。聚光器为旋转抛物面,旋转轴与地面平行,距地3米。根据惯例,太阳直射辐射按照1000瓦/平方米计算,该太阳炉的总功率是0.3兆瓦。此套系统是我国自主研发的第一台大功率太阳炉聚光器,总聚光面积300平方米,跟踪精度好于1毫弧度,峰值能流密度设计值高达10兆瓦/平方米。该太阳炉的热功率在世界排名第三,前两位分别位于法国的科学研究中心(CNRS)和乌兹别克斯坦物理研究所内。  该系统通过将平面定日镜作为反射器把太阳光反射到对面的抛面聚光器上,经过抛面聚光器聚焦至焦点位置的太阳炉中心处,中心高温高达约3000℃,可在氧化气氛和高温下对试验样品进行观察,不受燃料产物的干扰。目前,该系统平台与西安交通大学的反应器接口已经成功产出氢气。
  • 国务院副总理马凯考察FAST并慰问一线科技工作者
    p 5月27日下午,中共中央政治局委员、国务院副总理马凯一行来到贵州省黔南州平塘县,考察了中国科学院建设的国家重大科技基础设施——500米口径球面射电望远镜(FAST),看望慰问一线科技工作者。工业和信息化部部长苗圩、国家发改和改革委员会副主任林念修及贵州省有关负责人陪同考察。/pp  考察期间,马凯听取了FAST研制和建设情况的汇报,观看了工程建设汇报视频,兴致勃勃地考察了FAST工程现场,详细询问工程建设情况。他表示,工程建设历时22年,很不容易,也很了不起,长了中国人的志气,对科研人员和工程建设人员付出的努力表示感谢。他希望科研团队继续发扬优良作风,利用这一高水平重大科技基础设施,早出成果、多出成果,出好成果、出大成果,努力取得具有诺贝尔奖水平的重大原创成果。/pp  受中科院院长、党组书记白春礼委托,中科院副秘书长汪克强代表中科院欢迎马凯副总理一行莅临FAST考察。中科院国家天文台副台长郑晓年对FAST工程和建设情况作了介绍。他说,FAST利用地球上独一无二的优良台址——贵州天然喀斯特巨型洼地,自主发明主动变形反射面,在观测方面形成300米瞬时抛物面汇聚电磁波,在地面改正球差,实现宽带和全偏振 采用光机电一体化技术,自主提出轻型索拖动馈源支撑系统和并联机器人,实现接收机高精度指向跟踪。FAST建设已经推动了相关产业技术升级和能力提升。/pp  我国科研人员从1994年就开始了FAST的科学研究,2011年工程正式动工,2016年9月25日项目完工。FAST的科学目标包括巡视宇宙中的中性氢,研究宇宙大尺度物理学,以探索宇宙起源和演化 观测脉冲星,研究极端状态下的物质结构与物理规律 主导国际低频甚长基线干涉测量网,获得天体超精细结构 探测星际分子 搜索可能的星际通讯信号。FAST是目前世界最大单口径射电望远镜,灵敏度高于国际同类天文望远镜,预计可在10年至20年内保持世界领先水平。/p
  • “微莲花,微祝福” | 无掩膜激光直写光刻仪3D灰度曝光应用
    近年来,实现微纳尺度下的3D灰度结构在包括微机电(MEMS)、微纳光学及微流控研究领域内备受关注,良好的线性侧壁灰度结构可以很大程度上提高维纳器件的静电力学特性,信号通讯性能及微流通道的混合效率等。相比一些获取灰度结构的传统手段,如超快激光刻蚀工艺、电化学腐蚀或反应离子刻蚀等,灰度直写图形曝光结合干法刻蚀可以更加方便地制作任意图形的3D微纳结构。该方法中,利用微镜矩阵(DMD)开合控制的激光灰度直写曝光表现出更大的操作便捷性、易于设计等特点,不需要特定的灰度色调掩膜版,结合软件的图形化设计可以直观地获得灰度结构[1]。由英国皇家科学院院士,剑桥大学Russell Cowburn教授主导设计研制的小型无掩膜激光直写光刻仪(MicroWriter, Durham Magneto Optics),是一种利用图形化DMD微镜矩阵控制的直写曝光光刻设备。该设备可以在无需曝光掩膜版的条件下,根据用户研究需要,直接在光刻胶样品表面上照射得到含有3D灰度信息的曝光图案,为微流控、MEMS、半导体、自旋电子学等研究领域提供方便高效的微加工方案。此外,它还具备结构紧凑(70cm × 70cm X×70cm)、高直写速度,高分辨率(XY ~ 0.6 um)的特点。采用集成化设计,全自动控制,可靠性高,操作简便。目前在国内拥有包括清华大学、北京大学、中国科技大学、南京大学等100余家应用单位,受到广泛的认可和好评。结合MicroWriter的直写曝光原理,通过软件后台控制DMD微镜矩阵的开合时间,或结合样品表面的曝光深度,进而可以实现0 - 255阶像素3D灰度直写。为上述相关研究领域内的3D线性灰度结构应用提供了便捷有效的实验方案。图1 利用MicroWriter在光刻胶样品表面上实现的3D灰度直写曝光结果,其中左上、左下为灰度设计原图,右上、右下为对应灰度曝光结果,右上莲花图案实际曝光面积为380 × 380 um,右下山水画图案实际曝光面积为500 × 500 um 图2 利用MicroWriter实现的3D灰度微透镜矩阵曝光结果,其中SEM形貌可见其优异的平滑侧壁结构 厦门大学萨本栋微纳米研究院的吕苗研究组利用MicroWriter的灰度直写技术在硅基表面实现一系列高质量的3D灰度图形转移[2],研究人员通过调整激光直写聚焦深度以及优化离子刻蚀工艺,获得具有良好侧壁平滑特征的任意3D灰度结构,其侧壁的表面粗糙度低于3 nm,相较此前报道的其他方式所获得的3D灰度结构,表面平滑性表现出显著的优势。MicroWriter的灰度曝光应用为包括MEMS,微纳光学及微流控等领域的研究提供了优质且便捷的解决方案。图3 利用MicroWriter激光直写在硅基表面实现图形转移过程示意图图4 利用MicroWriter激光直写曝光在硅基表面转移所得的3D灰度结构的实际测量结果与理论设计比较,其中图a中红色散点表示实际图形结构的纵向高度,黑色曲线为图案设计结果;图b中左为设计图形的理论各点高度,右为实际转移结果的SEM形貌结果,其中标准各对应点的实际高度。综上可以看出其表现出优异的一致性图5 利用AFM对抛物面硅基转移结构的测量与分析,可以看到起侧壁的表面平滑度可以小至3 nm以下,表现出优异的侧壁平滑性 利用MicroWriter激光直写曝光技术,不仅可以直接制备任意形状的硅基微纳灰度结构,而且可以将制备的3D结构作为模具、电镀模板或牺牲层来应用在其他材料上,如聚合物、金属或玻璃等。这种直观化的激光直写技术在诸多维纳器件研究领域中表现出显著的应用优势和开发前景。 参考文献:[1] Hybrid 2D-3D optical devices for integrated optics by direct laser writing. Light Sci. Appl. 3, e175 (2014)[2] Fabrication of three-dimensional silicon structure with smooth curved surfaces. J. Micro/Nanolith. MEMS MOEMS 15(3), 034503 相关参考:英国皇家科学院院士、剑桥大学教授Russell Cowburn介绍:https://www.phy.cam.ac.uk/directory/cowburnr
  • 教育部推荐多个分析化学项目申报2014国家科技奖
    日前,教育部对2014年度高等学校科学研究优秀成果奖(科学技术)推荐项目形式审查结果进行公示,拟将形式审查合格的自然科学奖项目435项、技术发明奖通用项目124项、科学技术进步奖通用项目505项(其中,推广类通用项目33项),专利奖通用项目8项、直报国家自然科学奖34项、直报国家技术发明奖通用项目22项、直报国家进步奖通用项目41项进行公示。  其中,生物医学非线性光学显微成像、食品安全分析与检测新技术开发及其示范应用,蛋白质组高效富集、酶解和质谱分析新技术和新方法,蛋白质定量及活性表征的电化学研究,环境友好的新型样品前处理技术,多组分同时分析的方法研究,腐蚀电化学仪器方法的创新及应用,微结构光学测试技术及其应用,新型X射线器件及其微纳检测系统等分析检测项目均在上述名单内。  仪器信息网特别将上述9个分析检测项目的完成单位、项目团队以及项目成果摘选如下,以飨读者。  项目名称:生物医学非线性光学显微成像  完成单位:深圳大学  完成人:屈军乐,牛憨笨,邵永红,许改霞,陈丹妮,于斌  项目介绍:该项目提出了光谱分辨多光子荧光快速显微成像技术和部分受体光漂白的FRET方法,研制了同时时间和光谱分辨的多焦点多光子显微成像系统,开发了新型高效高稳定的双光子荧光探针,进行了应用验证 发展了同时时间分辨荧光光谱多焦点多光子显微结构和功能成像技术,并在细胞周期进程和细胞凋亡等方面得到应用等。  项目名称:食品安全分析与检测新技术开发及其示范应用  完成单位:福州大学,福建出入境检验检疫局检验检疫技术中心,宝特科技有限公司  完成人:陈国南,付凤富,张兰,杨方,林志杰,邱彬,郭隆华,林子俺,林振宇,黄晓蓉  项目介绍:该项目成功开发了用于水产品中重金属元素形态与价态分析的毛细管电泳-电感耦合等离子体质谱检测仪 用于食品安全检测的毛细管电泳-化学发光/电致化学发光联用及新型毛细管电泳/加压毛细管电色谱-质谱联用检测平台 具有国际先进水平的FITT-2001农药残留快速测试仪等便携式,快速,低成本检测仪器及配套的试剂盒和速测卡以及用于复杂样品体系的前处理设备AutoSPE-06全自动固相萃取仪等。  项目名称:蛋白质组高效富集、酶解和质谱分析新技术和新方法  完成单位:复旦大学  完成人:杨芃原,陆豪杰,刘宝红  项目介绍:该项目发展了以微纳技术为特点的介孔等新材料富集蛋白/肽的新方法,鉴定了高背景下的低丰度蛋白 开展了低丰度和翻译后修饰(如磷酸化和糖基化)蛋白质的选择性富集和快速酶解、高效质谱鉴定等研究工作 提出了低丰度及翻译后修饰蛋白质选择性富集、质谱有效鉴定新方法 研发了多种适合与质谱在线和离线联用的蛋白质酶解技术。  项目名称:蛋白质定量及活性表征的电化学研究  完成单位:南京大学,南京医科大学第一附属医院,上海大学  完成人:李根喜,殷咏梅,孙丽洲,李昊,赵婧,曹亚,张凯  项目介绍:该项目提出了一系列基于电化学技术研究蛋白质的新策略、新方法,实现了多种重要靶标分子的高灵敏、高选择性分析检测。  项目名称:环境友好的新型样品前处理技术  完成单位:武汉大学  完成人:胡斌,何蔓,陈贝贝  项目介绍:该项目开拓了液相微萃取在无机元素及形态分析中的应用新领域,建立了毛细管微萃取与等离子体光/质谱联用新方法 还建立了液相微萃取、毛细管微萃取技术与色谱/等离子体质谱分离/检测手段联用分析新方法等。  项目名称:多组分同时分析的方法研究  完成单位:清华大学  完成人:张新荣,张四纯,邢志,那娜,韩国军,魏振威,文芳,刘月英,孔浩,武亚艳  项目介绍:该项目提出了用稀土稳定同位素探针替代荧光探针进行生物样品中多组分的同时分析、用阵列模式替代单一传感模式进行复杂多组分生物样品的识别的思想,指导设计了常压敞开式离子源进行阵列和成像分析工作 建立了化学发光阵列成像原理的快速、高通量催化剂筛选新方法,以及低温等离子体探针质谱成像新方法等。  项目名称:石墨烯的电分析化学和生物分析化学  完成单位:清华大学  完成人:李景虹,刘洋,王颖,唐龙华,陈达  项目介绍:该项目围绕石墨烯在电分析化学及生物化学分析领域的基础问题,在石墨烯电化学、石墨烯复合生物电化学界面的构建和石墨烯纳米探针、生物分子组装及成像等领域开展了开拓性的研究工作 建立了基于石墨烯的高灵敏免疫、核酸和酶电化学生物分析方法等。  项目名称:腐蚀电化学仪器方法的创新及应用  完成单位:厦门大学,广州市本原纳米仪器有限公司,厦门乐钢材料科技有限公司  完成人:林昌健,卓向东,吴浚瀚,林理文,董士刚,田昭武  项目介绍:该项目成功研制了一系列相关的科学仪器和工业检、监测仪器,发明了多种实验室科研用和工业现场用的电化学微探针、传感器及测量技术,推进仪器在科学研究和工业检监测中的应用和拓展等。  项目名称:新型X射线器件及其微纳检测系统  完成单位:浙江工业大学,中国科学院长春光学精密机械与物理研究所  完成人:乐孜纯,董文,全必胜,梁静秋,付明磊,张明  项目介绍:对金属材料抛物面型二维聚焦X射线组合折射透镜的制作方法、跨接式纳米聚焦X射线组合透镜,以及基于X射线组合折射透镜的微束聚焦系统和扫描微探针系统开展了系统研究与研制。  项目名称:微结构光学测试技术及其应用  完成单位:天津大学  完成人:胡小唐,胡晓东,郭彤,胡春光,陈津平,栗大超  项目介绍:该项目开展了反射差分光谱测量方法及相关技术的研发,提出了将白光干涉用于大面积阵列器件测量的新方法,系统研究了可动MEMS微结构的面内运动和离面运动的测量方法 构建了基于Linnik 型的测量系统等。
  • 中国科大在高性能金刚石量子器件制备上取得重要进展
    中国科学技术大学中科院微观磁共振重点实验室杜江峰、王亚等人在金刚石量子器件制备方向取得重要进展,发展了一种全新的基于自对准的光子学器件制备加工技术,可将氮-空位色心这一原子级量子传感器以纳米级精度加工到金刚石器件最佳工作位置,实现接近最优光学探测性能的量子传感器阵列。这项研究成果以“Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision”为题发表在《科学进展》[Sci. Adv.8, eabn9573 (2022)]上。金刚石,俗称“钻石”,具有高硬度、高稳定性、高透光性、高热导率以及超高的禁带宽度等优异的物理化学性质,在超精密加工、光学材料以及半导体电子器件等工业领域有着广泛的应用。近十多年来,科学家发现金刚石中一种可以发光的原子尺度晶格缺陷--氮-空位色心(简称NV色心)具有极大的量子应用前景,让存在缺陷的不“完美”金刚石变得在实用性上更加“完美”。NV色心不仅可以以纳米空间分辨率对电磁场、压力等多种物理量在室温大气乃至极端环境下进行精密测量,也可以建立多体量子纠缠,用于研究量子信息等基础问题,在前沿基础科学、高科技产业等领域有重大应用价值。图1:制备技术方法示意图。制备高性能金刚石量子器件是金刚石量子信息技术实用化的关键技术。以金刚石量子传感器为例,其原理是利用器件内的NV色心将外界的微弱物理信号转换为自身荧光强度信号来进行探测,因此在不牺牲其他物理性质前提下,提高NV色心光子计数率是提升传感器性能的一个关键指标。在过去几年中,人们积极致力于开发用于提高NV色心荧光强度的金刚石微纳米光子学结构,例如固体浸没透镜、柱形波导、圆形牛眼光栅、抛物面反射器、倒置纳米锥等。但目前传统的制备技术无法精确控制微纳米结构中NV色心位置,导致器件制备效率低下,性能难以达到预期(图2(a)),其主要原因是NV色心制备工艺和金刚石结构刻蚀工艺之间的对准难题(图1左)。通常这一对准精度需要优于20纳米,方能达到光学器件理论上最优的光学性能。图2:器件制造效果展示。(a)传统工艺制造器件光学计数率分布;(b)自对准工艺制造器件光学计数率分布;(c)金刚石纳米柱传感阵列电镜照片;(d)单个NV色心荧光饱和曲线测试。针对以上难题,本工作研究团队发展了一种基于自对准策略的光子学器件加工技术,通过双层掩膜图形化工艺设计实现生成NV色心所需的氮离子注入工艺和金刚石结构刻蚀工艺的自对准,精度可以达到15纳米(图1右)。使用该技术,研究团队实现了高性能金刚石纳米柱传感阵列的制造,该纳米柱传感器可用于生物传感、纳米级磁性材料成像等前沿应用。与传统制造技术相比,器件显示出高度一致且最优的光子计数率以及接近理论预期的器件产率。通过金刚石晶体取向进一步控制荧光发射偶极方向,团队最终实现单个NV色心饱和光子计数率达到~4.34Mcps,荧光强度提升大约20倍(图2)。该方法具有可工程化、简单且高精度的特点,不仅可批量化制备高性能金刚石量子传感器,对金刚石量子技术实用化具有重要意义,还可以应用于碳化硅、稀土离子等其他固态量子体系。相关技术与器件已申请国际专利进行保护。中科院微观磁共振重点实验室特任副研究员王孟祺为该论文的第一作者,杜江峰院士、王亚教授为共同通讯作者。该研究得到了科技部、中科院、国家自然科学基金委和安徽省的资助。论文链接:https://www.science.org/doi/10.1126/sciadv.abn9573
  • 瑞士科学家开发X 射线消色差透镜 将很快实现X 射线显微镜商业应用
    仪器信息网讯 近日,瑞士保罗谢尔研究所(Paul Scherrer Institute,简称PSI) 的科学家开发了一种X射线显微镜的突破性光学元件——X 射线消色差透镜。这使得 X 射线束即使具有不同的波长也可以准确地聚焦在一个点上。对应成果于3月14日发表在科学杂志Nature Communications上,成果表示,新型X射线镜头将使使用 X 射线研究纳米结构变得更加容易;这种类型的X射线消色差仪将克服衍射光学和折射光学的色差限制,并为宽带X射线管光源在光谱学和显微镜中的新应用铺平道路。DOI: 10.1038/s41467-022-28902-8用于在微纳米尺度上无损研究物质内部结构和元素组成的X射线技术需要高性能的X射线光学系统。为此,在过去的十年中,人们开发了各种类型的反射、折射和衍射光学元件。衍射和折射光学元件已成为大多数高分辨率X射线显微镜的组成部分。然而,始终遭受固有色差的影响。到目前为止,这限制了它们在窄带辐射中的使用,从本质上说,这类高分辨率X射线显微镜仅限于高亮度同步辐射源。与可见光光学类似,解决色差的一种方法是将具有不同色散功率的聚焦光学和散焦光学结合起来。在这次新成果中,PSI科学实现了X射线消色差仪的首次成功实验,该消色差仪由电子束光刻和镀镍制作的聚焦衍射菲涅耳波带片(FZP)和3D打印双光子聚合制作的散焦折射透镜(RL)组成。利用扫描透射X射线显微镜(STXM)和光学显微镜,科学家演示了在宽能量范围内的亚微米消色差聚焦,而无需任何焦距调整。这种类型的X射线消色差仪将克服衍射光学和折射光学的色差限制,并为宽带X射线管光源在光谱学和显微镜中的新应用铺平道路。消色差镜头对于在摄影和光学显微镜中产生清晰的图像至关重要。它们确保不同颜色(即不同波长的光)具有共同的焦点。然而,迄今为止,X 射线还没有消色差透镜,因此只有单色 X 射线才能实现高分辨率 X 射线显微镜。在实践中,这意味着必须从 X 射线光束光谱中滤除所有其他波长,因此只能有效使用一小部分光,从而导致相对低效的图像捕获过程。由 3D 打印机创建的微结构:由 PSI 科学家开发的创新折射结构与衍射元件相结合,形成一个消色差 X 射线镜头,约一毫米长(或高,如图所示)。打开它的末端,就像一个微型火箭。它是由 3D 打印机使用特殊类型的聚合物创建的。该结构的图像由扫描电子显微镜拍摄。图片来源:Paul Scherrer Institute/Umut SanliPSI 科学家团队已通过成功开发用于 X 射线的消色差 X 射线透镜解决了以上问题。由于 X 射线可以揭示比可见光小得多的结构,创新的镜头将特别有利于微芯片、电池和材料科学等领域的研发工作。比可见光消色差更加复杂对于可见光,消色差透镜的应用已经超过200多年。但对于X 射线的消色差透镜直到现在才被开发出来,这一事实乍一看似乎令人惊讶。可见光的消色差透镜是由一对不同的材料组成,当可见光穿透第一种材料时,分散成不同光谱颜色(就像穿过传统的玻璃棱镜时一样),然后这些光谱再通过第二种材料时就会逆转这种分散效果,聚焦在一个点上。(在物理学中,分散不同波长的过程称为“色散”)消色差聚焦原理:散焦折射透镜(RL)的色度作为聚焦菲涅耳波带片(FZP)色度特性的校正器。b扫描电子显微镜(SEM)显示了通过电子束光刻和镍电镀制作的镍FZP,用于对比测量。c由四个堆叠抛物面组成的RL的SEM图像,使用双光子聚合光刻技术进行3D打印。d使用消色差作为聚焦光学元件的扫描透射X射线显微镜(STXM)和光学成像实验装置的草图。PSI 的X 射线纳米科学与技术实验室 X 射线光学与应用研究组负责人、物理学家 Christian David 解释说:“这种适用于可见光范围的基本原理在 X 射线范围内不再起作用。对于 X 射线,没有任何两种材料的光学特性能够在很宽的波长范围内足以抵消另一种材料的影响。换句话说,材料在 X 射线范围内的色散是太相似了。”两个原理而不是两种材料因此,科学家们没有将寻找答案放在在两种材料的组合中,而是探索将两种不同的光学原理联系在一起。“诀窍是要意识到我们可以在衍射透镜前面放置第二个折射透镜,”新研究的主要作者Adam Kubec说。Kubec 目前是 Christian David 小组的研究员,现在为 XRnanotech 工作,XRnanotech 是 PSI 在 X 射线光学研究过程中的一个衍生公司。“多年来,PSI 一直是 X 射线镜片生产的世界领导者,”David 说,“我们为全球同步加速器光源的 X 射线显微镜提供专门的透镜,称为菲涅耳波带片。” David 的研究小组使用已建立的纳米光刻方法来生产衍射透镜。然而,对于消色差透镜中的第二个元素——折射结构——需要一种新方法,这种方法最近才得以实现:微米级的 3D 打印。这最终使 Kubec 能够制作出一种类似于微型火箭的形状。使用消色差仪演示在不同能量下的 STXM 成像。a)使用消色差获得的图b 中所示的Siemens star样品的 STXM 图像,表明在最佳能量约 6.4 keV 的附近,消色差范围 1 keV。b) Siemens star 测试样品的 SEM 图像,外圈和内圈的径向线和间距 (L/S) 的宽度分别为 400 nm 和 200 nm,见红色箭头。c) STXM 的比较结果是使用消色差 (上) 和传统 FZP (下) 获得的能量范围为 6.0 keV 至 6.4 keV。虽然 FZP 图像的对比度随能量快速变化,但使用消色差获得的图像质量变化很小。潜在的商业应用新开发的镜头使得X射线显微镜实现了从研究应用到商业应用(例如工业)的飞跃。“同步加速器源产生如此高强度的 X 射线,以至于可以滤除除单个波长以外的所有波长,同时仍保留足够的光来产生图像,”Kubec 解释说。然而,同步加速器是大型研究设施。迄今为止,在工业界工作的研发人员被分配了固定的光束时间,在研究机构的同步加速器上进行实验,包括 PSI 的瑞士同步辐射光源 SLS。这种光束时间极其有限、昂贵,且需要长期规划。“行业希望在他们的研发过程中拥有更快的响应循环,”Kubec 说,“我们的消色差 X 射线镜头将在这方面提供巨大帮助:它将使工业公司可以在自己的实验室内操作紧凑型 X 射线显微镜。”PSI 计划与 XRnanotech 一起将这种新型镜头推向市场。Kubec 表示,他们已经与专门在实验室规模上建造 X 射线显微镜设施的公司建立了适当的联系。作为元件安装在瑞士同步辐射光源SLS上进行测试为了测试他们的消色差仪的性能,科学家们在将其作为聚焦光学元件安装在瑞士同步辐射光源SLS的cSAXS光束线上。其中一种方法是非常先进的 X 射线显微镜技术,称为 ptychography。“这种技术通常用于检测未知样本,”该研究的第二作者、Christine David 研究小组的物理学家、X 射线成像专家 Marie-Christine Zdora 说,“另一方面,我们使用 ptychography 来表征 X 射线束,从而表征我们的消色差透镜。” 这使科学家能够精确检测不同波长的 X 射线焦点的位置。他们还使用一种方法对新镜头进行了测试,该方法使样品以小光栅步长穿过 X 射线束的焦点。当改变 X 射线束的波长时,使用传统 X 射线镜头产生的图像会变得非常模糊。但是,在使用新的消色差镜头时不会发生这种情况。“当我们最终在广泛的波长范围内获得测试样品的清晰图像时,我们知道我们的镜头正在发挥作用,” Zdora高兴地说道。David 补充说:“我们能够在 PSI 开发这种消色差 X 射线镜头,并且很快将与 XRnanotech 一起将其推向市场,这一事实表明,我们在这里所做的这类研究将在很短的时间内实现实际应用。”
  • 应用案例 | 基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究
    近日,来自山东师范大学的研究团队发表了《基于4.5 μm量子级联激光器的开放光路N2O气体检测系统研究》的研究成果。项目背景温室气体(Greenhouse Gas,GHG)的温室效应引发全球变暖和气候变化,这使得全球生态环境面临着很大的威胁。一氧化二氮(N2O)是全球六大GHG之一,相较于人们熟知的二氧化碳(CO2),N2O含量相对较低,但其全球变暖潜能值(Global Warming Potential, GWP)却是CO2的310倍左右,此外,它对臭氧(O3)也有一定的破坏作用。因此,有效探测大气中的N2O含量及其浓度变化趋势是至关重要的。N2O气体分子的吸收谱带主要集中在中红外区域,需要选用中红外光源对N2O气体进行探测。近年来,随着波长可调谐、可室温工作的量子级联激光器(Quantum Cascade Laser, QCL)的研发技术日益成熟,将其与激光吸收光谱技术相结合,可以实现对气体的高分辨率、高灵敏度探测,被广泛应用于气体遥感探测领域。目前,结合激光吸收光谱技术及紧凑型多通道气室(MGC),可实现对气体分子的快速响应,并达到较低的检测限,但系统为封闭式光学路径,限制了在户外环境中持续检测的便携性、实际适用性和空间覆盖范围。因此,开放式光学路径的设计,对于户外大范围环境中气体浓度的实时检测是十分必要的。系统搭建宁波海尔欣光电科技有限公司为该项目提供了HPQCL-Q&trade 标准量子级联激光发射头、QC750-Touch&trade 量子级联激光屏显驱动器、HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器。HPQCL-Q&trade 标准量子级联激光发射头其波数的可调谐范围是 2203.7 cm-1~2204.1 cm-1,最大输出光功率可达 50 mW。 为了充分发挥 QCL 的波长可调谐特性,结合激光器驱动,对 QCL 的工作温度以及电流进行设置,进而得到系统中所需要的激光器发射中心波长。QC750-Touch&trade 量子级联激光屏显驱动器结合触摸屏的显示功能,极大的方便了用户进行操作。 通过激光驱动器对注入激光器的电流进行更改,分析发射波数与驱动电流的相关性,调节驱动电流大小,分析在300 mA至360 mA的电流变化范围内,激光器波数随驱动电流变化的响应曲线。可以得到,随着电流逐渐增大,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.0271x + 2212.972。 同理,对激光器发射波数与温度的相关性进行分析,对温度进行调节,使激光器在30 °C至45 °C之间工作,分析激光器中心波数随温度变化的响应曲线。可以得到,随着温度逐渐升高,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.1716x + 2210.216。 综上所述,根据所选用的N2O吸收谱线波数为2203.7333cm-1,因此,所对应的QCL 中心电流和工作温度应分别设置为330 mA和36.0 °C。 HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器的感光面积为1×1 mm2,探测范围较为广泛,可达到 2μm-14μm,完全满足本系统探测的需求。由于探测器接收到的回波信号较为微弱,在对数据进行处理前,需要对信号进行放大,而该型号的探测器内部设计有前置放大器,以便后续可直接进行谐波解调和浓度反演等数据处理,同时也对系统的设计进行了简化。结论与创新点:使用该检测系统对大气中 N2O 浓度进行实时检测是可行的。(1) 选用QCL作为发射光源。QCL 具有波长调谐范围广、输出功率较高、并且可以在室温条件下工作的卓越性能。选取最优谱线位置为 2203.73 cm-1,能有效避免其他气体的干扰,实现对N2O气体分子的高灵敏度检测。(2) 为了避免MGC在远程或户外的大范围环境检测研究中的限制性,选用离轴抛物面反射镜和角反射镜,搭建了开放式光学路径的N2O气体检测系统。将大部分光学元件安装在一个光学平台上,实现了系统的紧凑、便携特性,并满足开放式、大范围环境监测的需求。(3) 经验证,当积分时间为1s时,N2O检测限为1.1 ppb,当积分时间延长至95 s时,系统达到最低检测限为0.14 ppb。结合实验结果,表征了系统的高精确度、高灵敏度、低检测限的性能,并且完全满足对大气环境中N2O浓度测量的标准。参考文献:张玉容,赵曰峰《基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究》
  • 防辐射服《真相调查》爆真相:幕后推手现形
    新闻专题:标准缺失,监管缺位——防辐射服成“皇帝新装”  关于央视《真相调查》防辐射服报道,再爆猛料:节目当事人——陈锋工程师承认实验偏离客观公正,方舟子承认是节目幕后指使策划。  方舟子微博承认:央视的那挡节目实际上是我帮助他们做的  12月20日,方舟子在网易微博(http://t.163.com/chat/maternitydress)上公开承认:央视的那挡节目(2011年12月17日央视《真相调查》防辐射服)实际上是我帮助他们做的。(下图为截图)  陈锋工程师博客承认:新闻报道中的实验是极端情况,存在主观故意  《真相调查》当事人、实验者,近日通过“陈锋实验室”官方博客(http://blog.sina.com.cn/u/2619611382),以《关于防辐射服问题汇总澄清》为题,对当天的实验及防辐射服问题进行了专门澄清,全文摘录如下:  总的问题澄清:  1) 日常电磁环境的辐射水平对人体是无害的   2) 防辐射服具有屏蔽效果   3) 新闻中的实验是一组研究探索性实验的其中两种极端情况   4) 除了第一条,日常电磁环境是安全的,不提供其他实验结论。  问:防辐射服有用吗?  答:总的来说,多数防辐射服采用内嵌金属纤维,对垂直照射的电磁波有屏蔽效果。问题核心不在屏蔽服是否有用,而在于我们日常工作生活的电磁环境是否安全。从目前WHO和ICNIRP的标准和研究报告来看,没有证据表明日常工作生活环境对人体的伤害。在这种安全情况下,防辐射服的作用就是求个心安。  问:新闻短片中的实验是怎么做的?  答:由于没有相关防辐射服测试标准,采访中进行了一组研究探索性实验。由于新闻长度限制,没有播出所有试验。  实验步骤:首先在没有屏蔽服情况下测试发射天线与接收天线之间的损耗作为参考值0 然后保持天线位置不动,将屏蔽服罩在接收天线上,测试损耗值,结果显示为与参考值之差,是相对值,大致体现防辐射服的屏蔽效果。  问:防辐射服有可能比不穿更差吗?这是实验结论吗?  答:虽然极少出现,但是有可能的,片中播放的是两个极端试验描述这种情况。  这两个实验的发射天线置于天花板,模拟辐射源是来自人体上方的近场耦合。由于实验中未使用仿真人(模拟人体环境),电磁波可以从领口直接照射接收天线,因此结果很差,仅有10dB(所说的90%),更差的一种情况是调整防辐射服与天线的相对位置(挺难找到位置),使反射的电磁波尽量聚焦在接收天线上,绝对不是说信号的接收能量大于发射,这不符合能量守恒。这是一个相对值,是接收天线的前后两种状态的测试功率对比...通俗的说,这是把防辐射服当做一个抛物面天线(如卫星天线)的“锅”。  其它的实验模拟垂直照射,屏蔽效果有可能在40dB(所谓的99.99%)以上,这也是目前多数厂家所采用的测试。  不同波长的电磁波会发生不同程度的衍射情况,可以绕过障碍和缝隙传播,这在一些未播出的试验中也有涉及。  问:什么人要穿防辐射服?  答:日常电磁辐射水平一般来说对人体不构成伤害。只有从事某些电磁辐射(甚至电离辐射)较大的职业,需要工作中穿着专业屏蔽服,与市面一般防辐射服不同。  问:屏蔽服遮住腹部胎儿位置就足够吗?  答:日常电磁辐射不会直接作用于胎儿,而是通过母体。如果母体安全,胎儿就安全。如果需要防护,远离已知工业和军事辐射源是最佳选择。  “打假斗士”方舟子:如此为哪般  方舟子防辐射服打假,由来已久,闹得最凶的一次,可见11月份诸多媒体报道。在遭到相关专家、学者的质疑后,此番,方斗士借助国家级媒体工具,假借极端实验,去完成自身夙愿,可谓工于心计,费心费力,如此的不达目的、誓不罢休,其真实意图耐人寻味。  作为一名生物专业的学者,弃自身的专业研究,而积极投身打假事业,这个事情本身就令人疑惑不解。置疑李开复先生的学历、大力提倡转基因食品、抨击中医理论,无所不能的方先生,在创造一个个事件的同时,倒让我们恍惚看到方先生“聚光灯下好生活”的超级演员一面。著名传播人王利芬女士,曾在微博上这样跟方先生说过:“我建议方舟子把精力、他不屈不挠的精神集中在一些更有意义的需要追根求源的事情上”。  反思: 不能让所谓“名人”成为要挟中国进步的绊脚石  中国是法制社会,规范规则的制定与完善,高于一切。任何非法违规的事情,当有主管部门审定、处理。名人即便真心“打假举报”,也应依据政策法规,按正常渠道举报,交主管部门处理。动用名气,置国家法律法规不顾,甚至误导中央权威媒体,这些做法,已然触犯了中国的正常行政秩序,干扰了国家法制法规的正常实施。但愿这样的事情不再发生,不要让名人成为中国制度多年辛苦建设的破坏者。
  • 第三代半导体材料化学机械抛光(CMP)工艺的检测难点
    近年来随着5G通讯技术以及新能源汽车行业已成为当前投资热点,而5G基站和电动汽车都使用了功率半导体器件,开发出符合市场要求的功率半导体器件成了半导体行业的又一重要方向。以硅作为衬底的传统的半导体芯片因为材料本身的局限性已难满足要求,以碳化硅、氮化镓为代表的宽禁带第三代半导体材料具有击穿电场高、热导率高、电子饱和速率高、抗辐射能力强等优势,因此采用第三代半导体材料制备的半导体器件不仅能在更高的温度下稳定运行,适用于高电压、高频率场景,还能以较少的电能消耗,获得更高的运行能力。第三代半导体材料虽然具有很多优点,但是其加工难度也是极大的。以碳化硅为例,其硬度世界排名第三,莫氏硬度为13,仅次于钻石(15)和碳化硼(14);而且其化学稳定性高,几乎不与任何强酸或强碱发生反应。晶体碳化硅还需要通过机械加工整形、切片、研磨、抛光等化学机械抛光和清洗等工艺,才能成为器件制造前的衬底材料。化学机械抛光(CMP)化学机械抛光(或化学机械平坦化)通常是使用专用抛光机在晶圆表面用抛光垫不断地旋转抛光并在过程中添加抛光液磨料以获得平坦光滑的衬底表面的工艺。为了获得均匀平坦的晶圆衬底,厚度监测作为常用的评价手段之一。但是第三代半导体材料由于硬度高,化学机械抛光的效率比较低,部分材料抛光过程的厚度变化甚至低于数十纳米常规的位移计等监测手段已经无法达到要求,而因为材料的特殊性一般也不会使用接触式或者破坏式的测量手段。大塚电子的SF-3系列膜厚计通过光干涉法原理,对晶圆界面之间干涉光信号进行计算从而获得晶圆的厚度信息。SF-3膜厚计 光干涉法由于采用了光学测量原理,SF-3系列膜厚计具有极高的频率5KHZ,因而可以对晶圆厚度进行在线实时监控;同时具有高精度以及可以有效避免晶圆翘曲对结果的影响。晶圆厚度实测CMP抛光液CMP抛光液作为化学机械抛光的辅助耗材,起到研磨腐蚀等作用,近年来CMP抛光液的国产化程度正在逐步提高。CMP抛光液的主要成分包括水、研磨颗粒(二氧化硅、金刚石、氧化铈、氧化锆)、氧化剂、分散剂等。不同的工艺步骤和不同的产品对CMP抛光液产品有不同的要求,通过对CMP抛光液的粒径监测、zeta电位监测可以评价CMP抛光液是否符合工艺要求以及在存储运输过程当中的稳定性。大塚电子ELSZ-neo系列纳米粒度zeta电位仪对抛光液的粒径和zeta电位检测均有大量应用。 ELSZ-neo以下考察了CMP抛光液在不同PH值的zeta电位,并记录了不同磨料的等电点(zeta电位为零),根据抛光液的粒径和zeta电位可以选择最优的PH值从而获得稳定的产品。晶圆清洗在晶圆的研磨和化学机械抛光处理以后,需要对晶圆进行清洗以避免污染物的附着。一些晶圆的颗粒污染物数量要求少于10个,然而由于静电作用力,颗粒污染物与晶圆在特定的PH值环境下容易吸附,颗粒污染物通常来源于抛光液当中研磨颗粒的残留。因此,评价晶圆表面和颗粒污染物的电性对于清洗工艺有重要作用。Zeta电位(Zeta potential)作为衡量固体电性或液体的稳定性的主要指标,通常使用电泳光散射法进行测量,然而在测量固体表面zeta电位时必须要充分考虑电渗作用的影响。(1)样品池内的粒子的电泳以负电荷的粒子为例,理想状态下粒子无论在cell 的什么位置,都以相同的速度向正电极侧电气泳动。(2)样品池内的电渗流通常cell(材质:石英)带有负电荷。所以,正电荷的离子、离子聚集在cell壁面附近,施加电场的话,壁面附近 正离子会往负极方向移动。Cell中心部为了补偿这个流动,产生相反方向的对流,这种现象叫做电渗流。(3)样品池内可观测粒子的电泳粒子分散在溶媒中,cell内粒子电气泳动的外观是算上这个电渗的抛物线状的流动。为此、cell内电气浸透流的速度为零的位置,即在静止面进行测定可以得出真正粒子的电泳速度,从而得出真实的泽塔电位值。大塚电子的ELSZ系列纳米粒度zeta电位仪使用了森岡本电渗校正专利,充分考虑了材料的电渗对电泳速度的影响。另外专用的平板样品池可选用电荷为0的涂层,并且使用中性的观测粒子,在不同PH值下测量不必考虑观测粒子电性带来的影响。大尺寸的平板样品池,可适用不同规格的晶圆测量实测应用时,通常会对晶圆表面和CMP抛光液的zeta电位同时进行测量。以下图为例,分别测量了硅晶圆(蓝色)和污染物粒子(红色)的zeta电位,在PH=4~8.5之间,晶圆表面与污染粒子的电性相反,因而污染粒子会依附在晶圆表面难以去除。总结大塚电子自1970年以来一直专业研究光学检测技术,秉承「多様性」「独創性」「世界化」的理念,大塚的光散射以及光干涉制品一直在包括FPD行业、半导体行业、新材料行业等专业领域占据领先地位。凭借对光学技术的深耕,大塚将继续为过国内客户提供专业的设备以及服务。
  • OPTON微观世界|第33期 扫描电镜新技术——同轴透射菊池衍射(TKD)技术的应用
    引 言扫描电镜中的被散射电子衍射技术(EBSD)在确定材料结构、晶粒尺寸、物相组成以及晶体取向甚至是应力状态标定都有一定的涉及。通过电子衍射技术的进一步发展,Keller与Geiss基于EBSD技术相同的硬件与软件,通过改变样品台的倾角,使得荧光闪烁体信号接收器在样品下方接收透射电子衍射信号,从而代替原先的背散射信号。这种新技术称为Transmission Kikuchi diffraction(TKD),由于它的信号接收方式特点也被称为t-EBSD。由于接收信号的方式由被散射电子信号转为透射电子信号,其分辨率得到了明显的提升,由原来的EBSD技术的几十纳米(20-30nm平行于电子束的方向,80-90nm垂直于电子束的方向)提高到了TKD技术的10纳米。由于电子束与材料交互作用体积的减少,分辨率提高,使得分析超细晶材料以及其中的纳米颗粒的到了实现。为了改善电子衍射信号接收能力,一种新型的电子束-样品-接收器(on-axis TKD)共轴TKD式的几何设计在法国洛林大学(Université de Lorraine)与布鲁克公司联合组装使用,这个新装置不仅可以接收菊池花样还可以接收衍射点的信息。虽然此时TKD的说法已经不能十分贴切的描述实际情况,应该改为扫描电镜中的透射衍射(Transmission Diffraction )更为合理。由于传统上TKD缩写已经被普遍接受,所以我们在本文中以共轴透射菊池衍射(on-axis TKD)来表述此种新方法。这种新型的接受方法比传统的非共轴TKD(off-axis TKD)方法得到更高的信号强度。同时,共轴TKD方法由于其接收信号的对称性,可以使得原先非共轴TKD方法得到的扭曲的信号得以矫正。本文的主要目的是揭示透射衍射花样随着不同试验条件、样品参数(电子束入射强度、样品与探测器的距离、样品的厚度、样品的原子序数)的变化规律。帮助试验人员选择衍射花样中的合适的衍射数据(点、线、带),以及相应的设置电镜与样品的参数。最后在实际的纳米材料中采用TKD技术对样品进行纳米尺度的分析研究。试验方法所有的试验都是基于ZEISS Supra 40型号与ZEISS Gemini SEM进行的,配备的设备是Bruker e-Flash1000摄像机,对应的探测器型号是Bruker OPTIMUS。如图1所示,传统的TKD系统与on-asix TKD系统的探头接收方向并不相同。图2表示了FIB制样方法获得的楔形单晶Si薄片式样,样品厚度在25nm到1μm之间,用于后续的试验检测。图1 (a)同轴式透射菊池衍射(on-axis TKD);(b)传统非同轴透射菊池衍射(off-axis TKD);(c)电子背散射衍射(EBSD)图2 实验用的FIB砌削的楔形Si单晶样品的SEM图像电子束入射能量、样品厚度以及原子序数对TKD衬度的影响1衍射衬度的种类在同轴TKD技术中,收集到的衍射花样衬度不仅仅受到显微镜参数的影响,对于不同的观察样品其衍射花样衬度也会有所不同。目前,样品的厚度与入射电子的加速电压是日常应用过程中最基本的影响因素,样品的密度与原子序数也是重要的影响参数,但是目前无法对其进行系统的分析。同时,信号接受探测器的摆放角度、与样品的测试距离也是在实际操作中影响信号接受质量的因素之一。我们可以把衍射花样分为两类:衍射斑点与菊池花样。菊池花样有三种不同的衬度:线衬度、亮带衬度、暗带衬度。2菊池线与菊池带菊池线的形成原因在于,如果样品足够厚,那么将会产生大量以各种不同方向运动的散射电子;也就是说,电子与样品发生非相干散射。这些电子与晶体平面作用发生布拉格衍射。菊池线的形成有两个阶段,一是由于声子散射形成的点状的非连续的发射源,如图3(A)所示。第二是由于这些散射后的电子将相对于面hkl以θB运动(如图3B所示),从而与这些特定晶面发生布拉格衍射。因为散射电子沿各个方向运动,衍射书将位于两个圆锥中的一个内(如图3C)。换言之,因为入射k矢量有一定的范围,而不是单一确定的k矢量,所以观察到的衍射电子的圆锥而不是确定的衍射束。考虑与hkl晶面成θB角度方向的所有矢量所构成的圆锥,称之为Kossel圆锥,并且圆锥角(90-θB)非常小。由于荧光屏/探测器是平面并且几乎垂直于入射束,Kossel圆锥将以抛物线形式出现。如果考虑近光轴区域,这些抛物线看上去就像两条平行线。有时把这两条菊池线和他们之间的区域称为“菊池带”。图3(A)样品在某一点处所有电子散射的示意图(B)部分散射电子以布拉格角θB 入射特定hkl晶面而发生衍射(C)这些圆锥与Ewald球相交,由于θB很小,在衍射花样上产生了近似直线的抛物线。3布拉格衍射斑点与TEM中的衍射斑点形成原理相似,TKD中衍射斑点是由于低角弹性散射形成的,低角弹性散射是连续的,然而在高角范围内,随着与原子核的相互作用,散射分布并非连续,这也就解释了为何衍射斑点只能在低散射角度的区域才能够观察到。图4显示了单晶Si样品中,随着厚度变化引起的衍射信息变化,在样品较薄的区域我们可以看出衍射斑点的信息,随着样品厚度的增加,衍射斑点信息消失。菊池花样在样品时很薄的区域,衬度模糊,而在样品厚度很大时,衬度表现的较弱,其它阶段花样都比较清晰。图5中可以看出,随着入射电子能量的降低,衍射斑点也逐渐消失。由此,可以认为衍射斑点的强度在样品厚度一定的前提下,可以认为是入射电子能量的函数。图4 单晶Si在不同厚度下共轴透射菊池衍射(on-axis TKD)产生的透射衍射花样 (a)43nm (b)45nm (c)48nm (d)52nm (e)65nm (f)100nm (g)200nm (h)300nm (i)1000nm 加速电压E=15keV,探测器样品距离DD=29.5mm,光阑尺寸60μm,束流强度2nA,图像捕获时间(a-h)200ms×30images (i)990ms×30images随着加速入射电子的加速电压的变化,透射菊池衍射花样的变化,可以看出,与图4中的变化规律相似。可以看出入射电子能量与样品厚度在对花样的衬度影响方面扮演着同样的角色。但是其原理并不完全一样,随着入射电子加速电压的降低,菊池带的宽度逐渐变窄。图6所示,基于等离子体与声子的自由程的模型计算了出现衍射斑点的情况下,样品厚度与电子入射能量的关系,可以看出入射电子的能量是产生电子衍射斑点的样品厚度的函数。图5 单晶Si在不同加速电压下共轴透射菊池衍射(on-axis TKD)产生的透射衍射花样 加速电压(a)30keV (b) 25keV (c)20keV (d)15keV (e)10keV (f)7keV;样品厚度d=150nm,探测器样品距离DD=29.5mm,光阑尺寸60μm,束流强度2nA,图像捕获时间(a-h)200ms×30images (i)990ms×30images图6 Si、Ti两种材料随着电子入射能量以及样品厚度变化为变量的布拉格衍射斑点显示示意图实际样品测试纳米材料由于其优异的力学、光学以及催化性能,在材料研究领域中已经成为新的研究热点。其中纳米金属材料由于其优异的力学性能已经得到了广泛的研究,特别是纳米孪晶铜材料,是最早研究的纳米金属材料之一,但是由于其晶粒尺寸小于100nm,其孪晶片层只有十几个甚至几纳米(图7),使得以往的结构研究手段多采用透射电镜(TEM)的方法。但是由于TEM难以对大量晶粒的取向进行统计分析,这就需要用到扫描电镜的EBSD技术,介于传统的EBSD技术的分辨率的局限,一直少有纳米级别的分析。那么有了TKD的新型技术,就可以对纳米级别的材料进行细致的分析。图7 纳米孪晶铜的TEM观察由于纳米孪晶的制备方法多采用电沉积的方法,得到薄膜形式的材料。所以在生长厚度方向上由于厚度较薄(约20nm),本次实验是用金(Au)薄膜样品进行观察,采用的是场发射扫描电镜Zeiss Merlin Compact 以及Bruker OPTIMUS 同轴TKD探测器进行观察。结果如图8所示,可以看出片层结构的分布,经过进一步的分析,可以看出片层结构之间的界面角度为60度,可以确定为[111]112纳米孪晶,并且通过测量可以确定片层宽度仅有2nm。基于共轴TKD技术,让以往在SEM中难以完成的纳米结构的织构组织分析成为可能。并且对纳米尺度材料的性能提升提供了进一步的实验支持。图8 a)纳米金颗粒的孪晶结构PQ图与IPFZ叠加显示;(b)(a)图中线段处角度分布图小 结1.共轴式透射菊池衍射技术可以在衍射花样中获得更加广泛的衍射信息:布拉格衍射斑点、菊池线以及菊池带。2.随着样品厚度的增加,衍射斑点、菊池线、菊池带依次产生。在样品较薄的状态下,菊池带呈现明亮的带状,随着样品后的增加,深色衬度在在带中出现并缓缓变暗,直至带状衬度明锐显现。3.样品厚度与入射电子能量可以作为相关联的变量,影响着衍射信息的衬度;减小样品厚度相当于增加入射电子能量。也就是说要得到特定的衍射衬度,可以调整样品的厚度与调整入射电子束的能量这两种方法是等价的。4.基于等离子体与声子的自由程的模型计算了出现衍射斑点的情况下,样品厚度与电子入射能量的关系。可以看出这二者呈线性关系,且根据元素的不同样品厚度与入射电子能量的比值的常数也有所差别。5.采用共轴TKD技术测试了金纳米颗粒的纳米片层结构,并且分辨出了2nm尺度的孪晶片层结构。
  • 【赛纳斯】表面增强拉曼/红外光谱技术的进展与突破
    01导读拉曼光谱和红外光谱是 最 重 要 的分析化学方法之一,可提供待测体系的化学键等关键结构信息。然而,它们应用于材料和生物体系的表面化学分析时,常面临着灵敏度偏低的瓶颈。四十余年来,人们持续致力于突破该瓶颈,推动相关技术的应用和产业化。近日,厦门大学田中群教授课题组回顾了拉曼和红外光谱技术的发展历程,系统性论述了表面增强拉曼散射光谱和表面增强红外吸收光谱的三种物理机制:等离激元效应、避雷针效应和耦合效应。从拉曼和红外光谱的基本原理和实际案例出发,提出了进一步提高拉曼和红外光谱的表面检测灵敏度的策略,即宏观光学系统与微纳光学衬底之间多尺度耦合,最 后讨论了将宏观光学-微纳衬底间的高效耦合拓展到亚纳米分子尺度的可能性,展望了更多种形式的多尺度光耦合策略。图1 SERS和SEIRA光谱灵敏度提高的策略与实践:从微纳结构衬底设计到光学设计。02研究背景拉曼光谱和红外光谱技术的里程碑式进展如图2所示,时间轴上、下分别为拉曼光谱和红外光谱技术。从发展历程可见:(1)1800-1974年主要集中在基本测试仪器和方法,从无到有地建立拉曼和红外及其衍生光谱技术;(2)1974-2010年则在已有测量仪器基础上,从无到有建立起表面增强拉曼和表面增强红外光谱方法;(3)1997年至今的表面增强拉曼和表面增强红外光谱逐渐提升为单分子水平。由此可见拉曼和红外光谱技术的灵敏度在不断提升,而其蕴含的发展驱动力是由痕量甚至是单分子水平待测样品的实际需求所诱发的。如何提升拉曼和红外光谱的检测灵敏度,是具有 重 大 挑战性的科学问题和技术难题。图2 拉曼光谱、红外光谱、及其衍生技术的的里程碑式进展节点,时间轴上、下部分别为拉曼和红外光谱技术。2.1 SERS和SEIRA的增强机理表面增强拉曼光谱(SERS)和表面增强红外吸收光谱(SEIRA)主要基于电磁场增强机制。SERS和SEIRA电磁场理论的核心在于借助光和金、银等纳米结构的相互作用,增强纳米结构表面狭小区域内的光电场(也称近场)。该狭小区域也称为“热点”。处于热点中的待测分子的光散射和光吸收截面都被增强,如图3所示。图3 SERS和SEIRA的电磁场增强原理。a是分子的Raman散射及拉曼光谱。b是吸附于金属纳米球表面分子的SERS的两步增强机理。c是SERS光谱的数据处理。d是分子的红外吸收及红外光谱。e是吸附于金属纳米棒表面分子的SEIRA的一步增强机理。f是SEIRA谱的数据处理。热点内的局域电场的强度与分子的光吸收/散射效率直接相关。提高SERS和SEIRA增强衬底表面热点内局域电场强度是SERS和SEIRA技术发展的关键难题。SERS和SEIRA增强衬底可划分为非耦合型增强衬底和耦合型增强衬底两大类。非耦合型增强衬底,如单个纳米粒子、金属膜以及非金属表面的金属探针等,通常只支持局域表面等离激元、传播表面等离激元和避雷针效应中的一种机制。非耦合增强衬底的局域场增强因子较小,通常小于5个数量级,是研究局域场耦合的模型结构。耦合型增强衬底,特别是具有纳米间隙或者纳米尖端结构的增强衬底,分子拉曼散射和红外吸收信号会得到显著增强,检测灵敏度可达单分子水平。典型的耦合型增强衬底结构有纳米颗粒-纳米颗粒二聚体(dimer)、寡聚体结构(oligomer)、阵列结构(array)、蝴蝶结(bow-tie)结构,和金(或银)扫描探针-金(或银)衬底耦合结构等,如图4所示。图4 SERS和SEIRA典型结构。a-f为SERS衬底结构,g-i为SEIRA衬底结构。其中a和g为局域表面等离激元纳米结构,c和i为传播型表面等离激元纳米结构,e为支持避雷针效应的针尖纳米结构。b、d、f、h和i为不同形式的等离激元耦合纳米结构衬底。除了提高衬底的局域电场强度,SERS衬底在应用中还存在衬底普适性低和信号重现性不足的难题。壳层隔绝纳米颗粒增强拉曼光谱(SHINERS)是克服这一难题的强有力的创新方法,在材料表面化学分析中已发挥出独特的技术优势和巨大的实际应用效能。SHINERS技术的关键是制备超薄介质壳层包覆的金(或银)核的核壳结构纳米颗粒,其中壳层材质如SiO2、Al2O3等具有绝缘性和化学惰性,既避免了分子吸附于金(或银)核表面产生干扰信号,又减小了纳米颗粒和待测衬底发生烧融的概率,提升了体系稳定性。借助SHINERS中金(或银)核与待测金属材料衬底的耦合作用,金属衬底上吸附分子的拉曼信号得到显著放大,例如,实现了对不同晶面Au、Pt等金属单晶上痕量电催化中间产物的识别,为揭示相关电催化反应的路径和机制提供了关键证据(图5)。图5 用于表面分析的SHINERS技术。a 衬底表面的SHINERS粒子示意图。b 吸附在Au(111)、Au(100)和Au(110)表面的吡啶分子的SHINERS光谱。c SHINERS实验示意图。电磁场强度由颜色代表,红色(强)和蓝色(弱)。d SHINERS粒子的TEM成像和Pt衬底表面的3D-FDTD模拟。e 在氧气饱和的0.1 M HClO4中的ORR过程三个旋转环盘Pt单晶电极上的极化曲线。转速为1600转/分,扫描速率50 mV/s。坐标轴j和E分别代表电流密度和电极势。f 变电位条件下Pt(111)电极表面的ORR测试的EC-SHINERS光谱。类似壳层隔绝技术的核-壳结构构筑策略也适用于SEIRA技术。由金壳层和介质内核构筑的阵列SEIRA增强衬底不仅在近红外区有等离激元响应,在中红外区也显示出宽光谱共振响应。如图6所示,位于近红外区域的等离激元响应源自于单个纳米壳结构的多极等离激元共振,而位于中红外区域的宽谱响应带则源自多粒子结构的偶极共振耦合。耦合纳米结构是提高SERS和SEIRA衬底表面增强性能的有效方式,通过耦合效应可将衬底拓展为SERS和SEIRA同时响应的衬底。图6 多个纳米粒子耦合同时用于SERS和SEIRA虽然基于上述耦合纳米结构的SERS和SEIRA增强衬底可有效提高拉曼和红外光谱的检测灵敏度,要实现超高灵敏的SERS和SEIRA测量尚有一定难度。成功的研究报道往往集中于拉曼散射或红外吸收截面较大的少数分子体系,其增强衬底结构在实际应用中尚面临一些困难。特别是如何使应用面最广的SERS或SEIRA衬底,如单个SHINERS粒子、TERS探针、单根SEIRA棒和nanoIR探针,也具备超高检测灵敏度,即使面对散射或吸收截面较小的分子仍可获得有效的检测信号。这一问题仍充满挑战。因此,进一步针对特定的微纳衬底而优化设计的宏观光学系统的研究成为迈上更高灵敏度这一新台阶的关键。2.2 基于维纳结构衬底的宏观光学设计SERS信号与多重因素有关,其强度具体可用下式表示:我们可以参考SERS的强度公式将SEIRA的强度表示如下:GSERS和GSEIRA分别表示衬底通过等离激元和避雷针效应造成的局域场增强。上述公式清楚表明,SERS和SEIRA的强度不仅与微纳衬底的增强因子有关,也与仪器的参数,如光耦合效率Ω、检测器效率Q、色散系统的通量Tm和光学系统的透过率T0直接相关。虽然在Raman和IR发展的历程中,针对光学系统的研究从未停止,但聚焦在光学系统和微纳衬底之间的耦合效率的研究还很少。耦合效率Ω可进一步展开为其中Ωe表示激发光的空间角集中程度、Sexci表示微纳衬底的定向激发性质、Me-e则表示激发光和衬底之间的匹配程度。Ωc表示收集系统的定向收集能力、Sscat表示微纳衬底的定向辐射属性、Mc-s则表示Ωc和Sscat之间的匹配程度。上述三个公式清晰地描述了宏观光学系统和微纳衬底之间匹配程度对获得超灵敏SERS和SEIRA光谱的重要意义。图7为SERS和SEIRA中传统的耦合光学设计,和考虑衬底与光学系统匹配后的耦合光学设计。与传统方式相比,后者可在微纳衬底表面激发出更强的热点,获得更灵敏的SERS和SEIRA检测效果。图7 SERS和SEIRA中的光学设计。a 传统的激发和收集光锥。b 抛物面反射式聚焦镜。c 折射式物镜。d 反射式物镜。e SERS和SEIRA中精细设计的激发和收集空心光锥。f 基于棱镜和波导结构的激发光学。g 基于棱镜的折射式空心光锥透镜。h 基于棱镜的反射式空心光锥物镜。角度激发。通过ATR棱镜定向激发SERS和SEIRA衬底获得更高检测灵敏度是最常见的设计宏观光学增强微纳光学衬底的例子。如图8中所示,在二氧化硅半球柱面镜上蒸镀一层Ag膜,扫描激发光角度,在很窄的角度范围内可观察到表面等离激元效应。在该角度下收集纳米粒子构成的SERS衬底的拉曼散射信号,其光谱增强性能与金属膜表面相比可提高2-3个数量级。而在SEIRA中, ZnSe半球柱面镜表面的金岛状膜衬底的SEIRA增强性能也强烈依赖激发光的入射角度。70°下激发获得的SEIRA强度比20°时高6倍。更多的基于波导结构激发SERS和SEIRA的研究也证明了将激发光能量集中在某一窄角度范围内,可进一步提高衬底的SERS和SEIRA性能。图8 基于ATR棱镜结构定向激发SERS和SEIRA。a-c 在SERS中通过半球柱面镜激发金属膜表面SPR,进而激发单粒子SERS。d-f 在SEIRA中通过半球柱面镜激发金岛膜SEIRA。定向辐射收集。定向辐射收集主要体现在SERS衬底表面。SERS衬底作为天线,它接收远场光并在近场区域产生电磁场“热点”,从而激发“热点”内的分子。分子辐射的拉曼信号再次激发SERS衬底并辐射至远场。研究表明远场辐射的SERS信号表现出强烈的定向辐射属性。如图9所示,二聚体和三聚体的SERS远场辐射信号集中在很窄的空间角度范围内,而该空间角度甚至超过了显微物镜的收集角度范围,导致大量信号无法被测量。该实验结果证明宏观光学系统设计在提高SERS信号收集效率方面是非常必要的。图9 二聚体和三聚体表面SERS信号的远场辐射特征兼顾角度激发和定向辐射收集的光学设计。角度激发可提高SERS与SEIRA的激发效率,定向辐射收集可提高SERS的收集效率。2017年报道的一种消色差的固体浸没透镜结构做到了两者兼顾。如图10所示,通过该物镜结构,激发光能量可集中在很窄的角度范围内,有效提高激发光与SPR效应之间的能量耦合效率,因此在SPR角度附近SERS信号才最强。同时该物镜的数值孔径高达1.65,可有效收集远场辐射的SERS信号。该物镜不仅支持Kretschmann结构,也支持Otto结构,数值分析结果表明在不同衬底材料表面散射的SERS信号均具有定向辐射特征,与一般的线性偏振相比,热点的局域场增强更高。图10 基于消色差固体浸没透镜光学设计兼顾角度激发和定向辐射。a-d KR-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。e-j Otto-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。光纤高效激发和收集耦合TERS。另一种兼顾激发和收集效率的设计是光纤耦合结构的TERS装置。在该装置结构中,银纳米线TERS探针组装在锥状光纤表面。线偏振激发光在光纤中传播的波导模式会在不同的空间位置与银纳米线探针的两个SPP模式TM0和HE1耦合。通过光纤角度和长度的优化设计,提高远场光与TM0模式的能量耦合效率,优化后的远、近场的耦合效率可达70%。考虑到TERS的两步耦合过程,总体的远、近场光耦合效率可达50%,即使在最简单的TERS装置上也可实现碳纳米管表面1 nm空间分辨率的化学光谱采集。图11 a 波导模式LP01和银纳米线探针的TM0和HE1模式之间的耦合示意图。b 通过TM0模式的近场和远场耦合。c TERS探针和光纤的SEM图。d 碳纳米管样品的形貌。e 沿着d中白色虚线的TERS强度分布。f d中虚线上A、B和C位置处的TERS光谱。光学设计拓展nanoIR和TERS的适用环境。近几年先后报道的液体环境纳米红外光谱技术均通过底部ATR光学结构激发实现。电化学TERS技术的一大难题是TERS的激发和收集光路路径上光传播介质发生了变化,造成常规TERS测量技术的不直接适用。如何在有限的空间内实现TERS光路与电化学池的有效光学耦合是一个关键的技术问题。如图12所示,在该设计中,电化学池被改造成由透明窗片、倾斜样品区以及电化学功能模块构成的结构。这一结构有效抑制了光路畸变对TERS测量的影响,由此成功获得了电化学反应前后的少量反应物和产物的TERS光谱。图12 电化学TERS技术。a 在电化学池中增加光学窗片,并减小与激发和收集物镜的距离实现的电化学TERS装置结构。b-c 溶液中TERS探针的局域电场分布。d 电化学反应过程中不同位置的TERS光谱。e 反应物和产物的空间分布。f 不同样品偏压下的产物。03总结与展望SERS和SEIRA分别显著提升了拉曼光谱和红外光谱的检测灵敏度,近二十年来,随着微纳光学技术的逐步发展,高性能的增强衬底不断问世。尽管目前对宏观光学系统与微纳衬底之间多尺度耦合效率的研究还较少,在可预见的将来,该问题终将被解决,这将使得应用面最广的球形纳米颗粒的光谱增强性能也有机会进一步实现数量级的提升。除了兼顾宏观和微纳光学的耦合设计,近年来基于原子尺度的避雷针效应与等离激元结合也实现了一系列的突破,如利用TERS技术实现了单分子、甚至单个化学键的成像。然而,可检测的分子体系仍限制于少量的分子种类。这就要求在提高宏观光学到微纳光学的耦合效率的同时,也要提高从微纳光学到原子尺度光学的能量耦合效率。这一问题的解决将不仅对TERS,对Nano IR的发展也不至关重要。在实际应用中,SERS和SEIRA的环境普适性也是一个重要的指标。特别是在TERS和NanoIR技术中,发展适配如能源化学中的多相界面体系或生命科学中的液相环境体系等具体应用场景的光学结构设计将具有重大应用意义。文章信息:该研究成果以"Advances of surface-enhanced Raman and IR spectroscopies: from nano/micro-structures to macro-optical design"为题在线发表在Light: Science & Applications。本文 第 一 作者为厦门大学的王海龙博士,共同通讯作者为田中群教授和王海龙博士。合作者包括尤恩铭博士、丁松园教授和印度SRM University- AP的Rajapandiyan Panneerselvam博士。
  • X射线多层膜在静态和超快X射线衍射中的应用
    x射线多层膜在静态和超快x射线衍射中的应用x射线光学组件类型根据x射线和物质作用的不同原理和机制,目前主流的x射线光学组件可以大致分为四类:以滤片、窗片、针孔光阑为代表的吸收型组件;基于反射,全反射原理的各种镜片以及毛细管、波导等反射型器件,还有基于折射原理的各种复折射镜。而本文的主题多层膜镜片,其底层原理和晶体、光栅、波带片一样,都是基于衍射原理。吸收型反射型折射型衍射型滤片窗口针孔/光阑镜片:kb、wolter、超环面镜… … 毛细管:玻璃毛细管、金属镀层毛细管复折射镜:抛物面crl、菲涅尔crl、马赛克crl、… … 晶体光栅多层膜波带片多层膜的原理和工艺一般来说,反射型镜片存在“掠射角小、反射率低”的问题。而多层膜镜片则是通过构建多个反射界面和周期,并使反射界面等周期重复排列,相邻界面上的反射线有相同的相位差,就会发生干涉,如果相位差刚好为2pi的整数倍,则会干涉相长,得到强反射线。从布拉格公式可以看出:多层膜就是通过对d值的控制,来实现波长选择的人工晶体。而在工艺实现方面,目前制备x射线多层膜镜的主要工艺有:磁控溅射、电子束蒸镀、离子束蒸镀。一般使用较多的是磁控溅射或离子束镀膜工艺,即在基板上交替沉积金属和非金属层,通过选择材料,控制镀膜的厚度及周期的选定,实现对硬x射线到真空紫外波段的光的调制。上图为来自德国incoatec的四靶材磁控溅射镀膜系统。可实现多种膜系组合的高精度镀膜。[la/b4c]40 多层膜b-kα(183ev)用多层膜,d:10nm单层膜厚:1-10nm0.x nm的镀膜精度tem: 完美的镀层界面frank hertlein, a.e.m. 2008上图为40层la-b4c多层膜的剖面透射电镜图像和选区电子衍射,弥散的衍射环说明膜层是非晶结构。同时可以明显看到:周期为10nm的膜层界面非常清晰和规则。这套镀膜系统可获得0.x nm的镀膜精度。多层膜的特点示例—单色和塑形多层膜最显著的特点和优势在于可以通过基底的面型控制和镀层的膜厚控制,将x光的塑形和单色统一起来。当然,这是以精度极高的镀膜工艺为前提。下图的数据展示了进行梯度渐变镀膜时,从镜片一端到另一端镀膜的周期设计数值 vs. 实际工艺水平。可以看到:长度为150mm的基底上,单层镀膜膜厚需要控制在3.8-5.7nm,公差需要在1%以内。相当于在1500公里的长度上,厚度起伏要控制mm水平。这是非常惊人的原子层级的工艺水平。frank hertlein, a.e.m. 2008通过面型控制来实线x射线的塑形;通过极高精度的膜厚控制实现2d值渐变—继而实现单色;0.x nm尺度的镀膜误差——需要具备原子层级的工艺水平!多层膜的特点示例—带宽和反射率除了可以通过曲面基底和梯度镀膜实现对x光的塑形和单色,还可通过对膜层材料、膜厚、镀膜层数等参数的设计和控制,来实现带宽和反射率的灵活调整。如窄带宽的高分辨多层膜,以及宽带宽的高积分反射率多层膜。要实现高分辨:首先要选择对比度较低的镀膜材料,如be、c、b4c、或al2o3;其次减小膜的厚度,多层膜的厚度降为10~20å;最后增加镀膜层数,几百甚至上千。from c. morawe, esrf多层膜的特点示例—和现有器件的高度兼容左侧: [ru/c]100, d = 4 nm r 80% for 10 e 22 kev中间: si111 δorientation0.01°右侧: [w/si]100, d = 3 nm r 80% for 22 e 45 kevdcmm at sls, switzerland, m. stampanoni精密、灵活的膜层设计和镀膜控制镀膜材料的组合搭配;d/2d值的设计和控制;带宽和反射率的灵活调整。和现有器件的高度兼容多层膜主流应用方向目前,多层膜的主流应用方向和场景主要有:粉末、x射线荧光、单晶衍射以及同步辐射的单色、衍射、散射装置搭建。粉末衍射x射线荧光单晶衍射同步辐射基于dac的原位高压静态x射线衍射典型的静高压研究中,常利用金刚石对顶砧来获得一些极端条件。在极端的高压、高温下,利用x射线来诊断新的物相及其演化过程是重要的研究手段。x-ray probe利用金刚石对顶砧可以获得极端条件(数百gpa, 几千°c) 利用x射线探针来诊断和发现新物相;由于对x光源、探测器以及实验技术等方面的苛刻要求,尤其是需要将微束的x光,精准的穿过样品而不打到封垫上。长期以来,基于dac的x射线高压衍射实验只能在同步辐射实现。但同步辐射有限的机时根本无法满足庞大的用户需求。不能在实验室进行基于dac的x射线高压衍射实验和样品筛选,一直是广大高压科研群高压衍射实验室体的一大痛点。以多层膜镀膜工艺为技术核心,将多层膜镜片与微焦点x光源耦合,我们可以为科研用户提供单能微焦斑x射线源,使得在实验室实现高压衍射成为可能。下图是利用mo靶(左)和ag靶(右)单能微焦斑x射线源获得的dac加载下的lab6样品的衍射图。曝光时间300s,探测器为ip板,样品和ip板距离为200mm。可以看到:300s曝光获得的衍射数据质量是可接受的。特别地,对于银靶,由于其能量更高,可以压缩倒易空间,在固定的2thelta角范围内,可以获得更多的衍射信息,这对于很多基于dac的静高压应用来说非常有吸引力。dac加载下的lab6样品的衍射数据:多层膜耦合mo靶(左)和ag靶(右)曝光时间300s,探测器为ip板,样品和ip板距离为200mmbernd hasse, proc. of spie vol. 7448, 2009 (doi: 10.1117/12.824855)基于激光驱动超快x射线衍射在利用激光驱动的x射线脉冲进行超快时间分辨研究中,泵浦探针是常用的技术手段。脉宽为几十飞秒的入射激光经分束后,一路用于激发超快x射线脉冲,也就是探针光;另一路经倍频晶体倍频作为泵浦光。通过延时台的调节,控制泵浦激光和x射线探针到达样品的时间间隔,可实现亚皮秒量级时间分辨的测量。而在基于激光驱动的超快x射线衍射实验中,如何提升样品端的光通量?如何获得低发散角的单色光束?如何抑制飞秒脉冲的时间展宽?如何同时兼顾以上的实验要求?都是需要考虑的问题。很多时候还需要兼顾多个技术指标,所以我们非常有必要对各类光学组件和x射线飞秒脉冲源的耦合效果和特点有一个比较清晰的认知。四种光学组件和激光驱动x射线源的耦合效果对比首先我们先对弯晶、多层膜镜、多毛细管和单毛细管四种组件的聚焦效果有个直观的了解。以下是将四种光学组件和激光驱动飞秒x射线源耦合,然后进行了对比。四种光学组件在聚焦和离焦位置的光斑:激光参数:800nm/1khz/5mj/45fs源尺寸:10um 打靶产额:4*109 photons/s/sr这是四种组件的理论放大倍率和实测聚焦光斑的对比。可以看到:弯晶和多层膜的工艺控制精度很高,实测光斑和理论值比较接近。而毛细管的大光斑并不是工艺精度的误差,而是反射型器件的色差导致的,不同能量的光都会对聚焦光斑有贡献,导致光斑较大。而各种组件的工艺误差,导致的强度不均匀分布,则是在离焦位置处的光斑中得到较为明显的体现。ge(444)双曲弯晶多层膜镜片单毛细管多毛细管放大倍率1270.7收集立体角 (sr)+---++反射率--+++-有效立体角 (sr)---+++1维会聚角 (deg)+---++耦合输出通量(ph/s)---+++聚焦尺寸 (μm)2332155105光谱纯度好好差差时间展宽 (fs)++++--激光参数:800nm/1khz/5mj/45fs打靶产额:4*109 photons/s/sr等级: ++ + - --利用针孔+sdd,在单光子条件下,测量有无光学组件时的强度和能谱,可以推演出相应的技术参数。这里我们直接给出了核心参数的总结对比。其中,大多数用户最为关注,同时也是对于实验最为重要的,主要是有效立体角、输出光通量、光谱纯度和时间展宽。可以看到:典型的有效收集立体角在-4、-5sr的水平,而在样品上的输出光通量在5-6次方每秒这样的水平。但是需要指出的是:毛细管并不具备单色的能力,虽然有效立体角大,但输出的是复色光。对于时间展宽的比较,很难通过实验手段获得测量精度在几十到百飞秒水平的结果,所以主要通过理论分析和计算来获得。对于同为衍射型组件的ge(444)双曲弯晶和多层膜镜片,光程差引入项主要是x光在组件内的贯穿深度。对于ge(444),8kev对应的布拉格角约为70度,x光的衰减长度约为28um,对应的时间展宽约90fs。对于多层膜镜片,因为它属于掠入射型的衍射组件,x光的衰减长度在um量级,对应的时间展宽甚至可以到10fs水平,因此这里的数据相对比较保守的。而对于毛细管这种反射型器件,光程差引入项主要是毛细管的长度差。对于单毛细管,光程差在10fs水平,对于多毛细管,位于中心区域和边缘的子毛细管长度是有较大的差异的,光程差可达ps水平。小结1. 弯晶:单色性好、时间展宽较小、有效立体角小、输出通量低;2. 多层膜:单色性好、时间展宽较小、有效立体角大、kα输出通量高;3. 单毛细管:复色、时间展宽很小、有效立体角大、复色光通量高;4. 多毛细管:复色、时间展宽较大、有效立体角最大、复色光通量最高。每一种光学组件都有其适用的场景,对于非单色的超快应用,如超快荧光、吸收谱,毛细管可能更为合适,而对于追求单色的超快应用,如超快衍射,多层膜是比较好的选择,兼顾了单色性、时间展宽和有效立体角(输出通量)三个核心指标!如果您有任何问题,欢迎联系我们进行交流和探讨。北京众星联恒科技有限公司致力于为广大科研用户提供专业的x射线产品及解决方案服务!
  • 问传统求新知——用扫描电镜揭开铝电解抛光表面的各向异性纳米图案的神秘面纱
    金属的电解抛光,是一种传统而常用的表面处理技术,通过可控的电化学反应使金属表面溶解(凸起部分溶解速度快)来降低表面粗糙度。利用电解抛光技术,可以获得纳米级粗糙度的镜面光泽表面,而且可以去除前序机械加工遗留的表面和亚表面损伤层。不过,不为一般仅使用该技术的研究者注意的是,在一定的电化学条件下,电解抛光后的金属表面会出现纳米级的图案(pattern),其中对金属铝的研究较多。研究者发现,金属铝(Al)经短时间电解抛光处理后,表面会出现周期或特征周期为几十至一百多纳米的有序条纹状(stripe)、六边顶角状(hexagon)及点状(dot)等多种有序或无序图案。这一现象,已经引起了研究者对其在金属表面微纳工程、微纳模板加工、微纳电子学等领域应用的关注。研究者已经开始深入挖掘纳米图案形成的机理,关键是揭示材料表面结构和界面电化学行为决定纳米图案类型及周期的物理化学规律。但是,目前已经发表的研究,缺少对多晶和单晶铝表面纳米图案形成行为的系统实验研究,定性的多定量的少,零散的多系统的少,难以用来检验和改进现有的表面纳米图案形成理论。其中一个被长期忽略的关键问题,就是铝表面结构差异导致的纳米图案的各向异性。哈尔滨工业大学化工与化学学院的甘阳教授和他指导的博士生袁原(论文第一作者)、张丹博士、杨春晖教授及机电学院的张飞虎教授,首次采用电子束背散射衍射(EBSD)对电解抛光后的多晶铝和单晶铝进行了定量的表面晶体学取向分析,并采用蔡司的Sapphire Supra 55场发射扫描电镜(FE-SEM)和原子力显微镜(AFM)对纳米图案的类型(type)和周期(size)进行了系统表征和量化分析,揭示了铝电解抛光表面纳米图案的类型和周期对于表面结构和晶体学取向的依赖性的规律。同时,基于表面物理化学的理论框架,对结果进行了深入分析和讨论,定性解释了大部分的实验结果,并指明了下一步的研究方向。研究结果近期以长文形式发表于电化学领域的国际知名期刊Journal of the Electrochemical Society,国际同行评审专家认为该工作是对本领域的重要贡献。甘阳教授课题组首先对多种铝样品的电解抛光表面纳米图案进行了系统的研究:1)多晶铝(polycrystalline Al)中不同取向的晶粒;2)切割角可控的系列单晶铝(monocrystalline Al)样品。通过EBSD测试获得晶粒表面的晶体学取向图,并结合定位SEM表征,他们发现,铝电解抛光表面纳米图案对晶面取向具有依赖性(如图1所示为多晶样品中三个毗邻的晶粒)。(背景知识:描述铝表面晶体学取向的EBSD反极图三角(IPF triangle)中,可划分为围绕三个低指数晶面方向(primary direction,主取向)的晶体学主取向区域—[101] //ND,[001] //ND和[111]//ND,单个晶粒或单晶的表面取向偏离主取向的角度称为取向差角(misorientation angle)。)通过对数十个不同取向的多晶晶粒的逐一定位SEM表征,他们发现了一系列未被报道过的现象(图2):1)纳米图案类型和周期对晶面取向的依赖性是否显著取决于所属的主取向区域;2)在同一主取向区域内,纳米图案类型和周期随着取向差角的改变呈现渐变性规律;3)对于具有相同取向差角但偏向不同主取向的晶面,纳米图案类型和周期也发生变化;4)在两个或三个主取向的交界处,纳米图案类型和周期基本相同。他们进一步测试和分析了一系列取向差角可控的单晶铝样品(图3),证实了上述多晶样品的结果,并揭示出目前尚难以解释的单晶和多晶样品间的图案周期性大小的差异问题(图4)。图1 (a)电解抛光多晶Al样品的EBSD分析IPF图,(b)放大后的IPF图和IPF三角显示三个相邻的A、B、C晶粒及其所属的主取向区域和各自的晶面取向差角值,(c)三个晶粒的定位SEM形貌图像,相邻晶粒被晶界隔开并交于一点,(d–f)三个晶粒的AFM形貌图像和细节放大图及FFT分析图,(g–i)为对应AFM图中白线段的线轮廓分析图。图2 (a)电解抛光后不同晶面取向的多晶铝晶粒在IPF三角中的位置图,(b–y)不同晶粒表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图3 (a)不同晶面取向的单晶铝样品在IPF三角中的位置图,(b–s)电解抛光后不同单晶样品表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图4(a,b)单晶和多晶样品的表面纳米图案周期(L)随取向差角(θ)变化的L–θ图,上方刻图轴给出了三个主取向区域内与θ对应的所属表面的表面台阶宽度(w)。(c,d)单晶和多晶样品的各晶面在IPF三角中的对应位置图。L–θ图和IPF三角中的几条连线,表示的是连接了近似位于延某个主取向辐射出去的直线上的若干晶面(及IPF三角中的若干对应的点)。为了解释实验结果,他们建立了一系列不同取向晶面的表面原子排列的“平台–台阶”模型(图5),还特别关注了更复杂的“平台–台阶–扭折”表面结构(图6)。尽管尚没有考虑表面驰豫、重构等的影响,他们根据表面结构特征随取向差角的变化规律,解释了实验观察到的纳米图案类型和取向差角的关系。比如,在一个主取向区域内,随着取向差角的增大,表面台阶宽度逐渐减小而不是突变,界面能的变化也应该呈现渐变的特性,这就解释了纳米图案的类型随取向差角改变的渐变现象。此外,在两个或三个主取向区域的交界处,大取向差的晶面的表面结构(平台宽度和台阶处的原子排列)很相似,所以导致纳米图案的类型基本相同。而不考虑上述结构特征,就很难解释实验上观察到的现象。图5(a–f)[001]和[101]//ND主取向区域内6个不同取向差角的晶面的表面“平台–台阶”结构模型的正视图和侧视图。表面单胞用红色平行四边形或矩形表示。(g)6个晶面在IPF三角中的位置图。图6 (a–c)[001]//ND主取向区域内3个取向差角相等但偏向不同方向的晶面的表面“平台–台阶–扭折”结构模型的正视图。表面单胞用红色平行四边形表示,特别给出了平均台阶宽度。(d)3个晶面在IPF三角中的位置图。图7 在电解抛光过程中吸附分子在不同平台宽度“平台–台阶”表面的扩散和脱附行为差异的示意图。(a)宽平台表面;(b)窄平台表面。他们基于表面结构影响电化学溶解和界面分子吸附、扩散行为的理论框架,对文献中现有的“吸附–溶解”理论进行了深化,进一步提出了表面平台宽度和台阶位点的数量会影响电解抛光液中的表面吸附分子(如乙醇)在表面的扩散(以扩散系数表征)和吸脱附(脱附速率常数)行为。取向差角越大,平台宽度越窄(台阶密度也越大),分子在表面的扩散障碍越大,但同时脱附也更困难,这二者的竞争导致图案的周期先增加并逐渐达到峰值后减小。以外,他们还提出了一套结合SEM测量和图像的FFT处理的分析步骤,以此为基准来准确确定准无序纳米图案的平均周期大小,有效避免了单点测量的较大偏差。以上研究工作,对铝及其它金属(如Ti,Ta,Zn,W)及合金的电解抛光表面纳米图案化研究具有普通意义。甘阳教授课题组正在继续深入研究更多实验因素的影响、图案演化的计算机模拟及理论模型的建立,力图全面揭示金属电解抛光表面纳米图案的形成机理。该研究得到了国家自然科学基金重点项目、国家重点研发计划项目等的资助。恭喜哈尔滨工业大学化工与化学学院甘阳老师课题组使用蔡司场发射扫描电镜做科学研究,取得丰硕的科研成果!
  • 微博热议央视“防辐”调查风波
    近日,央视《真相调查》栏目关于“防辐射服的真相”报道引起广泛关注,其中最为消费者关心的一点是实验中显示穿上防辐射服之后信号反而加强,穿反而不如不穿,此论一出引发准妈妈强烈反响,也引发了一场行业震动。随着后续跟进的报道,央视节目中的检测人员陈峰也逐渐浮出水面,针对众说纷纭的揣测,陈峰临时开通微博和博客,以网络方式对一些细节进行了回应,其在微博中表示(摘自陈峰个人微博):标准的实验应采用仿真人(模拟人体环境),在标准实验场地(如暗室)测试电磁波能量吸收比(SAR),节目中的实验不严谨,只能大致说明问题,并说明新闻中的实验是“非标准示意性”的 ,没有标准实验结论, “.新闻中删减了实验说明”。  根据网络资料显示,陈峰属于“罗德与施瓦茨公司”, 并在新闻中被称为中科院推荐的国内权威检测机构,而这家机构其实为一家企业实验室,根据百度百科介绍,其经营产品包含移动通信、无线电行业、广播、军事和ATC通信,这也让很多业内人士质疑其是利益关联者,有人甚至认为这是在替通信等电磁辐射领域“漂白”。其在微博中反复提及的重要一点是辐射环境的安全性,而对于防辐射服的是否有用在微博中给出的回答是:“不能得出防辐射服完全没用的结论,新闻中特意强调的仅是一个特殊实验设置,是电磁波进入屏蔽服后的反射情况,绝对不是说信号的能量提高了。这是一个相对值,是接收天线的前后功率对比。”。这两句话没有在新闻中出现,恰恰是这两句话没有出现,陈峰也承认“由于新闻长度限制,没有播出所有试验”,单纯依靠剪辑后的视频,在媒体和公众的“简洁推导”后,得出了“穿上防辐射服之后信号反而加强,穿反而不如不穿”这样的结论,如果有这两句话,如果能够播出整个实验过程,相信结论不应如此。  其实在电视节目播出之后就有很多业内专家关注这段实验视频,北京水华青阳员防辐射相关技术人员在第一时间对视频做出解读,并给予了回应:“首先从实验环境来看它不是检测电磁辐射的标准实验室,而且它并没有模拟服装真实穿在人体上的环境”。这一点陈峰在他的关于澄清防辐射问题的博客中再度说明:“这两个实验的发射天线置于天花板,模拟辐射源是来自人体上方的近场耦合。由于实验中未使用仿真人(模拟人体环境),电磁波可以从领口直接照射接收天线,因此结果很差。”恰恰由于未模拟人体环境,从而使实际中不会存在的辐射从很大的领口、袖口射入,水华青阳技术人员也认为这是造成实验数据与实际不符的一个重要因素。  水华青阳同时给出了另一个更重要的原因,其实和上述的原因具有一定关联性,因为如果有人体在衣服内部,对于10GHz以下的电磁辐射(我们生活中的电磁辐射一般都属于10GHz以下的辐射,比如手机是900MHz和1800MHz)射入到人体表面时,会有一部分电磁辐射被人体吸收,也会有一部分电磁辐射穿透人体,并不会像节目中的图片示意的那样,在衣服与人体之间多次反射。而没有多次反射,那么衣服穿在人体时,即使有小部分辐射从缝隙射入,也不会增强,而是对人体产生一次性的辐射,这与不穿防辐射服接收到的辐射频次是一样的。至于实验中出现数据增大的时刻,恰恰是因为衣服里没有人体,从而让电磁辐射在衣服的前片与后片之间进行了多次反射,进而有了增大的一刻,才会显示惊人的“不降反升”数据。  综上所述,除其它环境因素外,主要原因是辐射源头从扩大的两口中进来的过多,没有人体的阻挡屏蔽造成直接反射,引用陈峰微博中的话:通俗的说,这是把防辐射服当做一个抛物面天线(如卫星天线)的“锅”。正是在刻意做成这个“锅”的情况下,才形成了“不降反升”的数据。所以他也特意说明 “片中播放的是两个极端试验描述这种情况”。另外,陈峰微博还提到,不同波长的电磁波会发生不同程度的衍射情况,可以绕过障碍和缝隙传播,这在一些未播出的试验中也有涉及,也表明确实由于新闻长度限制,没有播出所有试验。  不难看出,操作过程中显示的实验数据是真实的,但也不是十分严谨的,而对于这样一个要求实验环境很严格、模拟状态必须真实的科学性实验,不应该也不能得出 “穿上反而辐射加强”这样的“粗暴”结论。为了避免更多的误解发生,在刚刚更新的博客中,陈峰对于此实验做出四点总结:1)日常电磁环境的辐射水平对人体是无害的 2)防辐射服具有屏蔽效果 3)新闻中的实验是一组研究探索性实验的其中两种极端情况 4) 除了第一条,日常电磁环境是安全的,不提供其他实验结论。这算是对自己所做的实验给出了完整链条,但是对于消费者来说,结论却远没有这么简单。  昨天人民日报发表时评,客观分析了目前防辐射服监管缺失和公众的信心失衡状态,而对于所有的防辐射服厂家说无疑敲响了警钟。其实大部分生产厂家也一直在加紧联系相关部门和业内专家一同来拟定防辐射服(防辐射孕妇装)的国家标准,这也是对生产企业和消费者的共同保障,而对于消费者的疑虑,水华青阳防辐射相关人员表示,应该一起与媒体和相关部门一同加强对电磁辐射防护知识的普及,但是普通消费者知识的匮乏和部分传播者表述的不严谨恰恰使消费者更加混淆不清,造成诸多误解,比如很多消费者以为只有一种辐射,以为电磁波屏蔽服也能防核辐射,在日本核泄漏事件中,水华青阳的咨询电话迅速攀升,问的最多的是防辐射服(防辐射孕妇装)是否防核辐射,我们一律都会如实告知,不防核辐射。除了准妈妈之外,有些普通人也在疑问自己所在的工作环境是否需要穿防辐射服,在陈峰的博客中给予了如下解答:“日常电磁辐射水平一般来说对人体不构成伤害。只有从事某些电磁辐射(甚至电离辐射)较大的职业,需要工作中穿着专业屏蔽服,与市面一般防辐射服不同。”其实不然,现在的防辐射孕妇装就是从专业屏蔽服延伸到日常生活中而来,如果对行业稍有了解的人就知道,专业屏蔽服(非铅衣)采用的屏蔽面料和现在的防辐射孕装是一样的,如某些电脑厂商的研发实验室或者银行的信息计算机中心的工作人员等,穿着的专业屏蔽服虽然有袖子或者适当加长,但是绝对不是新闻中描述的密闭“太空服”,一样有袖口领口和底边下摆,一样会有少量的辐射进入,但是既然肯定了专业人员面对更强的电磁辐射环境需要穿着防辐射服,那么关于“孕妇防辐射服穿不如不穿”的结论就显得自相矛盾了。  可见,电磁辐射的科普常识应通过全社会的共同努力加强普及,水华青阳提出的以科学的态度对待电磁辐射理念值得推广:不提倡谈辐色变的“恐怖论”,也不提倡无知无畏的“无害论”,消费者需要的不仅仅是一件辐射防护衣,更需要一种科学的辐射防护意识。只有这样,广大消费者的安全及健康权益才能真正得到保障。
  • 微型光纤光谱仪—交叉C-T型和M型光谱仪对比分析
    摘要:光纤光谱仪自从上个世纪末被发明以来,其应用越来越广泛。交叉式切尼-特纳(czerny-turner,简称c-t)光路和基本型c-t光路(m型光路),是光纤光谱仪中最常见的两种分光光路,本文将详细介绍交叉c-t光路和m型光路的基础原理和各自的优缺点,交叉c-t光路结构紧凑、灵敏度较高,而m型光路分辨率较高、杂散光性能更优。  常见的微型光谱仪一般是基于光栅分光,光谱仪的光学光路系统主要分为反射式和透射式系统,透射式系统光学系统体积较小并且光强较强,但在远红外到远紫外的光谱范围内缺少制造透镜所需要的材料,会导致测得的光谱曲线不准,因此现代微型光谱仪很少采用这种结构 反射式系统适用的光谱范围较广,虽然相比透射式系统光强较弱,但反射镜不产生色差,利于获得平直的谱面,成像镜选用反射镜能够保证探测器系统接收光谱的质量。所以市面上主要以反射式光路的光谱仪为主。  反射式光路中,目前光纤光谱仪市场,比较普遍采用的光路结构形式分为:基本型切尼-特纳(czerny-turner)光路结构(非交叉式)和交叉式切尼-特纳(czerny-turner)光路结构。基本型切尼-特纳(czerny-turner)光路结构因其形状酷似字母“m”,因此也常被称为m型光路结构,这便是m型光路的由来。  图 1基本型切尼-特纳(czerny-turner)光路结构,光路看上去像字母“m”,所以也称为m型光路。m型光路看上去也像阿拉伯数字“3”,因此奥谱天成m型光路光谱仪的名称均带有3(第三位数为3),如atp5030、atp5034、atp3030、atp3034   图 2 交叉式c-t光路结构示意图  光谱仪光路的光学性能,主要受数值孔径、球差、像散、慧差,及各种像差的综合性影响,从而决定了系统的光学灵敏度、杂散光和光学分辨率。  常见光谱仪采用球面反射镜,球差是必然存在的,球面镜无法使系统中各球差项相消,交叉式和m型光路都只能校准到一定的水平,球差是一种累加的方式。m型光谱仪可通过控制相对孔径来使球差小于像差容限,从而满足分辨率的要求,在设计中有选择的缩小m型光路的数值孔径可以比较明显的提高分辨率。如果想更进一步的消除球差影响,那么可以采用抛物面或者自由曲面的方式来进行优化设计,但是成本昂贵,加工难度大,所以目前并没有被市场接受。  交叉式切尼-特纳(czerny-turner)光路结构的慧差相对于m型光路来说有个相对突出的特点是,慧差可以被校准到一个比较理想的数值,并且得到的光谱斑点较为规整。具体体现在对交叉式结构分辨率的提升上。  m型光路在像散优化中具有明显的天然优势,可将像散校正到一个很低的水平。相反的交叉式切尼-特纳(czerny-turner)光路在像散的校准方面比较弱,使得该光路的光谱分辨率较低。  m型光路由于是一种相对对称的光学结构,杂散光会略微好于交叉对称型光路,但这并不会直接体现在两种系统的杂散光最终指标上。杂散光的抑制主要还是通过外部光学陷阱,内部采用吸光材质或者增加粗糙度来提高对漫反射光的吸收,最终达到消除杂散光效果。  交叉式切尼-特纳光路是由m型光路发展而来,我们通常认为交叉式光路是一种折叠式的光路,所谓折叠式就是在整体的结构尺寸和空间利用上有必然的优势,结构更紧凑合理。m型光路则是一种展开式光路,在整体的尺寸和空间利用上不及交叉式切尼-特纳光路。因交叉式光路最为紧凑,所以在微型光谱仪中通常采用的是就是这种交叉式光路。而针对于分辨率要求比较高的场合则更多的采用m型光路。  分辨率是光谱仪最重要的指标之一,从像差优化设计来看,m型光路像差优化效果更好,使得m型光路拥有更佳的分辨率,主要被用于高分辨率光谱仪中。而交叉式切尼-特纳(czerny-turner)光路则用于中低分辨率光谱仪中。表 1 m型光路和交叉式c-t型光路的对比  奥谱天成的光谱仪系列产品齐全,依据m型光路和交叉式切尼-特纳光路各自的光路特点和客户需求,设计了多款相应的仪器,各自均对应不同的应用领域:  l atp2000、atp5020、atp3040、atp5040采用了交叉型ct光路,重点突出结构的紧凑性和高灵敏度   l atp3030、atp5030、atp3034、atp5034采用m型光路,重点突出高分辨率和低杂散光。  狭缝50μm,光谱仪范围200-1000nm两者的分辨率对比。图3可观察到,m型光路整段分辨率表现为中间最好,两边逐渐变差 交叉型光路往长波方向分辨率逐渐变好。这部分的差异主要体现在设计优化中,可从设计中去调整不同的分辨率走势来达到设计的要求。图4中可看出,在520nm处两种不同光路的点列图情况,m型光路的rms半径值为11 μm,交叉型ct光路的rms半径值为98 μm。m型光路实际测试fwhm=1.3nm,交叉型光路实际测试fwhm=2.5nm。m型光谱仪分辨率明显好于交叉型光谱仪。在实际的使用和光谱仪选择中,客户可根据分辨率、杂散光、灵敏度、体积等几个指标有针对性的挑选相应的光谱仪,从而使得仪器与使用需求完美匹配。图 3 奥谱天成生成的atp2000和atp3030图 4 两种光路结构的分辨率rms spot radius对比,200-1000nm波长范围,从图中可以看出,交叉c-t型光路的光斑尺寸为75 μm,而m型光路的光斑尺寸仅为3.5 μm,m型光路的分辨率优于交叉c-t型 (a)交叉型ct光路(该光路应用于atp2000) (b)m型光路(该光路应用于atp3030)  图 5 200-1000nm光谱范围,两种光路结构在520nm处的分辨率对比,交叉c-t型光路为98.9 μm,m型光路为11 μm,可知m型光路的分辨率明显优于交叉c-t型 (a) atp2000交叉型ct光路 (b) atp3030m型光路表 2 奥谱天成采用m型光路的光纤光谱仪和采用交叉c-t光路的光纤光谱仪,型号的第三位数字为3的均为m型光路 型号首位数字为5、6的,探测器具有制冷。  图 6 奥谱天成的光纤光谱仪产品集
  • 神奇“光学扳手”让显微镜镜头更轻薄
    未来的显微镜、望远镜甚至相机镜头,或许不再需要复杂、笨重的镜头组,仅通过纳米级厚度的平面薄膜,便可完成光的聚焦、偏转等控制。 记者日前从中科院光电技术研究所(以下简称光电所)获悉,在国家973项目“波的衍射极限关键科学问题”课题支持下,该所微细加工光学技术国家重点实验室在国际上首次研究证实:利用光子自旋—轨道角动量相互作用的物理原理,“悬链线”可以对光产生稳定、可控的“扳手”作用。就是说用“悬链线”结构制造的光学器件,可不借助任何凹凸透镜,仅在“二维”平面上便可实现光的折射、反射,甚至让光旋转成任意姿态。 悬链线与抛物线、月牙线或者半圆线不同,是一条两端固定的链条在重力作用下弯曲形成的曲线。它在生活中随处可见,桥梁悬索、架空电缆、街道护栏铁链等都是悬链线结构。 科学家们发现,在诸多形式的悬链线中有一种“等强度悬链线”可以保持结构在不同位置受力一致。那么,它施加到光上的“力”是否也一致呢?在这种奇特的力学特性启发下,光电所团队用粒子束在厚度仅百纳米的平面金属薄膜表面,刻下纳米尺寸的“亚波长悬链线”连续结构,并证实了刻有这种悬链线“花瓣”的金属膜,在光束照射后,可产生稳定可控的折射、反射等光学现象。 该团队负责人杨磊磊介绍说,传统意义上光的折射、反射等相位变化,是由于透镜不同厚度产生,而厚度均匀的平面透镜不会产生光的相位变化。此次科学新发现,意味着利用“悬链线”构成的超薄纳米结构,能够在二维平面内实现对光的连续调控。 “如果把光比喻成行进的列车,过去的凹凸透镜如同依靠弯曲的轨道调整列车运行,而现在仅需扳动悬链线这个铁道岔口的‘扳手’,便可改变列车的前进方向。”杨磊磊介绍说,为进一步确认悬链线的“光学扳手”作用,研究团队还在平面金属薄膜上尝试刻制出不同形状的悬链线“版画”,并通过一种“花瓣状”的圆形排列阵列,产生了携带完美轨道角动量,呈螺旋式前进的“光漩涡”。而此前研究中,科学家们还曾将月牙形、抛物线形结构刻制在平面上观察光的折射、反射,结果证实仅有“等强度悬链线结构”具有稳定的光学相位变化。 “传统光学元件其厚度远大于波长,这就是为何天文望远镜、相机镜头需要不同大小的镜头组。但悬链线光学器件,可通过操作纳米级超薄结构的平移、缩放、旋转等,实现光的相位变化,其厚度远小于波长。”杨磊磊介绍说,未来基于悬链线构建的新型光学元器件,具有轻薄的特点,可广泛应用于飞行器、卫星等空间探测领域,手机、相机镜头等成像领域。 而这个受自然现象启迪的美妙光学发现,在电磁学、光通讯领域也让人充满遐想。杨磊磊说,按照光子自旋—轨道角动量相互作用的原理,悬链线还可拓展到包括微波、太赫兹、红外、可见光在内的大部分频谱范围,广泛用于各种电磁器件;而采用悬链线结构的光通信器件,可在同一波长上传输多路信号,提高光通信的频谱利用率,大大增加光通信的信息传输量。 上述研究成果在美国科学促进会创办的最新期刊《科学进步》上发表后,受到了国际光学界的广泛关注。《中国科学》对其点评认为,这一发现的证实,“证明了纳米悬链线可用于构建超薄、轻量化的光学器件,有望成为下一代集成光子学的核心”。
  • 湖南株洲抛弃死猪事件调查:这里的水羊都不喝
    “到昨天晚上为止,全省范围发现的抛弃死家畜的总量是605头(只)。”今天上午12时,湖南省畜牧水产局兽医局局长邓云波说,这其中包括猪、鸡、鸭等,地域范围则包括了湖南省所有天然水域、池塘和道路。  他认为,在网络上传得沸沸扬扬的株洲死猪事件“应该是个案”。  而对于湖南省株洲市天元区三门镇白石村村民张维亮等人来说,自3月14日以来湘江泄洪渠里的死猪让他们一周来都心烦不已。  “漂来”死猪白茫茫一片  村民肖某告知,13日就有人称,看到泄洪渠里飘着死猪。“开始大家都不在意,因为以前也有过。”  然而,当听说有几十头死猪时,很多人联想到饮用水的水质问题,纷纷跑去看个究竟。  被打捞起来的死猪几乎都被水浸泡得发胀,有很多苍蝇飞动,并从死猪身上发出令人作呕的恶臭,负责打捞、掩埋死猪的村民均带着手套和口罩。尽管如此,仍有村民会忍不住吐唾沫,有的村民一手捂住鼻子,一手将死猪拖上岸。  “我们都被臭味熏了一天了。”一名村民说。  村民说,他们从14日上午就开始打捞死猪,最大的有100斤左右,最小的是刚出生不久的猪崽儿,一共打捞了100多头。  14日中午,中国青年报记者在现场看到,三门镇白石村的泄洪渠,宽不过20米,经由三门镇白石村后,在村尾流入湘江。顺着旁边的小沟往下走,记者发现有十几个鼓鼓囊囊的蛇皮袋,里面包裹的是被水浸泡膨胀的死猪。  由于渠道里的水流量并不是很大,加上障碍物的阻拦,10来个鼓鼓囊囊的蛇皮袋以及一些死猪,就搁浅在了渠道的一段。  此时,十多名村民正在忙着打捞、掩埋死猪,有的已经用编织袋打好包。渠边臭气熏天。  死猪从何而来?  现场村民透露,这条位于三门镇境内的泄洪渠,五六年来就一直漂着死猪。  “这两天是下了雨,死猪都被冲到了下游,分散开了。要是在四五天前,渠道的渠坝里,一眼望去,是白茫茫的一片。”一名村民说,由于每年都发大水,很多死猪都被冲到了下游的湘江里。  昨日,他们在一个地方最多竟打捞起7头死猪,村民打捞起这些死猪后,在渠边挖下三四十公分深的坑,就地掩埋。  发现了这10几头死猪后,记者继续往下游走,还能发现一些零星散落、搁浅在渠道里的死猪。  初略统计,在泄洪渠下游短短的两三百米的渠道里,漂浮着的死猪数量,就达30头之多。  据村民介绍,白石村有1800余人,其中有七八百人住在泄洪渠沿线,他们的饮用水都靠打井抽取。大家都担心饮用水的水质受到影响和死猪造成细菌传播,因此,忙不停地打捞死猪和呼吁新闻媒体报道。  村民们说,泄洪渠道建成时设置了台阶,以前他们经常下去洗菜,但这两年,由于经常有死猪漂浮过来,他们根本不敢下水。到了下游,那里的水连喂鸭子都喂不得。  当地村民告诉中国青年报记者,这些死猪漂浮在河渠内,已经对水质造成了严重污染。他们知道这些死猪是当地的养猪户偷偷丢弃的,但因为抓不到丢弃死猪的人,也无可奈何。  家就在撇洪渠渠道边上、年近古稀的肖先生告知,据他观察,渠道里常年漂浮的死猪,都是上游的养猪户偷偷摸摸从桥上丢下来的。肖的说法得到了附近养猪户曹先生的证实。  他告诉记者,猪死后,确实应该深埋,进行无害化处理。但不少养猪户为了省事,在深更半夜的时候,偷偷就往河道里一丢。  他说,这样不负责任的养殖户并非少数。  据悉,由于三门镇泄洪渠位于株洲市饮用水源保护区的上游,对株洲市民饮用水安全构成了威胁,因而引起当地群众的高度关注。该镇副镇长刘耀华接受媒体采访时表示,泄洪渠内漂死猪的情况,对下游湘江水质或多或少会有影响。  据他介绍,整条泄洪渠全长4公里有余,其中绝大部分位于三门镇境内,只有下游300米的一段属于雷打石镇,因此,打捞的死猪,也绝大部分在三门镇境内。到14日下午4时左右,打捞工作已经结束,打捞的死猪共分装了二三十袋,并对泄洪渠也进行了消毒。  刘耀华说,三门镇是传统农业大镇,当地生猪养殖户很多,其中规模经营的有10多户。但是,一些养殖户法律意识和环保意识都很薄弱,只有少数养殖户建有污水处理池,养殖户们都习惯将病死猪丢弃在泄洪渠内。长期以来,一直有群众向三门镇政府反映这个问题,并且,镇政府工作人员下乡时也看到了泄洪渠漂死猪的现象。  “这里的水,羊都不喝”  在现场,中国青年报记者注意到,死猪打捞上来后,都被扔进了一个坑里。在用消毒粉初步消毒后,株洲市畜牧水产局动物卫生监督所的工作人员在死猪身上浇上汽油和柴油,经焚烧处理后,用挖土机对死猪进行了填埋。  株洲市畜牧水产局动物卫生监督所负责人称,他们挖的填埋坑有四五米深,用汽油柴油焚烧消毒,再用土填埋后,就不会再造成污染了。  然而,一波未平,一波又起。  继株洲市天元区三门镇白石村泄洪渠内漂死猪后,3月17日,株洲县渌江一水电站附近又出现大量死猪。  “我途经河边的时候看到的,有七八头死猪,已经腐烂并散发臭味。”爆料人李女士称,其在株洲县渌口镇渌江渌口水电站下游几百米处发现死猪,但没有相关部门到场处理,她便打电话给新闻媒体。  从渌江北侧距离渌口水电站约几百米处往西行约300米的路程,记者果然发现了李女士所反映的情况。初略数了一下,这一段江水中,共有13头死猪。其中,最大的约为80斤左右,最小的约10多斤。  在渌江南侧,岸边也漂浮着约20多头死猪。死猪大多用纤维袋盛装,不少已严重腐烂,只剩部分身躯。有人担心:死猪漂浮处不到1公里的地方就是株洲县自来水厂,这么多死猪漂在水中,会影响水质吗?  在渌江南侧开办黑山羊养殖场的一个村民说,每天到江边放羊,他都不敢让羊接触江水。40多只山羊的饮用水,是家里水井的水。  他说,每年到开春涨水时段,便会有死猪从渌江上游漂浮下来。待发电站开闸,再流向下游水域,而大部分会被冲到水电站下方。每到这个时节,死猪腐化的恶臭味就会从江面上飘来,晴天时“只能捂着鼻子经过”。  当天下午,株洲市动物卫生监督所、渌口镇动物卫生防疫站的工作人员赶到了现场,组织人员开始打捞江水中的死猪。  根据已经打捞的情况,尚未发现带耳标的死猪,所以,死猪来源暂时查不清楚。  据了解,3月18日上午,株洲县动监所、渌口镇和南阳桥乡动物卫生防疫站等相关部门组织人员,将水电站附近的死猪清理完毕后,又乘船前往水电站上游水域进行了巡视。从株洲县与醴陵市的水段分界处到水电站的几公里范围内,工作人员又沿岸打捞了37只死猪,并统一进行了无害化处理。  株洲自来水公司新闻发言人表示,在加强了对水质的监测后,无论是进厂的水还是出厂的水,水厂的水质都合乎国家标准。  无害化处理补贴为何未落实  据株洲市畜牧兽医水产局通报的情况,自3月14日起,株洲市共打捞和无害化处理死猪113头,其中3月14日在株洲市郊区三门镇白石村和雷打石镇盘石村共1.5公里的泄洪渠内,打捞整头或装有零散内脏的编织袋30个,3月17日在株洲县渌口镇电站旁打捞出73头,3月18日在雷打石镇建强村一水塘里打捞出10头死猪。  经排查,目前在株洲还未发现有重大动物疫病和大面积的死猪现象。  该局表示,从3月18日起,株洲市畜牧兽医水产局在株洲市开展病死猪专项整治,截至3月22日,除进行专项排查、追根溯源,加强宣传和无害化处理资金下拨外,最关键的是要求株洲市500头以上的规模养殖户必须建有化尸池,50头至500头养殖规模的,有条件的也要建化尸池。  据了解,3月14日,株洲市动监所在三门镇处理死猪时,发现两枚编号和二维码都很清晰的耳标,目前,已查明其中一枚耳标来自娄底新化,并已建议湖南省动物卫生监督所督促新化县协助调查。  这一说法立即在网上引起热议,有网友对死猪来源提出质疑:位于湖南中部的娄底市新化县不在湘江流域,境内也无河流流向事发泄洪渠,难道是“猪的奇幻漂流?”  20日上午,湖南省畜牧水产局办公室主任伍深树和兽医局局长邓云波则表示,这样的事件并非不可能。因为耳标是塑料制品,浸泡在水里是不会损坏的,其来源自然可循此追查。  两人怀疑,可能是仔猪贩运后到的株洲。  邓云波告诉中国青年报记者,湖南省畜牧水产局已在全省范围内调查类似事件,并进行日报告制度。截至19日晚,湖南全省共上报死猪、禽等605头(只)。他们推断,在年出栏近8000万头猪的湖南省,株洲的事件仅是一起大的个案。  他们说,就生猪养殖而言,已经是一个“资金+技术”的活,且承受风险能力较弱。没有一定规模的养殖和专业技术,生猪的存活率、养殖户的效益都难以维持。从一定程度上说,散养户乱抛弃死猪的比例会上升。  上述人士建议,国家应将农村无害化处理设施的建设,纳入新农村建设的规划中。  然而,中国青年报记者在采访中发现,很多农户反映,国家政策中规定给予养殖户80元/头的死猪无害化处理补贴没有到位,是导致乱扔和丢弃病死猪的主要原因。  株洲市天元区雷打石镇磐石村一村民称,处理死猪要挖坑填埋,还要买消毒用品,成本算起来要花上数十元/头。许多养殖户不愿费这个气力。“如果有补贴,肯定不一样。去年确实开始统计相关的数量,但后来就没有了下文。”  记者查询资料得知,2012年4月,农业部办公厅下发了《关于进一步加强病死动物无害化处理监管工作的通知》,通知中提到,2011年7月,国家出台政策,对年出栏50头以上生猪规模养殖场无害化处理的病死猪,给予每头80元的无害化处理补助经费。各地畜牧兽医主管部门和动物卫生监督机构要广泛宣传,积极引导养殖者,用好这项政策,发挥其在推动病死猪无害化处理方面的重要作用,促进生猪生产持续健康发展,保障动物产品质量安全。  对此,湖南省畜牧水产局办公室主任伍深树和兽医局局长邓云波解释道,钱没有拨付,并非政策没有执行。  他们说,这项补贴是采取中央拨付50元/头、地方予以配套30元/头的方式进行,主要是给予养殖户在建立无害化设施和消毒等方面的补贴,并非是对养殖户经济损失的补偿。而相关文件规定,是每年的11月16日上报,要1年才能到位。对于年出栏50头以上的养殖户来说,在进行无害化处理、当地畜牧水产部门审核、上报后,上级予以拨付,才能发放。而这一流程走完,农户需要等待一段时间。  采访中,记者曾接到有人反映,称有养殖户往饲料中添加有机砷,以图出栏猪有好的卖相。他们认为,猪吃了以后易得病死亡,同时也容易给食用者带来危害。  伍深树就此表示,这是一些人的误读。因为有机砷是饲料中必配的,人和动物均需要。对于配置的剂量,国家有严格的标准。从监管方面来说,农业部门的饲料管理方会对企业、市场、养殖场、肉产品存留等方面抽查监控。国家农业部门每年都要组织各省异地抽查几次,省里也进行交叉检查,来保障安全。  但对这些元素在肉制品中使用后对人体的影响,他表示要由卫生部门判断。  邓云波则表示,畜牧部门去年强力查处各类违规事件1000多起,六七起案件的犯罪嫌疑人受到刑事处罚。“但对这种抛弃死猪的行为,恐怕难以追究刑责。”  他说,正在拟订调整的育肥猪保险,可能对改变养殖户的行为有较好的促进作用。按照以往的规定,养殖户投保的猪死亡,可以获得500元/头的赔付。原来,保费的支付是国家、省市占40%,农户出60%,为了调动农户投保的积极性,湖南省有关部门正在协商,拟降低农户的投保费用比例。
  • 背照式CMOS图像传感器工艺中_硅晶圆背面抛光的新技术!
    新加坡科技研究局微电子研究所Institute of Microelectronics Agency for Science的Venkataraman等人与奥地利Nexgen Wafer Systems公司以及新加坡格罗方德公司GlobalFoundries的工程师组成研究团队,共同开发出一种新的晶圆背面抛光技术。在光检测与测距(LiDAR)等各种应用中,背照式三维堆叠CMOS图像传感器备受该领域专家们关注。这种三维集成器件的重要挑战之一,是对单光子雪崩二极管(SPAD)晶圆的精确背面抛光,该晶圆与CMOS晶圆堆叠,晶圆背面抛光通常通过背面研磨和掺杂敏感湿法化学蚀刻硅的组合来实现。研究团队开发了一种湿法蚀刻工艺,基于HF:HNO3:CH3COOH定制化学试剂,能够在p+/ p硅过渡层实现蚀刻停止,掺杂剂选择性高达90:1。他们证明了全晶圆300mm内厚度变化仅约300nm的可行性。此外,也对HNA蚀刻硅表面的着色和表面粗糙度进行了表征,最后,提出一种湿法锥蚀方法来降低表面粗糙度。该研究成果发表于2023年5月30日至6月2日在美国佛罗里达州奥兰多召开的第73届电子组件与技术会议(ECTC)上。论文录用日期为2023年8月3日,并被IEEE Xplore 收录。这项突破将有可能推动背照式CMOS图像传感器在汽车智能驱动等领域的应用。
  • 康师傅泡面含重金属
    据台媒报道,正当台湾“黑心油”事件闹得沸沸扬扬之际,有岛内杂志13日公布最新检测结果,台湾市面售卖的各个名牌泡面的油包居然都含铜、铅、砷、汞等重金属,不仅台产泡面遭殃,连韩国泡面也中枪。据13日出版的《今周刊》报导,有台湾油品业者向周刊爆料称,“黑心油”只是成分实不实在而已,但食品大厂泡面里的油包,到底用什么油和配料做的,问题才大!  周刊随即在市面购买深受台人喜爱的“维力炸酱面酱料罐”及“康师傅香辣牛肉面”,送SGS台北食品实验室检验后发现,泡面油包居然含有铅、砷、铜、汞等重金属。为求谨慎周刊再采买了“统一肉燥”等10款罐装调味酱,以及“韩国辛拉面”等6款泡面各40包。  检测报告发现,在泡面油包部分,除了“味王原汁牛肉汤面”油包仅含微量的铜,“五木香葱拌面”油包含有砷、铜外,其余包括“康师傅香辣牛肉汤面”、“韩国辛拉面”、“统一老罈酸菜牛肉面”和“味丹味味A排骨鸡汤面”,皆被验出砷、铅、铜3种元素,而台湾热卖的“阿舍客家板条”则是除了上述3种重金属外,还被验出汞。  其中“统一老罈酸菜牛肉面”酱包的含铜及铅量最高,分别达1.73ppm(百万分之一)和0.222ppm,含砷量最高的则是“韩国辛拉面”,数值为0.532ppm。不过,由于目前台湾并未对泡面的油包订定出重金属剂量的标准,因此,暂无法判定是否超量。  而被检测的泡面厂商皆口径一致地强调,这些重金属元素皆普遍存在于环境与食物中,因此泡面油包制造所需要的植物蔬果、油脂等原料,自然就含有微量的重金属元素。  不过,台湾消费者文教基金会委员朱槿梵表示,虽然铜为生命活动所需的微量元素,但其余诸如汞、铅、砷等并非身体所需的营养成分。尽管食品里难免存在些有毒重金属,然而只要超过一定浓度,都会干扰正常的生理功能,严重时还会导致基因突变而造成癌症。  台湾是全球生产泡面最多的地区之一,据调查指出,台湾人一年足足要吃掉4.6亿包泡面。同时,大陆是全球泡面最大市场,一年市值500亿人民币,台湾泡面更已经成为大陆民众最爱的泡面品牌,如果失掉大陆市场,那台湾泡面将面临绝境。  “如果康师傅的油有问题,那他的方便面,我都不吃了。”据旺报引述上海计程车司机王先生说,上海人“比较怕死”,当地有很多品牌可以选择,价格不是重点。  台湾卫生福利部食品药物管理署食品组长蔡淑贞表示,重金属在大环境都会有,还是得从前端原料控管,有关这次检验结果,食品组将持续追查 并计划于明年全面检视及监测各类食品中重金属的含量,且依据研究成果修正相关标准。
  • 盘点我国大科学装置中的那些知名专用研究设施
    1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》。其中提出了要落实《国务院关于国家重大科研基础设施和大型科研仪器向社会开放的意见》这些重大科研基础设施就是常说的大科学装置。随着世界科学技术飞速发展,科学研究的规模不断扩大、内容不断深化,科学研究对其所依赖的实验条件有了更高的要求。大科学装置就是为满足现代科学研究所需的能量更高、密度更大、时间更短、强度更高等极限研究条件而产生的。大科学装置作为国家科学技术水平和综合实力的重要体现,对国家科学技术的发展具有重要的推动力。按不同的应用目的,大科学装置可分为三类:专用研究装置、公共实验平台和公益基础设施。本文特为读者介绍其中的那些知名的专用科研设施。500口径球面射电望远镜(FAST)500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope),简称FAST,位于贵州省黔南布依族苗族自治州平塘县克度镇大窝凼的喀斯特洼坑中,工程为国家重大科技基础设施,“天眼”工程由主动反射面系统、馈源支撑系统、测量与控制系统、接收机与终端及观测基地等几大部分构成。500米口径球面射电望远镜被誉为“中国天眼”,由我国天文学家南仁东先生于1994年提出构想,历时22年建成,于2016年9月25日落成启用。是由中国科学院国家天文台主导建设,具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜。综合性能是著名的射电望远镜阿雷西博的十倍。神光Ⅱ高功率激光实验装置神光Ⅱ高功率激光实验装置(简称神光Ⅱ,包括八路装置和第九路两大部分)是目前国内已经投入正式运行的规模最大的高功率钕玻璃激光实验装置,也是我国目前唯一能够提供开放研究的高功率激光实验装置。它能在十亿分之一秒的瞬间发射出功率相当于全球电网总和数倍的激光束聚集到靶上,形成高温等离子体并引发聚变,进而开展激光与等离子体相互作用物理和惯性约束聚变(ICF)实验研究。自2000年以来,神光Ⅱ以我国激光聚变历史上从未有过的高质量、高稳定、高重复性提供了几十种复杂物理目标和靶型的实验打靶近6 900余次。近年来全年运行平均成功率超过90%,已经大幅超过装置原定70%的技术指标,实现了我国激光驱动器运行水平的重大提升,成为我国大科学工程中高效、稳定运行的范例。大亚湾反应堆中微子实验该设施为基础研究专用设施,依托本设施成立的国际合作组开展了长期的国际合作。主要功能是探测反应堆放出的中微子,计算中微子振荡参数及反应堆能谱。主要技术指标为:中微子探测器靶质量 ≥ 20吨 靶质量精度 0.2%。南京航空航天大学风洞实验群该设施是国内高校最大规模的风洞实验群,现有2.5m×3m单回路连续式低速风洞一座,1m开口非定常低速风洞一座,0.6m×0.6m亚跨超高速风洞一座,Φ0.5m高超声速风洞一座。另外还有多座小口径低湍流度、射流风洞、进气道专用风洞以及各种流动测试设备,完成了大量型号任务的风洞实验和实验技术发展,为飞行器设计专业的学生提供了良好的教学实验条件。同时还有拥有Cluster并行机系统,完成了大量飞行型号的空气动力学数值计算任务。现有实验室面积10000多平方米。 中渔科212中渔科212主要用于长江口及临近水域渔业资源评估、走航式流场分析、渔场形成机制与预测辅助、水文数据及影像实时监测、长江口濒危野生水生动物的救护暂养以及珍稀水生动物后备亲本的暂养。大型高精度衍射光栅刻划系统这款仪器位于长春光电所,其最大刻划面积为400x500mm的平面衍射光栅刻划系统,最大检测口径为400x500mm的光栅衍射波前测量仪、光栅衍射效率测量仪和光栅鬼线强度测量仪。长春光机所是中国光栅的发源地,也是国内研制光谱仪器最早的科研单位之一。2007年,科技部批复同意以长春光机所为依托单位组建“国家光栅制造与应用工程技术研究中心”(简称“国家光栅工程中心”)。船用小型燃气轮机技术实验平台辽宁省船用小型燃气轮机技术重点实验室是在交通运输部“十一五”重点实验室建设项目“轮机系统与船舶新动力实验室—船用燃机与新型动力分实验室”、“211工程”三期重点学科建设项目“船用小型燃气轮机技术及实验平台”和交通运输部“十二五”轮机工程国家重点学科建设项目的基础上建设和发展而成的学科实验室,并于2010年8月被批准组建辽宁省重点实验室。实验室依托于大连海事大学船舶与海洋工程一级学科博士点和轮机工程国家重点学科、动力机械及工程学科及大连海事大学船舶动力工程研究所,已成为基础与前沿课题研究和高层次人才培养的重要基地。300吨级渔业资源调查船科学调查船将主要承担南海海域的渔业资源与环境的常规、专项和应急调查监测、海洋综合调查和研究、涉外海域渔业资源环境调查、双边或多边渔业资源联合调查、负责捕捞技术研究、渔业资源养护等任务,开展复合渔场单鱼种渔业生态特征、高效生态渔具渔法、鱼类洄游规律、渔场形成机制、渔业资源时空变动规律等研究,为南海渔业资源养护与管理、对外谈判、生态环境修复和渔业资源可持续利用等提供支撑平台。 主要技术指标:船长42.8米,型宽8米,型深5.2米,最大航速12.5节,经济航速12节,续航力4000海里,自持力30天,满足近海航区要求。调查船设置3个实验室:综合实验室、海洋生物实验室、渔业声学实验室。新一代厘米-分米波射电日像仪(MUSER)新一代厘米-分米波射电日像仪(MUSER)是国际上首个太阳宽带动态频谱成像系统,由100个抛物面天线组成三螺旋阵列,能对太阳爆发进行类似CT扫描一样的全日面快速频谱成像观测。是国际上首个太阳宽带动态频谱成像系统,实现了在百毫秒量级时间分辨率上同时584通道对太阳的快速连续观测,最高空间分辨率优于2角秒,完成了对太阳爆发初始能量释放区高分辨射电频谱成像观测。“探索一号”海洋综合科学考察船探索一号”,船舶满载排水量为6250T,船长94.45M,型宽17.9M,无限航区,配置DP2动力定位系统,续航能力大于10000海里,自持力超过60天,船艏采用X-BOW造型设计,在我国尚属首例,上层建筑设计为全封闭包围式,提高其耐波性,减少甲板上浪。 “探索一号”还具有充分的深海科考作业能力,建有地质实验室、地球物理实验室、化学实验室、生物实验室、冷冻样品库等十多个实验室,另在甲板面设置2个可拆卸式移动实验室,能同时搭载60名船员、科学家及潜航员。全超导托卡马克核聚变实验装置(EAST)全超导托卡马克核聚变实验装置装置,其运行原理就是在装置的真空室内加入少量氢的同位素氘或氚,通过类似变压器的原理使其产生等离子体,然后提高其密度、温度使其发生聚变反应,反应过程中会产生巨大的能量。2009年,世界上首个全超导非圆截面托卡马克核聚变实验装置(EAST)首轮物理放电实验取得成功,标志着我国站在了世界核聚变研究的前端。2016年2月,中国EAST物理实验获重大突破,实现在国际上电子温度达到5000万度持续时间最长的等离子体放电。2018年11月, EAST实现1亿摄氏度等离子体运行等多项重大突破。天马望远镜天马望远镜作为主力测站先后参加并成功完成了探月工程嫦娥二号、三号卫星的VLBI测定轨任务,大幅提高了VLBI系统的测量能力,为探月系列卫星的VLBI测定轨做出了卓越贡献。今后数年内,将作为主力测站继续参加国家深空探测重大任务。 天马望远镜成功开展谱线、脉冲星和VLBI的射电天文观测。探测到了包括长碳链分子HC7N在内的许多重要分子的发射和一些新的羟基脉泽源,探测到包括北天周期最短毫秒脉冲星在内的一批脉冲星,发现了目前研究热点-银心磁星具有周期跃变现象等,取得重大射电天文观测成果,已实现了对外开放。蛟龙号载人潜水器“蛟龙号”载人潜水器,可运载科学家和工程技术人员进入深海,在海山、洋脊、盆地和热液喷口等复杂海底进行机动、悬停、正确就位和定点坐坡,有效执行海洋地质、海洋地球物理、海洋地球化学、海洋地球环境和海洋生物等科学考察。可搭载海洋仪器设备、传感器在海底进行规范化海试,并获取原位数据。 “蛟龙号”载人潜水器,长、宽、高分别是8.2米、3.0米与3.4米,空重不超过22吨,最大荷载是240公斤,最大速度为每小时25海里,巡航每小时1海里,当前最大下潜深度7062.68米,最大工作设计深度为7000米。大天区面积多目标光纤光谱天文望远镜大天区面积多目标光纤光谱天文望远镜(LAMOST)是一架横卧南北方向的中星仪式反射施密特望远镜。应用主动光学技术控制反射改正板,使它成为大口径兼大视场光学望远镜的世界之最。由于它口径达4米,在曝光1.5小时内可以观测到暗达20.5等的天体。而由于它视场达5°,在焦面上可放置四千根光纤,将遥远天体的光分别传输到多台光谱仪中,同时获得它们的光谱,成为世界上光谱获取率最高的望远镜。它将安放在国家天文台兴隆观测站(右图为效果图),成为我国在大规模光学光谱观测中,在大视场天文学研究上,居于国际领先地位的大科学装置。兰州重离子加速器兰州重离子加速器是中国科学院近代物理研究所负责设计和建造的我国第一台大型重离子加速器系统。它的胜利建成,为我国开辟了中能重离子物理基础研究和应用研究的新领域,标志着我国回旋加速器技术水平进入了国际先进水平,也是激励广大青少年学科学、爱科学、强素质,早成才的生动课堂。HIRFL由离子源、注入器、主加速器、8个实验终端以及束流运输线等主要部分组成,注入器是一台改建的能量常数为69的1.7米扇聚焦回旋加速器,主加速器是一台能量常数为450的大型分离扇回旋加速器。注入器与主加速器联合运行,可以把C到Xe的重离子分别加速到100~10MeV/u的能量。中国散裂中子源散裂中子源是体现一个国家的科技水平、经济水平和工业水平等综合实力的大型科学研究装置。中子散射广泛应用于在物理、化学、生命科学、材料科学技术、资源环境、纳米等学科领域,并有望在如量子调控、蛋白质、高温超导等重要前沿研究方向实现突破。强流质子加速器相关技术的发展也将为一些重要的应用如质子治癌、加速器驱动的次临界洁净核能源系统(ADS)等打下坚实的基础,储备丰富的工程建设和运行经验。散裂中子源的建设不但会对我国工业技术、国防技术的发展起到有力的促进作用,也会带动和提升众多相关产业的技术进步,产生巨大的社会经济效益。
  • 2010中国国际物联网大会在沪举行
    物联网将是在全球信息通信行业又一个万亿元级别的产业,到2020年之前,全球接入物联网的终端将达到500亿个。“物联网”已被正式列为国家重点发展的五大战略性新兴产业之一。  作为中国首个物联网全产业链大会,“2010中国国际物联网大会”暨第三届上海通信发展论坛近日在沪举行。上海市副市长艾宝俊、中国互联网协会理事长胡启恒出席会议并致辞。  物联网作为一个新兴产业,目前还处在起步阶段。与会专家认为,发展物联网突出的障碍,包括技术标准还在制定之中、商业模式不够成熟、产业链尚未形成、配套的法律法规及政策亟待出台。  有关专家认为,中国的物联网发展,不会是齐头并进式,而最可能先在北京、上海等市场需求较大、通信网络完善、信息化发展水平较高、科研能力较强、高端制造业实力较为雄厚的地区得到发展,并对其他地区形成示范效应,逐步向其他地区发展。  “物联网将改变人类的未来生活”,这种让人倍感新奇的信息技术已经应用在世博园区的四周——由中国科学院微系统所自主研发的“电子围栏”正为3.28平方公里的世博会围栏区提供24小时防护,其作用抵得上成百上千名保安、警察的轮番值守。  中国科学院院士王曦说,“物联网”是个俗称,它的专业名称是“无线传感网络”。早在10年前,上海微系统所便开始启动研究,至今一直保持着与世界同步的发展势头。貌不惊人的“电子围栏”为世博园区架起了一张隐形保护网:红外、震动等各种传感器时刻感知并辨别着各种入侵——是大风吹落的树叶,还是游客的无意碰触,或是恶意闯入?它能一一区分 微型雷达侦探低空抛物的入侵 另一些传感器埋在地下,随时监听着挖掘的声音,防止地下入侵……  尽管“电子围栏”此前已在浦东国际机场“上岗”,但“无线传感网络”的应用还是世博历史上的第一次。“利用物联网技术建设‘智慧上海’,将是今后上海发展的重要一招。”王曦说。  有关专家认为,虽然应用方面有个渐进的过程,但物联网将与互联网一样改变人们的生活方式。一些国际权威机构的预测称,到2020年,物物互联的业务将是人人互联业务的30倍。  1999年,美国Auto-ID首先提出“物联网”概念,主要是建立在物品编码、RFID技术和互联网的基础上。2005年,国际电信联盟(ITU)发布的《ITU互联网报告2005:物联网》中,正式提出了“物联网”概念,报告指出世界上所有物体从轮胎到牙刷、从房屋到纸巾都可以通过因特网主动进行交换。  在物联网时代,通过在各种各样的日常用品上嵌入一种短距离的移动收发器,人类在信息与通信世界里将获得一个崭新的沟通维度。  在我国的物联网建设及发展中,在相当一段时间内,中国电信、中国移动、中国联通三大电信运营企业仍将扮演主要角色。  发展物联网,将会对现有的一些法律法规政策形成挑战,例如信息采集的合法性问题、公民隐私权问题等等。专家认为,这些情况需要政府尽快制定相应的“游戏规则”。
  • 一文看懂不同材料如何使用氧化铝抛光液抛出理想表面!
    铝合金、镁合金、硬钢、软钢、陶瓷涂层,印刷线路板?这么多种类材料的金相样品制备,精细磨抛如何用氧化铝抛光液抛光?只知道一般情况,末道工序要使用0.05μm的氧化铝抛光液。但是需要抛光多长时间呢?加载力是多少N呢?是否需要加水?......。对于刚入行的金相小白,对如何使用氧化铝抛光液抛光还真是一头雾水,有点懵圈......,只有恰当使用氧化铝抛光液抛,才能快速抛光出理想表面!可脉检测小编让您一文看懂,不同材料如何使用氧化铝抛光液抛出理想表面,希望能帮到你。在氧化铝抛光液的家族中,粒度径有0.05μm、0.3μm和1μm等多个粒度径型号,其中0.05μm的使用较多,主要用于金相样品的末尾一道抛光工序,可有效去除微小划痕,理想再现材料的微观组织形貌。依据各种类材料的性质不同,氧化铝抛光液在使用方法上略有差别。小编依据日常实验经验,整理出常见材料制备时的具体使用方法,列表如下:以上是0.05μm氧化铝抛光液,在对不同材料样品抛光时的使用方法,供大家参考。温馨提示:1、抛光过程中,当磨盘相对转数500转以上快速抛光时,则需要添加抛光冷却润滑液或者 水。 添加时,注意流速要慢些再慢些,以确保氧化铝磨料颗粒不被水流冲离抛光布而造成浪费。2、对于易氧化的材料,千万不可加水,换成酒精作为冷却润滑剂是不错的方法。介绍这么多对氧化铝抛光液的使用方法,你看懂了吗?如有疑问可随时联系可脉检测的应用工程师咨询。
  • 不认识质谱四太子?你可能学了“假”化学!
    二十一世纪,对于质谱大师们而言,是一个值得庆贺的时代。但是对于一百多年以前的研究人员和学者而言,这项分析技术的诞生足以让他们感到振奋不已。  在质谱技术刚刚出现的十几年里,有四位科学家做出了重大贡献,他们四人一时之间霸占着质谱领域发展的头版位置,这四位“质谱太子”被这种新技术不断激励,年复一年的刷新着数据的准确率和分辨率。  正是威廉维恩(Wilhelm Wien)发现了正电荷粒子射线在强大磁场作用下会发生偏转,从此质谱技术向人类敞开了大门。维恩测量了正电粒子束在磁场作用下的偏移,并得出阳极射线由带正电的粒子组成,并且它们不比电子重的结论。大约20年后维恩所使用的方法在形成了质谱学,实现了对多种原子及其同位素质量的精确测量,以及对原子核反应所释放能量的计算。  约瑟夫约翰汤姆森(J.J. Thomson)捕获到了感光板上偏移射线的抛物线图。《英国皇家学会学报A》在1913年经同意后再版发布了约瑟夫约翰汤姆森的研究,名为:Bakerian Lecture: rays of positive electricity。  在威廉维恩发现磁场对正电粒子的偏移作用后,约瑟夫约翰汤姆森(J.J. Thomson)发现沿x轴移动并以适当角度撞击平面的正电粒子在y轴平行电磁力的作用下会发生偏移。而质荷比的不同决定了射线偏移情况的不同,并导致其撞击到平面上位置的不同。  射线撞击到平面上的轨迹为一条抛物线,为了捕获到这些信息,汤姆森试图让射线降落到感光板(一块涂有硫化锌的小玻璃片)上。他对粒子同时施加一个电场和磁场,并调节电场和磁场直至造成的粒子的偏转互相抵消,让粒子仍作直线运动。  这样,从电场和磁场的强度比值就能算出粒子运动速度。而一旦确定速度后,单靠磁偏转或电偏转就可以测出粒子的电荷与质量的比值。汤姆森用这种方法来测定“微粒”电荷与质量之比值。  汤姆森还得到另外一个关键发现:在最纯净的氖气体中存在两种带电粒子的抛物线,一个对应的原子重量为20,另一个是22。依据当时的技术他还无法做出解释,但不久后他的发现被认为是有史以来第一次暗示稳定元素存在同位素的可能。  约瑟夫约翰汤姆森自己也承认即使他的诸多科学发现具有重大意义,但是他所使用的技术是非常有限的。实际上,一些射线撞击到射线管内壁上会产生“金属灰尘”,因此射线管需要经常清理,而且感光板上的抛物线的强度有时候不足以得到准确的测量结果。  弗朗西斯阿斯顿(Francis Aston)为了提高抛物线信号的强度,毅然决然的自愿接受实验挑战。他设计了一种仪器,可以将射线汇聚到一起,这种射线可以撞击焦平面的一个具体点位。阿斯顿设计的仪器有两条平行缝隙,在两块电磁充电板的作用下,这两条缝隙可以汇集射线,以此来模拟光学透镜的聚焦效果。  这就是质谱仪的雏形。这台仪器不仅拥有更好的测量强度和准确度,而且和汤姆森的仪器相比,阿斯顿的仪器分辨率也更大。阿斯顿使用自己的摄谱仪解决了之前关于氖气悬而未决的问题,成为历史上第一个证明稳定元素存在同位素的科学家。  弗朗西斯阿斯顿在剑桥大学的实验中。1922年诺贝尔化学奖给予他发现同位素的贡献。  在质谱仪诞生的第一段里程碑中,另外一个值得我们注意的就是在美国芝加哥大学亚瑟登普斯特(Arthur Dempster)为质谱技术的发展做出的重要贡献。  登普斯特的摄谱仪其实指的是一台磁扇形分析器(magnetic sector analyzer),这是一种使用超强磁场将离子束偏转角度控制在180° 范围内的磁分析仪器。这台仪器可以将一定质荷比的光束集中穿过一道狭窄的缝隙。  这种仪器免去了使用感光板所带来的不便,可以使用静电计对离子束进行实时的检测。登普斯特也开创了使用电子轰击法产生正离子的先河。  登普斯特的这两项发明在业内引起来极大的反响,从他开始,质谱仪才有了名正言顺的身份,他发明的仪器也成为后来商用仪器的原型。  在测定元素同位素丰度和质量方面,邓普斯特和阿斯顿也做出了重要的工作。他们发现铀原子分裂时会释放巨大的能量,在第二次世界大战即将爆发之际,他们打算使用裂解高纯度铀的方法制造威力强大的武器——原子弹。  在十九世纪四十年代,阿尔弗莱德O. C.尼尔(Alfred Otto Carl Nier)首次使用质谱仪制备出了纯净的铀235和铀238,并确定铀235与慢中子的裂变有关。其实这项分离铀235的实验就是所谓的“曼哈顿计划”。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制