红外光测量

仪器信息网红外光测量专题为您提供2024年最新红外光测量价格报价、厂家品牌的相关信息, 包括红外光测量参数、型号等,不管是国产,还是进口品牌的红外光测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外光测量相关的耗材配件、试剂标物,还有红外光测量相关的最新资讯、资料,以及红外光测量相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

红外光测量相关的厂商

  • 400-860-5168转2255
    杭州谱镭光电技术有限公司(Hangzhou SPL Photonics Co.,Ltd)是一家专业的光电类科研仪器代理商,致力于服务于国内科研院所、高等院校实验室、企业研发部门。我们代理的产品涉及光电子、激光、光通讯、物理、化学、材料、环保、食品、农业和生物等领域,可广泛应用于教学、科研及产品开发。 我们主要代理的产品有:微型光纤光谱仪、中红外光谱仪、积分球及系统、光谱仪附件、飞秒/皮秒光纤激光器、KHz皮秒固体激光器、超窄线宽光纤激光器、超连续宽带激光器、He-Ne激光器、激光器附件及激光测量仪器、光学元器件、精密机械位移调整架、光纤、光学仪器、光源和太赫兹元器件等。
    留言咨询
  • 成都艺光仪器有限公司致力于为用户提供优质专业的服务! www.artoptics.com.cn 我们不仅提供国内的光学元件,还提供国外的光电仪器,更能根据客户需求提供综合解决方案。我们的产品,包括光学元件类,光机电类,光电检测仪器类,镀膜测试类等。广泛用于科研院所,高校,平板显示企业,3c,汽车,通讯和半导体等。 我们会努力提高产品品质,完善我们的服务,与用户共同成长!主要产品:一、光学元件(标准光学镜片、高功率激光镜片、定制光学元件、偏振元件)二、红外光学材料、镜片、光学器件三、光机械部件(压电电控平台、光学防震桌、光学调整架、手动位移台、光机组件等)四、光源(氙灯,卤素灯,均匀光源,led灯等)五、光学测量仪器:积分球,反射板,功率计、能量计,光谱仪,电学设备等六、智能智造:提供自动光学检测机,缺陷检测系统,IVL,lifetime测试系统等七、相机及成像镜头(定焦/远心/线扫/变焦变倍/特殊定制镜头)、照明光源 成都艺光仪器有限公司,秉承“全面 准确 高效”的原则,竭诚为国内广大用户提供专业咨询以及快捷、优质、完善的技术支持服务。
    留言咨询
  • 聚光科技近红外事业部 聚光科技近红外事业部(北京英贤仪器有限公司)是北京市科委认定的高新技术企业。公司以光谱仪器及各类分析软件的研发、制造、销售、服务为一体,是国内专业提供成套近红外光谱分析技术的单位,生产的系列近红外光谱仪多次荣获BCEIA金奖,广泛应用于石油化工、食品、医药、科研和教育等领域. 公司秉承“诚信求实、科技创新、团结奋进、共创辉煌”的企业发展宗旨,先后与中国石化石油化工科学研究院(RIPP)、清华大学、中国疾病预防控制中心、中国农业大学等多家科研院校合作,组成强大的分析专家队伍,为用户提供应用方法和技术咨询服务。 2007年3月1日,英贤仪器与聚光科技强强联合,英贤仪器正式成为聚光科技旗下子公司.我们共同立足于国内分析界的最新科研成果,着眼于国际一流的设计加工与生产方式,将建成国内技术含量高,涵盖仪器广,综合实力强的分析仪器研发生产基地。我们愿与国内外分析界的朋友建立起广泛的合作,为推动我国分析仪器及技术的发展做出贡献。 聚光科技.中国北京英贤仪器有限公司北京市丰台区南四环西路188号总部基地12区25、26号楼(100070)tel:010-63706564 0571-85012136fax:010-63706565http://www.sinonir.com.cn e-mail: nir@fpi-inc.com 聚光科技,总部位于中国杭州,是世界领先的环境与安全检测分析仪器供应商,拥有国际一流的研发、营销、应用服务和供应链团队,致力于业界最前沿的各种分析检测技术研究与应用开发,提供满足全球市场需求的高端分析测量仪器、完善的行业应用解决方案和售后服务。 聚光科技为客户提供环境监测、食品安全、工业安全、公共安全等领域完整的分析检测及信息化管理整体解决方案。产品广泛应用于环保、冶金、石化、化工、能源、食品、农业、交通、水利、建筑、制药、酿造、航空及科学研究等众多行业。主打产品在国内市场居于领先地位,并出口到美国、日本、英国、俄罗斯等二十多个欧美发达国家。 创新是聚光科技不断前进的根本保障。通过自主创新,聚光科技拥有相关产品全世界最多的发明专利,并承担国家标准和国际标准的制订工作。相关成果获得包括国家科技进步奖在内的四十余项奖励。聚光科技已经成为国家在环境与安全检测分析仪器领域重要的创新平台。http://www.fpi-inc.com
    留言咨询

红外光测量相关的仪器

  • 一体化设计、全密封结构,集成了防潮型 ZnSe 分束器和高灵敏度的检测器。宽敞的样品仓可与用户的红外透射池/ATR 附件/漫反射池完美匹配。即使实验中涉及的原位漫反射附件,如温控仪、管线等辅助设备都可以合理放置,不占用实验室有限的空间资源,使得整个原位红外装置简洁紧凑。FI-RXF100-R 额外配置了外置式可调节的高精度光圈,用户可以根据样品的特性(如厚度、颜色等)随时调节光圈大小,而无需在软件中进行选择,这样的设计配合不同档位的增益功能,可以让用户实时、快速地看到样品最大的红外光通量,获取最佳的信噪比。FI-RXF100-R 还可以安装其他各类原位红外漫反射附件或者原位吡啶吸附池等与催化剂表征相关的的红外装置。会按照您不同的科研项目,实现您个性化的实验需求。硬件特点干涉仪:具有优异的性能、良好的可靠性、完美的稳定性和极强的抗干扰性能;提供 10年期的质量担保光学系统:全部使用金反射镜,反射率比铝镜高 5 %以上;抗氧化性强,光学性能更稳定检测器:可选高灵敏度 DLaTGS、电子制冷 MCT、液氮制冷 MCT 等固态激光器:性能稳定,使用寿命达 10 年以上光源:高性能,使用寿命长FI-RXF100-R傅里叶变换红外光谱仪的应用领域:红外光谱仪可以采用不同的红外测量模式,比如固体透射、ATR 反射、漫反射等。固体透射: 各种固体粉末的压片; 薄膜材料的定性分析; 热压成膜定量分析; 可透红外光的材料,如各类玻璃、翡翠、晶体材料、功能改性材料等;固体 ATR 测量: 各类粉末样品,无需压片,直接测量; 不规则形状的样品,测后不破坏样品; 各类聚合物、纤维、薄膜等高聚物样品; 各种O 型圈、橡胶类样品; 其他透射难以测量的样品;液体透射: 密封液体池定量测量有机溶液、易挥发溶剂; 拆卸液体池,可改变光程,定量分析; 各类润滑油的定量分析; 在红外窗片上形成液膜进行定性分析;气体测量: 直通式气体池,玻璃或不锈钢材质,可选温控,光程可选 1.5 厘米、3 厘米、5 厘米、7 厘米等, 适合用户测量高浓度气体; 多次反射式气体池:不锈钢材质,可选温控,光程可选 50 厘米、100 厘米、5 米、定制光程等, 适合用户测量低浓度气体; 防腐气体池:可为用户定制特种材质的气体池,比如 热红联用、腐蚀性气体的测量;原位红外原理红外光谱的采集需要首先测量背景光谱,然后再采集样品谱图,系统会自动计算得到样品的透过光谱或者吸收光谱,这两种谱图形式可以相互转化。因此,如果用户想获得催化剂本身的谱图,那么就需要以氮气为背景测量空白光路,然后再测量催化剂的薄片即可。如果用户研究催化剂的吸附/脱附性能,那么我们可以直接以催化剂样品作为背景来测量,然后再通入探针分子进行吸附/脱附,这样获得的就是探针分子在催化剂表面的红外吸收。FI-RXF100-R 定制红外具备宽敞的样品空间,可以实现原位透射测量,也可以进行原位漫反射测量。下图为原位漫反射测量的示意图,配置有冷却水循环系统和高精度温控系统。FI-RXF100-R 在催化剂表征中的应用在催化研究领域,傅里叶变换红外光谱仪的应用越来越受到研究人员的重视。一方面,红外表征催化剂的方法简单,速度快,而且几乎没有任何耗材(正常的液氮消耗除外);另一方面,红外表征催化剂的方法很成熟,已经被众多研究者所认可。目前,市场上使用红外法来研究催化剂的方式主要有:原位红外漫反射和原位红外透射。这两种方法可以为用户提供以下信息: 研究催化剂的化学反应动力学 用于在线研究催化剂在高温或高压或高真空环境下的催化性能 获得催化反应的反应机理和反应过程 通过对探针气体分子与催化剂在不同温度下的吸附和脱附实验,可以了解催化剂表面的吸附活性位和吸附性能 对催化剂的酸碱性能进行有效表征 为制备新型的催化剂提供实验数据 实现对催化剂样品的成分鉴定和结构分析 FI-RXF100-R其它相关应用领域 可加热的原位透射池 高温原位漫反射红外池 材料的绝对透过率(平行光入射) 材料漫透射测量(积分球附件) 材料的反射率测量(反射角度 10°、30°、45°、80°及变角附件等) ATR 测量(晶体可选:金刚石、硒化锌、锗晶体等) 常规固体、液体、气体样品的透射表征 特别适用于: 定制化附件的应用 条件苛刻的测试环境主要技术性能光谱仪参数干涉仪:立体角镜迈克耳逊干涉仪,能适应各类现场分束器:硒化锌防潮分束器及防潮窗片红外光源:空冷陶瓷光源,1550K检测器:高灵敏度DLaTGS 检测器、或者可选液氮冷却 MCT 检测器光谱范围:8000~350cm-1/5000~500cm-1光谱分辨率:优于0 . 5 cm-1波数精度:优于 0.01 cm-1尺寸(长宽高):685 mm X 415 mm X 223mm重量:25kg原位漫反射系统反应池采用耐化学腐蚀的不锈钢制成,搭配可拆卸的不锈钢圆顶,圆顶带有两个 BaF2 红外透射窗一个蓝宝石测量窗口,可通过第三窗口引入触发光进行光化学、光催化原位表征。反应池运行温度和压力范围宽,温度范围室温 C -800°C,压力范围 133 kPa (1 ktorr) -0.133 mPa (10-6 torr),含水冷快速接头,两路K 型热电偶,三路反应气接口,可通过卡套、快插、KF 真空接头等方式与真空、配气系统相连接,兼容拉曼和红外漫反射测量。
    留言咨询
  • FI-R3X 是Finder Infra R3 系列中的一个子系列,尾缀字母“X”代表extra,其主机为大样品仓设计,多种功能附件可随意更换搭配,具有更好的实验室综合性,更易满足实验室的可变功能测试需求。FI-R3X 具有完全一体化且可靠的通用采样功能,轻松进行测量并提供各种常用配件,同时兼容如PIKE TECHNOLOGY 等公司的多种专用测量配件,是实验室和现场测试环境下红外检测仪器的理想选择。FI-R3X 可以对未知的化合物进行无损分析,比如,有机化合物、无机化合物、品、固体、液体、聚合物等材料;主机采用一体式光学光路设计,可以扩展使用制冷型高灵敏的MCT 检测器和各种大型通用附件等,适用于科研院所的研究和检测工作。 台式多功能傅里叶红外光谱仪产品特点:双样品腔红外分析仪满足常规的透射和ATR 测量方式兼容进口厂商的红外附件:如Pike 、Harrick、Specac 公司等原位催化剂表征,高温、高压漫反射池测量样品的绝对透射率测量样品的绝对反射率中红外积分球附件可选液氮制冷MCT,灵敏度更高适合用户自己搭建红外装置、气路连接等 台式多功能傅里叶红外光谱仪应用领域:催化领域的应用:原位红外漫反射附件、原位红外透射附、原位吡啶吸附池等高检测灵敏度的应用:配置MCT 检测器,可以提高实验的检测灵敏度超规样品的红外应用:超长样品的透射和反射测量大型OEM 红外附件的应用:附件体积比较大,如掠角反射、变角反射附件,积分球附件等高通量红外附件的应用:可自动实现多个样品的透射、漫反射、反射测量等用户自制特定尺寸的红外附件应用:同时监测红外信号和拉曼信号的原位池,用户自制的红外附件等 技术参数 型号FI-R3X-AFI-R3X-AEFI-R3X-BFI-R3X-BE单位光谱范围5000-5005000-6507500-4007500-650cm-1分辨率≤1cm-1波数精度≤0.01cm-1信噪比≥40,000:1-透过率精度≤0.1%τ分束器ZnSeKBr-干涉仪基于一体成型立体角镜-检测器高灵敏度DLaTGS制冷型MCT高灵敏度DLaTGS制冷型MCT -主机尺寸685×415×223mm重量20kg红外测量附件 金刚石 ATR 附件金刚石 ATR 附件,纯金刚石晶体、高强度、超级耐腐蚀、晶体尺寸大、光通量高,灵敏 度优异。30°镜面反射附件适用于全反射材料30°固定角度设计45°镜面反射附件适用于全反射材料45°固定角度设计10°镜面反射附件适用于全反射材料10°固定角度设计PIKE TECHNOLOGY 产品80°镜面反射附件适用于全反射材料80°掠入射角度设计PIKE TECHNOLOGY 产品可变角度镜面反射附件适用于全反射材料30°-80°可变角度设计角度调整精度:1°PIKE TECHNOLOGY 产品绝对测量镜面反射附件适用于全反射材料12°固定角度设计PIKE TECHNOLOGY 产品漫反射附件适用于固体材料简易漫反射测量PIKE TECHNOLOGY 产品长光程气体池附件适用于气体测量,可针对低浓度气体、高温气体、腐蚀性气体等特殊气体进行红外光谱测量光程长:5m可变温ATR 附件晶体为金刚石晶体,有两种可选210 和300℃。样品需要放置在ATR 晶体上,晶体加热样品,可以观测固态到液态或者液体的固化的光谱的变化过程。可变温的固体样品透射和镜反射测试附件温度范围:室温~ -600℃,可以抽真空和通气, 样品窗13*1mm,最大耐压0.5mpa,尺寸84 x 100 x 16 mm可变温的液体样品的透射测试附件温度范围:5~130℃产品选型表型号描述主机系列FI-R3X-A傅里叶红外光谱仪主机,配置DLaTGS 探测器,ZnSe 分束器,标准透射功能,含聚焦透射光路和平行透射光路测量位。FI-R3X-AE傅里叶红外光谱仪主机,配置制冷型MCT 探测器,ZnSe 分束器,标准透射功能,含聚焦透射光路和平行透射光路测量位。FI-R3X-B傅里叶红外光谱仪主机,配置DLaTGS 探测器,KBr 分束器,标准透射功能,含聚焦透射光路和平行透射光路测量位。FI-R3X-BE傅里叶红外光谱仪主机,配置制冷型MCT 探测器,KBr 分束器,标准透射功能,含聚焦透射光路和平行透射光路测量位。附件系列FR3XACC-ATR 标准金刚石ATR 测量附件FR3XACC-ATR-A可变温金刚石ATR 测量附件FR3XACC-ATR-B可变温的固体样品透射和镜反射测试附件FR3XACC-ATR-C可变温的液体样品的透射测试附件FR3XACC-STD30标准30°固定角度镜面反射附件FR3XACC-STD45 标准45°固定角度镜面反射附件FR3XACC-10Spec10°镜面反射附件,PIKE TECHNOLOGY 产品FR3XACC-80Spec80°镜面反射附件,PIKE TECHNOLOGY 产品FR3XACC-VeeMAX手调式可变角镜面反射附件,PIKE TECHNOLOGY 产品FR3XACC-ARA绝对测量镜面反射附件,PIKE TECHNOLOGY 产品FR3XACC-DIFF漫反射简易测量附件,PIKE TECHNOLOGY 产品FR3XACC-LPG5000长光程气体池附件,光程5m
    留言咨询
  • ChemTron TB 211 红外光便携浊度仪 * TB 211 IR 便携式浊度仪适合在现场快速准确地测试浊度。测量方法符合 EN ISO 7027 标准,采用红外光和 90度散射光测试* 测试范围广,从 0.01 到 1100,单位 TE / F = NTU =FNU,检测下限可达 0.01 NTU,因此应用范围广,从饮用水到污水检测都可以用* 由于采用红外光,所以可以测试带颜色或无色的水样。通过 USB 接口可以方便地把数据传送到电脑上存贮下来。随机配送了一条 USB 电缆线技术参数测量周期大约 8 秒显示背光 LCD ( 按压 )光学系统红外 LED 光源 (λ = 860nm) ,有温度补偿功能光电传感放大器,防水比色皿插槽数据存贮125 组数据量程 ( 自动切换 )0.01 - 1100 NTU分辨率0.01 - 9.99 NTU : 0.01 NTU10.0 - 99.9 NTU : 0.1 NTU100 - 1100 NTU : 1 NTU准确度500NTU: ± 2.5 % 测量值或 ± 0.01 NTU 取大值 500 - 1100 NTU:± 5 % 测试值
    留言咨询

红外光测量相关的资讯

  • 红外光谱的测量极限在哪里?
    [导读] Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱技术已经从单纯的红外光谱仪、显微镜与红外光谱联用,发展到了红外成像系统,并在信噪比、空间分辨率、时间分辨率、测量模式等方面呈现了新的发展活力。同时,在新技术的助力下,红外光谱在应用方面也得到了很大的拓展。   Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。业界评价:Quantum Design在产品的选择上颇具眼光! 为了多方位展现我国在红外光谱领域的新成果,仪器信息网特别策划制作《稳中求新红外光谱技术及应用进展》网络专题,特别邀请Quantum Design中国表面光谱销售总监韩铁柱博士为大家介绍红外光谱仪的新技术及应用情况,并探寻红外光谱的测量限。   红外光谱技术发展需求:高敏感度、高空间和高时间分辨率 仪器信息网:从仪器发展及应用的角度分析,您认为目前红外光谱仪器及技术走到了哪一个阶段?韩铁柱博士:人类对红外光的认识已经超过两个世纪,1800年,英国科学家W.?Herschel在研究温度计对紫色到红色光照射变化时,就已经意识到红色末端区域外仍然存在着看不到的辐射区域。九十年后,瑞典科学家Angstrem利用CO和CO2次证明了不同分子具有不同的红外谱图,并在此基础上进一步建立了现代分子光谱学。在此之后的一个多世纪里,人类科学家已经可以利用红外光手段,对大量的分子振动和转动信息进行谱学分析和鉴别。上世纪50年代,双光束红外光谱仪的问世,意味着红外检测已无需由经过专门训练的光谱学家进行操作,也能轻易获取数据。该设备的商业化及畅销普及标志着红外谱学门槛的大降低,在科学研究、社会实践及工业控制等领域将迎来飞跃式发展。现代红外光谱议主要指由上世纪80年代发展建立的以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。与更早期的双光束红外仪器相比,傅立叶红外光谱仪具有快速、高信噪比等特点,并且随之催生了许多新技术,诸如步进扫描、时间分辨和红外成像等,从而拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。然而,随着科学技术的不断发展和应用领域的进一步细分,特别近年来纳米材料、拓扑材料、二维材料等新材料的兴起,传统傅立叶红外光谱仪光源亮度弱、光斑范围大、迈克尔逊干涉仪平动速度慢等缺陷开始显现,逐渐不能满足红外光谱科学研究中高敏感度、高空间和高时间分辨率的需要。仪器信息网:目前红外光谱的测量限发展到了什么程度?可以给大家带来什么样的体验?韩铁柱博士:目前,传统红外光谱的空间分辨测量限在几微米到几十微米,时间分辨测量限在几十毫秒的量,这主要是由于光源本身及步径位移机制限制。20世纪60年代开始,随着台红宝石激光器的问世,科学领域得益于激光技术的广泛应用,对光谱研究的空间分辨和时间分辨也得以大幅提高。由于激光器的高线性特点,非接触式的红外光谱技术空间分辨率可达500nm,如果进一步搭配近场探针突破衍射限,空间分辨可进一步提升至10nm。利用QCL激光的双光梳设计,目前激光base的红外光谱可以完全抛弃步径位移,将时间分辨提高到us,如果将超快激光引入pump-probe体系,时间分辨可以达到fs别。仪器信息网:相对于其它的分析仪器,红外光谱的应用市场活力如何?哪些应用领域会有大的发展空间?为什么?韩铁柱博士:相对于其他分析仪器,红外光谱分析技术具有使用成本低、操作和维护简单、灵敏度和分辨率较高、特征性强等优点,能提供包含化合物官能团、类别、立体结构、取代基种类和数目等多种信息。近年来计算机技术的迅猛发展带来了分析仪器数字化和化学计量学科的同步发展,加之红外光谱技术有特点,使得其应用范围进一步拓宽。红外光谱既可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析,广泛应用于化工、制药、农业和食品、半导体、宝石鉴定、质检、地矿和环境等领域,是科学研究的有力技术手段,也是常规应用分析和生产不可缺少的分析技术。譬如在中医药领域,作为一个复杂的混合体系,中药的鉴别和质量控制,以及有效成分的确定和质量分析,一直是个难题,红外光谱技术的特点使得其作为指纹分析手段并结合化学计量学方法,成为中药研究不可或缺的工具 在农业和食品领域,近年来得益于焦平面阵列检测器、可调谐滤光器、化学计量学方法和计算术的提升,红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。除了进行农产品和食品的品质分析外,红外光谱的应用还扩展到了污染物检测、产品分类和来源鉴别、土壤的物理和化学变化、以及食品加工过程中组成变化的监控和动力学行为等。Quantum Design红外产品着眼红外光谱测量限仪器信息网:请介绍贵公司在红外光谱产品的定位及发展历史?有哪些具优势(里程碑式)的技术(技术,有技术)? 韩铁柱博士:我们公司一直贴合新研究前沿和热点课题,结合红外光谱的应用与现代科学研究的需要,专注新、先进红外光谱技术和产品的引进,先后引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外光谱仪、美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,2019年又引进了瑞士IRsweep公司的IRis-F1微秒时间分辨超灵敏红外光谱仪。这三款主推产品从空间分辨率、非接触测量、时间分辨等维度,大推动了红外光谱测量限。 nano-FTIR纳米傅里叶红外光谱技术是由德国neaspec公司基于其创的散射型近场光学技术发展出来的、具有10纳米超高空间分辨的新型傅里叶红外技术,使得纳米尺度下的化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,实现对几乎所有材料的化学分辨和成分分析。它不受被检测样品厚度制约,可广泛适用于有机物、无机物、半导体材料、二维范德华材料的纳米分辨红外光谱分析,并同时提供纳米空间分辨的红外吸收谱和反射谱。 全新一代mIRage非接触式亚微米分辨触红外拉曼同步测量系统,是美国PSC公司基于的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500nm的空间分辨率 它具备非接触式/反射模式测量,对样品表面无严格要求,可直接对厚样品进行测试 可搭配液体模式和与拉曼联用,直接观察液体生物样品,并对样品进行同时同地同分辨率下的红外拉曼同步光谱和成像分析,无荧光风险。 瑞士IRsweep公司推出的IRis-F1微秒时间分辨超灵敏红外光谱仪,荣获了由仪器信息网主办2019年度科学仪器“新品奖”,它是一种基于量子联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μs时间分辨的红外光谱快速测量。它测量数据信噪比高,易于微量及痕量光谱分析,兼容常用红外光谱仪插件,方便易用、可靠性高。仪器信息网:贵公司红外光谱仪应用具优势的领域?主推的解决方案?韩铁柱博士:我们公司近几年在红外光谱领域销售保持持续地稳定增长,针对不同的应用领域和具体的技术需求,我们推出了对应的解决方案。1、nano-FTIR是我们针对傅里叶红外光谱空间分辨率在10nm量,所推出的成熟技术方案,它利用AFM探针突破红外光斑的限制,并利用激光光源的高亮度和稳定性可进超高空间分辨下的物质微纳组分研究和表征。并后期结合飞秒激光器,可实现fs的红外光谱测量表征。美国NASA于2014年从太空带回了直径约为10um的彗星碎片。由于传统红外分辨率受制于光斑大小,该样品内部成分无法进一步检测。利用上述内容提到的纳米傅里叶红外技术10nm空间分辨率,科学家可以很好的对彗星碎片内主要5种矿物进行有效分析,并能就其组分的空间分布进行具体的表征。进一步地,在10nm超高空间分辨率的基础上,nano-FTIR还可以与50fs的时间分辨超快激光技术进行结合,同时达到红外设备的“超高空间分辨”和“超高时间分辨”。该工作在2014年由Eisele等人在实验室实现,作者利用pump激光和我们的纳米傅立叶红外光谱进行同步,在InAs纳米线上由-5ps到1050fs分别延迟激发样品,得到了纳米线上载流子形成和衰减的全过程红外光谱图。2、当红外光谱空间分辨率要求在亚微米量,且传统傅里叶变换红外光谱和ATR技术应用受限或者样品制备困难情况下,mIRage非接触式亚微米分辨触红外拉曼同步测量系统无疑是一个好的选择。它的高空间分辨率、非接触式的测量方法以及可与拉曼联用的特点,可以快速获取材料的二维红外光谱和组成分布信息。越来越多的塑料产品的使用引发了人们对于其在环境中累积所引发的环境和生态污染问题的担忧,迫使科学家尽快找到可替代性的新型材料。而生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),在适当条件下可发生生物降解,成为近研究的热点话题。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组使用mIRage系统对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在扩散机制,为未来研究生物微塑料的演变和降解过程提供数据和理论上的支持。3、为描述生物医学、化学动力学等许多变化过程中的红外光谱情况,我们推出了IRis-F1微秒时间分辨超灵敏红外光谱仪解决方案。斯坦福大学的Nicolas H.Pinkowski研究团队利用IRis-F1实现了高能气相反应中的微秒分辨单次测量。他们在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应,以4μs时间分辨测量速率,解析了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。来自IRis-F1的量子联激光的双梳状光谱仪(DCS)测试数据表明:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。未来:通用型和专用型红外光谱协同发展 仪器信息网:目前国内外红外光谱仪的技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力? 韩铁柱博士:当前市场上红外光谱仪可以大致分为通用型和专用型两大类,体现了红外光谱仪的发展与工业化需求以及科学研究需求是密切相连的。进口通用型红外光谱仪市场主要以傅立叶变换红外光谱仪(FTIR)为主,制造厂家主要来自于欧美等国,而色散型红外光谱仪比较少见 近些年来国产的FTIR厂家逐渐崭露头角,尽管技术和主流公司相比还有一定差距,但差距正在不断缩小。其新型干涉光路的搭建,有效降低了振动和导轨偏移引发的干涉变形,结合众多新型红外附件的开发,目前国内红外光谱议产品正在走出国门,远销欧美和东南亚 专业的研究型红外光谱仪主要在一些科研机构使用,存在一定的定制化,它可以与红外显微镜、热分析、气相色谱等外联附件联合使用,实现多种分析手段的同步进行和数据交叉对比。作为普适性的一种分析手段,红外光谱仪在国内有较大的潜在市场,未来红外光谱仪技术,无论是智能化程度、产品联用、应用领域专业化还是小型化上都存在很强的发展潜力。另外,红外光谱与成像相结合的多信息融合检测技术,也是当前红外技术的主要发展方向。未来随着应用领域的不断扩展,制造技术的不断变革以及计算机技术的发展,更多成本更低的研究型和专用型红外成像光谱仪预计将会陆续出现,被更多的应用于过程分析和高通量分析中,如制药,农业,食品,高分子和催化材料等领域,成为传统红外光谱技术的一种有力互补技术。仪器信息网:针对当前的市场格局,贵公司在红外光谱产品方面有什么样的布局?重点拓展的新领域有哪些? 韩铁柱博士:针对当前的市场格局,我们公司继续结合科研用户的技术需求,引进一系列红外产品引入中国市场,比如基于AFM探针技术的超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜、纳米傅里叶红外光谱仪等 同时,我们也将开展通用型红外光谱仪的布局,引入适合普通科研用途和工业应用的光谱仪,拓展其应用领域范围,解决一系列应用中的实际问题,具体体现在:1)针对传统傅里叶变换和衰减全反射红外光谱限制的亚微米分辨光学光热红外显微技术,提高其空间分辨率;2)简化样品制备过程,避免样品污染和接触引发的红外赝相;3)拓展红外样品的适用范围,包括一些常规红外无法检测的厚样品,透明样品,液体样品等;4)努力发展与其他技术的联用,实现多种技术的交叉互补使用,全面了解样品表面的化学信息,如红外和拉曼光谱技术联用,对有机无机样品的各种分子振动进行全面的分析和相互验证。通过以上布局,我们一方面注重拓展高新技术领域的红外光谱应用,如纳米红外光谱和成像,超快/时间分辨红外光谱等,用于纳米材料的高分辨表征和化学过程的监测 另一方面拓展实际应用领域的红外技术应用,包括制药、化工、半导体、农业和食品、地质和环境、法医鉴定等,解决科研和生产过程中遇到的一系列实际问题,推动红外光谱技术的应用。后记:习近平总书记非常重视科技创新能力,他在重要讲话中指出“自主创新是我们攀登科技高峰的必由之路”,“当今科技革命和产业变革方兴未艾,我们要增强使命感,把创新作为大政策,奋起直追、迎头赶上”。Quantum Design中国也以此为己任,在公司的建设和发展过程中,致力于为中国科研工作者的成功提供专业支持和服务。韩铁柱博士介绍说,“我们深深理解国内科学家和学者们从不缺乏创新性的科研想法和构想,如何借助先进仪器帮助科学家将这些想法付诸于实践,是Quantum Design中国一直在思考的问题。”据悉, Quantum Design中国建立了超过300万美元的样机实验室,为国内科学家尝试自己的想法提供了舞台和施展的空间。就红外光谱分析仪器而言,Quantum Design中国样机实验室引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外仪,以及美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,并向国内科学家开放。截至2020年6月,Quantum Design中国样机实验室测量的数据已经协助科学家在Nature正刊、Nature子刊、ASC等著名国际期刊上发表多篇创新性的科研成果,得到了广大科学家的认可和赞誉。
  • 红外光谱的测量极限在哪里
    pspan style="font-family: 楷体, 楷体_GB2312, SimKai "  近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱技术已经从单纯的红外光谱仪、显微镜与红外光谱联用,发展到了红外成像系统,并在信噪比、空间分辨率、时间分辨率、测量模式等方面呈现了新的发展活力。同时,在新技术的助力下,红外光谱在应用方面也得到了很大的拓展。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒级时间分辨超灵敏红外光谱仪在探寻红外光谱测量极限上展现了独特的魅力,先后获得科学仪器“优秀新品奖”。业界评价:Quantum Design在产品的选择上颇具眼光!/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  为了多方位展现我国在红外光谱领域的最新成果,仪器信息网特别策划制作《稳中求新红外光谱技术及应用进展》网络专题,特别邀请Quantum Design中国表面光谱销售总监韩铁柱博士为大家介绍红外光谱仪的最新技术及应用情况,并探寻红外光谱的测量极限。/span/pp  span style="color: rgb(255, 0, 0) "strong红外光谱技术发展需求:高敏感度、高空间和高时间分辨率/strong/span/pp  strong仪器信息网:从仪器发展及应用的角度分析,您认为目前红外光谱仪器及技术走到了哪一个阶段?/strong/ppstrong  韩铁柱博士/strong:人类对红外光的认识已经超过两个世纪,1800年,英国科学家W.?Herschel在研究温度计对紫色到红色光照射变化时,就已经意识到红色末端区域外仍然存在着看不到的辐射区域。九十年后,瑞典科学家Angstrem利用CO和CO2首次证明了不同分子具有不同的红外谱图,并在此基础上进一步建立了现代分子光谱学。在此之后的一个多世纪里,人类科学家已经可以利用红外光手段,对大量的分子振动和转动信息进行谱学分析和鉴别。上世纪50年代,双光束红外光谱仪的问世,意味着红外检测已无需由经过专门训练的光谱学家进行操作,也能轻易获取数据。该设备的商业化及畅销普及标志着红外谱学门槛的极大降低,在科学研究、社会实践及工业控制等领域将迎来飞跃式发展。/pp  现代红外光谱议主要指由上世纪80年代发展建立的以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。与更早期的双光束红外仪器相比,傅立叶红外光谱仪具有快速、高信噪比等特点,并且随之催生了许多新技术,诸如步进扫描、时间分辨和红外成像等,从而拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。/pp  然而,随着科学技术的不断发展和应用领域的进一步细分,特别近年来纳米材料、拓扑材料、二维材料等新材料的兴起,传统傅立叶红外光谱仪光源亮度弱、光斑范围大、迈克尔逊干涉仪平动速度慢等缺陷开始显现,逐渐不能满足红外光谱科学研究中高敏感度、高空间和高时间分辨率的需要。/pp  strong仪器信息网:目前红外光谱的测量极限发展到了什么程度?可以给大家带来什么样的体验?/strong/ppstrong  韩铁柱博士:/strong目前,传统红外光谱的空间分辨测量极限在几微米到几十微米,时间分辨测量极限在几十毫秒的量级,这主要是由于光源本身及步径位移机制限制。20世纪60年代开始,随着第一台红宝石激光器的问世,科学领域得益于激光技术的广泛应用,对光谱研究的空间分辨和时间分辨也得以大幅提高。由于激光器的高线性特点,非接触式的红外光谱技术空间分辨率可达500nm,如果进一步搭配近场探针突破衍射极限,空间分辨可进一步提升至10nm。利用QCL激光的双光梳设计,目前激光base的红外光谱可以完全抛弃步径位移,将时间分辨提高到us级,如果将超快激光引入pump-probe体系,时间分辨可以达到fs级别。/pp  strong仪器信息网:相对于其它的分析仪器,红外光谱的应用市场活力如何?哪些应用领域会有大的发展空间?为什么?/strong/ppstrong  韩铁柱博士:/strong相对于其他分析仪器,红外光谱分析技术具有使用成本低、操作和维护简单、灵敏度和分辨率较高、特征性强等优点,能提供包含化合物官能团、类别、立体结构、取代基种类和数目等多种信息。近年来计算机技术的迅猛发展带来了分析仪器数字化和化学计量学科的同步发展,加之红外光谱技术独有特点,使得其应用范围进一步拓宽。/pp  红外光谱既可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析,广泛应用于化工、制药、农业和食品、半导体、宝石鉴定、质检、地矿和环境等领域,是科学研究的有力技术手段,也是常规应用分析和生产不可缺少的分析技术。譬如在中医药领域,作为一个复杂的混合体系,中药的鉴别和质量控制,以及有效成分的确定和质量分析,一直是个难题,红外光谱技术的特点使得其作为指纹分析手段并结合化学计量学方法,成为中药研究不可或缺的工具 在农业和食品领域,近年来得益于焦平面阵列检测器、可调谐滤光器、化学计量学方法和计算术的提升,红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。除了进行农产品和食品的品质分析外,红外光谱的应用还扩展到了污染物检测、产品分类和来源鉴别、土壤的物理和化学变化、以及食品加工过程中组成变化的监控和动力学行为等。/pp  span style="color: rgb(255, 0, 0) "strongQuantum Design红外产品着眼红外光谱测量极限/strong/span/ppstrong  仪器信息网:请介绍贵公司在红外光谱产品的定位及发展历史?有哪些独具优势(里程碑式)的技术(专利技术,独有技术)?/strong/ppstrong  韩铁柱博士:/strong我们公司一直贴合最新研究前沿和热点课题,结合红外光谱的应用与现代尖端科学研究的需要,专注最新、最先进红外光谱技术和产品的引进,先后引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外光谱仪、美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,2019年又引进了瑞士IRsweep公司的IRis-F1微秒级时间分辨超灵敏红外光谱仪。这三款主推产品从空间分辨率、非接触测量、时间分辨等维度,极大推动了红外光谱测量极限。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C377717.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 183px " src="https://img1.17img.cn/17img/images/202006/uepic/34a71ded-e469-47c6-8f17-0f6442a01553.jpg" title="01.png" alt="01.png" width="600" height="183" border="0" vspace="0"//a/pp style="text-align: center "(a href="https://www.instrument.com.cn/netshow/C377717.htm" target="_blank"点击仪器图片查看更多详情/a)/pp  nano-FTIR纳米傅里叶红外光谱技术是由德国neaspec公司基于其首创的散射型近场光学技术发展出来的、具有10纳米超高空间分辨的新型傅里叶红外技术,使得纳米尺度下的化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,实现对几乎所有材料的化学分辨和成分分析。它不受被检测样品厚度制约,可广泛适用于有机物、无机物、半导体材料、二维范德华材料的纳米分辨红外光谱分析,并同时提供纳米空间分辨的红外吸收谱和反射谱。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C363244.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 193px " src="https://img1.17img.cn/17img/images/202006/uepic/d719a770-b45f-494a-822b-1bfb8d6976f2.jpg" title="02.png" alt="02.png" width="600" height="193" border="0" vspace="0"//a/pp style="text-align: center "(a href="https://www.instrument.com.cn/netshow/C363244.htm" target="_blank"点击仪器图片查看更多详情/a)/pp  全新一代mIRage非接触式亚微米分辨触红外拉曼同步测量系统,是美国PSC公司基于专利的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500nm的空间分辨率 它具备非接触式/反射模式测量,对样品表面无严格要求,可直接对厚样品进行测试 可搭配液体模式和与拉曼联用,直接观察液体生物样品,并对样品进行同时同地同分辨率下的红外拉曼同步光谱和成像分析,无荧光风险。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C305345.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/03b21d48-652a-4150-8caf-f5c21c9855c7.jpg" title="03.png" alt="03.png"//a/pp style="text-align: center "(a href="https://www.instrument.com.cn/netshow/C305345.htm" target="_blank"点击仪器图片查看更多详情/a)/pp  瑞士IRsweep公司推出的IRis-F1微秒级时间分辨超灵敏红外光谱仪,荣获了由仪器信息网主办2019年度科学仪器“优秀新品奖”,它是一种基于量子级联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μs时间分辨的红外光谱快速测量。它测量数据信噪比高,易于微量及痕量光谱分析,兼容常用红外光谱仪插件,方便易用、可靠性高。/pp  strong仪器信息网:贵公司红外光谱仪应用最具优势的领域?主推的解决方案?/strong/ppstrong  韩铁柱博士:/strong我们公司近几年在红外光谱领域销售保持持续地稳定增长,针对不同的应用领域和具体的技术需求,我们推出了对应的解决方案。/pp  1、nano-FTIR是我们针对傅里叶红外光谱空间分辨率在10nm量级,所推出的成熟技术方案,它利用AFM探针突破红外光斑的限制,并利用激光光源的高亮度和稳定性可进超高空间分辨下的物质微纳组分研究和表征。并后期结合飞秒激光器,可实现fs级的红外光谱测量表征。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 316px " src="https://img1.17img.cn/17img/images/202006/uepic/69125e72-499a-4ced-b257-9bdb7b3a4f00.jpg" title="04.png" alt="04.png" width="600" height="316" border="0" vspace="0"//pp  美国NASA于2014年从太空带回了直径约为10um的彗星碎片。由于传统红外分辨率受制于光斑大小,该样品内部成分无法进一步检测。利用上述内容提到的纳米傅里叶红外技术10nm空间分辨率,科学家可以很好的对彗星碎片内主要5种矿物进行有效分析,并能就其组分的空间分布进行具体的表征。进一步地,在10nm超高空间分辨率的基础上,nano-FTIR还可以与50fs的时间分辨超快激光技术进行结合,同时达到红外设备的“超高空间分辨”和“超高时间分辨”。该工作在2014年由Eisele等人在实验室实现,作者利用pump激光和我们的纳米傅立叶红外光谱进行同步,在InAs纳米线上由-5ps到1050fs分别延迟激发样品,得到了纳米线上载流子形成和衰减的全过程红外光谱图。/pp  2、当红外光谱空间分辨率要求在亚微米量级,且传统傅里叶变换红外光谱和ATR技术应用受限或者样品制备困难情况下,mIRage非接触式亚微米分辨触红外拉曼同步测量系统无疑是一个最好的选择。它的高空间分辨率、非接触式的测量方法以及可与拉曼联用的特点,可以快速获取材料的二维红外光谱和组成分布信息。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 331px " src="https://img1.17img.cn/17img/images/202006/uepic/35ecedb1-5d4e-431a-b8a1-043e5acec657.jpg" title="05.jpg" alt="05.jpg" width="600" height="331" border="0" vspace="0"//pp  越来越多的塑料产品的使用引发了人们对于其在环境中累积所引发的环境和生态污染问题的担忧,迫使科学家尽快找到可替代性的新型材料。而生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),在适当条件下可发生生物降解,成为最近研究的热点话题。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组使用mIRage系统对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在扩散机制,为未来研究生物微塑料的演变和降解过程提供数据和理论上的支持。/pp  3、为精准描述生物医学、化学动力学等许多变化过程中的红外光谱情况,我们推出了IRis-F1微秒级时间分辨超灵敏红外光谱仪解决方案。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 280px " src="https://img1.17img.cn/17img/images/202006/uepic/adaa6cec-04b2-4a33-8145-bdb8a4376d43.jpg" title="06.jpg" alt="06.jpg" width="600" height="280" border="0" vspace="0"//pp  斯坦福大学的Nicolas H.Pinkowski研究团队利用IRis-F1实现了高能气相反应中的微秒分辨单次测量。他们在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应,以4μs时间分辨测量速率,解析了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。来自IRis-F1的量子级联激光的双梳状光谱仪(DCS)测试数据表明:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。/pp  span style="color: rgb(255, 0, 0) "strong未来:通用型和专用型红外光谱协同发展/strong/span/pp  strong仪器信息网:目前国内外红外光谱仪的技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力?/strong/pp strong 韩铁柱博士:/strong当前市场上红外光谱仪可以大致分为通用型和专用型两大类,体现了红外光谱仪的发展与工业化需求以及科学研究需求是密切相连的。进口通用型红外光谱仪市场主要以傅立叶变换红外光谱仪(FTIR)为主,制造厂家主要来自于欧美等国,而色散型红外光谱仪比较少见 近些年来国产的FTIR厂家逐渐崭露头角,尽管技术和世界主流公司相比还有一定差距,但差距正在不断缩小。其新型干涉光路的搭建,有效降低了振动和导轨偏移引发的干涉变形,结合众多新型红外附件的开发,目前国内红外光谱议产品正在走出国门,远销欧美和东南亚 专业的研究型红外光谱仪主要在一些科研机构使用,存在一定的定制化,它可以与红外显微镜、热分析、气相色谱等外联附件联合使用,实现多种分析手段的同步进行和数据交叉对比。/pp  作为普适性的一种分析手段,红外光谱仪在国内有较大的潜在市场,未来红外光谱仪技术,无论是智能化程度、产品联用、应用领域专业化还是小型化上都存在很强的发展潜力。另外,红外光谱与成像相结合的多信息融合检测技术,也是当前红外技术的主要发展方向。未来随着应用领域的不断扩展,制造技术的不断变革以及计算机技术的发展,更多成本更低的研究型和专用型红外成像光谱仪预计将会陆续出现,被更多的应用于过程分析和高通量分析中,如制药,农业,食品,高分子和催化材料等领域,成为传统红外光谱技术的一种有力互补技术。/pp  strong仪器信息网:针对当前的市场格局,贵公司在红外光谱产品方面有什么样的布局?重点拓展的新领域有哪些?/strong/ppstrong  韩铁柱博士:/strong针对当前的市场格局,我们公司继续结合科研用户的技术需求,引进一系列红外产品引入中国市场,比如基于AFM探针技术的超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜、纳米傅里叶红外光谱仪等 同时,我们也将开展通用型红外光谱仪的布局,引入适合普通科研用途和工业应用的光谱仪,拓展其应用领域范围,解决一系列应用中的实际问题,具体体现在:/pp  1)针对传统傅里叶变换和衰减全反射红外光谱限制的亚微米分辨光学光热红外显微技术,提高其空间分辨率 2)简化样品制备过程,避免样品污染和接触引发的红外赝相 3)拓展红外样品的适用范围,包括一些常规红外无法检测的厚样品,透明样品,液体样品等 4)努力发展与其他技术的联用,实现多种技术的交叉互补使用,全面了解样品表面的化学信息,如红外和拉曼光谱技术联用,对有机无机样品的各种分子振动进行全面的分析和相互验证。/pp  通过以上布局,我们一方面注重拓展高新技术领域的红外光谱应用,如纳米红外光谱和成像,超快/时间分辨红外光谱等,用于纳米材料的高分辨表征和化学过程的监测 另一方面拓展实际应用领域的红外技术应用,包括制药、化工、半导体、农业和食品、地质和环境、法医鉴定等,解决科研和生产过程中遇到的一系列实际问题,推动红外光谱技术的应用。/pp strong span style="font-family: 楷体, 楷体_GB2312, SimKai "后记:/span/strong/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  习近平总书记非常重视科技创新能力,他在重要讲话中指出“自主创新是我们攀登世界科技高峰的必由之路”,“当今世界科技革命和产业变革方兴未艾,我们要增强使命感,把创新作为最大政策,奋起直追、迎头赶上”。Quantum Design中国也以此为己任,在公司的建设和发展过程中,致力于为中国科研工作者的成功提供专业支持和服务。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  韩铁柱博士介绍说,“我们深深理解国内科学家和学者们从不缺乏创新性的科研想法和构想,如何借助先进仪器帮助科学家将这些想法付诸于实践,是Quantum Design中国一直在思考的问题。”据悉, Quantum Design中国建立了超过300万美元的样机实验室,为国内科学家尝试自己的想法提供了舞台和施展的空间。就尖端红外光谱分析仪器而言,Quantum Design中国样机实验室引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外仪,以及美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,并向国内科学家开放。截至2020年6月,Quantum Design中国样机实验室测量的数据已经协助科学家在Nature正刊、Nature子刊、ASC等著名国际期刊上发表多篇创新性的科研成果,得到了广大科学家的认可和赞誉。/span/ppbr//p
  • 研究人员开发出基于远红外光的无创血糖测量技术
    p  日本东北大学生物医学工程研究生院Yuji Matsuura教授领导的一个研究团队开发出利用远红外光测量血糖的方法。这种方法是无害的,也是非侵入式的。/pp  糖尿病病人传统上需要使用一种常规的检测仪器测量从指尖中采取的血液,从而监控他们每天的血糖水平。这种让人不适的疼痛感和感染风险有时可能是巨大压力和担忧产生的源头。/pp  为了解决这一问题,其他的研究人员已提出和开发出利用近红外光测量血液中葡萄糖浓度的非侵入式方法。这种方法工作的前体条件为一些特定波长的近红外光被血液中的葡萄糖选择性地吸收。/pp  然而,利用这种方法进行准确地和稳定地测量已被证实是比较困难的,这是因为近红外光不仅被葡萄糖较弱地吸收,而且也被水、蛋白和血红蛋白较弱地吸收。/pp  相比之下,波长在40微米左右的远红外光能够被葡萄糖强劲地吸收,这就使得在理论上可以对病人进行更加准确地和灵敏地测量。然而,研究人员面临的问题是,远红外光只能穿透到皮肤表面下几微米,这就使得检测血糖比较困难。因此,Matsuura团队开发出一种新的测量技术:将一块小的棱镜附着到柔韧的空芯光纤末端上来发射远红外光。利用这种方法,就能够照射内唇的口腔黏膜。不同于皮肤,内唇没有厚厚的表皮角质层。/pp  实验结果证实这种新技术能够高灵敏度地检测和准确地测量血糖水平,误差范围在20%以下。Matsuura教授认为这足以适合临床使用。/pp  糖尿病是一种影响着全世界数百万人的严重健康问题。通过将这种方法与最近刚被开发出的远红外激光器联合使用,Matsuura教授期待更为紧凑的低成本血糖测量系统将很快地在临床上被广泛使用。/p

红外光测量相关的方案

红外光测量相关的资料

红外光测量相关的论坛

  • 近红外光谱能测量气体吗?

    [font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以测量气体,其优势是可以测量混合气体成分,通常为了提高气体测试的准确度,会设计较长距离的气体通路,增加气体的光谱吸收,进而提高检测精度。尤其是在挥发性混合气体测试方面极有优势,因为普通的气体传感器存在交叉响应问题,而[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的优点就在于可以通过一次测量,利用数学建模来将多种不同光谱吸收形态的气体同时检测出来。[/font]

  • 近红外光谱的测量方式

    [font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是一种吸收光谱,测量方式表现为光与物体的接触方式,其总是为了获得更强、更均匀的吸收光谱。对于不同物理状态的样品,不同的光接触方式会产生较大的影响。建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的多元定量和定性校正模型,对光谱数据的灵敏度、稳定性要求很高,因此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的测量方式非常重要。从光路原理来讲,光谱信息的获得可以采用漫反射、透射、散射、掠射等,不同的光路测量原理,会得到载量不同的物质光谱信息,反映在光谱曲线方面,就是动态范围的不同。下面主要介绍几种不同光路原理的光谱测量方式。[/font][b][b][font=宋体]一、漫反射测量[/font][/b][/b][font=宋体][font=宋体]漫反射是一种典型的光和物质的作用方式,对于固体来说,密度大,分子之间结合紧密,漫反射往往体现为多种颗粒的表面反射;对于液体来说,密度小,分子之间结合松散,漫反射体现为整个液面的表面反射,以及液体内部微小颗粒的散射;而气体的分子之间距离最远,由于近红外光的波长远大于分子直径,因此一般无法使用漫反射,对于气溶胶式的颗粒才有微弱的漫反射现象。漫反射测量往往采用[/font][font=Times New Roman]4[/font][/font][font='Times New Roman']5[/font][font=宋体][font=宋体]°角的方式来设计光源和探测器的相对位置,如图[/font][font=Times New Roman]3-[/font][/font][font='Times New Roman']1[/font][font=宋体]所示,可采用双探测器,单光源的设计,也可采用双光源,单探测器的设计。[/font][align=center][img=,253,184]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251741287689_6544_6418678_3.png!w571x348.jpg[/img][font=宋体] [/font][img=,253,179]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251741353899_6624_6418678_3.png!w673x328.jpg[/img][/align][font=宋体]图[/font][font='Times New Roman']3-1 (a)[/font][font=宋体][font=宋体]双探测器、单光源漫反射示意图[/font] [font=宋体]图[/font][/font][font='Times New Roman']3-1 (b)[/font][font=宋体]双光源,单探测器漫反射示意图[/font][b][b][font=宋体]二、透射测量[/font][/b][/b][img=,290,222,left]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251742040487_1473_6418678_3.png!w290x222.jpg[/img][font=宋体]透射是常见的一种光波穿透方式,主要用于气体和液体测量,也可以用于具备一定透射特性的固体。对气体和液体,仅靠漫反射方式获得的光谱信息量少,通常需要将样品全部穿透来实现光谱信息的获取。而对于一些固体样本,如小麦、大豆等农产品,也可采用短波透射方式获得光谱信息。常见的透射测量方式,如图[/font][font='Times New Roman']3-2[/font][font=宋体]所示。依据不同的光谱谱段,可以选用不同光程的样品池,针对性地采集液体样品光谱。[/font][b][img=,289,218,left]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251744183315_5661_6418678_3.png!w289x218.jpg[/img][b][font=宋体]三、透反射测量[/font][/b][/b][font=宋体][font=宋体]为了实现光源和探测器的整体化设计,实现直接对液体或者固体测量,同时也可以增加液体样品光谱吸收的光程,往往采用透反射测量,相对于一般的透射测量方式,样品的光谱吸收光程增加了一倍,实现透反射测量还需要增加一个镜面反射元件,具体方式,如图[/font][font=Times New Roman]3-[/font][/font][font='Times New Roman']3[/font][font=宋体]所示。[/font]

红外光测量相关的耗材

  • 中红外光源
    中红外光源是全球首款真正点光源发射模式的红外吸收光谱光源,它发射3-11微米范围的红外光,中红外光源具有超亮的发射表面,中红外发射体积与发射波长几乎成正比,实现真正的点源发射模式。中红外光源特点广泛用于测试红外镜头,显微镜物镜和红外摄像机以及红外吸收光谱等应用。光源发射表面 3 x 6μm2,是一个真正的点源,没有任何多余的狭缝或针孔。因此,不会出现任何使用狭缝或针孔准直存在的误差。发射功率可使用电脑控制,功率水平可以根据不同相机的感光度轻松调整,得到最好的信噪比(SNR)。线宽小,光谱功率密度高,可用波长范围宽泛,非常适合量化镜头的色差,镜头色差会限制图像质量,尤其是在宽带应用,如热成像应用。先前的中红外光源使用极小的小孔以获得近似的点源,从一个微小的直径处获得足够能源。具有极高波长精度和稳定性使得它可以测量光学材料的折射率。最多可以控制多达8个激光器,这些激光器都是单独配置的,包括基于内部时钟信号的同步发射。该装置有着小型,强大和易于使用的驱动程序,允许通过PC远程控制。中红外光源产品概述真点源的发射孔径小到3×6μm2*在中红外范围3至11μm内,可用的离散波超过100个极其卓越的红外光源有着独特先进的光谱和空间功率密度低波长的不确定性小,可以精确测量色差精确的绝对波长参考基于吸收线(不确定度**只在高分辨率版本下可实现脉冲和准连续波操作(重复率高达5MHz)高稳定性的光发射配置多达8个独立波长高NA 镜头发射角 90°(全角度)(例如显微镜)*取决于个人的量子级联激光器(QCL)
  • 多晶红外光纤配件
    多晶红外光纤配件能够适合4-18微米的激光或光谱传输,最高可承受50瓦激光功率,是理想的红外光纤。多晶红外光纤配件功能应用无毒性,使用灵活,并且可以在宽温度范围内使用(4-到420K)。特别适合用于功率高达50W的CO和CO2激光。还可以用在气体和液体的光谱测量探头。也可用于辐射测定和红外成像系统。
  • 红外光谱工具包
    specac公司提供三种用于红外光谱的工具包,用户可根据需要选择。红外光谱启动工具包涵盖了红外光谱分析常用的各种工具,通过实用这些工具,您可以更快的掌握红外光谱仪器的使用。它们也是您日常分析的最佳选择。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制