当前位置: 仪器信息网 > 行业主题 > >

红外光测量

仪器信息网红外光测量专题为您提供2024年最新红外光测量价格报价、厂家品牌的相关信息, 包括红外光测量参数、型号等,不管是国产,还是进口品牌的红外光测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外光测量相关的耗材配件、试剂标物,还有红外光测量相关的最新资讯、资料,以及红外光测量相关的解决方案。

红外光测量相关的资讯

  • 红外光谱的测量极限在哪里?
    [导读] Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱技术已经从单纯的红外光谱仪、显微镜与红外光谱联用,发展到了红外成像系统,并在信噪比、空间分辨率、时间分辨率、测量模式等方面呈现了新的发展活力。同时,在新技术的助力下,红外光谱在应用方面也得到了很大的拓展。   Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。业界评价:Quantum Design在产品的选择上颇具眼光! 为了多方位展现我国在红外光谱领域的新成果,仪器信息网特别策划制作《稳中求新红外光谱技术及应用进展》网络专题,特别邀请Quantum Design中国表面光谱销售总监韩铁柱博士为大家介绍红外光谱仪的新技术及应用情况,并探寻红外光谱的测量限。   红外光谱技术发展需求:高敏感度、高空间和高时间分辨率 仪器信息网:从仪器发展及应用的角度分析,您认为目前红外光谱仪器及技术走到了哪一个阶段?韩铁柱博士:人类对红外光的认识已经超过两个世纪,1800年,英国科学家W.?Herschel在研究温度计对紫色到红色光照射变化时,就已经意识到红色末端区域外仍然存在着看不到的辐射区域。九十年后,瑞典科学家Angstrem利用CO和CO2次证明了不同分子具有不同的红外谱图,并在此基础上进一步建立了现代分子光谱学。在此之后的一个多世纪里,人类科学家已经可以利用红外光手段,对大量的分子振动和转动信息进行谱学分析和鉴别。上世纪50年代,双光束红外光谱仪的问世,意味着红外检测已无需由经过专门训练的光谱学家进行操作,也能轻易获取数据。该设备的商业化及畅销普及标志着红外谱学门槛的大降低,在科学研究、社会实践及工业控制等领域将迎来飞跃式发展。现代红外光谱议主要指由上世纪80年代发展建立的以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。与更早期的双光束红外仪器相比,傅立叶红外光谱仪具有快速、高信噪比等特点,并且随之催生了许多新技术,诸如步进扫描、时间分辨和红外成像等,从而拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。然而,随着科学技术的不断发展和应用领域的进一步细分,特别近年来纳米材料、拓扑材料、二维材料等新材料的兴起,传统傅立叶红外光谱仪光源亮度弱、光斑范围大、迈克尔逊干涉仪平动速度慢等缺陷开始显现,逐渐不能满足红外光谱科学研究中高敏感度、高空间和高时间分辨率的需要。仪器信息网:目前红外光谱的测量限发展到了什么程度?可以给大家带来什么样的体验?韩铁柱博士:目前,传统红外光谱的空间分辨测量限在几微米到几十微米,时间分辨测量限在几十毫秒的量,这主要是由于光源本身及步径位移机制限制。20世纪60年代开始,随着台红宝石激光器的问世,科学领域得益于激光技术的广泛应用,对光谱研究的空间分辨和时间分辨也得以大幅提高。由于激光器的高线性特点,非接触式的红外光谱技术空间分辨率可达500nm,如果进一步搭配近场探针突破衍射限,空间分辨可进一步提升至10nm。利用QCL激光的双光梳设计,目前激光base的红外光谱可以完全抛弃步径位移,将时间分辨提高到us,如果将超快激光引入pump-probe体系,时间分辨可以达到fs别。仪器信息网:相对于其它的分析仪器,红外光谱的应用市场活力如何?哪些应用领域会有大的发展空间?为什么?韩铁柱博士:相对于其他分析仪器,红外光谱分析技术具有使用成本低、操作和维护简单、灵敏度和分辨率较高、特征性强等优点,能提供包含化合物官能团、类别、立体结构、取代基种类和数目等多种信息。近年来计算机技术的迅猛发展带来了分析仪器数字化和化学计量学科的同步发展,加之红外光谱技术有特点,使得其应用范围进一步拓宽。红外光谱既可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析,广泛应用于化工、制药、农业和食品、半导体、宝石鉴定、质检、地矿和环境等领域,是科学研究的有力技术手段,也是常规应用分析和生产不可缺少的分析技术。譬如在中医药领域,作为一个复杂的混合体系,中药的鉴别和质量控制,以及有效成分的确定和质量分析,一直是个难题,红外光谱技术的特点使得其作为指纹分析手段并结合化学计量学方法,成为中药研究不可或缺的工具 在农业和食品领域,近年来得益于焦平面阵列检测器、可调谐滤光器、化学计量学方法和计算术的提升,红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。除了进行农产品和食品的品质分析外,红外光谱的应用还扩展到了污染物检测、产品分类和来源鉴别、土壤的物理和化学变化、以及食品加工过程中组成变化的监控和动力学行为等。Quantum Design红外产品着眼红外光谱测量限仪器信息网:请介绍贵公司在红外光谱产品的定位及发展历史?有哪些具优势(里程碑式)的技术(技术,有技术)? 韩铁柱博士:我们公司一直贴合新研究前沿和热点课题,结合红外光谱的应用与现代科学研究的需要,专注新、先进红外光谱技术和产品的引进,先后引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外光谱仪、美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,2019年又引进了瑞士IRsweep公司的IRis-F1微秒时间分辨超灵敏红外光谱仪。这三款主推产品从空间分辨率、非接触测量、时间分辨等维度,大推动了红外光谱测量限。 nano-FTIR纳米傅里叶红外光谱技术是由德国neaspec公司基于其创的散射型近场光学技术发展出来的、具有10纳米超高空间分辨的新型傅里叶红外技术,使得纳米尺度下的化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,实现对几乎所有材料的化学分辨和成分分析。它不受被检测样品厚度制约,可广泛适用于有机物、无机物、半导体材料、二维范德华材料的纳米分辨红外光谱分析,并同时提供纳米空间分辨的红外吸收谱和反射谱。 全新一代mIRage非接触式亚微米分辨触红外拉曼同步测量系统,是美国PSC公司基于的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500nm的空间分辨率 它具备非接触式/反射模式测量,对样品表面无严格要求,可直接对厚样品进行测试 可搭配液体模式和与拉曼联用,直接观察液体生物样品,并对样品进行同时同地同分辨率下的红外拉曼同步光谱和成像分析,无荧光风险。 瑞士IRsweep公司推出的IRis-F1微秒时间分辨超灵敏红外光谱仪,荣获了由仪器信息网主办2019年度科学仪器“新品奖”,它是一种基于量子联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μs时间分辨的红外光谱快速测量。它测量数据信噪比高,易于微量及痕量光谱分析,兼容常用红外光谱仪插件,方便易用、可靠性高。仪器信息网:贵公司红外光谱仪应用具优势的领域?主推的解决方案?韩铁柱博士:我们公司近几年在红外光谱领域销售保持持续地稳定增长,针对不同的应用领域和具体的技术需求,我们推出了对应的解决方案。1、nano-FTIR是我们针对傅里叶红外光谱空间分辨率在10nm量,所推出的成熟技术方案,它利用AFM探针突破红外光斑的限制,并利用激光光源的高亮度和稳定性可进超高空间分辨下的物质微纳组分研究和表征。并后期结合飞秒激光器,可实现fs的红外光谱测量表征。美国NASA于2014年从太空带回了直径约为10um的彗星碎片。由于传统红外分辨率受制于光斑大小,该样品内部成分无法进一步检测。利用上述内容提到的纳米傅里叶红外技术10nm空间分辨率,科学家可以很好的对彗星碎片内主要5种矿物进行有效分析,并能就其组分的空间分布进行具体的表征。进一步地,在10nm超高空间分辨率的基础上,nano-FTIR还可以与50fs的时间分辨超快激光技术进行结合,同时达到红外设备的“超高空间分辨”和“超高时间分辨”。该工作在2014年由Eisele等人在实验室实现,作者利用pump激光和我们的纳米傅立叶红外光谱进行同步,在InAs纳米线上由-5ps到1050fs分别延迟激发样品,得到了纳米线上载流子形成和衰减的全过程红外光谱图。2、当红外光谱空间分辨率要求在亚微米量,且传统傅里叶变换红外光谱和ATR技术应用受限或者样品制备困难情况下,mIRage非接触式亚微米分辨触红外拉曼同步测量系统无疑是一个好的选择。它的高空间分辨率、非接触式的测量方法以及可与拉曼联用的特点,可以快速获取材料的二维红外光谱和组成分布信息。越来越多的塑料产品的使用引发了人们对于其在环境中累积所引发的环境和生态污染问题的担忧,迫使科学家尽快找到可替代性的新型材料。而生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),在适当条件下可发生生物降解,成为近研究的热点话题。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组使用mIRage系统对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在扩散机制,为未来研究生物微塑料的演变和降解过程提供数据和理论上的支持。3、为描述生物医学、化学动力学等许多变化过程中的红外光谱情况,我们推出了IRis-F1微秒时间分辨超灵敏红外光谱仪解决方案。斯坦福大学的Nicolas H.Pinkowski研究团队利用IRis-F1实现了高能气相反应中的微秒分辨单次测量。他们在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应,以4μs时间分辨测量速率,解析了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。来自IRis-F1的量子联激光的双梳状光谱仪(DCS)测试数据表明:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。未来:通用型和专用型红外光谱协同发展 仪器信息网:目前国内外红外光谱仪的技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力? 韩铁柱博士:当前市场上红外光谱仪可以大致分为通用型和专用型两大类,体现了红外光谱仪的发展与工业化需求以及科学研究需求是密切相连的。进口通用型红外光谱仪市场主要以傅立叶变换红外光谱仪(FTIR)为主,制造厂家主要来自于欧美等国,而色散型红外光谱仪比较少见 近些年来国产的FTIR厂家逐渐崭露头角,尽管技术和主流公司相比还有一定差距,但差距正在不断缩小。其新型干涉光路的搭建,有效降低了振动和导轨偏移引发的干涉变形,结合众多新型红外附件的开发,目前国内红外光谱议产品正在走出国门,远销欧美和东南亚 专业的研究型红外光谱仪主要在一些科研机构使用,存在一定的定制化,它可以与红外显微镜、热分析、气相色谱等外联附件联合使用,实现多种分析手段的同步进行和数据交叉对比。作为普适性的一种分析手段,红外光谱仪在国内有较大的潜在市场,未来红外光谱仪技术,无论是智能化程度、产品联用、应用领域专业化还是小型化上都存在很强的发展潜力。另外,红外光谱与成像相结合的多信息融合检测技术,也是当前红外技术的主要发展方向。未来随着应用领域的不断扩展,制造技术的不断变革以及计算机技术的发展,更多成本更低的研究型和专用型红外成像光谱仪预计将会陆续出现,被更多的应用于过程分析和高通量分析中,如制药,农业,食品,高分子和催化材料等领域,成为传统红外光谱技术的一种有力互补技术。仪器信息网:针对当前的市场格局,贵公司在红外光谱产品方面有什么样的布局?重点拓展的新领域有哪些? 韩铁柱博士:针对当前的市场格局,我们公司继续结合科研用户的技术需求,引进一系列红外产品引入中国市场,比如基于AFM探针技术的超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜、纳米傅里叶红外光谱仪等 同时,我们也将开展通用型红外光谱仪的布局,引入适合普通科研用途和工业应用的光谱仪,拓展其应用领域范围,解决一系列应用中的实际问题,具体体现在:1)针对传统傅里叶变换和衰减全反射红外光谱限制的亚微米分辨光学光热红外显微技术,提高其空间分辨率;2)简化样品制备过程,避免样品污染和接触引发的红外赝相;3)拓展红外样品的适用范围,包括一些常规红外无法检测的厚样品,透明样品,液体样品等;4)努力发展与其他技术的联用,实现多种技术的交叉互补使用,全面了解样品表面的化学信息,如红外和拉曼光谱技术联用,对有机无机样品的各种分子振动进行全面的分析和相互验证。通过以上布局,我们一方面注重拓展高新技术领域的红外光谱应用,如纳米红外光谱和成像,超快/时间分辨红外光谱等,用于纳米材料的高分辨表征和化学过程的监测 另一方面拓展实际应用领域的红外技术应用,包括制药、化工、半导体、农业和食品、地质和环境、法医鉴定等,解决科研和生产过程中遇到的一系列实际问题,推动红外光谱技术的应用。后记:习近平总书记非常重视科技创新能力,他在重要讲话中指出“自主创新是我们攀登科技高峰的必由之路”,“当今科技革命和产业变革方兴未艾,我们要增强使命感,把创新作为大政策,奋起直追、迎头赶上”。Quantum Design中国也以此为己任,在公司的建设和发展过程中,致力于为中国科研工作者的成功提供专业支持和服务。韩铁柱博士介绍说,“我们深深理解国内科学家和学者们从不缺乏创新性的科研想法和构想,如何借助先进仪器帮助科学家将这些想法付诸于实践,是Quantum Design中国一直在思考的问题。”据悉, Quantum Design中国建立了超过300万美元的样机实验室,为国内科学家尝试自己的想法提供了舞台和施展的空间。就红外光谱分析仪器而言,Quantum Design中国样机实验室引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外仪,以及美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,并向国内科学家开放。截至2020年6月,Quantum Design中国样机实验室测量的数据已经协助科学家在Nature正刊、Nature子刊、ASC等著名国际期刊上发表多篇创新性的科研成果,得到了广大科学家的认可和赞誉。
  • 红外光谱的测量极限在哪里
    pspan style="font-family: 楷体, 楷体_GB2312, SimKai "  近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱技术已经从单纯的红外光谱仪、显微镜与红外光谱联用,发展到了红外成像系统,并在信噪比、空间分辨率、时间分辨率、测量模式等方面呈现了新的发展活力。同时,在新技术的助力下,红外光谱在应用方面也得到了很大的拓展。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒级时间分辨超灵敏红外光谱仪在探寻红外光谱测量极限上展现了独特的魅力,先后获得科学仪器“优秀新品奖”。业界评价:Quantum Design在产品的选择上颇具眼光!/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  为了多方位展现我国在红外光谱领域的最新成果,仪器信息网特别策划制作《稳中求新红外光谱技术及应用进展》网络专题,特别邀请Quantum Design中国表面光谱销售总监韩铁柱博士为大家介绍红外光谱仪的最新技术及应用情况,并探寻红外光谱的测量极限。/span/pp  span style="color: rgb(255, 0, 0) "strong红外光谱技术发展需求:高敏感度、高空间和高时间分辨率/strong/span/pp  strong仪器信息网:从仪器发展及应用的角度分析,您认为目前红外光谱仪器及技术走到了哪一个阶段?/strong/ppstrong  韩铁柱博士/strong:人类对红外光的认识已经超过两个世纪,1800年,英国科学家W.?Herschel在研究温度计对紫色到红色光照射变化时,就已经意识到红色末端区域外仍然存在着看不到的辐射区域。九十年后,瑞典科学家Angstrem利用CO和CO2首次证明了不同分子具有不同的红外谱图,并在此基础上进一步建立了现代分子光谱学。在此之后的一个多世纪里,人类科学家已经可以利用红外光手段,对大量的分子振动和转动信息进行谱学分析和鉴别。上世纪50年代,双光束红外光谱仪的问世,意味着红外检测已无需由经过专门训练的光谱学家进行操作,也能轻易获取数据。该设备的商业化及畅销普及标志着红外谱学门槛的极大降低,在科学研究、社会实践及工业控制等领域将迎来飞跃式发展。/pp  现代红外光谱议主要指由上世纪80年代发展建立的以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。与更早期的双光束红外仪器相比,傅立叶红外光谱仪具有快速、高信噪比等特点,并且随之催生了许多新技术,诸如步进扫描、时间分辨和红外成像等,从而拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。/pp  然而,随着科学技术的不断发展和应用领域的进一步细分,特别近年来纳米材料、拓扑材料、二维材料等新材料的兴起,传统傅立叶红外光谱仪光源亮度弱、光斑范围大、迈克尔逊干涉仪平动速度慢等缺陷开始显现,逐渐不能满足红外光谱科学研究中高敏感度、高空间和高时间分辨率的需要。/pp  strong仪器信息网:目前红外光谱的测量极限发展到了什么程度?可以给大家带来什么样的体验?/strong/ppstrong  韩铁柱博士:/strong目前,传统红外光谱的空间分辨测量极限在几微米到几十微米,时间分辨测量极限在几十毫秒的量级,这主要是由于光源本身及步径位移机制限制。20世纪60年代开始,随着第一台红宝石激光器的问世,科学领域得益于激光技术的广泛应用,对光谱研究的空间分辨和时间分辨也得以大幅提高。由于激光器的高线性特点,非接触式的红外光谱技术空间分辨率可达500nm,如果进一步搭配近场探针突破衍射极限,空间分辨可进一步提升至10nm。利用QCL激光的双光梳设计,目前激光base的红外光谱可以完全抛弃步径位移,将时间分辨提高到us级,如果将超快激光引入pump-probe体系,时间分辨可以达到fs级别。/pp  strong仪器信息网:相对于其它的分析仪器,红外光谱的应用市场活力如何?哪些应用领域会有大的发展空间?为什么?/strong/ppstrong  韩铁柱博士:/strong相对于其他分析仪器,红外光谱分析技术具有使用成本低、操作和维护简单、灵敏度和分辨率较高、特征性强等优点,能提供包含化合物官能团、类别、立体结构、取代基种类和数目等多种信息。近年来计算机技术的迅猛发展带来了分析仪器数字化和化学计量学科的同步发展,加之红外光谱技术独有特点,使得其应用范围进一步拓宽。/pp  红外光谱既可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析,广泛应用于化工、制药、农业和食品、半导体、宝石鉴定、质检、地矿和环境等领域,是科学研究的有力技术手段,也是常规应用分析和生产不可缺少的分析技术。譬如在中医药领域,作为一个复杂的混合体系,中药的鉴别和质量控制,以及有效成分的确定和质量分析,一直是个难题,红外光谱技术的特点使得其作为指纹分析手段并结合化学计量学方法,成为中药研究不可或缺的工具 在农业和食品领域,近年来得益于焦平面阵列检测器、可调谐滤光器、化学计量学方法和计算术的提升,红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。除了进行农产品和食品的品质分析外,红外光谱的应用还扩展到了污染物检测、产品分类和来源鉴别、土壤的物理和化学变化、以及食品加工过程中组成变化的监控和动力学行为等。/pp  span style="color: rgb(255, 0, 0) "strongQuantum Design红外产品着眼红外光谱测量极限/strong/span/ppstrong  仪器信息网:请介绍贵公司在红外光谱产品的定位及发展历史?有哪些独具优势(里程碑式)的技术(专利技术,独有技术)?/strong/ppstrong  韩铁柱博士:/strong我们公司一直贴合最新研究前沿和热点课题,结合红外光谱的应用与现代尖端科学研究的需要,专注最新、最先进红外光谱技术和产品的引进,先后引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外光谱仪、美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,2019年又引进了瑞士IRsweep公司的IRis-F1微秒级时间分辨超灵敏红外光谱仪。这三款主推产品从空间分辨率、非接触测量、时间分辨等维度,极大推动了红外光谱测量极限。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C377717.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 183px " src="https://img1.17img.cn/17img/images/202006/uepic/34a71ded-e469-47c6-8f17-0f6442a01553.jpg" title="01.png" alt="01.png" width="600" height="183" border="0" vspace="0"//a/pp style="text-align: center "(a href="https://www.instrument.com.cn/netshow/C377717.htm" target="_blank"点击仪器图片查看更多详情/a)/pp  nano-FTIR纳米傅里叶红外光谱技术是由德国neaspec公司基于其首创的散射型近场光学技术发展出来的、具有10纳米超高空间分辨的新型傅里叶红外技术,使得纳米尺度下的化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,实现对几乎所有材料的化学分辨和成分分析。它不受被检测样品厚度制约,可广泛适用于有机物、无机物、半导体材料、二维范德华材料的纳米分辨红外光谱分析,并同时提供纳米空间分辨的红外吸收谱和反射谱。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C363244.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 193px " src="https://img1.17img.cn/17img/images/202006/uepic/d719a770-b45f-494a-822b-1bfb8d6976f2.jpg" title="02.png" alt="02.png" width="600" height="193" border="0" vspace="0"//a/pp style="text-align: center "(a href="https://www.instrument.com.cn/netshow/C363244.htm" target="_blank"点击仪器图片查看更多详情/a)/pp  全新一代mIRage非接触式亚微米分辨触红外拉曼同步测量系统,是美国PSC公司基于专利的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500nm的空间分辨率 它具备非接触式/反射模式测量,对样品表面无严格要求,可直接对厚样品进行测试 可搭配液体模式和与拉曼联用,直接观察液体生物样品,并对样品进行同时同地同分辨率下的红外拉曼同步光谱和成像分析,无荧光风险。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C305345.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/03b21d48-652a-4150-8caf-f5c21c9855c7.jpg" title="03.png" alt="03.png"//a/pp style="text-align: center "(a href="https://www.instrument.com.cn/netshow/C305345.htm" target="_blank"点击仪器图片查看更多详情/a)/pp  瑞士IRsweep公司推出的IRis-F1微秒级时间分辨超灵敏红外光谱仪,荣获了由仪器信息网主办2019年度科学仪器“优秀新品奖”,它是一种基于量子级联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μs时间分辨的红外光谱快速测量。它测量数据信噪比高,易于微量及痕量光谱分析,兼容常用红外光谱仪插件,方便易用、可靠性高。/pp  strong仪器信息网:贵公司红外光谱仪应用最具优势的领域?主推的解决方案?/strong/ppstrong  韩铁柱博士:/strong我们公司近几年在红外光谱领域销售保持持续地稳定增长,针对不同的应用领域和具体的技术需求,我们推出了对应的解决方案。/pp  1、nano-FTIR是我们针对傅里叶红外光谱空间分辨率在10nm量级,所推出的成熟技术方案,它利用AFM探针突破红外光斑的限制,并利用激光光源的高亮度和稳定性可进超高空间分辨下的物质微纳组分研究和表征。并后期结合飞秒激光器,可实现fs级的红外光谱测量表征。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 316px " src="https://img1.17img.cn/17img/images/202006/uepic/69125e72-499a-4ced-b257-9bdb7b3a4f00.jpg" title="04.png" alt="04.png" width="600" height="316" border="0" vspace="0"//pp  美国NASA于2014年从太空带回了直径约为10um的彗星碎片。由于传统红外分辨率受制于光斑大小,该样品内部成分无法进一步检测。利用上述内容提到的纳米傅里叶红外技术10nm空间分辨率,科学家可以很好的对彗星碎片内主要5种矿物进行有效分析,并能就其组分的空间分布进行具体的表征。进一步地,在10nm超高空间分辨率的基础上,nano-FTIR还可以与50fs的时间分辨超快激光技术进行结合,同时达到红外设备的“超高空间分辨”和“超高时间分辨”。该工作在2014年由Eisele等人在实验室实现,作者利用pump激光和我们的纳米傅立叶红外光谱进行同步,在InAs纳米线上由-5ps到1050fs分别延迟激发样品,得到了纳米线上载流子形成和衰减的全过程红外光谱图。/pp  2、当红外光谱空间分辨率要求在亚微米量级,且传统傅里叶变换红外光谱和ATR技术应用受限或者样品制备困难情况下,mIRage非接触式亚微米分辨触红外拉曼同步测量系统无疑是一个最好的选择。它的高空间分辨率、非接触式的测量方法以及可与拉曼联用的特点,可以快速获取材料的二维红外光谱和组成分布信息。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 331px " src="https://img1.17img.cn/17img/images/202006/uepic/35ecedb1-5d4e-431a-b8a1-043e5acec657.jpg" title="05.jpg" alt="05.jpg" width="600" height="331" border="0" vspace="0"//pp  越来越多的塑料产品的使用引发了人们对于其在环境中累积所引发的环境和生态污染问题的担忧,迫使科学家尽快找到可替代性的新型材料。而生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),在适当条件下可发生生物降解,成为最近研究的热点话题。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组使用mIRage系统对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在扩散机制,为未来研究生物微塑料的演变和降解过程提供数据和理论上的支持。/pp  3、为精准描述生物医学、化学动力学等许多变化过程中的红外光谱情况,我们推出了IRis-F1微秒级时间分辨超灵敏红外光谱仪解决方案。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 280px " src="https://img1.17img.cn/17img/images/202006/uepic/adaa6cec-04b2-4a33-8145-bdb8a4376d43.jpg" title="06.jpg" alt="06.jpg" width="600" height="280" border="0" vspace="0"//pp  斯坦福大学的Nicolas H.Pinkowski研究团队利用IRis-F1实现了高能气相反应中的微秒分辨单次测量。他们在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应,以4μs时间分辨测量速率,解析了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。来自IRis-F1的量子级联激光的双梳状光谱仪(DCS)测试数据表明:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。/pp  span style="color: rgb(255, 0, 0) "strong未来:通用型和专用型红外光谱协同发展/strong/span/pp  strong仪器信息网:目前国内外红外光谱仪的技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力?/strong/pp strong 韩铁柱博士:/strong当前市场上红外光谱仪可以大致分为通用型和专用型两大类,体现了红外光谱仪的发展与工业化需求以及科学研究需求是密切相连的。进口通用型红外光谱仪市场主要以傅立叶变换红外光谱仪(FTIR)为主,制造厂家主要来自于欧美等国,而色散型红外光谱仪比较少见 近些年来国产的FTIR厂家逐渐崭露头角,尽管技术和世界主流公司相比还有一定差距,但差距正在不断缩小。其新型干涉光路的搭建,有效降低了振动和导轨偏移引发的干涉变形,结合众多新型红外附件的开发,目前国内红外光谱议产品正在走出国门,远销欧美和东南亚 专业的研究型红外光谱仪主要在一些科研机构使用,存在一定的定制化,它可以与红外显微镜、热分析、气相色谱等外联附件联合使用,实现多种分析手段的同步进行和数据交叉对比。/pp  作为普适性的一种分析手段,红外光谱仪在国内有较大的潜在市场,未来红外光谱仪技术,无论是智能化程度、产品联用、应用领域专业化还是小型化上都存在很强的发展潜力。另外,红外光谱与成像相结合的多信息融合检测技术,也是当前红外技术的主要发展方向。未来随着应用领域的不断扩展,制造技术的不断变革以及计算机技术的发展,更多成本更低的研究型和专用型红外成像光谱仪预计将会陆续出现,被更多的应用于过程分析和高通量分析中,如制药,农业,食品,高分子和催化材料等领域,成为传统红外光谱技术的一种有力互补技术。/pp  strong仪器信息网:针对当前的市场格局,贵公司在红外光谱产品方面有什么样的布局?重点拓展的新领域有哪些?/strong/ppstrong  韩铁柱博士:/strong针对当前的市场格局,我们公司继续结合科研用户的技术需求,引进一系列红外产品引入中国市场,比如基于AFM探针技术的超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜、纳米傅里叶红外光谱仪等 同时,我们也将开展通用型红外光谱仪的布局,引入适合普通科研用途和工业应用的光谱仪,拓展其应用领域范围,解决一系列应用中的实际问题,具体体现在:/pp  1)针对传统傅里叶变换和衰减全反射红外光谱限制的亚微米分辨光学光热红外显微技术,提高其空间分辨率 2)简化样品制备过程,避免样品污染和接触引发的红外赝相 3)拓展红外样品的适用范围,包括一些常规红外无法检测的厚样品,透明样品,液体样品等 4)努力发展与其他技术的联用,实现多种技术的交叉互补使用,全面了解样品表面的化学信息,如红外和拉曼光谱技术联用,对有机无机样品的各种分子振动进行全面的分析和相互验证。/pp  通过以上布局,我们一方面注重拓展高新技术领域的红外光谱应用,如纳米红外光谱和成像,超快/时间分辨红外光谱等,用于纳米材料的高分辨表征和化学过程的监测 另一方面拓展实际应用领域的红外技术应用,包括制药、化工、半导体、农业和食品、地质和环境、法医鉴定等,解决科研和生产过程中遇到的一系列实际问题,推动红外光谱技术的应用。/pp strong span style="font-family: 楷体, 楷体_GB2312, SimKai "后记:/span/strong/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  习近平总书记非常重视科技创新能力,他在重要讲话中指出“自主创新是我们攀登世界科技高峰的必由之路”,“当今世界科技革命和产业变革方兴未艾,我们要增强使命感,把创新作为最大政策,奋起直追、迎头赶上”。Quantum Design中国也以此为己任,在公司的建设和发展过程中,致力于为中国科研工作者的成功提供专业支持和服务。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  韩铁柱博士介绍说,“我们深深理解国内科学家和学者们从不缺乏创新性的科研想法和构想,如何借助先进仪器帮助科学家将这些想法付诸于实践,是Quantum Design中国一直在思考的问题。”据悉, Quantum Design中国建立了超过300万美元的样机实验室,为国内科学家尝试自己的想法提供了舞台和施展的空间。就尖端红外光谱分析仪器而言,Quantum Design中国样机实验室引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外仪,以及美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,并向国内科学家开放。截至2020年6月,Quantum Design中国样机实验室测量的数据已经协助科学家在Nature正刊、Nature子刊、ASC等著名国际期刊上发表多篇创新性的科研成果,得到了广大科学家的认可和赞誉。/span/ppbr//p
  • 研究人员开发出基于远红外光的无创血糖测量技术
    p  日本东北大学生物医学工程研究生院Yuji Matsuura教授领导的一个研究团队开发出利用远红外光测量血糖的方法。这种方法是无害的,也是非侵入式的。/pp  糖尿病病人传统上需要使用一种常规的检测仪器测量从指尖中采取的血液,从而监控他们每天的血糖水平。这种让人不适的疼痛感和感染风险有时可能是巨大压力和担忧产生的源头。/pp  为了解决这一问题,其他的研究人员已提出和开发出利用近红外光测量血液中葡萄糖浓度的非侵入式方法。这种方法工作的前体条件为一些特定波长的近红外光被血液中的葡萄糖选择性地吸收。/pp  然而,利用这种方法进行准确地和稳定地测量已被证实是比较困难的,这是因为近红外光不仅被葡萄糖较弱地吸收,而且也被水、蛋白和血红蛋白较弱地吸收。/pp  相比之下,波长在40微米左右的远红外光能够被葡萄糖强劲地吸收,这就使得在理论上可以对病人进行更加准确地和灵敏地测量。然而,研究人员面临的问题是,远红外光只能穿透到皮肤表面下几微米,这就使得检测血糖比较困难。因此,Matsuura团队开发出一种新的测量技术:将一块小的棱镜附着到柔韧的空芯光纤末端上来发射远红外光。利用这种方法,就能够照射内唇的口腔黏膜。不同于皮肤,内唇没有厚厚的表皮角质层。/pp  实验结果证实这种新技术能够高灵敏度地检测和准确地测量血糖水平,误差范围在20%以下。Matsuura教授认为这足以适合临床使用。/pp  糖尿病是一种影响着全世界数百万人的严重健康问题。通过将这种方法与最近刚被开发出的远红外激光器联合使用,Matsuura教授期待更为紧凑的低成本血糖测量系统将很快地在临床上被广泛使用。/p
  • 2023“创和亿杯近红外光谱数据建模竞赛” 预测集实际测量值公布
    2023年9月19日,中国仪器仪表学会近红外光谱分会发布了关于开展2023年度“创和亿杯近红外光谱数据建模竞赛”的通知。通知要求参赛者于2023年10月30日前完成并提交“参赛附表”,截至目前,超过110人参加了本次竞赛。按照活动进程,中国仪器仪表学会近红外光谱分会正式公布2023年度“创和亿杯近红外光谱数据建模竞赛” 预测集实际测量值。点击下载:2023 年度“创和亿杯近红外光谱数据建模竞赛” 预测集实际测量值.xlsx测试集样本序号化学成分16.3225.95635.14445.3658.88465.96475.32886.61696.012106.828115.704126.616136.088145.788156.544165.92175.204185.672195.912205.316根据参赛者提交预测结果的准确性,本竞赛将评选出一等奖1名,二等奖2名,三等奖5名,优秀奖10名。颁发电子版获奖证书和奖金,其中一等奖奖金2000元,二等奖奖金1500元,三等奖奖金1000元,优秀奖只颁发获奖证书。本竞赛将在2023年11月5日前向参赛者公布预测集的实际浓度值,2023年11月15日前公布获奖名单。更多信息请查看:关于开展2023年度“创和亿杯近红外光谱数据建模竞赛”的通知
  • 日立高新等开发出利用近红外光的非侵袭式脑活动测量计
    日立高新技术与日立国际八木解决方案公司开发出了戴在头部,利用近红外光的非侵袭式脑活动测量计“可穿戴式光Topography”系列的新产品“WOT-HS”,有头发亦可测量。设想在日常环境下测量脑活动,用于分析脑功能等研究用途。  新产品开发了内置信号处理器和传感器等的小型胶囊单元,并使其可逐个处理,从而大幅削减了信号线缆的使用量。由此,将传感器数量由原机型的16个增至35个,不但扩大了测量范围,重量也减轻了约25%。并且,最大限度抑制了头戴式设备表面的信号线缆暴露,采用完全不使用光纤的结构,佩戴方便性提高。  小型胶囊单元采用雪崩光电二极管接收近红外光。提高了受光灵敏度,使得头发部位也可测量。除了与原机型相同的前额部位以外,在有头发的侧头部也配置了小型胶囊单元,可以测量与听觉等有关的脑活动。  另外,测量方式可以切换为能降低皮肤血流等人体噪声的多距离(Multi-Distance)方式。此外,导入了利用小型胶囊单元上部设置的LED,显示头戴式设备佩戴状态的功能,提高了用户的便利性。  日立高新技术预定2016年度中期开始供货该产品。并将在2016年3月7~8日于京都大学桂校区(京都府京都市)举行的“第18届人脑功能Mapping学会”上展示。日立高新技术与日立国际八木解决方案称,今后计划开发除前额部和侧头部外,还可测量头顶部位的装置。
  • 乐氏科技受邀参加中国环境监测总站主办的傅里叶变换红外光谱精准测量技术领域研讨会
    2024年6月6日,由《中国环境监测》期刊主办的“傅里叶变换红外光谱精准测量技术领域研讨会”在山东济南顺利召开。来自中国科学院工程热物理研究所、中国环境科学研究院、山东大学、山东省计量科学研究院、中国环境监测总站、各省/市生态环境监测中心、创新型企业等单位的十余位专家学者,围绕傅里叶变换红外光谱测量技术进展、精准测量技术在地方生态环境监测工作运用实践及科学需求建议进行深入研讨。拾亿生态技术(北京)有限公司技术总监就《傅里叶变换红外光谱测量技术研究进展介绍及科技需求研讨》进行学术报告分享,介绍了傅里叶变换红外光谱技术的原理、发展历程、气态污染物监测技术利弊分,提出了傅里叶变换红外光谱技术在环境监测领域全方位解决方案,对监测痛点详细阐述,为精准测量提供技术支撑。北京乐氏联创科技有限公司的技术总监就《傅里叶变换红外光谱精准测量技术在地方生态环境监测工作运用实践研讨》进行学术报告分享,详细介绍了傅里叶红外气体分析技术在各个不同行业的精准测量的典型运用,通过案例和数据,展示了精准测量技术如何助力地方环境监测机构提高监测效率、确保数据准确,助推固定污染源超低排放监测、应急检测、碳排放监测等标准化发展及数智化发展等,并对环境监测产品选型提出建议,产品选型应以考虑测试数据是否符合“真、准、全”及满足行业规范要求为前提。专家们围绕如何进一步推动傅里叶变换红外光谱技术的发展及其在环境监测中的应用进行了热烈讨论。提出加强产学研合作、推广先进技术、推广数智化发展是生态环境监测的必然趋势。同时,他们也提出了一系列具体的建议和措施,为未来的环境监测技术创新发展指明了方向。 傅里叶变换红外光谱精准测量技术的广泛应用,也将持续加强环境监测技术创新与应用的研究,不断提升监测数据的准确性和可靠性,为生态环境保护事业作出更大的贡献。同时不断推动自动化、智能化、数智化层层递进发展,共同推动环境监测事业的繁荣发展。为进一步扩大期刊影响力,《中国环境监测》期刊编辑部将聚焦监测技术的不断发展及应用,推动精准测量全方位落实,进一步促进了政府监测机构与监测服务企业、科研机构与监测服务企业、监测服务企业之间的互动和交流,推动行业高质量发展、共同进步提升。 (版权说明:文章转自《中国环境监测》官网)
  • 133.5万!布鲁克等中标广东腐蚀科学与技术创新研究院红外光谱仪接及触角测量仪等设备采购项目
    一、项目编号:0809-2240GDC13066(招标文件编号:0809-2240GDC13066)二、项目名称:广东腐蚀科学与技术创新研究院红外光谱仪接及触角测量仪等设备采购项目三、中标(成交)信息供应商名称:建发(广州)有限公司供应商地址:广州市天河区冼村路5号第27层04-12房(仅限办公)(不可作厂房使用)中标(成交)金额:133.5000000(万元) 供应商名称:广东省合创进出口有限公司供应商地址:广州市白云区鹤龙五路10号8205室中标(成交)金额:38.0000000(万元) 供应商名称:建发(广州)有限公司供应商地址:广州市天河区冼村路5号第27层04-12房(仅限办公)(不可作厂房使用)中标(成交)金额:52.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 建发(广州)有限公司 傅立叶变换红外光谱仪 布鲁克 VERTEX70V 1套 1335000 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 2 广东省合创进出口有限公司 接触角测量仪 KRüSS DSA100S 1套 380000 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 3 建发(广州)有限公司 纳米粒度及Zeta电位分析仪 Brookhaven NanoBrook omni 1套 529000
  • 红外理疗仪有你真正需要的红外光吗?
    对于患有风湿痛、关节炎、神经痛、腰酸,颈肩肌肉或者关节肌肉酸痛等疾病的患者在治疗时,通常医生都会建议患者使用红外理疗仪(或者针灸,按摩,电疗或体能训练等)配合药物来快速治疗和减轻症状。 由于红外理疗在缓解疼痛方面非常有效,并且理疗仪设备操作方便,因此家用红外理疗仪越来越受欢迎。但是,如何判断红外理疗仪此类设备的质量性能呢?红外光产生的热能可以通过皮肤,到达深层肌肉,血管,神经甚至骨骼。不同波长的红外光具有不同的穿透能力。许多研究表明700-1000nm的红外光,也就是近红外波段最适合用于疾病治疗,其穿透性也最强。但是,理疗仪产品中其大多数红外灯不仅在近红外波段范围内发射光谱,而且在1mm甚至到太赫兹波段,也就是远红外波段都有发射光谱。由于远红外波段穿透能力较弱,热能量主要被人体表层皮肤吸收。因此,如果远红外波段的强度过高,则会导致皮肤过热、刺激、灼烧感很强,甚至灼伤皮肤。所以,要检测理疗仪的质量性能,不仅需要测量其内置红外灯的总照射强度,还需要测量与波长相关的强度分布。在这一点上,FTIR光谱法是可以通过发射光谱准确表征理疗仪这一重要性能指标的。布鲁克INVENIO和VERTEX系列研究型FTIR光学平台经过优化,可用于不同方式的发射实验,并且可以完全覆盖此应用的整个光谱范围。两个独立的发射端口提供聚焦或平行光束输入选项,适用于各种类型红外理疗产品的红外光谱测试。还提供用于基础材料研究的专用样品附件和黑体参考源。在几分钟之内就完成记录发射光谱测试。并且由于有了智能软件功能,在获得测量值之后,就可以轻松计算出发射率。来自中国天津医疗器械测试中心的钱博士正是该领域的研究者之一,目的是研究用于红外理疗仪的发光材料性能,并为市场上的同类产品提供可靠的评价认证规定。(实验装置如上图所示)。
  • 技术线上论坛|12月02日《红外竟成为关键数据?接连登上Nature子刊!550-7000 cm-1全波段 10 nm红外光谱(nano-FTIR/AFM-IR)测量系统》
    报告简介: 傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。常规FTIR显微镜通常使用相对较弱、光谱范围较广的红外光源,但其分辨率受限于光波长小约为波长的一半,这严重限制了光学技术尤其是长波段的中远红外和太赫兹技术在微观领域的研究。相比之下,纳米傅里叶红外光谱仪-Nano-FTIR、超高分辨散射式近场光学显微镜-neaSNOM和 AFM-IR显微镜具有更强的激光源,可实现材料在纳米尺度下的组分分辨。然而,为实现较强的激光功率,其代价往往缩小了光谱覆盖的范围。在本次网络研讨会中,我们将介绍一种全新的全波段可调谐激光光源,它与 neaspec 显微镜结合可提供前所未有的光谱覆盖范围,并实现纳米红外显微镜的10 nm成像和光谱测量。 这种特技术的特点:• 超宽的可调谐波长范围 550-7000 cm-1,同时具有与 QCL 相当的调谐速度;• 线宽 4 cm-1,实现快速的纳米化学组分成像;• 与散射式近场光学(s-SNOM)和 AFM-IR / PTE+等测量模式兼容。 在网络研讨会的问答时段,您可以直接与neaspec专家探讨科研工作中所面临的技术挑战和各种问题。欢迎您届时参加!报名注册:您可以通过点击此处或扫描下方二维码报名注册此次会议。扫描上方二维码,即可注册!报告时间:2021年12月02日 17:00(北京时间) 主讲人:主持人:Sergiu Amarie, neaspec高应用工程师演讲嘉宾:Magnus Johnson, KTH Stockholm技术线上论坛:https://qd-china.com/zh/n/2004111065734
  • CIS标准《中药药材质量均一化数据的测量 近红外光谱法》拟立项
    2023年9月,中国仪器仪表学会标准化工作委员会发布关于拟立项(中药药材质量均一化数据的测量 近红外光谱法)CIS标准的公示通告,拟制定标准是由江苏国钥云技术有限公司申报的《中药药材质量均一化数据的测量 近红外光谱法》。药材是中药制剂生产的起始原料,但其天然产物具有质量波动较大的特点。为减少物料质量对成品的影响,需要获取和分析中药材的质量信息,并研究开发均一化投料的控制策略。然而,由于中药材化学成分复杂,没有明确的指标来衡量其整体质量。国家药监局于2020年11月发布了《中药均一化研究技术指导原则(试行)》,提出了以中药均一化作为衡量中药材整体质量的指标,并对均一化对象类型、前准备、指标选择、计算方法等方面进行了要求。近红外光谱技术作为一种应用广泛的绿色PAT技术,己在中药产业定性定量分析、在线检测和过程控制等中药分析领域中显示出了巨大的应用潜力,并为测量中药材质量均一化数据提供了新的方法与思路。采用近红外光谱技术测量中药材质量均一化数据对提升中药生产质量控制水平、确保产品质量稳定可靠、实现中药生产自动化、智能化、规范化意义重大。目前国内外尚无采用近红外光谱法测量中药药材质量均一化数据的标准,本项目将填补这一空白,对提升中药生产质量控制水平、确保产品质量稳定可靠、实现中药生产自动化、智能化、规范化具有重要意义。附件(中药药材质量均一化数据的测量_近红外光谱法)CIS标准公示表.docx
  • 2020红外/近红外光谱新品盘点:以应用驱动产品创新
    国外某研究机构的最新市场研究显示, 2020年全球红外光谱市场预计10亿美元,2025年将达13亿美元,复合年增长率为4.1%。作为一类比较成熟的仪器分析方法,红外光谱已经得到了广泛的应用,特别是在制药、生物研究以及食品和饮料的终端用户中应用非常广泛。而同时,这些相关行业严格的法规,以及对质量水平越来越高的追求都推动了红外光谱市场的增长。  虽然2020年COVID-19的爆发和蔓延影响了很多行业发展,也使很多工厂停工或者关闭,但同时也导致了药品和其他医疗设备产量的增加,这在一定程度上也增加了红外光谱在医疗保健和制药终端行业的需求,进而导致市场对红外光谱产品和解决方案的需求增长。  基于市场的需求,各大仪器厂家也在不断的推出新的产品。据统计,申报仪器信息网2020年度“科学仪器优秀新品评选”活动的红外/近红外光谱类仪器共计11台,其中红外光谱仪9台,近红外光谱仪2台。值得一提的是,不管是小型化、云数据管理、专用化及在线仪器等,以上新品特别注重从用户的角度考虑问题,从应用的角度着手进行产品的开发和设计。以下将根据2020年度申报新品的情况进行简单的概述:  近年来,小型化一直是仪器设计和制造的一个重要发展趋势,仪器小型化不仅能满足空间有限的分析测试现场使用需求,而且便于集成拓展,非常适合手持式/便携式仪器开发。  在本年度申报的仪器新品中,滨松光子学商贸(中国)有限公司推出了FTIR光谱仪引擎 C15511-01。基于精心重构光学干涉仪的设计思路,并采用独特的MOEMS技术,滨松光子成功开发出了一款高性能的微型化FTIR引擎。迈克尔逊光谱干涉仪和控制电路内置其中,仅手掌大小,却实现了在1.1-2.5μm区域超高的灵敏度,具有远超同类产品的高信噪比表现(10000:1),以及高光谱重现性。据悉,该产品可内置于便携式FTIR仪器中,实现整机小型化的同时,也可保证高性能的实现。  此外,荧飒光学仪器(上海)有限公司也推出了两款便携式的仪器新品:便携式傅里叶红外气体分析仪+Mobile10-G、便携式傅里叶变换红外光谱仪 Mobile10。其中,前者集成小体积长光程的9.8米气体池及内置抽气泵、电池,现场开机即可工作;后者不仅集成平板及电池,现场开机即可工作,而且具有与台式红外光谱仪一样的性能。  对于科学仪器而言,软件是一个绕不开的话题,随着应用需求的提升,用户不仅关注仪器硬件的改进,对软件及数据的云端管理也提出了新的需求。  软件在云平台和云服务方面的创新,是现代仪器发展的一个重要方向。珀金埃尔默企业管理(上海)有限公司推出的Spectrum 3™ 傅立叶变换红外光谱仪不仅提供全集成的热重-红外(TG-IR)联用(EGA4000)解决方案的FT-IR平台,涵盖近、中、远红外三个波长范围,软件自动切换光源、分束器、检测器等部件。而且,特别值得一提的是,该仪器首次将云办公软件“NetPlus”引入红外光谱检测领域,数据实现云端连接。基于Web的应用程序,允许从任何设备查看、上传/下载和管理云端数据,提供更加准确的结果、整合的工作流和团队成员间跨实验室/设备实时协作。  对于中药材的分析而言,数据分析是重点也是难点。北京鉴知技术有限公司(原同方威视拉曼)推出的IT2000中药分析仪,针对中药材质量控制,通过丰富的数据库和识别算法,一键分析实现中药饮片的真伪鉴别、品种识别、产地溯源和品质分析,光谱采集、分析、测试报告等同步自动完成。  应用拓展一直是近红外人努力的方向和目标,而找准应用环境对近红外仪器而言至关重要。很多业内人士指出,专用化和在线仪器的发展存在着较强的生命力和巨大的潜在应用市场。  瑞士万通中国有限公司推出了DS2500 L近红外光谱液体分析仪,在上一代产品的基础上,该仪器由分体式改为了一体机的形式,使得仪器本身防护等级达到了IP65。另外,其智能附件设计,为分析液体样品设计了不同光程的附件,每个附件上都带有芯片,附件插入仪器后可以被读取;荧飒光学仪器(上海)有限公司推出了为工业在线用户设计的8通道在线检测近红外光谱仪--傅里叶变换在线近红外光谱仪MASTER10-Pro,其采用完全国内自主的傅里叶变换技术,自主国产的干涉仪,立体角镜,永久准直,抗震性强。  除了红外透射、红外反射、衰减全反射(ATR)、漫反射等大家熟悉的测量方式,在本次申报的新品中,荧飒光学仪器(上海)有限公司还推出了傅里叶变换红外发射光谱仪和傅里叶变换光致发光光谱仪。红外发射光谱虽然应用范围不如红外吸收光谱广,但在一些特定研究领域有其独特的优势。荧飒光学仪器(上海)有限公司推出的傅里叶变换红外发射光谱仪 FOLI 10-RE是独立式、专用型红外发射光谱仪,其光路设计紧凑,可以明显降低辐射损失,提高辐射通量;作为一种有效的无损光谱检测手段,光致发光光谱广泛应用于半导体的带隙检测、杂质缺陷分析等。荧飒光学仪器(上海)有限公司推出的傅里叶变换光致发光光谱仪 FTPL-10具有弱信号探测能力强、测量速度快和用户操作使用简单等优势。在仪器性能方面,该仪器的光谱分辨率达到0.8nm以上,测量速度达到每秒1张谱图,信噪比超过500:1。  此外,荧飒光学还推出了旋转透射红外液体分析仪+FOLI10-RT,该仪器最多可同时配置4个不同光程的光学窗,非常适合液体的定量测量;天津恒创立达科技发展有限公司推出了MATRIX-50 傅里叶红外光谱仪,该产品采用专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。
  • 中远红外光谱一气呵成 – 傅立叶红外光谱界多年的梦想终得实现
    pspan style="font-size: 16px "  2014年十月于德国埃特林根,布鲁克集团光学事业部全球同步首发可以一次测试覆盖中红外、远红外和太赫兹光谱范围的傅立叶红外谱仪超宽谱区最新应用技术。继不久前问世的超宽谱区中远红外分束器后,布鲁克又推出了全新的超宽谱区中远红外DTGS检测器。VERTEX 70吹扫型和VERTEX 70v真空型研究级傅立叶红外光谱仪配置这两个新型超宽波段的红外光学部件,促成了VERTEX FM中远红外波段无与伦比的优势:您无需切换分束器或检测器、无需后续拼接谱图,只需一次测量,即可获得一张6,000 cm-1至50 cm-1的完整中远红外光谱。/spanbr//pp  傅立叶红外光谱仪的光谱范围取决于其所配备的光源、分束器和检测器的综合光学响应范围。中红外标准谱区,由于主要受限于可供选用的分束器的材质,通常截止于350 cm-1 (KBr分束器) 或者200 cm-1 (CsI分束器)。如果想扩展光谱范围至远红外和太赫兹区,通常需要一次甚至多次更换远红外分束器和检测器。而每次更换时,使用者都需手动打开谱仪光学腔。布鲁克最新推出的VERTEX FM功能,结合了新型超宽谱区中远红外分束器、中远红外检测器和标配红外光源,可以单次测量覆盖6,000 cm-1到50 cm-1的完整中远红外谱区,并广泛适用于透射、反射和衰减全反射等测量模式。独一无二的VERTEX FM技术是继几年前布鲁克VERTEX 80v高端研究级真空光谱仪的全自动分束器转换器和全自动检测器切换(多达五个检测器)功能后,布鲁克针对VERTEX 70(v)系列光谱仪的又一创新之举。/pp style="text-align: left "  VERTEX 70v真空型光谱仪配置了VERTEX FM功能后,可以结合外接水冷高压汞灯,将远红外/太赫兹谱区进一步延伸至10 cmsup-1/sup。img src="http://img1.17img.cn/17img/images/201510/noimg/9e2f5d33-8563-488a-a870-d4f50a8c0196.jpg" title="未标题-1.jpg" width="363" height="248" border="0" hspace="0" vspace="0" style="width: 363px height: 248px float: right "//pp  从中红外至远红外的谱区扩展,即突破传统中红外400 cm-1的界限,对很多分子振动光谱的应用领域有着至关重要的意义。这些应用领域包括无机和有机金属的化学分析、地质学和医药业,以及各种物理应用,如对多晶型物的筛分、对结晶度的检测和低温基质隔离光谱学。图中所示的是用VERTEX FM功能单次测量所得的维生素C的中远红外ATR光谱图。该谱证明,使用VERTEX 70或VERTEX 70v,并配置VERTEX FM新功能,您可以轻松快捷的获得从4,000 cm-1到50 cm-1的中远红外光谱区域的样品信息。/pp  布鲁克公司(NASDAQ:BRKR)是世界著名的高科技分析仪器企业,致力于开发领先技术以解决分子材料科研界、诊断学、工业及临床等各种分析问题。/pp  详情请见官方网站:www.bruker.com/pp  进一步了解VERTEX系列科研型傅立叶红外光谱仪,请访问相关网页:www.bruker.com/vertex/ppbr//p
  • 近红外光谱分析技术高速发展——参加全国第九届近红外光谱学术会议心得体会
    北京工商大学人工智能学院 张倩 高翔 崔程(导师:吴静珠)2022年10月20~22日,为期三天的全国第九届近红外光谱学术会议在线上召开,此次会议全力展示了我国近红外光谱领域所取得的最新进展及成果,增进了广大近红外光谱科技工作者和广大近红外分析工作者之间的交流与合作,进一步促进了我国近红外光谱事业的发展。本次会议中外专家学者汇聚一堂,近3000人报名参会,会议规模再创新高。此次会议共安排了80余场报告,内容涵盖了化学计量学方法、仪器与测量附件、光谱成像与过程分析,以及近红外光谱技术在农业、食品、化工、制药等多个领域的应用进展,为参会人员呈现了一场既有深度亦有广度的学术盛宴。以下从多种角度介绍本次会议亮点及参加会议的心得体会。首次邀请国外学者进行汇报,扩充国际视角本次会议,不仅汇集了数十位近红外领域顶尖的国内专家,还邀请了四位国际知名教授、专家站在国际视角,现场分享近红外技术的最新发展。来自日本名古屋大学的Satoru Tsuchikawa教授带来了题为《State-of-Art NIR Imaging Research For Agriculture and Forestry》的报告,详细讲述近红外成像技术在农业和林业的研究进展;来自韩国汉阳大学的Hoeil Chung教授的报告题目为《Identification of gallbladder cancer through NIR analysis of bile and quantitative detection of microplastics captured in perfluorocarbon》,通过对于胆汁的近红外分析和定量检测来诊断胆囊癌,展现了近红外光谱在疾病筛查领域具有的广泛应用前景;来自西班牙Córdoba-UCO大学的Dolores Pérez-Marín教授分享了报告《Current Trends in The Use of NIRS Spectroscopy for The Control of Agrifood Products and Processes》,介绍了在农产品、食品品质和生产过程控制中近红外光谱技术的应用趋势;奥地利因斯布鲁克大学分析化学和放射化学研究所所长Christian Wolfgang Huck教授针对微型光谱仪的现状与未来带来了题为《Present and Future of Miniaturized NIR-Spectrometers Combined with Challenging Data Management Strategies》的精彩汇报,介绍了近年来不同分光原理的微型光谱仪应用领域发展及智能化水平提升等趋势。数十位资深近红外专家相聚云端,现场分享最新的研究进展本次会议十余位在近红外检测领域深耕多年的专家教授分享了自己从事近红外光谱分析技术应用研究与实践十余年的经历、经验和心得体会,为青年学者进行后续的研究提供经验与启发。南开大学的邵学广教授结合近红外光谱分析的需求,简述近红外光谱分析中所涉及的化学计量学方法,阐述化学计量学对近红外光谱分析的作用和意义。化学计量学的核心是正确的使用数学和统计学方法进而从数据中获取与分析目标相关的信息,理解化学计量学方法的原理是保障正确使用的关键,邵教授通过将建模流程拆分,在数据集及评价、建模方法、模型评价与验证、模型监控等步骤中说明如何在近红外光谱分析实践中正确选择和使用化学计量学方法。云南中烟工业有限责任公司的王家俊高工结合自己从事近红外光谱技术在烟叶原料、辅助材料质量控制与品质分析中的应用研究的经验,从近红外光谱定量定性分析与标准、近红外光谱分析网络化与数据挖掘应用、天然样品高质量光谱的测量与参考数据测定、化学计量学方法应用和模型应用和维护五个方面分享了自己的实践体会,同时也展望了大数据时代近红外光谱技术网络化的应用前景,给青年学者提出希冀。华东理工大学的杜一平教授带来自己最新的研究进展,杜教授通过对低浓度组分检测的深度思考,从样品中浓度相关性的角度探讨NIR模型的本质。他提出当样品中存在与被测组分浓度具有相关性的组分时,模型可以“借助”这种关系提升模型性能,样品组成改变时,相关性组分对模型的影响可能影响到模型预测精度,该发现有助于我们进一步理解和应用模型、变量选择结果、模型维护方法以及注意模型更新等。海南大学的云永欢副教授做了题为《我与近红外光谱的十年:从基础理论、方法开发到应用研究》的报告,将自己从开始接触近红外光谱到现在取得的成果和总结的经验精炼在20分钟内向大家进行了分享,给正在学习和进行近红外领域相关研究的在校研究生提供了很多新的思路和研究方向。聚焦近红外技术在食品安全、生物制药、化学化工等热门领域的最新应用本次会议不仅聚焦最新、最前沿的光谱技术,而且对食品安全、生物制药、生命科学、材料等目前最热门的应用领域进行深入探讨。近红外技术在水果分级检测中应用日趋广泛。来自北京市农林学院智能装备技术研究中心的李江波研究员进行了题为《水果内部质量近红外光谱检测技术与设备》的报告。针对近红外光在水果组织中传输存在多重散射和吸收,导致水果内部有效光谱信息难以准确、稳定获取的问题,建立了水果内部光传输特性分析系统,解析了近红外光在水果内部传输机理,提出了逐步切片结合最小二乘拟合的近红外光在水果组织中穿透深度分析法,保证了近红外光谱信号的可靠获取。湖南农业大学李跑教授利用近红外光对果皮穿透能力对柑橘品种、柑橘产地、柑橘霉变进行定性无损检测:对于不同品种的柑橘鉴别分析,采用主成分分析-Fisher线性判别模型(PCA-FLD)+6点平均光谱(赤道4点+顶部+底部)最终实现100%鉴别率,使用同样的方法对不同产地的柑橘进行鉴别,最终结果依然非常优秀;对于霉变柑橘检测,研究了不同波段(长短波段)柑橘近红外光谱对霉变模型的影响,并指出:在建模过程中发现短波近红外光虽然穿透性要强于长波近红外,但长波近红外光建模效果要优于短波近红外。在食品行业近红外技术的应用日渐成熟。福斯华(北京)科贸有限公司的应用专家杨海龙结合福斯华三款近红外光谱仪在肉类行业、谷物交易加工行业以及制糖行业的应用,对近红外光谱分析技术在食品行业的应用进行了分享。温州大学的黄光造老师利用一类自编码器结合近红外光谱实现对奶粉中掺假的检测。四川长虹电气股份有限公司的刘浩工程师深入探讨了近红外光谱在白酒行业的应用:应用近红外光谱技术实现对酒醅的快速检测,可为酿酒生产现场及时提供数据。通过组合不同预处理方法、预处理参数选择、PLS成份数建立定量模型,可以选择出酒醅的水分、酸度、淀粉、残糖的最佳建模方法;自主研发的光谱智能APP可以实现账号管理、光谱采集、光谱曲线绘制、云端模型调用和结果展示等功能。相较于传统实验室,其具有体积小巧、轻便、易携带等优点,非常适合对酿酒车间酒醅进行现场快速检测。近红外光谱在生物制药领域近年来也取得了显著的研究进展。随着制药技术的发展,药物连续化生产正在成为国际制药行业发展的趋势,来自山东大学的李连副研究员分享了报告《近红外光谱分析技术在制药领域的在线应用研究探索》,以光谱稳定获取、光谱-物料实时对应、光谱模型建立等方面为着力突破点,重点介绍了山东大学药物智能制造技术研究团队,应用NIRS在药物生产在线分析方面所做的研究工作及获得的研究成果。来自天津中医药大学的硕士研究生吴晨璐进行了题为《多光谱数据融合用于双黄连口服液的质量检测》,该报告提出了一种基于紫外可见和近红外光谱的数据融合方法,以可溶性固含量和总黄酮为指标的用于检测双黄连口服液质量的方法。来自中国科学院西北高原生物研究所的硕士研究生龙若兰进行了题为《藏药五脉绿绒蒿提取过程中总黄酮含量的近红外在线检测》的报告,该研究以提升五脉绿绒蒿中总黄酮含量在线检测精度为目标,为中药材在线检测模型的建立提供了新的思路。来自天津中医药大学中药制药工程学院的硕士研究生崔同灿进行了题为《草药NIRS指纹图谱转换为HPLC指纹图谱的可行性研究》。在草药的流通和使用的过程中不同批次的药材之间质量波动较大,该报告以菊花和天麻为例,研究不同校准转移方法实现NIRS指纹图谱转换为HPLC指纹图谱的适用性和可靠性。该研究探索了具有不同分析信号的不同类型仪器之间的校正转移的可行性,以期解决草药快速质量评价和成分含量预评估任务,为草药质量控制研究提供新的手段和思路。拉曼光谱成像、高光谱成像、微波频谱分析等多领域的光谱分析技术全面发展 此次会议交流不仅仅限于近红外光谱分析技术,对于其他光谱技术结合化学计量学的研究和应用等也展开了多组报告,对拉曼光谱成像、高光谱成像、微波频谱分析和介电光谱等领域的基础研究、理论创新、及新方法、新技术和新应用进行了介绍。来自武汉轻工大学的四位研究生分别基于拉曼光谱成像技术做了多种研究。肖晓枫同学以小龙虾为研究对象,模拟了微塑料在小龙虾体内的传递途径和累积过程,并利用拉曼成像结合图像处理用于识别和可视化不同小龙虾组织中的微塑料,基于此估计微塑料的污染水平。梅婷娜同学建立了一种基于拉曼成像与化学计量学相结合的高效方法,以同时识别滤袋在浸泡过程中释放出的各种MPs。吕静雯同学以大豆油、菜籽油和棕榈油为研究对象,模拟了油炸行业的煎炸过程,将拉曼光谱结合化学计量学用于定量监测油炸过程中油的降解。徐梦婷同学通过拉曼峰强度建模成功地将山茶油与低价植物油和掺假山茶油区分开,预测成功率达95%以上,为山茶油鉴别提供一种可行方案。来自中国农业大学的博士研究生龙园做了题为《拉曼高光谱用于玉米种子霉变筛选检测研究》的报告:将拉曼高光谱应用于玉米种子霉变样本筛选,结果表明基于竞争自适应重加权算法(CARS)结合胚面和非胚面权重比例为3:7构建的偏最小二乘判别分析模型精度最佳,测试集精度可达90.63%。来自西北大学的硕士研究生郭梦君做了题为《基于表面增强拉曼光谱结合随机森林的水中多环芳烃定量分析》的报告,报告表明表面增强拉曼光谱结合RF可以实现水中多环芳烃的快速准确检测。随着微波电子学和微波测量技术的发展,微波频谱分析方法逐渐发展成为一种独立的快速无损测量技术。微波频谱分析技术已成功应用于许多领域的水分含量测量,包括粮食作物、轻工业产品和建筑材料等。来自中国矿业大学的田军博士设计了一款煤炭水分含量智能测量系统,其将微波频谱分析与距离加权K近邻(DW-KNN)算法相结合,实现了煤炭水分含量的快速无损测量。广州星博科仪有限公司的创办人罗旭东针对高光谱成像技术的应用现状做了题为《高光谱实时分类技术在机器视觉中的应用和发展》的报告,介绍了针对高光谱成像技术三维成像数据,数据量巨大问题的解决方案,以及在工业现场的实际应用。来自北京工商大学崔程同学在其报告《基于近红外高光谱成像的花生冻伤检测》中研究利用高光谱成像技术对花生是否冻伤进行定性检测研究,采用四种变量选择方法CARS、SPA、VCPA-IRIV、VCPA-G在全谱范围内选择出与花生冻伤相关的特征波长,并按照每个波长变量的重要性进行排序组合建立支持向量机模型,最终在保证一定判别准确率前提下筛选表征花生冻伤的特征波长,并通过光谱吸收峰解析花生冻伤光谱检测机理。来自西北农林科技大学的杨可博士和朱杰亮同学报告了使用介电光谱检测牛初乳中掺假的检测研究,介电光谱具有波长长、在乳中穿透深度大、散射影响小等优点,在非均质乳的在线检测中具有很大的潜力。杨可博士通过建立基于近红外光谱和介电光谱的初乳成熟乳含量定量鉴别模型来比较近红外光谱和介电光谱在定量鉴别掺假初乳中的性能。研究显示NIRS和DS均能清晰识别初乳中成熟乳的比例,但两种方法的识别特征完全不同。DS比NIRS能更好地预测初乳中成熟乳的掺假,在非均质液体食品的快速定量分析中具有良好的潜力;朱杰亮同学建立了一种基于介电光谱的成熟乳初乳掺假快速检测的新方法,利用合理的算法分析其影响因素和机理。多种最新检测仪器亮相,助力近红外光谱检测发展近红外技术的研究和应用离不开仪器技术的进步,本次会议得到了12家国内外知名仪器公司的大力支持,多家仪器企业也派出资深技术人员现场分享最新的产品和技术。来自无锡迅杰光远科技有限公司的技术总监兰树明做了题为《颗粒样品NIR漫反射光谱提高采样精度方法的研究》的报告,介绍了一种颗粒样品提高采样精度的方法,研究漫反射光谱化学计量学结果与粒度之间的关系,提出一种大光斑侧照式混合光学采样方法,扫描全部样品的漫反射光谱信息,并将颗粒产生的随机光谱噪声通过简单的平均方法实现有效抑制,提高颗粒样品的分析精度,使颗粒样品无需粉碎能够得到高精度的分析结果。海洋光谱的晏彬彬分享了如何在科研和生产中选择适合的近红外光纤光谱仪,介绍了海洋光学多款新款小微型近红外光谱仪,以大波段范围、高灵敏度、全谱波段信号优化为主要升级目标,有效的提升了仪器的稳定性,数据的可靠性。珀金埃尔默仪器公司的资深产品专员郁露也介绍了珀金埃尔默近(中)红外产品及应用进展。在大会组委会努力不懈的组织与全国近红外技术用户的热情参与下,第九届全国近红外光谱学术会议顺利闭幕。会议为国内外光谱科研工作者及专业技术人士提供一个持续、高效的沟通交流平台,促进了业内交流,提高了光谱研究及应用水平。会议不仅有国外专家的研究分享,还有国内从业数十年的资深专家传授经验,更有数位优秀的青年科研工作者和在读学生在本次会议中分享了最新的研究成果。从了解、质疑,到认可,中国近红外光谱技术经过长时间的发展、实践,现在已经逐渐被各领域用户接受、认可,目前近红外技术的应用研究和技术推广还处在迅速上升阶段。这不但得益于老一辈专家打下的坚实基础,更需要年轻学者和学生的不断进取。会议开幕式上获得第四届“陆婉珍近红外光谱奖” 的各位老师以及会议闭幕式评选的12位获得优秀青年报告奖的青年学者都是我们学习的榜样。
  • 2021红外/近红外光谱新品盘点:做适合应用场景的分析仪器
    随着应用需求的拓展,红外/近红外光谱技术也在不断的发展。相较于高分辨率、成像等高性能指标,越来越多的仪器厂商将重点放在了实用上,从细节处着手,着重解决用户使用过程中的实际问题。据统计,申报仪器信息网2021年度“科学仪器优秀新品评选”活动的红外/近红外光谱类仪器共计12台,其中红外光谱仪8台(含附件),近红外光谱仪4台。另外,还有7台基于红外/近红外光谱原理的专用化仪器。虽然红外光谱仪已经相对比较成熟,但是其发展却从未停滞。随着应用需求的变化,红外光谱仪近年来的发展也呈现多样化。各大厂商相继在操作的灵活性、便捷性、智能化及兼容性等多方面入手,提升仪器的性能和使用体验。2021年度,荧飒光学仪器(上海)有限公司推出多台红外光谱新品,包括,研究型傅里叶变换红外光谱仪Foli20、双样品腔傅里叶变换红外光谱仪 Foli10-R-S、移动式傅里叶变换红外光谱仪Foli10 Plus、傅里叶变换红外光谱仪 Foli10-R-T等。其中,研究型傅里叶变换红外光谱仪Foli20首次实现入光口/出光口多光路设计,光源和检测器自动切换,增加了科研的灵活性和扩展性。该产品全光谱的分辨率优于0.4cm-1,具备升级更高分辨率的能力;双样品腔傅里叶变换红外光谱仪 Foli10-R-S实现积分球漫透射及常规透/反射测量于一体。仪器可测量不同弧度的样品,可兼容不同反射角测量附件,可配置室温检测器和/或低温电制冷、低温液氮MCT检测器,双通道A/D采集自适应;移动式傅里叶变换红外光谱仪Foli10 Plus主机和平板可智能化充电,可实现户外即开即用。该产品的集成智能化红外特征峰峰位识别功能及多组分连续差减功能,可实现混合物的快速搜索,并可更换各类测量附件,一键式卡扣锁紧,适合不同应用场景;傅里叶变换红外光谱仪 Foli10-R-T,采用双样品腔双通道设计,相互独立且等效使用,并可同时实现2种大型红外附件的测试,可同时配置室温检测器和低温液氮MCT检测器,双通道A/D采集自适应,实现最快60K扫描速度。此外,天津港东科技股份有限公司推出的傅里叶变换红外光谱仪FTIR-650S在多重防潮设计和抗电磁干扰设计方面也进行了创新,产品采用了更大容量干燥剂筒结构设计,更优异的干涉仪和探测器防潮设计,大幅降低更换干燥剂的频率,有效保护红外光谱仪的光学系统和探测系统。作为一类比较成熟的仪器分析方法,红外光谱已经得到了广泛的应用,特别是在制药、生物研究以及食品和饮料的终端用户中应用非常广泛。质量控制是中药评价的关键问题,而采用单一的化学成分分析方法无法适用于成分复杂的中药体系。应用现代仪器分析手段,建立于中药整体系统上的光谱量子指纹图谱技术是中药质量一致性评价的新方法,特别FTIR红外光谱测定快速,指纹特征性强,是开展中药原料药物和中成药质量控制的简单易行方法。天津市能谱科技有限公司推出的中药红外量子指纹一致性评价系统(LZ9000FTIR)通过FTIR红外光谱法原理,对中药红外光谱指纹进行分析测试。该产品把连续光谱量子指纹化,它能按照官能团量子指纹特征峰类型对化合物进行官能团分类的定性和定量分析,通过对其准确分析进行评价,可揭示数据背后的质量变异而作为中药的质控依据,为建立中药红外量子指纹图谱提供大量特征信息数据。随着FTIR光谱仪器技术的不断进步,红外附件也在不断发展,从而促使红外光谱技术得到更加广泛的应用。比如,天津市能谱科技有限公司的珠宝漫反射附件 IRA-51是一款设计独特的仓外大样品漫反射附件产品,测量平台位于仓外,大尺寸样品可直接置于样品台上,完全摆脱了珠宝尺寸大小的局限;Specac的Arrow系列一次性ATR单次反射附件采用最新的Si芯片技术,是一款可抛弃型ATR样品盘,其采用可回收聚丙烯制成,专门用于污染、腐蚀、胶黏、强酸碱性样品。一次使用一片,即插即用,用完即可抛弃。作为一类实用型的分析方法,近红外光谱仪器的创新也更多以更加适合应用场景为目的。仪器操作的简单便捷,让近红外光谱仪走入了更多的应用领域,得到越来越多不同类型用户的认可,而小型化的产品设计给在线及系统集成提供了更多的便利。2021年度,福斯分析仪器公司推出了近红外多功能品质分析仪NIRS DS3,产品采用全新设计的操作软件ISIscan Nova,可预约定时开机,定时自检。新的软件系统将实时监控光源使用情况,并在预期寿命结束前500小时给出提醒,而且光源连接使用全新设计,无需任何工具即可徒手更换,更快更简便。海洋光学亚洲公司也推出了两款近红外光谱仪,其中高灵敏度NIRQuest+近红外光谱仪采用增强光学台和孔径设计,改善光谱仪的响应,实现更低的检测极限。同时,由于灵敏度的提升,积分时间缩短,从而降低了检测时间,在流水线或流动液体样品检测时具有很大优势;Flame-NIR+ 近红外光谱仪无移动部件,坚固耐用,可用于严苛环境。产品的小尺寸非常适合集成在手持系统中,并且客户可以根据自己的应用自行更换狭缝,来调整光谱仪的通光量及分辨率。任何一类仪器都不可能“放之四海而皆准”,针对不同行业或领域开发的专用化仪器不仅可以针对性地解决问题,而且可以提高通用仪器的利用率,并在一定程度上支撑国家产业和科技的高质量发展,成为当前科学仪器的一个重要发展方向。从2021年度申报的红外/近红外光谱仪器新品来看,在气体和油品检测方面有多款新品推出。在气体检测方面,谱育科技的EXPEC 1900 傅里叶红外气体遥测仪将可见光成像+红外成像+化学成像三合一叠加显示。对比常规的可见成像+化学成像的图像显示,增加了红外成像的叠加显示。红外成像不仅可以在夜间提供视野支持,同时可利用红外热像显现检测区域内的高温污染云团、排口等,叠加显示于化学成像的图像上,可辅助研究污染气体云团的分布与扩散趋势。另外,产品采用了云台扫描与振镜扫描相结合的速扫描方式,提高扫描效率的同时,提升了检测区域的准确性;北京乐氏联创科技有限公司推出了9100FIR 傅里叶红外气体分析仪,这是一款便携式傅里叶变换红外气体分析仪,其采用PLS偏最小二乘法,高分辨率分析模式(1cm-1的分辨率),开放气体组分化学计量方法模型构建功能,适用于对各种排放气体进行现场在线分析,包括工业废气、锅炉烟气排放、焚烧炉排放,也可用于环境空气中无机气体、有机气体的快速应急检测;此外,常州亿通分析仪器制造有限公司也推出了红外一氧化碳气体分析仪(CO) ET-3015AF。在油品检测方面,深圳市德沃仪器有限公司推出了用于成品油检测的近红外光谱仪DW-NIR-PD。该仪器属于光栅扫描型,采用德州仪器的数字镜像整列微型近红外光谱仪InGaAs探测器。据悉,该产品收集了1000多份汽油和柴油的样品和数据,样品覆盖全国各地的大小炼油厂和检测机构的数据,并针对国内使用的油样自行开发近红外数据模型;此外上海昂林科学仪器股份有限公司推出了全自动便携式红外测油仪OL1025,山东格林凯瑞精密仪器有限公司推出了新款含油量检测红外分光测油仪GL-7100,分别在仪器的便携性和智能化方面进行了改进和创新。
  • 新方法实现中红外光室温探测
    据28日《自然光子学》杂志报道,英国伯明翰大学和剑桥大学的科学家开发了一种使用量子系统在室温下探测中红外(MIR)光的新方法,他们使用分子发射器将低能量MIR光子转换为高能的可见光光子。这项创新方法能够帮助科学家在单分子水平上进行光谱分析,这标志着科学家在深入了解化学和生物分子的能力方面的重大进步。研究人员解释说,维持分子中原子之间距离的键可像弹簧一样振动,同时这些振动会在非常高的频率下产生共振,它们可被人眼看不见的中红外区域光激发。室温下的键随机运动,因此,探测中红外光的一个主要挑战是避免这种热噪声。现代探测器依赖于能量密集型和体积庞大的冷却半导体器件,但此次研究提出了一种在室温下检测这种光的新方法。新方法被称为中红外振动辅助发光(MIRVAL),它使用既能成为中红外光又能成为可见光的分子。该团队将分子发射器组装成一个非常小的等离子体腔,该腔在中红外光和可见光范围内都是共振的。他们进一步对其进行了改造,使分子的振动态和电子态能够相互作用,从而有效地将中红外光转换为增强的可见光。通过创造微腔,研究人员实现了低于1立方纳米的极端光限制体积。微腔是一种由金属面上的单原子缺陷形成的极小的空腔,可捕获光线。这意味着该团队可将中红外光限制到单个分子的规模。该突破能够加深科学家对复杂系统的理解,并打开红外活性分子振动的大门,这在单分子水平上通常是无法获得的。除了纯粹的科学研究外,MIRVAL还可在许多领域发挥作用,如实时气体传感、医学诊断、天文测量和量子通信等。
  • 传统红外光谱的分辨局限如何突破?——点亮光谱仪器“高光”时刻系列活动
    2012-2021年,光谱仪器及技术突飞猛进,相关的新产品、新技术层出不穷:拉曼、近红外、激光诱导击穿光谱、太赫兹、高光谱、超快光谱、光谱成像......不仅给科研注入了新的活力,更是给企业带来了客观的经济效益。“光谱十年”之际,仪器信息网特别策划《点亮光谱仪器 “高光”时刻》系列活动,以期盘点光谱仪器及相关技术的突出成果,展现光谱仪器及相关厂商的“高光”时刻。本期我们邀请到了Quantum Design技术销售工程师赵经鹏给大家分享红外光谱的最新进展。技术销售工程师 赵经鹏仪器信息网:过去十年间,哪些光谱技术的进步让您印象深刻?赵经鹏:红外光谱(Infrared spectrometry)主要分为色散型红外光谱仪和傅里叶变换红外光谱仪两大类,是研究分子结构和化学组成的有力工具。经历现代分析仪器的飞速发展,红外光谱仪器已经从单一的测试光谱数据演化为红外化学成像系统,在兼具红外光谱和化学成像的同时,在样品兼容性、信噪比、空间分辨率、测量模式等方面有了质的飞跃。由于红外化学成像系统自带测量快速、高灵敏度、检测用量少等优异属性,在材料、化工、环保、地质、环境等领域应用广泛。仪器信息网:截至目前,贵公司有哪几款光谱仪器曾经获得“科学仪器优秀新品”奖 ?该仪器研发的背后有什么样特别的故事? 赵经鹏:公司始终致力于引进先进的红外光谱技术,拥有满足不同用户需求的一系列优秀红外仪器产品。其中纳米傅里叶红外光谱仪Neaspec和微秒级时间分辨超灵敏红外光谱仪IR-Sweep在探寻红外光谱测量极限上展现了独特的魅力,先后获得科学仪器优秀新品奖。近期,我司引进了非接触式亚微米分辨红外拉曼同步测量系统PSC-mIRage,该设备填补了Neaspec与传统红外光谱仪之间的空白区域,实现了亚微米级(~500nm)的空间分辨率,同时大大提升了红外仪器测试的制样兼容性,为众多研究领域的技术需求提供了对应的解决方案,获得了2019年度科学仪器优秀新品入围奖。仪器信息网:获奖产品的销售情况如何?解决了哪些关键问题?有哪些典型用户或典型的应用案例?行业影响力及用户的反馈情况如何?赵经鹏:传统的傅里叶红外光谱仪FTIR,由于空间分辨率有限(5-10 μm),且光谱准确性受到弹性光散射所产生的米氏散射效应(Mie scattering effects)的影响,使得直接在亚微米尺度上研究生物和材料样品的化学结构信息变得十分困难。而全新一代非接触式亚微米分辨红外拉曼同步测量系统PSC-mIRage,克服了传统FTIR技术的衍射极限和米氏散射效应,红外光谱空间分辨率达到500 nm,无需对样品进行标记,不再需要衰减全反射(ATR)技术即可进行厚样品测试,且能够无接触和无损检测样品,全程对样品无污染,为相关应用领域的研究提供了新的思路。聚焦于微塑料领域的小尺寸、微观形貌以及成分鉴定等监测难题,需要采用多组合分析测试方法对其进行监测。非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用专利的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FTIR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了亚微米级的空间分辨率,让尺寸1 um的微塑料追踪、监测和研究成为可能。针对像治疗COVID-19的关键医药领域,药品中有效组分和辅料的剂量控制及分布情况将直接影响药品毒性窗口与治疗窗口间的平衡,PSC-mIRage的大视野范围成像和高空间分辨率的特点使得其作为指纹分析手段并结合化学计量学方法,成为医药研究不可或缺的工具。 在考古/文物鉴定方面,PSC-mIRage非接触式的测量模式与文化遗产研究的结合将最大程度保护艺术品的完整性。测试过程中极大减少了珍贵样本的提取量,在不破坏样品的情况下实现光谱和红外成像的完整表征,为表面粗糙、凹凸不平、弯曲、珍贵的样品提供了有力检测手段。图是梵高的画作L’Arlésienne 的极小碎片。PSC-mIRage的优异性能使光谱技术的应用范围得到了极大的扩展,能够获得常规的FTIR,ATR以及AFM-IR技术所不能得到的检测效果。除了上述领域外,PSC-mIRage的应用还扩展到了高分子多层膜/纤维,生命科学的细胞探测、司法物证分析、农业食品加工/运输过程中组成变化的动力学监控、产品分类和来源鉴别、鉴别半导体器件有机污染物提升良品率、土壤的物理和化学变化等。截至目前,借助非接触式亚微米分辨触红外拉曼同步测量系统,仪器科研人员已在Nature Nanotechnology, Advanced Science, Angewandte Chemie International Edition,Science Advances等众多高水平期刊发表文章。仪器信息网:贵公司光谱仪器的生产工艺是如何把控的?在产品的质控及生产车间管理方面有什么独特的地方? 赵经鹏:非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用新传感技术和微电子技术,向数字化、智能化、高精确度、耐特殊介质、特殊环境、能测量极限参数、非接触测量模式的方向发展。在生产工艺流程方面,该仪器公司负责设备光路设计、产品研发组装、出厂测试及质检环节,部分零配件如QCL激光器等主要是由厂商采购获得。公司针对不同产品设立了北上广零配件仓库,为客户的售后服务提供诸多保障,有效防止零配件短缺等不确定性状况出现,确保仪器得到高效利用。Quality部门的工作人员对设备进行出厂检测,主要包括仪器的外观、电路、光密封性、样品标样测试比对等。在这里,质检人员将对可见光/红外光镜头及光路调制等核心功能进行检验,确保光学平台平整无倾斜,检测精度可达纳米级别,确保核心部件的制造工艺合格合规。研发部门致力于将仪器系统功能综合化:将计算机、电力电子器件和光路控制更紧密的结合,软件可实现对所有系统组件的控制,包括红外激光光源的校准(升级后)、激光光镜、自动的图像收集和光谱采集,以及数据分析;同时,设备具有新型现场总线结构,扩展仪器的自诊断功能,并便于维护,系统的连接更可靠、更简便,因此后期维护费用大大降低。仪器信息网:未来贵公司光谱产品线的发展规划,重点发展哪些类别的光谱产品?赵经鹏:公司注重拓展高新技术领域的红外光谱应用,如用于国家倡导的半导体/微电子器件的高分辨表征。中国制造2025规划让Quantum Design看到中国政府在诸多领域(食品安全、材料检测、生命科学)都有着宏伟的规划,这些领域对Quantum Design来说都是巨大的机会。目前,纳米傅里叶红外光谱仪、超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜已被众多科研工作者熟知并使用,已在Science,Nature等期刊发表了一系列开创性硕果。现如今,大数据与云技术可以让用户分享与获取更多的实验数据,与更多的同行进行交流,从而体现科研工作的前瞻性和共享性,Quantum Design希望可以在未来将更先进的技术广泛植入产品,为用户提供更大的价值。近期引进的非接触式亚微米分辨红外拉曼同步测量系统PSC-mIRage,摆脱了传统傅里叶变换红外的空间分辨率受到波长的限制,实现空间分辨率实现质的飞跃,达到亚微米级别。此外,相比于传统红外仪器,非接触式亚微米分辨红外拉曼同步测量系统具有免制样、样品兼容度高(包括厚样品、粗糙样品、液体样品、透明样品等)、光谱技术联用等创新优势。该仪器填补了纳米级红外及传统傅里叶红外之间的空白领域,为用户提供更多选择。公司将实时更新生产应用领域的红外技术应用,包括制药、化工、食品、环境、司法鉴定等领域,推动亚微米级显微红外光谱技术为广大科研和工业用户有效解决实际问题。仪器信息网:从行业发展角度来说,您认为目前光谱仪器整体技术水平怎么样?未来最具前景的光谱仪器或者技术是什么?最具前景的应用将体现在哪些方面? 赵经鹏:近四十年来,红外光谱学一直是公认的一种重要分析技术。分子中官能团的吸收带的独特性,使得其可以直接实现未知物种的鉴定。红外光谱仪的发展大体分为三代,第一代是用棱镜作为分光元件,其缺点是分辨率较低,仪器的操作环境要求恒温恒湿;第二代是衍射光栅作为分光元件,与第一代相比,分辨率有所改善,能量高,价格较低,对温湿度要求不高;第三代是傅里叶变化FTIR红外光谱仪,具有高通量、低噪音、测量速度快、分辨率高、波数精确、光谱范围宽等优点。但通常透射红外光谱,即使是傅里叶变化透射红外光谱,都存在不足:1. 固体压片或液膜法制样麻烦,光程难控制,给测试带来误差;2. 无论是添加红外惰性物或者自制撑片,都会给粉末样品造成形态变化或表面污染,使其一定程度上“失去本来面目”;3. 多组分共存时,存在谱峰重叠的现象4. 空间分辨率低。近年来,日益增长的对尺寸细小的亚微米物质高空间分辨率化学图像和光谱分析的需求,推动了现代振动光谱仪器向超分辨率和高灵敏度方向上进行革新。同时多种技术/学科的信息互补,全面了解样品表面的化学成分及结构,正成为科研工作的主流趋势。为了获得可分析解释的数据和光谱信息,传统的红外仪器即使配置了新型红外激光器(如QCL激光器),其空间分辨率仍然依赖于探测长波长的中红外光,从而限制了传统红外技术的实际空间分辨率在~20 μm。与红外吸收光谱相反,拉曼光谱的空间分辨率取决于可见光的波长,通常在0.4 ~0.7 μm之间,能在同一化合物上以非接触操作模式,实现亚微米衍射限制空间分辨率的振动模式检测。由于拉曼在分子水平上探测光子的非弹性散射,因此需要更强的激发源,同时也带来了样品损伤的风险。非接触式亚微米分辨红外拉曼同步测量系统PSC-mIRage采用光学光热红外光谱技术(O-PTIR),该技术直接检测源于样品吸收红外辐射引发的本征变化,而不计算入射红外光和透过红外光的差异,使得O-PTIR光谱具有很高的清晰度和灵敏度,将传统红外光谱的空间分辨率提高了20倍,且能够以相同的亚微米分辨率在样品的同一点同时捕获红外和拉曼图像,实现了红外和拉曼两种表征手段的优势互补。总体而言,非接触亚微米分辨红外拉曼同步测量系统首次提供了可靠且可视化的亚微米红外分辨率的红外光谱,使红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。目前它已在高分子聚合物、生命科学、临床医学、化工药品、微电子器件、农业与食品、环境地矿、宝石鉴定、质检等领域得到广泛应用并取得了良好的效果,显示出了广阔的应用前景。
  • 安捷伦携红外光谱完整解决方案亮相2012北京光谱年会
    从实验室到户外,从常规分析到高端应用&mdash &mdash 安捷伦携红外光谱完整解决方案亮相2012北京光谱年会 近日,由北京理化分析测试技术学会光谱分会主办的&ldquo 2012年北京光谱年会&rdquo 在天文馆举行。约200名来自大学、研究所、质检机构、食品卫生等多个行业的专家参加了此次会议。 安捷伦科技(中国)有限公司受邀出席本届光谱年会,并做了精彩演讲、同时与行业专家共同探讨了分子光谱分析技术动态、光谱分析仪器方面的最新进展。安捷伦分子光谱产品经理黄传旭先生作了题为&ldquo 红外光谱完整解决方案&rdquo 的大会报告安捷伦公司全线光谱展品亮相北京光谱年会 红外光谱仪一直以来的发展方向是高精尖。分辨率要求越来越高,信噪比要求越来越好,从而适应高端研究的应用。安捷伦的红外光谱仪有着有悠久的历史,其前身可以追溯到Digilab,凭借领先的技术以及优质的售后服务,安捷伦成为高端红外光谱仪不可替代的重要供应商。安捷伦目前拥有业界分辨率最高的实验室用红外光谱仪Cary 660,其分辨率高达0.07cm-1,为实验室高端研究提供有力的支持。 红外光谱测量技术另外一个重要发展方向是移动检测。近年来红外光谱应用的最新需求是能够应用于移动测量和现场分析。只有实现现场分析和移动测量,红外光谱的测量才能真正普及。安捷伦公司对移动红外测试的领域非常重视,有着一系列用于移动测试的红外光谱仪产品。此次会议,分子光谱产品经理黄传旭先生发表了大会报告,介绍了安捷伦新型红外移动测量的新技术。安捷伦小型化高性能的移动式红外光谱仪可以覆盖从实验室到现场分析的不同需求,满足现场分析体积小,可便携移动的需求,也满足现场分析需要红外光谱仪在非常环境中应用的特点,适合进行车载和便携,光源、激光、干涉仪器使用,且寿命长并无需维护。 除了便于移动和免维护的特点,操作的简便性是现场分析的另外一个要求。样品采样方式要求简单或者无需样品前处理,可快速切换和清洗以及原位无损检测。安捷伦移动式红外具有突破性的液体分析附件,可以解决液体样品快速定量分析的问题;手持式红外有多种分析探头可选,为新材料的无损检测提供多种现场解决方案。 移动式红外,扩展了红外光谱的应用范围,使得红外分析不再局限在实验室进行。除了全面的红外光谱产品线,安捷伦也有着非常全面的其他分子光谱产品线,例如紫外可见分光光度计和荧光分光光度计,从而可以提供从实验室到现场分析的全面完整的解决方案。 安捷伦针对生命科学研究、制药、材料科学、工业研发、质量控制和学术研究领域,提供了广泛的分子光谱解决方案。凭借 60 多年的经验,安捷伦可提供专门满足客户需要的 FTIR、紫外-可见-近红外和荧光光谱产品,帮助客户发现、表征和测试各种固体、液体以及有机和无机材料。凭借功能强大的分析程序,可轻松获得可靠结果, 从而确保工作效率。点击了解安捷伦全线光谱产品:http://www.chem.agilent.com/zhCN/Products/instruments/molecularspectroscopy/Pages/default.aspx 关于安捷伦科技 安捷伦科技 (NYSE: A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。 公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。 在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 快讯!第四届陆婉珍近红外光谱奖颁发!
    仪器信息网讯 2022年10月20日,全国第九届近红外光谱学术会议隆重开幕,会议首日近1700位网友报名参会,中国仪器仪表学会近红外光谱分会理事长秘书长、中石化石油化工科学研究院教授级高工褚小立博士主持开幕式,中国仪器仪表学会近红外光谱分会理事长、北京化工大学袁洪福教授致辞。(报名请点击:https://www.instrument.com.cn/webinar/meetings/icnir2022/)开幕式伊始,举行了第四届“陆婉珍近红外光谱奖”的颁奖仪式。“陆婉珍近红外光谱奖”由陆婉珍院士提议、中国仪器仪表学会近红外光谱分会设立。在2015年9月召开的近红外光谱分会一届一次常务理事会上讨论通过了“陆婉珍近红外光谱奖”评选方法。该奖项每两年评选一次,在全国近红外光谱学术会议上颁奖。“陆婉珍近红外光谱奖”的设立是为了鼓励我国科技人员投身于近红外光谱理论研究、技术研发和推广应用工作,促进和推动近红外光谱技术在我国的发展和应用。中国仪器仪表学会近红外光谱分会理事长秘书长褚小立博士宣布获奖结果,第四届陆婉珍近红外光谱贡献奖授予了徐可欣教授、杨辉华教授,陆婉珍近红外光谱科技奖授予了王家俊教授级高工,陆婉珍近红外光谱青年奖授予兰树明总监、李连博士、 李江波博士、云永欢博士、杨敏博士。第四届陆婉珍近红外光谱贡献奖获得者:徐可欣教授、杨辉华教授徐可欣教授徐可欣教授,自近红外光谱分会成立一直担任副理事长,长期活跃在本领域的人才培养和一线科研工作中,积极参与并为学会的发展做出了可贵的贡献。 科研工作集中在利用近红外光谱原理的成分测量、特别是人体血糖浓度的无创伤测量方法及仪器的研究。无创血糖测量在世界上至今仍未能成功地应用到临床。徐可欣教授在本领域有深厚的研究经验和原创的发明,比如发现了光从散射介质出射时因吸收和散射的综合作用、存在出射光对于血糖浓度变化不敏感点的现象,继而创新性地提出了以浮动基准测量原理为代表的多种原创性人体测量方法和技术。2000年至今在此领域就已经获得了21件授权的中国发明专利;创立了先阳科技、同阳科技等高技术企业。部分核心光谱类产品已超过2000台成功地应用于环保及工业领域的在线监测中,替代了进口产品。杨辉华教授杨辉华 北京邮电大学教授,近红外光谱分会副理事长,曾任副秘书长。积极参与近红外光谱分会的筹建、成立和组织工作。承办2012年第四届全国近红外光谱学术会议,多次参与组织召开学术交流年会、技术交流会、标准评审会。积极参加国际学术交流。作为学会理事,积极参与中国仪器学会组织的各项活动。自2005年以来,杨辉华教授将机器学习、深度学习应用于近红外光谱分析,积极开展制药、药品、果品、化工等领域的应用研究,并取得一定的创新性研究成果。主持科技部科技创新2030—“新一代人工智能”重大项目课题1项,国家自然科学基金项目2项,省重点研发项目2项、其它项目6项,横向课题20余项。培养近红外领域博士、硕士生20余名。发表SCI收录论文40余篇,主持翻译近红外成像方面专著1部,授权发明6项,参与制订近红外领域国家标准1项。曾获国家科技进步奖二等奖,省科技进步奖一等奖、二等奖、三等奖,及中国仪器仪表学会科技进步奖二等奖。指导的博士生获2021年近红外光谱分会优秀博士学位论文奖。第四届“陆婉珍近红外光谱科技奖”获奖者:王家俊教授级高工王家俊教授级高工王家俊,教授级高工,中国仪器仪表学会近红外光谱分会副理事长、标准化委员会红外光谱技术委员会委员。王家俊高工一直以来主要从事化学计量学、数据挖掘和中(近)红外光谱技术应用研究工作。热心学术交流,率先组建了近红外光谱分会云南专业委员会;为2018年第七届全国/第六届亚洲近红外光谱学术大会(昆明)的筹备和召开积极努力地做出自己的贡献;注重技术标准、规范的制订与科研成果的推广应用,作为主要起草人,编写了多项国家标准、地方标准和企业标准,2020年获中国标准创新贡献奖三等奖(GB/T 29858);近红外光谱分析技术通用建模标准的制定与应用推广,获2021年中国仪器仪表学会科技进步三等奖。完成8项地厅级、省部级科研成果并获相应的科技进步奖;参编组编近红外专著3部。第四届“陆婉珍近红外光谱青年奖”获奖者:兰树明总监、李连博士、 李江波博士、云永欢博士、杨敏博士。兰树明总监兰树明,无锡迅杰光远科技有限公司技术总监。多年来致力于微型近红外光谱分析仪的产业化工作,先后带领团队研发了MEMS型傅里叶变换光谱仪,MEMS型数字曝光式光谱仪以及微型透射光栅型光谱仪。其中MEMS型数字曝光式光谱仪成功应用于便携式谷物分析仪、便携式油料分析仪以及在线式近红外光谱分析系统中。所带领团队开发的仪器在各领域累计应用用户超过2500家,其中基于MEMS技术的微型近红外谷物分析仪在性能和价格上独居优势,在国内得到了广泛应用,使谷物收储行业享受到了近红外技术带来的便捷和创造的经济价值,为近红外光谱分析技术民用化和普及化作出了实质贡献。李连博士李连,博士,山东大学药学院硕士研究生导师,副研究员,药学院药物智能制造技术研究团队核心成员,山东大学未来计划学者。自2009年攻读硕士研究生初识近红外光谱至今,一直潜心于近红外光谱的学习与探索,尤其是近红外光谱技术在制药领域的基础理论与应用研究。在突破近红外光谱水溶液背景干扰大的研究方面,开展了以水光谱组学结合化学方法的解析策略研究,以水为探针,建立无标记的原位在线近红外光谱分析技术,实现了中药提取过程、中药制剂的质量可视化分析。同时,针对制药过程面临的模型建立应用问题,开展预处理装置研发、光谱实时对应分析、通用模型建模策略等研究,有效地推动了近红外光谱在线分析技术的应用与推广。目前,主持国家自然基金1项、国家重点研发计划子课题1项、中国博士后面上基金1项、山东省博士后创新基金1项,参与国家重大新药创制专项、山东省重大创新工程等多项国家级、省部级课题。发表科研论文15篇,参与授权发明专利10余项,软件著作权2项。多次在国内外近红外光谱学术会议做报告,获得2019年国际近红外光谱学会John Shenk Travel Grants,2021年The 4th Aquaphotomics International Symposium最佳墙报奖。李江波博士李江波,工学博士,北京市农林科学院智能装备技术研究中心研究员,博士生导师。长期从事农产品品质和安全快速无损检测技术及智能分选设备开发,研究受到多项国家级课题的资助,发表百余篇学术论文,授权国家发明专利近30项。李江波博士重视研究和应用结合,科学研究面向行业需求。经过10年的技术攻关,他和团队一起研发成功了20余套水果品质智能分级设备,已在北京、浙江、重庆、山东等地推广应用,获得了良好的经济效益,为水果产业的发展做出了贡献。先后入选了北京市科技新星计划、北京市优秀人才青年拔尖个人,获中国农业工程学会第八届青年科技奖。工作至今,五次获北京市农林科学院年度“优秀职工奖”,2021年被评为“建党100周年”北京市农林科学院“优秀共产党员”。云永欢博士云永欢,博士,副教授,博士生导师,海南大学食品质量与安全系主任。入选海南省拔尖人才和海南省科协青年英才创新计划。担任海南省食品科学技术学会副秘书长,中国仪器仪表学会近红外光谱分会理事,海南大学科研团队负责人。担任《食品安全质量检测学报》青年编委和《Biosensors》期刊客座编辑。主要从事化学计量学算法、热带特色农产品开发利用及质量安全检测研究。主持2项国家自然科学基金以及省部级等各类项目10余项。以第一作者或通讯作者在TRAC-Trends in Analytical Chemistry等期刊发表SCI论文25篇,其中1篇入选ESI高被引论文。近年来,在复杂分析体系化学建模的基本问题上开展了化学计量学算法及应用研究,理论上证明了量测变量空间中变量选择的必要性,基于集群分析思路发展了多个近红外光谱变量选择方法,其中iRF、IRIV和VCPA方法受到科研人员的高度认可与使用,被引用超100次,为推动近红外光谱领域发展做出了贡献。杨敏博士杨敏,博士、高级工程师、硕士生导师。主要从事近红外光谱成像分析技术在地质矿产中的理论探索与应用研究;先后主持国家自然科学基金项目、陕西省自然科学基础研究项目、国土部地质调查项目。十年以来,紧追国内外矿物近红外光谱分析的新理论、新方法,进行了独到的理论创新和实践应用创新。发表学术论文40余篇,其中第一作者发表SCI 8篇,Ei 3篇,核心6篇;出版专著2部,授权发明专利2项,荣获省部级科技奖3项。为地质调查工作的信息化、现代化建设增添了一朵绚丽新花,使近红外光谱分析技术在矿产资源中的应用紧追国际前沿。全国第就届近红外光谱大会正在进行,报名请点击:https://www.instrument.com.cn/webinar/meetings/icnir2022/
  • 【瑞士步琦】近红外光谱溯源食用海参产地
    近红外光谱溯源食用海参产地海参种类繁多,国内常见的食用海参多为刺参,即圆筒状有腹背之分的海参,其背面隆起有排列不规则的圆锥形疣足,腹部较为平坦,密集排布着管足,用于吸附岩礁或爬行。海参肉质软嫩,高蛋白低脂肪,口感甘咸,是“海味八珍”之一,有补肾、养血的功效,营养价值堪比人参,因此也有陆有人参,水有海参一说。国内食用海参的主要产地有三个,分别是大连辽参,山东海参以及福建海参,自北向南其生长速度依次增快。以最小可捕捞尺寸 10cm 的成熟海参为例,辽参需要四年,而福建海参仅需一年。因辽参较长的生长周期,和特殊的生长环境,其营养物质更新频繁且积累丰富,相比其他海域生长的海参,具有更高的食用品质和经济价值。不同产地的食用海参外观相似,对于非长期从事海参养殖的消费者而言,难以快速准确地识别海参的产地,这就容易被一些不法分子钻空。尽管无法直接通过观察判断不同产地的海参,但通过近红外光谱仪就能十分轻松地帮助我们完成海参产地的溯源工作。近红外光谱仪可以实现无损扫描样品的近红外光谱,由于生长环境和周期的变化,导致不同产地海参中营养成分含量存在一定差异,再通过化学计量学建立样品光谱信息与产地之间的联系,从而实现对海参产地的鉴别。1实验内容BUCHI NIRFlex N500 近红外光谱仪,大连海参与福建海参各 12 个,测量范围 10000 – 4000 cm-1,分辨率 8 cm-1,扫描次数 32 次,每个样品扫描三次,为保证光谱的稳定性,测量选取海参样品腹部,并用可调光圈保证采样孔与样品直径相当。▲ BUCHI NIRFlex N500 近红外光谱仪选取三分之二样品进行建模,剩余样品用于验证。其原始光谱与模型主成分得分图如下:▲ 海参样品的原始近红外光谱图(红色:大连海参,非红色:福建海参)▲ 建模样品的主成分得分通过原始光谱可以看出大连海参和福建海参的反射率有明显差异,不过在 10000 – 7500 cm-1 范围内还是存在一定重合,而在主成分得分图中就能够看出,仅在前两个主成分的平面空间中,两种产地的海参就有清晰的分布,并且二者没有重合,并且该模型也能够百分百正确地判断留下的 8 个样品的产地。2结论通过上述实验说明近红外光谱分析技术能够快速无损地鉴定辽宁和福建的海参,并且对于快速鉴定其他产地的海参也有很强的潜力。实验中使用的 BUCHI NIRFlex N500 近红外光谱仪是一款采用偏振干涉的傅立叶变换型的近红外光谱仪,相较经典的傅立叶光谱仪,具有更小巧的造型和更强大的抗震动能力。模块化的测量池可以随时随地方便更换,满足各种形态样品的检测需求。双灯构造及满足多国药典和审计追踪要求的配套软件,为工业生产分析提供便利的解决方案。
  • 便携式近红外光谱技术在食品分析中的应用
    HAMAMATSU(滨松) PHOTONICS近红外光谱在食品分析中的作用近红外光谱(NIR)是指在750至2500 nm的电磁光谱近红外区域内研究物质和光之间的相互作用[1]。当红外光与样品分子相互作用时,每个波长反射、透射和吸收的电磁能的量取决于样品中存在的键类型[1]。C-H、N-H和OH振动键在近红外区域最普遍,决定了给定物质的光谱形状。近红外光谱通常用于测量和量化样品的近似成分,如蛋白质、水分、干物质、脂肪和淀粉。此外,近红外光谱反映了其物理性质或特性[1]。因此,当应用于食品时,样品的近红外光谱不仅可以提供有关食品化学成分的信息,还可以通过不需要使用试剂的无损、快速和清洁的方法提供有关其功能的信息[2]。便携式仪器的影响直到最近,近红外技术才向小型化设备发展,使近红外分析从实验室进入现场成为可能。便携式近红外光谱是监测作物质量、确定最佳种植条件和收获时间的绝佳工具。鉴于食品易受含量变化的影响,需要保持新鲜以防止质量损失,以及非法掺假的可能性,控制食品质量的重要性怎么强调都不为过。此外,食品生产、配送链的复杂性以及将分析时间降至最低的需要,使便携式光谱仪在该领域向前迈出了革命性的一步[5][6]。用于食品分析的近红外光谱示例Parastar等人将计算技术应用于近红外分析仪获得的吸收光谱,能够准确区分新鲜肉和解冻肉,并根据鸡的生长条件对鸡柳进行正确分类[3]。使用类似的工具,Kucha和Ngadi能够评估猪肉末的新鲜度[4]。这些计算方法,通常被称为“化学计量学”,使用多种算法和统计技术,如多元线性回归、偏最小二乘回归和主成分分析来分析来自光谱仪的数据。这些方法将光谱信息转化为与样品相关的化学和功能特性[2]。便携式近红外分析仪改善奶牛健康,优化灌溉和收割时间便携式近红外分析仪已被用于饲料和牧草的农场监测,以评估其质量。在这个过程中,将饲料样本放在扫描仪前进行分析,并将结果提供给农民或营养学家。这使他们能够及时做出有关提要的管理决策,将获得结果所需的时间从几天缩短到几秒钟。例如,牛饲料中玉米青贮饲料的干物质含量每天变化很大,在六个月内高达41%。通过现场调整,奶牛可以获得更一致的口粮,从而改善牛群的总体健康状况。这是通过血液参数的变化和乳腺炎的减少来观察的,从而增加了产奶量。此外,这项技术可以潜在地减少饲料浪费,从而降低成本并增加收入[7]。便携式近红外光谱法的另一个有价值的应用领域是对作物生长各个阶段的实地评估。Tardaguila等人研究了在不同环境条件下生长的八个不同品种的160片葡萄叶片的吸收波长。他们专门针对含水量评估来确定葡萄酒行业灌溉的优化策略[8]。在收获季节,近红外光谱已被用于评估橄榄果实[9]、葡萄[10]和番茄[11]在树上的成熟度,从而优化收获时间,甚至使用农业机器人实现自动化水果采摘。收获后,近红外光谱技术有助于农民、消费者和质量控制官员对产品质量进行快速无损检测。这项技术还允许检测由于将传统生产的水果错误标记为有机水果而导致的菠萝欺诈[12]。FTIR光谱提供更高的通量和更好的灵敏度在近红外光谱中,分析有机材料的吸收光谱主要有两种方法。第一种方法是基于二极管阵列的光谱学。该技术使用色散光栅将从样品反射或透射的光分离为其波长分量。然后将每个分量聚焦在线性检测器阵列的不同像素上。这种方法速度相当快,可以用于实时测量。然而,二极管阵列光谱仪的光通量与其光谱分辨率成反比,这限制了其有效性。此外,在近红外区域敏感的线性阵列的高成本可能会限制其在某些应用中的应用,特别是在农业和食品中。获得吸收光谱的第二种方法是傅立叶变换干涉测量法。在这种方法中,入射光被分成两条路径,一条指向固定反射镜,另一条指向可移动反射镜。当这些路径被重新组合时,就会得到干涉图。通过对该干涉图进行傅立叶变换,可以获得入射光的光谱,并且通过适当的校准,可以确定样品的吸收光谱。使用这种技术,可以同时测量所有波长,在不影响光谱分辨率的情况下提供更好的吞吐量和更高的灵敏度(通常被称为“Fellgett的优势”)。在该技术中,仅使用单个NIR光电探测器而不是阵列,从而保持低成本。滨松光子的FTIR引擎为食品行业带来了新的曙光滨松的FTIR引擎C15511-01是一个紧凑的傅立叶变换红外光谱模块,对1.1µm至2.5µm范围内的近红外光具有灵敏度,并具有USB连接。该设备的特点是在手掌大小的外壳中有一个迈克尔逊光学干涉仪和控制电路。为了补偿元件小型化造成的光损失,滨松光子公司的工程师为FTIR引擎配备了一个大型可移动MEMS反射镜和一个高灵敏度InGaAs PIN光电二极管。这种MEMS元件的特殊设计抵消了外部振动和器件内部杂散光反射的影响。可移动MEMS反射镜的位置使用专用激光系统进行连续和精确的监测,以确保最高的波长再现性。一般来说,滨松的FTIR引擎可以提供与更大、更昂贵的台式设备相当的高灵敏度、高分辨率和高速测量。使用FTIR引擎进行红外光谱分析有两种测量方法:“反射测量”和“透射测量”。使用这些方法,我们测量了坚果(杏仁、腰果、核桃)和酒精饮料(啤酒、清酒和白兰地)的光谱。透射测量:酒精饮料吸收光谱的比较及其酒精浓度的估计FTIR引擎C15511-01用于观察几种酒精饮料产生的吸收光谱的差异。将液体放入对近红外透明的石英池中,提供1mm的光路长度。使用卤素灯作为本实验的光源。来自灯的宽带光部分被液体吸收,并通过光纤部分传输到FTIR引擎。图中所示的吸收光谱是在室温下获得的,平均128次扫描,并减去参考测量值。这些光谱的形状主要受水中的OH基团(吸收波长:1450 nm和1900 nm)和醇中的CH基团(吸收光谱波长在2100 nm和2500 nm之间)的影响。还测量了纯水和乙醇的光谱,并将其添加到图中进行比较。此外,使用2300nm处的吸收峰来估计每种饮料中的酒精浓度。该测量显示的值与液体中酒精的实际存在一致,证实了使用这种紧凑的设备和方法进行精确估计的可能性。漫反射测量:使用近红外光谱对坚果进行分类当照射到样品上的光的一部分被其表面颗粒有规律地反射时,其余的则穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。漫反射信号通常比通过透射获得的信号弱。因此,使用这种方法的主要挑战之一是提高照明效率。在传统配置中,使用光纤将来自单个卤素灯的宽带光引导到样品。滨松光子最近设计了L16462-01,这是一种针对漫反射测量进行优化的创新光源。该装置配备了多个灯,以特定角度靠近样品。通过光纤收集从样品散射的光,并将其引导至NIR光谱仪。这种配置可测量信噪比,最大限度地减少杂散光的影响。e照射到样品上的部分光被其表面颗粒规则反射,其余部分穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。食物过敏是一种遗传易感个体在食用某些食物成分后出现不利免疫反应的情况。这种反应可能导致立即或延迟的症状,可能是严重或致命的[13]。在过去的几十年里,这种免疫紊乱已经成为全世界关注的一个重要问题,在西方国家,至少有8%的儿童和5%的成年人受到影响。它给医疗系统带来了相当大的压力,并可能严重限制日常甜梅干动[14]。许多种类的坚果,包括核桃(胡桃)、腰果(西方腰果)和杏仁(甜梅干),都被欧洲法规1168/2011列为过敏原,只要存在于食品中,就需要添加到成分表中[15]。出于这些原因,坚果的检测和分类对于食品工业来说是必要的。滨松利用近红外光谱对杏仁、腰果和核桃的吸收光谱进行了研究和分类。使用FTIR引擎C15511-01和新的灯L16462-01获得测量结果。将坚果放置在光源上,无需任何预先准备,平均进行128次扫描以获得每个样品的吸收光谱。所获得的光谱的特征在于1600-1800nm处的峰,这是由从脂质和蛋白质拉伸的CH的第一泛音引起的。当观察光谱的二阶导数时,各种光谱之间的差异更加明显。通过主成分分析法可以对不同种类的坚果进行分类。结论近红外光谱在食品工业中的潜在应用已经被许多科学出版物广泛记录了几年。便携式仪器的出现正在将分析从实验室转移到现场,将结果的时间从几天大幅缩短到几秒钟。最值得注意的是,这种由滨松MEMS技术驱动的硬件小型化在不影响灵敏度或分辨率的情况下实现。新的计算技术正在不断发展,以分析和比较吸收光谱,并估计食品中特定化合物的含量。这些方法使整个行业的非技术用户越来越容易访问该技术。便携式FTIR分析仪是解决食品行业许多重大挑战的宝贵工具。例如,它们可以帮助提高作物产量,从而在面临粮食需求增加时提供一种替代毁林的方法。将这些技术融入农业可以在优化灌溉和限制整个供应链的食物浪费时限制水浪费。最后,FTIR分析仪可以帮助改善我们的食物质量,使其对我们和所有依赖我们的动物更安全、更健康。参考文献[1] K. B. Beć, J. Grabska, and C. W. Huck, “Near-Infrared Spectroscopy in Bio-Applications”, Molecules, vol. 25, no. 12, p. 2948, Jun. 2020, doi: 10.3390/molecules25122948.[2] D. Cozzolino, “The Ability of Near Infrared (NIR) Spectroscopy to Predict Functional Properties in Foods: Challenges and Opportunities”, Molecules, vol. 26, no. 22, p. 6981, Nov. 2021, doi: 10.3390/molecules26226981.[3] H. Parastar, G. van Kollenburg, Y. Weesepoel, A. van den Doel, L. Buydens, and J. Jansen, "Integration of handheld NIR and machine learning to 'Measure & Monitor' chicken meat authenticity" in Food Control, vol. 112, pp. 107149, 2020. doi: 10.1016/j. foodcont.2020.107149. [4] Kucha, C.T., Ngadi, M.O. “Rapid assessment of pork freshness using miniaturized NIR spectroscopy”. Food Measure 14, 1105–1115 (2020). https://doi.org/10.1007/s11694-019-00360-9 [5] J.-H. Qu, D. Liu, J.-H. Cheng, D.-W. Sun, J. Ma, H. Pu, and X.-A. Zeng, "Applications of Near-infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances" Critical Reviews in Food Science and Nutrition, vol. 55, no. 13, pp. 1939-1954, 2015. doi: 10.1080/10408398.2013.871693.[6] K. B. Beć, J. Grabska, and C. W. Huck, “Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives,” Foods, vol. 11, no. 10, p. 1465, May 2022, doi: 10.3390/foods11101465.[7] "Can On-Farm NIR Analysis Improve Feed Management?", Penn State Extension. [Online]. Available: https://extension.psu. edu/can-on-farm-nir-analysis-improve-feed-management.[8] J. Tardaguila, J. Fernández-Novales, S. Gutiérrez, and M.P. Diago, "Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer", J. Sci. Food Agric., vol. 97, pp. 3772-3780, 2017. doi: 10.1002/jsfa.8241.[9] A. J. Fernández-Espinosa, "Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time", Talanta, vol. 148, pp. 216-228, 2016. doi: 10.1016/j.talanta.2015.10.084.[10] G. Ferrara, V. Marcotuli, A. Didonna, A. M. Stellacci, M. Palasciano, and A. Mazzeo, “Ripeness Prediction in Table Grape Cultivars by Using a Portable NIR Device”, Horticulturae, vol. 8, no. 7, p. 613, Jul. 2022, doi: 10.3390/horticulturae8070613.[11] H. Yang, B. Kuang, and A.M. Mouazen, "In situ Determination of Growing Stages and Harvest Time of Tomato (Lycopersicon Esculentum) Fruits Using Fiber-Optic Visible—Near-Infrared (Vis-NIR) Spectroscopy", Applied Spectroscopy, vol. 65, no. 8, pp. 931-938, 2011. doi: 10.1366/11-06270.[12] C. L. Y. Amuah, E. Teye, F. P. Lamptey, K. Nyandey, J. Opoku-Ansah, and P. O. Adueming, "Feasibility Study of the Use of Handheld NIR Spectrometer for Simultaneous Authentication and Quantification of Quality Parameters in Intact Pineapple Fruits", Journal of Spectroscopy, vol. 2019, Article ID 5975461, 9 pages, 2019. doi: 10.1155/2019/5975461.[13] Z. Husain and R.A. Schwartz, "Food allergy update: more than a peanut of a problem", International Journal of Dermatology, vol. 52, pp. 286-294, 2013. doi: 10.1111/j.1365-4632.2012.05603.x.[14] S. H. Sicherer and H. A. Sampson, "Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment", The Journal of Allergy and Clinical Immunology, vol. 133, no. 2, pp. 291-307.E5, Feb. 2014. doi: https://doi.org/10.1016/j.jaci.2013.11.020 [15] A. Luparelli, I. Losito, E. De Angelis, R. Pilolli, F. Lambertini, and L. Monaci, “Tree Nuts and Peanuts as a Source of Beneficial Compounds and a Threat for Allergic Consumers: Overview on Methods for Their Detection in Complex Food Products”, Foods, vol. 11, no. 5, p. 728, Mar. 2022, doi: 10.3390/foods11050728.本文来源:HAMAMATSU PHOTONICS(滨松电子),Applications for portable NIR spectroscopy in food analysis,www.hamamatsu.com供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 百度“筷搜”集成的红外光谱仪真能工作?
    在2014年9月3日召开的百度世界大会上,&ldquo 筷搜&rdquo 这款便携式健康生活智能设备赚足眼球,它看起来和普通的筷子没有太大差别,却拥有智能检测地沟油、饮用水酸碱度和水果甜度、品种和产地等特色功能,可连接智能手机,随身携带使用。  这款名为&ldquo 筷搜&rdquo 的产品,分为筷子和筷托两部分。据介绍,筷子集成各种传感器,实现一系列物理指标的测量,包括水酸碱度(pH值)、温度、油质和盐度四种数据,并将数据通过蓝牙传输给智能手机,通过筷子尾部的LED灯与用户进行智能交互,如检测结果合格,显示蓝色,检测结果不好,以红色警示。筷托则内置红外光谱仪,实现对测量物进行定性和定量分析。筷搜  对于现在这个时代来说,光谱仪器的小型化已经成为十分必要,因为只有小型化的方便携带的仪器才能走进家庭,在厨房里检测食品的农药残留等等。在这里光学系统的尺寸成为重要的制约因素,因为需要分光&mdash &mdash 把不同波长的光区别出来,一般来说都需要使用光栅或者干涉仪,我们以光栅为例进行说明。光栅的分辨率与尺寸成正比,尺寸越小,分辨率越差(干涉仪也一样)。而且,越小的单色器要求越小的入射狭缝(用来模拟点光源),入射狭缝发出的光被凹面镜反射后变为平行光线再射到光栅上进行分光,这个时候出射狭缝处的光能量可能会很弱,因为入射狭缝不可能开得更大,更大就不是一个点光源了,仪器的光谱分辨率会变得更差。  因此,光能量与光谱分辨率是一对矛盾,不能被同时提高,这就是真正的物理学。不过我们可以放大光路的尺寸,来实现光能量与光的分辨率的同时提高,这就是在不同的scale有不同的物理。最近,百度公司推出的&ldquo 筷搜&rdquo 仪器里面宣称集成了很小的红外光谱仪,可以检测地沟油,从技术上来说,作者还没有看出百度的红外谱仪到底采取了什么小型化的分光装置(或者说波长扫描装置,因为它的尺寸实在太小了,只有鼠标那么大。)  因此,可以说&ldquo 筷搜&rdquo 这种小型化的红外装置是极富挑战性的,希望百度公司能对这一部分披露更多的技术信息。  另外,到底什么是光呢?作者有几次受到北京电视台记者的采访,要我在电视上给普通老百姓介绍一下红外线或者紫外线,作者一定要坚持首先给他们解释一下光的本质,一定要告诉普通观众一个基本的事实:光是从原子中跑出来的。如果一定要使用比喻的话,作者一般这样说:原子中的电子就好象跳楼一样,摔下来流的血就是它所发出的光,比如可以从10楼跳到8楼,也可以从10楼跳到5楼,也可以从7楼跳到4楼,或者直接摔在地上,这些都是可以的。现在百度的&ldquo 筷搜&rdquo ,就是要说明电子到底是从几层楼掉下来的,又掉到了哪层楼。这部分是技术关键。  百度&ldquo 筷搜&rdquo 集成的红外光谱仪真的能工作吗?作者保持谨慎的追问。
  • 关于近红外光谱分析网络化应用研究的思考
    近几年以来,在国内烟草行业,随着烟草企业的联合重组与整合,对烟叶原料品类多样化提出了更高的要求,为了统筹优化与合理应用原料提供技术支持,以Web Service架构的“互联网+近红外光谱分析”的基本模式,于2015年,云南中烟构建的以原料研究为导向的烟叶原料近红外分析网络系统上线使用,通过六年多来的运行,实现了原料近红外分析检测数据的交换和共享,对评估烤烟收购质量,合理组配复烤模块单元,提供了即时的数据支持;在产品开发和产品维护方面,针对性使用烟叶原料,研发新产品配方、优化配伍和维护产品质量稳定,发挥了积极的辅助作用,特别是从“人、机、料、环、法”等方面,依据相应的技术标准(包含近红外校正模型建立、验证、应用和维护等),规范了网点的近红外光谱实验室,多年来,积累了初烤烤烟、复烤片烟和库存片烟等烟叶原料近红外分析检测大量的数据资产。系统功能基本达到了设计预期。然而,为了进一步探索分析烟叶原料品质类别、配方模块(单元)相似性、质量变化趋势和规律,在综合利用近红外光谱数据、理化性质数据和一些与质量相关的半结构化非结构化数据时,由于集成的常规性质数据有限,满足不了质量表征的需求,加之,在网络平台上面对大量的数据处理分析,传统的化学计量学定性定量建模计算模式难于适应,制约了多变量数据(如光谱)的深入挖掘和数据挖掘的效率。为了推进近红外光谱分析网络化应用,本文基于烟草近红外光谱网络化应用的实践经验,抛砖引玉,与大家探讨近红外光谱分析网络化应用研究的一些思路。1、近红外光谱标准化烟草可视为一种多成分复杂化学体系的天然作物,迄今为止,从烟草中鉴定出来的化学成分达5500多种,烟草质量与这些化学成分的相关性至今尚未全部研究清楚,通常采用为数有限的常规化学成分指标(如烟碱、总氮、总糖、还原糖、蛋白质、钾、氯和灰分等),评估烟草整体质量特征时仍存在不足,普遍认为,烟草在燃吸时的整体质量特征是烟草中这些复杂成分相互协同作用的结果。在近红外光谱定量分析中,烟草近红外光谱包含大量潜在的物质组成信息尚未充分利用,不同质量特征的烟草具有自身的特征近红外光谱,应用适当的化学计量学模式识别方法,如PLS-DA、SIMCA和SVM,结合近红外光谱挖掘烟草的整体质量特征归属,对寻求质量特征相似或相近的替代原料,保障规模化产品制造稳定的原料供给有着重要的意义。每一个网点的近红外光谱实验室是数据“发源地”,数据质量决定了将来数据的应用价值。实验室除了从“人、机、料、环、法”等方面,依据相应的规范(包含近红外光谱测量、校正模型建立、验证、应用和维护的技术标准等)要求运行之外,显然,在网络环境里光谱数据采集的“标准化”就特别重要。这就要求入网的近红外光谱仪必须具有优良的光学特性,仪器之间的差异最小,保证对不同产区网点的近红外光谱仪测量的光谱数据进行分析时,仪器的背景差异不会造成明显的影响,但事实上,同一厂家同一型号同一个批次生产的光谱仪都很难做到这一点,可以说,近红外光谱仪之间的差异是进行网络数据共享,挖掘光谱数据信息存在的问题之一。一是借鉴模型转移的化学计量学方法,根据仪器之间的光谱差异,建立一个光谱的数学关系,然后依据这个数学关系,“软拷贝”实现光谱数据采集的标准化;二是仪器厂商提升仪器的制造水平,降低仪器之间的差异,特别是不同批次生产的仪器之间的差异,才能使其测量的光谱差异最小,不会对后续的光谱分析造成明显的影响,也就是说用一台仪器采集的光谱建立的模型预测同一组样品在本台仪器上测量的光谱,与使用本台仪器的模型预测另一台仪器测量同是一组样品的光谱所得到的结果无明显的差异,在这两台仪器之间就无需建立光谱的数学关系,即简单的“硬拷贝”就可实现网络平台光谱数据采 集的标准化,要义见图1示意。在网络环境中的光谱仪可视为一个“网络传感器”,对传感器的技术要求在朝着高质量、高精度、小型化、低功耗和智能化等方向演进,对网络用户来说,期待仪器制造商生产性能一致性优良的光谱仪,乃是尤为理想的解决方案。图1 不同的光谱仪采集同一组样品,可得到基本相同的光谱,即“一个世界,一个标准”2、云化近红外光谱分析网络平台云计算服务是一种集中式服务,所有数据都通过网络传输到云计算中心进行处理。资源的高度集中与整合使得云计算具有很高的通用性,然而,面对网络设备和数据的爆发式增长,边缘计算相比于云计算模型,能够更加迅速、可靠和节能地响应用户需求,数据在本地处理也可以提升用户隐私保护程度。另外,边缘计算也减小了对网络的依赖,在离线状态下也能够提供基础业务服务。通过云化近红外光谱分析网络平台,集成不同的烟草产地生态环境、等级、品种以及相应的近红外光谱、理化性质(包含烟叶的形态形状图像,化学成分指标等)数据是其任务之一,便于分析挖掘与感官质量相关的特征信息,服务于烟叶原料的精细化种植及科学合理应用,在近红外光谱定性、定量建模或后续的各种数据挖掘实际应用中,是基于“中心云”或“边缘云”的数据资源进行的。有时会用到中心云的数据资源,如对各大产区烟草质量进行整体性比照分析,探索各大烟区烟草质量特征,支持原料生产基地系统规划;有时会用到边缘云的数据资源,如对某个产区烟草历时性数据作趋势分析,探索烟草质量的稳定性与变化趋向,辅助基层植烟区改进或调整生产措施。所以,面向服务对象的规模、复杂程度合理部署、云化近红外光谱分析网络平台就尤为重要,有利于集约化网络资源,提升数据的分析处理以及数据挖掘的效率,见图2示意。图2. 近红外光谱分析平台云化示意图3、构建云计算自动化(智能)建模服务系统通常,在建立样本数量大于3000个以上的近红外校正模型时,样本量越大,运算速度越慢,对计算机性能的要求越就越高,且在建模过程中,如组织训练集或校正样本集、清洗异常样本、筛选适宜的建模数据等等,基本是基于“文件夹”来操作完成的,对网络环境中的大体量的数据资源,因缺乏探索性数据分析的网络计算手段而难于被充分利用,传统的建模方式和流程效率低、适应性差。基于网络资源进行化学计量学网络计算,现代云计算技术为化学计量学计算研究搭建了高灵活性平台。如何选择诸如Hadoop、Spark等生态圈技术,通过分布式计算提升定性、定量建模效率,并结合长期积累的建模经验、领域知识(包含相关的波长或波段选择、光谱预处理方法及其经验参数设置、模型误差水平控制等),实现自动化建模,这是我们要联合网络计算专家实现近红外光谱分析网络化云计算所要解决的问题。显然,把传统的近红外光谱定量、定性分析涉及的训练集样本或校正集样本的筛选、光谱的预处理、建模等化学计量学方法(算法)网络化,开发分布式计算的化学计量学软件系统(当然,这也是数据挖掘的重要组成部分),共享应用网络软、硬件资源优势,平衡计算负载,实现近红外光谱分析云计算,可能是一种比较好的解决思路,这无论是对近红外光谱定性定量分析的普通用户,还是对近红外光谱数据进行深度挖掘的高级用户,都具有较好的便利性和实用性。4、研发基于特征模型的网络搜索引擎基于多维质量特征数据(结构化和非结构化数据),诸如烟草产地生态、等级、品种、理化性质指标、近红外光谱、形态形状图像等,选取不同的特征,通过模式识别技术建立用户预期的质量特征类模型,然后应用“基于特征模型的网络搜索引擎+类模型”搜索网络共享资源(中心云或边缘云)中具有相近或相似质量特征的样本,也就是在网络共享资源中“淘宝”,寻求在产品制造中烟叶原料的替代应用,保障产品质量的稳定。搜索引擎形式类似“百度”或“Google”。这里以烟草近红外光谱定性分析的应用举例说明,我们需要什么样功能的“搜索引擎”,近红外光谱包含丰富的化学物质结构信息,且近红外光谱与物质组成及含量相关,不同属性、特征的烟草样品具有相应的特征近红外光谱,通过结合烟草领域知识,采用适宜的化学计量学模式识别方法(如基于PCA的各种分类算法、ANN或SVM等)来提取烟草样品近红外光谱特征信息,训练能表征质量特征的近红外光谱类模型,应用验证通过的类模型和待测烟草样品近红外光谱便可预测待测样品的归属类别或特征。常规近红外光谱定性预测分析是基于“文件夹+类模型”进行操作的,而在网络环境中,近红外光谱定性预测分析必须网络化,预测是在云化的近红外光谱分析网络平台上,应用“基于特征模型的网络搜索引擎+类模型”寻找“隐藏”在“中心云”或“边缘云”中的数据资源(见图3示意),它承担着大体量的网络计算。基于特征模型的网络搜索引擎是“云计算自动化(智能)建模服务系统”预测分析网络化的延展,可简单视为是一个“网络预测器”,当然,这个“网络预测器”需要网络计算专家和近红外光谱化学计量学算法专家联手研发。图3. 近红外光谱分析网络化应用示意图5、其它针对不同应用场景或职能部门,利用中心云数据或边缘云数据进行一些简单的在线统计分析计算,并对结果进行可视化展示,如原料生产部门可快速实现对烟叶质量指标的比较,分析烟叶质量的稳定性、质量变化走势等。开发一些满足不同应用场景的APP、微信小程序、公众号等(见图3示意),也是一项值得开展的工作。(作者:王家俊 云南中烟工业有限责任公司)
  • 实用简评∣从NIR2023看当前近红外光谱的研究热点
    褚小立中国石化石油化工科学研究院,cxlyuli@sina.com第21届国际近红外光谱会议(NIR 2023)于2023年8月20日至24日在奥地利召开。由于护照和签证的延迟,很遗憾没有现场参加这次会议。最近一段时间我认真研读了会议摘要和会议墙报,深感近红外光谱的研究和应用方兴未艾。除了近红外光谱在“科学研究”、“过程分析技术”、“高光谱成像”等领域的快速深入发展,本次大会的关键词“小微型近红外光谱”、“数据融合”、“深度学习”给我留下了深刻的印象,可以说是目前近红外光谱领域的研究热点。小微型NIR虽然小微型化的近红外光谱仪在光谱范围、分辨率、信噪比等方面优势不明显,但它具有廉价、快速、操作简单、易于野外使用等诸多优点,近年来越来越受到人们的关注(O01.12)。在NIR 2023上,不仅有新的小微型近红外光谱仪器(O05.05,F05.03,P05.02)和便携式成像仪器(O07.11)的研发,还有应用方法学研究。例如,Shi等将实验室建立的土壤光谱库移植到便携式仪器上,用于田间土壤品质的快速分析(P10.09);Lippl等也开展了类似的研究工作(P10.04),以提高小型化近红外光谱仪在现场的部署效率。小型化近红外光谱仪在不同领域的应用研究仍然层出不穷。Gorji等人利用手持式近红外分析仪测量田间作物叶片的含水量,对农田精细灌溉管理具有实际应用意义(P01.22);Sherif等人一直在利用手持式近红外光谱仪建立数据库,预测奶牛的粪便成分,从而监测养分利用效率,实时调整日粮配方(P01.53);Gillay等人使用便携式近红外光谱检测奶牛的饲料,并评估这些奶牛的奶生产的奶酪,以评估改善的喂养对奶酪质量的影响(P01.21)。Popp等人花了三年时间在便携式近红外光谱仪上建立了一个校准模型,用于在田间实时直接测量药用植物的质量(PL08);Hamed等人使用便携式近红外光谱仪确定大麻中具有高经济价值的化学成分的含量,这为种植者、经销商和生产者提供了一种工具,以管理其现场的质量控制并提高作物优化(P01.24)。Ikehata研究了使用小型可见-近红外光谱传感器评估蔬菜新鲜度的可行性(O01.11);Giraudo使用廉价的便携式仪器识别加工肉制品中掺假的机械分离肉(MSM )( O 01.08);Hernandez-Jimenez等人成功使用便携式NIR仪器根据品种鉴别伊比利亚火腿(P01.25);Arroyo-Cerezo等人建立了一种利用便携式近红外光谱仪快速鉴别初榨橄榄油品质和真伪的筛选方法(P01.04);加里多-奎瓦斯等人还评估了几种便携式仪器在现场检测初榨橄榄油质量的潜力,以便用于橄榄油生产和储存过程中的质量控制(P01.19)。这些有希望的结果表明,微型近红外光谱仪可以成功地应用于直接检测市场上的食品欺诈。Rais等人研究了使用超便携近红外技术对伪造药物进行即时无损分析的可行性,包括治疗勃起功能障碍的药物和预防艾滋病毒治疗的药物(P08.09);近红外技术可以为纺织废料识别问题提供解决方案,Stipanovic等人使用手持式近红外光谱仪对消费后纺织品进行分类(P07.20)。多源数据融合近年来,多源数据融合技术通过综合优化和整合多个来源的信息,充分发挥多种光谱或/和图像之间的互补性,可以全面深入地挖掘信息,达到提高校正模型预测精度和稳定性的目的(KN11)。在NIR 2023上,出现了很多多源数据融合的应用研究实例,尤其是在食品领域。Vasefi等人开发了一种手持式多模式光谱系统,该系统结合了可见近红外(VIS-NIR)、短波红外(SWIR)和荧光(FL)光谱的反射率,用于鱼类物种识别、新鲜度评估、养殖与野生鱼识别、冷冻-解冻与新鲜鱼肉识别(O03.13);Strani等人使用拉曼光谱和近红外光谱的融合来鉴定帕尔马干酪的PDO真实性(P01.58);Bragolusi等人开发了一种基于近红外和拉曼光谱融合的光谱方法,用于快速准确地鉴定单花蜂蜜的植物来源(P01.47);Jia等人使用可见光范围(400-1000 nm)和短波红外范围(900-1700 nm)光谱成像来预测贮藏期间包装的小牛肉产品的肌红蛋白谱(P07.07)。在制药领域,Kovacs等人将近红外光谱与传统的过程控制方法相结合,预测药物的溶出度(P09.04);Tian等利用近红外光谱和中红外光谱融合技术对不同品种黄连的水分含量进行了鉴别和测定(P08.10)。在其他领域,Sormunen等人使用拉曼光谱和超光谱成像(1950-2500 nm)对高溴和低溴废塑料(O10.03)进行分类;Linderholm等人使用了五种光谱,包括分子振动光谱和原子光谱,对地质样品进行分类,多块模型的初步结果表明,光谱信息可以相互补充,提高了样本分类的准确性(P03.08);Oravec等人使用便携式近红外光谱、紫外-可见近红外光谱、拉曼光谱和ATR-FTIR光谱设备进行了文化遗产领域的材料鉴定研究(P03.09)。深度学习近年来,深度学习方法在近红外光谱和高光谱成像的定量分析、模式识别和模型迁移等方面显示出越来越多的优势。深度学习适用于处理大样本光谱数据集,尤其适合高相似样本的判别分析和高差异样本的定量分析。在NIR2023大会上,深度学习与光谱成像相结合在水果和农业方面的应用研究尤为突出。Girones等人将近红外高光谱成像与3D定制卷积神经网络相结合,用于识别水果中的指状青霉感染(F07.01);Chun等利用高光谱荧光成像数据研究了数据增强深度学习算法,用于草莓灰霉病的早期检测(P07.03);Kim等人使用高光谱VIS-NIR成像和卷积神经网络来测量东方甜瓜植物的氮水平,以实现精确的氮素供应管理(P07.08);Mo等评估了高光谱荧光成像和卷积神经网络用于测定柑橘果实成熟度的适用性(P07.15)。此外,Park等人利用田间测得的土壤NIR光谱建立了土壤含水量的深度学习预测模型(P10.07);Chiniadis等人提出了利用近红外反射光谱和深度学习方法快速预测土壤中碳酸盐含量的方法(P10.01);Benson等人提出了一种基于耳石近红外光谱和卷积神经网络的鱼类年龄新方法,该方法可以自动提取重要的光谱特征,并产生相当的精度,而且分析效率明显高于传统方法(O01.02,P01.07)。展望从仪器微型化技术的发展可以看出其对近红外光谱的推动力,从工农业生产、消费市场(如“from farm to fork”)和人们日常生活(如”point-of-care”)不断增长的需求可以看出其对近红外光谱的牵引力。在驱动力和牵引力的双重作用下,近红外光谱分析技术将在未来得到加速发展。可以预见,在上述背景下,仪器微小型化、多源数据融合和深度学习仍将是近红外光谱领域未来几年的研究热点和重点。近红外光谱无疑已经从光谱中的“丑小鸭”变成了“天鹅”,并继续与其他谱学技术一起在农业、工业、消费、甚至人类健康等领域中改变着人们的工作和生活方式,成为质量控制的新模式(KN04,PL04,F01.02,KN08,KN10)。目前,近红外光谱分析技术正处于其巅峰的前夜,我们期待着这一时刻的尽快到来。致谢:感谢臧恒昌教授、李连教授和郭隆海教授提供的NIR 2023会议摘要和墙报图片。
  • 产品资讯:得利特(北京)公司引入**傅立叶红外光谱仪
    红外光谱仪的发展主要经历了以下三个阶段:  第一阶段是棱镜色散型红外分光光度计, 它是基于棱镜对红外辐射的色散而实现分光的, 其缺点是光学材料制造麻烦, 分辨本领较低, 而且仪器要求严格的恒温降湿。  第二阶段是光栅色散型红外分光光度计(如港东WGH-30A), 它是基于光栅的衍射而实现分光的, 与第一代相比, 分辨能力大大提高, 且能量较高, 价格便宜, 对恒温、恒湿要求不高, 是红外分光光度计发展的方向,  第三阶段是基于干涉调频分光的FTIR红外光谱仪(如港东FTIR-650), 它的出现为红外光谱的拓展应用开辟了新的方向,相比之前色散型红外来说,傅里叶变换型红外具有分辨能力高、扫描时间快、光通量大、高扩展性等优点,但对湿度和温度有要求,尤其是湿度,通常要求不能超过70%。 从上个世纪70年代到现在的几十年中,傅里叶变换红外光谱技术(FTIR)发展非常迅速,FTIR光谱仪的更新换代速度很快。世界上主要的FTIR生产商,一般每三到五年就推出新型号的FTIR光谱仪。随着傅里叶变换红外光谱技术的不断发展,红外光谱仪的附件也在不断的发展,不断的更新换代。新的、先进的红外光谱仪附件的出现,促使红外光谱仪附件的功能和性能不断的得到加强和提高,进一步使红外光谱技术得到了更加广泛的应用。 不可否认,国内的FTIR厂家的技术和世界主流公司相比还是有一定的差距,但是这个差距正在不断缩小。国外有代表性的FTIR生产厂商,经过几十年的技术积累,研发出来的产品在附件和主机集成上、产品联用上、产品专用化上及产品小型化上的优势比较明显。 整体而言,最近几年FTIR技术发展非常之快,无论是从产品的智能化程度、产品联用、应用领域专用上还是产品的小型化上都显示出很强的发展势头,未来FTIR技术会随着客户对产品的不同需求,朝着更加智能化、更加专用化、更加小型化的方向发展。傅立叶红外光谱仪(软件带有各种分析定量方法库) 定货号:DH108 红外光谱仪使用傅立叶转换红外光谱仪(FTIR)对在用油品的质量和污染状况进行检测,可以检测油液衰化变质,氧化,水解,添加剂含量等,分析速度快,2分钟即可得到所有参数的测试结果,本仪器符合ASTM E2412红外光谱法润滑油监测标准,红外水中油含量分析标准,GB/T 23801-2009中间馏分油中脂肪酸甲酯(生物柴油)含量的测定(红外光谱法),广泛应用于军队,工矿企业,石化和运输行业仪器特点:1、采用了技术的抗振傅立叶干涉仪,从根本上解决了傅立叶红外光谱仪过于娇嫩,故障率过高的固有缺陷,使仪器可以适应各种恶劣环境的要求2、采用了技术的DTRANTM进样系统,无需任何清洗试剂,大大加快了分析速度,也避免了对操作人员的健康损害3、仪器操作简单,软件界面友好,操作人员仅需简单培训就可以轻松使用仪器4、可以分析包括润滑脂在内的各种油液油脂而不需要任何样品处理5、对各种油液中水分的测量下限达到50ppm,从而大大提高了红外光谱仪的分析效能(其它红外光谱仪对水分的测量下限为500 ppm)6、各种油液分析方法库和各项指标的界限值数据库技术参数:规 格:20×20×10 cm工作温度:-10℃至50℃进样系统:钻石透射池进样系统分 束 器:人造宝石光谱分辨率:zui高为0.5cm-1分析速度:1-2分钟/每个样品光谱范围:7800-350 cm-1检 测 器:DTGS检测器信 噪 比:大于20000:1重 量:4Kg
  • 【我与近红外的故事】卢启鹏:我与近红外光谱技术的点滴
    p  我是1987年从浙江大学来到长春光机所攻读硕士学位,硕士论文研究的是关于平像场光谱仪器光学设计方面的内容。当时我学习的研究室被称为十五室即光谱技术研究室,是国内组建最早的关于光谱仪器及技术研究的专业研究室,早期曾研制出大型石英红外光谱仪、机载傅里叶光谱仪、阿德玛变换光谱仪、大型真空紫外光谱仪等仪器,当时陈星旦院士是我们的研究室主任,正在开展有关近红外粮食成份分析仪的国家七五攻关项目。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201705/insimg/bae19217-df48-44ef-8335-47ca9e56adbc.jpg" title="长春光机所卢启鹏研究员.jpg"//pp style="text-align: center "卢启鹏/pp  研究生毕业后,幸运的留所工作。记得工作后不久的一天,陈先生叫我到他的办公室,原来是要交给我一项任务,编制一套有关近红外粮食成份分析仪用的计算机数据采集和处理软件。近红外分析仪的研制在室里已开展一段时间,由于当时计算机运行速度较慢、软件编程语言的限制,不论是采集数据的稳定性还是定标和预测速度都有不足。我大学不是学计算机的,但对C语言使用还算熟练,已为课题组编制过几个客户应用程序。先生希望我能编出一套能够完成数据的稳定采集、计算速度更快一些的应用程序。虽然有些突然,但我还是愉快地接受了任务。期间开始到图书馆查资料,与先生讨论近红外光谱分析技术,编写、调试程序。工作中,突击学习了数理统计方法,了解近红外分析技术特点、已研制的仪器特点等相关知识。由于任务紧急,时间紧迫,在一个多月的时间里不得不加班加点,终于及时完成了一套能够实现数据采集、预处理、多元线性回归定标及预测功能,又具有下拉、弹出菜单等花哨显示功能的用户软件。人机界面还算友好,定标和预测时间大为减少。/pp  攻关项目顺利完成,分析仪器也已定型,但由于近红外技术应用在国内过于超前,也没有国家标准的约束和指引,加上近红外光谱分析与常规光谱分析技术差异较大,应用前需要准备大量样品需要定标等工作,预想中的大量推广遇到很大困难。/pp  转眼到了1992年,一天遇到陈先生,谈起近红外技术的动态,先生谈到国外已有近红外技术在无创血糖方向上开展研究的迹象,当时我们室已在生化分析仪方面开展工作。先生想先申请个国家自然科学基金,由于我前几年参与了近红外的工作,也是很感兴趣,当然希望有基金资助,重操旧业。参与申请后,重新学习了无创血糖分析方面的知识,也进一步了解国内外近红外分析技术的现状。可惜由于基金没有获批,我只好转战其他的研究项目工作中。/pp  一晃时间已到2005年,这时我从长光医疗仪器公司回到应用光学国家重点实验室工作,在散步时陈先生了解到我已回到所里工作很是高兴,让我尽快到他办公室讨论一下近红外方向的研究内容,启动近红外分析仪器研制及应用的工作。这时国内近红外技术及应用的环境已大为改观,近红外分析技术已普遍获得接受,身边的生存压力已有所缓解,也有多名可以一起工作的同事和研究生,凭借十几年来对光谱分析仪器的技术积累和热爱,我在近红外光谱技术及应用上的工作又重新开始。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/0cf2deb8-42e9-4aba-aea4-e541c5dc70ce.jpg" title="1.jpg"//pp  现在我们课题组先后研制了滤光片型、光栅扫描型、光栅阵列型、傅里叶型、线性渐变滤光片型近红外光谱分析仪,积累了丰富的理论和实际经验,研制的快速粮食成分分析仪获吉林省科学技术进步二等奖。在吉林省科技计划项目及吉林省与中科院长吉图开发开放先导区项目的连续支持下,研制出了具有自主知识产权的土壤养分快速近红外光谱分析仪样机,能够对土壤中总氮、有机质等营养成分进行分析,预测相关系数可达0.9,通过进一步研究,有望实现田间作业过程中的土壤成分含量测量,更加便捷有效地指导农业生产。与应用单位合作针对粮食、饲料、土壤养分、人参成份、果品分析等应用开发出多种专用分析仪器,正努力进行产业化推广。/pp  课题组与高校、医院合作在无创血糖、胆固醇、甘油三酯、血红蛋白、HCT等血液成份检测领域开展了大量基础性及临床实验等工作,这是一项很有意义也很有趣的工作。/pp  无创伤血液成分检测是个世界性难题,困扰了科学工作者很多年,由于有效信号微弱、背景干扰严重,一直未能完美解决。为了提取出微弱的有效光谱信号,课题组基于血流容积差光谱相减法,研制了几代快速、高信噪比的光谱检测系统,信噪比达到20000:1以上。通过多年的努力,在无创伤血红蛋白、HCT检测方面获得了较好的分析结果,在血糖、胆固醇、甘油三酯检测方面也取得了可喜的进展。所以说,近红外在生物医学领域的应用还大有潜力可挖。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/640f433b-0ac7-49cd-8b9b-44b0014f4c74.jpg" style="width: 300px height: 123px " title="2.jpg" width="300" height="123" border="0" hspace="0" vspace="0"/img src="http://img1.17img.cn/17img/images/201705/insimg/809eb7a5-3801-469c-9ae8-f0bd374d1026.jpg" title="3.jpg" width="300" height="200" border="0" hspace="0" vspace="0" style="width: 300px height: 200px "//pp style="text-align: center "近红外光谱分析仪 土壤养分近红外光谱仪成果鉴定会/pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201705/insimg/b5fe03b0-9101-4821-817f-d510651a36e5.jpg" style="width: 300px height: 222px " title="4.jpg" width="300" height="222" border="0" hspace="0" vspace="0"/img src="http://img1.17img.cn/17img/images/201705/insimg/160b59f8-6128-4eec-ab8f-54f6839264bb.jpg" title="5.jpg" width="300" height="204" border="0" hspace="0" vspace="0" style="width: 300px height: 204px "//pp style="text-align: center "无创伤红细胞比容检测装置 临床实验/pp  近些年来,在学会及国内同行的努力下,召开了多次近红外学术会议,近红外光谱技术的普及越来越广,入行的人越来越多,形势越来越令人振奋。最后,祝愿我们的近红外光谱事业蒸蒸日上,更好更多地应用于国民经济主战场,利国利民。/ppbr//p
  • 傅立叶变换红外光谱仪与水的碰撞 – 切勿模仿哦
    布鲁克真空型研究级红外光谱仪是如何应对水中的红外实验的?您会如何理解“水中的红外光谱”?也许,您可能会想到用于水-固或水-气界面的衰减全反射或者反射红外法,或者用于像短光程液体池中蛋白质水溶液研究的透射红外法,这种实验装置在生物学相关应用中非常典型,如蛋白质结构分析,或生物分子折叠、结合和催化的动力学研究。位于欧洲中心地带捷克韦斯特克卓越中心的生物技术研究所(Institute of Biotechnology, IBT),是捷克科学院和查尔斯大学联合项目生物技术与生物医学中心(Biotechnology and Biomedicine Center of the Czech Academy of Sciences and Charles University, BIOCEV)的一部分,正致力于这方面的研究。 由Gustavo?Fuertes博士领导的“生物过程动力学”作为其研究项目之一,旨在了解光诱导的光敏蛋白从飞秒到小时时间尺度上的结构、动力学和功能变化。水中稳定状态及时间分辨红外光谱法是实现这一目标的关键技术。该课题组采用布鲁克VERTEX?70v真空型研究级光谱仪来获取低至纳秒时间尺度的数据,这样的时间分辨率是傅立叶变换红外光谱技术能达到的最高时间分辨率,只能通过步进扫描测量模式来实现。 由于布鲁克真空系列光谱仪具有全真空光学平台,可以提供超高稳定性及精度,这也是达到步进扫描最佳性能的必要前提。众所周知,水是许多生物大分子的理想溶剂,但也是很强的红外吸收剂。 因此,在水溶液中想获得足够强的信号进行红外光谱分析是一项非常棘手的任务。 通常需要高性能的傅立叶变换红外光谱仪、熟练的样品制备和智能的测量装置。BIOCEV分子结构中心(Centre of Molecular Structure, CMS)的生物物理实验设施,包含五种涵盖生物分子应用的FTIR采样附件;此套装置尤其对于溶液或水化膜中光触发的生物学现象研究非常有用。不幸的是,BIOCEV的一个光谱学实验室不小心被水淹了,许多灵敏的仪器和设备受到了严重的影响。 但是我们很自豪地报告,布鲁克真空型光谱仪在这次不幸的“水中实验”后安然无恙,只是更换了控制电脑和一块数据采集卡,而整个光学台内部的所有光学元件在真空下都得到了很好的保护。 这个意外的“实验”证明了布鲁克真空型光谱仪的独特品质。不管怎样,不希望这样的不幸再次发生,因为不是每一台红外光谱仪都能幸免遇难、安然无恙。
  • 红外光谱仪|现代油液监测系统包含的五大技术
    油液监测系统基本由理化分析技术、铁谱技术、光谱技术、 颗粒计数技术、红外光谱技术组成。光谱技术(光谱仪)光谱技术(光谱仪)只能够区分磨损颗粒元素类别和数量,不能识别油液中磨损颗粒的形态、尺寸、颜色等直观形象的信息,因此光靠光谱分析的结果直接对摩擦副的状态作出判断有很大的困难;而且光谱仪检测的磨粒尺寸比较小,2微米效率最高,最大尺寸不超过10微米。铁谱分析技术铁谱分析技术是通过用物理方法将油液中的磨损颗粒和固体污染物分离出来,用显微镜检测其形貌、尺寸和数量。通过显微镜检测分析磨损颗粒,能鉴别设备的健康状态并确定一些潜在的危险状况。但由于铁谱分析是采用磁性分离磨粒的工作原理,对有色金属磨粒的灵敏度就远不及铁系磨粒。颗粒计数器颗粒计数器是检测液体(透明的油、水)中颗粒污染物含量的仪器(1~600um范围),常用来评定液体(液压油、水)的污染度等级、过滤器过滤性能等。理化分析技术理化分析技术是通过分析油品的常规理化指标,主要有:粘度、闪点、水份、酸值、腐蚀性和不溶物等,来分析评定新油及设备在用油的质量。红外光谱技术红外光谱技术只反映分子结构的信息,对原子、溶解态离子和金属颗粒都不敏感,换言之在通过油液分析对设备状态进行监测时,红外光谱仪不能代替原子发射(吸收)光谱仪、铁谱仪、颗粒计数和理化性能分析。因此在以设备状态监测为目的的现代油液分析技术中,此五种技术-红外光谱分析技术、原子发射(吸收)光谱技术、铁谱技术以及颗粒计数技术和理化分析技术既各自独立存在又相互补充,成为用于油液监测的工业摩擦学实验室的基本配置。相关仪器红外光谱仪 定货号:DH108红外光谱仪使用傅里叶转换红外光谱仪(FTIR)对在用油品的质量和污染状况进行检测,可以检测油液衰化变质,氧化,水解,添加剂含量等,分析速度快,2分钟可得到所有参数的测试结果,应用于工矿企业,石化和运输行业。适用标准:ASTM E2412红外光谱法润滑油监测标准、GB/T 23801-2009中间馏分油中脂肪酸甲酯(生物柴油)含量的测定(红外光谱法)仪器特点:1、采用了抗振傅里叶干涉仪,从根本上解决了傅里叶红外光谱仪过于娇嫩,故障率过高的固有缺陷,使仪器可以适应各种恶劣环境的要求。2、采用了DTRANTM进样系统,不需清洗试剂,大大加快了分析速度,也避免了对操作人员的健康损害。3、仪器操作简单,软件界面友好,操作人员需简单培训就可以使用仪器。4、可以分析包括润滑脂在内的多种油液油脂而不需要样品处理。5、对各种油液中水分的测量下限达50ppm,从而提高了红外光谱仪的分析效能(其它红外光谱仪对水分的测量下限为500 ppm)。6、特有的各种油液分析方法库和各项指标的界限值数据库。技术参数:• 规 格:20×20×10 cm• 工作温度:-10oC至50oC• 进样系统:钻石透射池进样系统• 分 束 器:人造宝石• 光谱分辨率:最高为0.5cm-1• 分析速度:1-2分钟/每个样品• 光谱范围:7800-350 cm-1• 检 测 器:DTGS检测器• 信 噪 比:大于20000:1• 重 量:4Kg分析仪铁谱仪 定货号:DK101分析仪铁谱仪是一种借助磁力将油液中的金属颗粒分离出来,并按照颗粒的大小排列在基片上,并对颗粒的物理属性和磨损形态作出进一步分析的仪器。可以分析机械设备的磨损状态,更早地预报机械设备的异常状态。广泛应用于各类机械设备的磨损监控、磨擦状态及磨损机理的研究以及润滑油油品评定。仪器特点:1、采用8英寸工业级高清触摸屏,操作方便。2、油样和清洗液输送流量快慢可调,可满足不同分析要求。3、油样和清洗液采用独立双泵系统,减少故障。4、壳体采用2mm钢板,坚固稳定,并配有调水平装置,保证实验要求。5、磁性材料选用钕铁硼,保证磁力的耐久稳定。6、清洗瓶采用GL45标准瓶口,容量250mL。具有清洗液防溢功能。7、显微镜**国产可选,并配置图像分析系统。技术参数:• 磁场:狭缝中心最大场强1.0T 最大磁场梯度 5.0T/cm • 泵送系统:1~100级速度可调• 油样输送流量:0.16~2.5mL/min 快速:100ml/min• 清洗液输送流量:0.16~5.0mL/min 快速:100ml/min• 谱片: 铁谱片尺寸:0.17×24×60mm铁谱片安装倾角:2º、 3º、 4º(有级可调)• 定时器范围:0到99分钟(可蜂鸣)• 工作电源:AC220V,50Hz• 外形尺寸:400mm×300mm×300mm• 功 率:500W• 重 量:15KgA1033在线颗粒计数器是采用光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。适用标准:ISO4406、NAS1638、SAE4095、GJB420A、GJB420B、ГOCT17216、GB/T14039等仪器特点:1、采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定。2、适用于现场的在线检测,可实时监测用油系统中的颗粒污染度。3、内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级。4、可选配减压装置用于在线高压测量。5、具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护。6、内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准。7、可设定任意报警级别,实现污染度或洁净度检测。8、RS232或RS485接口,可连接电脑或其它设备进行数据监控、处理。9、超大存储,可选择存储在仪器内部或外部存储设备中。10、坚固外型结构,适合复杂工作环境。技术参数:• 光 源:半导体激光器• 流速范围:20-500mL/min• 检测样品粘度:≤350cSt• 在线检测压力:0.1-0.6Mpa(选配减压装置最高压力可达40Mpa)• 粒径范围:1-500μm(选用不同型号传感器)• 接口:USB接口、RS232接口、RS485接口• 数据存储:提供1000组数据存储空间,并支持优盘存储• 灵 敏 度:1μm或4μm(c) • 极限重合误差:10000粒/ml• 计数体积:1-999ml• 计数准确性:±0.5个污染度等级• 防护等级:IP56• 测试时间间隔:1秒-24小时• 检测样品温度:0-80℃• 工作温度:-20-60℃• 供 电:AC 220V±10%、50/60Hz或• DC12-40V• 重 量:1.1kg• 体 积:115×100×70mmA1010运动粘度测定仪适用于测定液体石油产品的运动粘度。运动粘度表示液体在重力作用下流动时内摩擦力的量度,其值为相同温度下的动力粘度与其密度之比。是对油品等级及质量鉴别的重要理化性能指标之一。在实际应用中,选择合适粘度的润滑油品,可以保证机械设备正常、可靠地工作。适应标准:GB/T265应用领域:1、电力、石油、化工、环保及科研部门2、需测定石油产品运动特性的油品。仪器特点:1、仪器由PID控温、计时器、恒温装置、水浴等部分组成。恒温浴为小缸体圆缸、双层,浴内温度分布均匀,控温效果优良。2、液晶屏幕中文显示,人机对话界面,可对预置温度、当前日期时间等参数进行菜单提示式输入,执行元件采用SSR,其特点无触点,无动作噪声,无火花,耐振动,仪器使用寿命长。3、加热器及导流筒等浴内部件采用不锈钢制作,耐腐耐用。4、配有照明装置,光线亮度好,节能寿命长。5、自动计算毛细管常数与测试时间平均值的乘积;控温精度高,准确度好。6、可以计时试样运动时间,自动计算运动粘度的结果。7、标配:品氏粘度管; (可选):乌氏管、芬氏管、逆流管。技术参数:• 测量范围:0-10000mm2/s • 控温设置:室温~99.9℃ • 装卡毛细管数量:4支• 恒温精度:±0.1℃• 试样量:10ml• 加热器功率:1000W• 工作电源:AC220V±10% 50Hz• 环境温度:5℃~40℃• 相对湿度:≤85%• 外型尺寸:545mm*370mm*500mm• 重 量:18.4kgA1020自动开口闪点测定仪采用模糊控制集成软件,模块化结构,符合国标、美标等标准。应用于铁路,航空,电力,石油行业及科研部门等。执行标准适应标准:ASTM D92、GB/T3536仪器特点:1、采用彩色液晶大屏幕显示,全中文人机对话界面,触摸屏式键盘,对预置温度、试样标号、大气压强、试验日期等参数具有提示菜单导向式输入功能。2、模拟跟踪显示升温与试验时间的函数曲线,具有中文操作软件提示修改功能,配有试验日期、试验时间等参数提示功能。3、配有标准RS-232计算机接口,下位机储存120组历史数据,与计算机相连可大容量存储数据并可长期保存,传送数据,上位机可修改下位机参数。4、可以计算大气压强的修正值。5、扫描、点火、检测、打印数据自动完成。6、电子引火,强制风冷。7、可检测燃点。技术参数• 工作电源:AC 220V±10%, 50Hz• 量程:室温~400℃;分辨性:0.1℃• 重复性:≤4℃ 再现性:≤8℃• 升温速度:符合GB/T3536标准• 点火方式:电子引火、气体火焰• 环境温度:5℃~40℃ • 相对湿度:≤85%• 功率:≤500W• 工作电源:AC 220V±10%,50Hz• 外形尺寸:520mm*360mm*310mm• 重量:16kgA1040自动酸值测定仪用于检测变压器油,汽轮机油及抗燃油等样品的酸值分析测量。仪器是通过机械、光学以及电子等技术的综合运用,采用微处理器,能够自动实现多样品切换、滴定、判断滴定终点、打印测量结果等功能,该系统稳定可靠,自动化程度高。应用于电力、化工、环保、石油等领域。适应标准:GB/T264 GB/T258仪器特点:1、液晶大屏幕、中文菜单、无标识按键。2、自动换杯、自动检测、打印检测结果,(可选配有自动定时加热功能,适用于粘度偏大的润滑油)。3、该仪器可对六个油样进行检测。4、采用中和法原理,用微机控制在常温下自动完成加液、滴定、搅拌、判断滴定终点,液晶屏幕显示测定结果并可打印输出,全部过程约需4分钟。5、用特制试剂瓶盛装萃取液和中和液,试剂在使用过程不与空气接触,避免溶剂挥发和空气中CO2的影响。技术参数:• 工作电源:AC220V±10% 50Hz• 最大耗电功率:﹤100W• 测定范围:0.0001~0.9999mgKOH/g • 最小分辨率:0.0001 mgKOH/g• 测量准确度: 酸值<0.1时 ±0.02 mgKOH/g酸值≥0.1时 ±0.05 mgKOH/g• 重复性:0.004 mgKOH/g• 环境温度:5℃~40℃• 相对湿度:≤85%A1070微量水分测定仪采用经典理论——卡尔• 费休微库仑电量法,依据电解定律反应的水分子数同电荷数成正比,仪器检测参加反应电荷数(库仑)自动换算成对应的水分子数,因此此方法测试精度高,测试成本低,能可靠的对液体、气体、固体样品进行微量水分的测定。具有高灵敏度、高精度、高再现性,低功耗节能设计,可内置蓄电池用于便携测量。广泛适用于石油、化工、电力、制药、商检、科研、环保等领域。执行标准适用标准:GB/T11133、GB/T11146、GB/T 7600、GB/T6023、GB/T6283、GB/T606等仪器特点:1、液晶彩色7寸触摸屏显示,自动平衡,人机对话界面,各种参数具有菜单提式输入,具有与电脑、wifi连接功能。2、配有试验日期、时钟等多种参数提示功能,微分检测,系统偏差自动修正,搅拌、检测、打印数据微机自动完成,具有μg水与ppm单位同时显示功能。3、操作简单,使用方便,测试准确、稳定、易操作,是试验室理想的测量仪器。技术参数• 测量范围:3μg~100mg• 电解速度:≤2.4毫克/分• 分 辨 率:0.01μg• 准 确 度:10μg~1mgH2O ±3μg 1mgH2O 以上为3%(不含进样误差)• 终点显示:信息显示、蜂鸣器响、终点指示灯亮• 显示时钟:年 月 日 小时 分钟 秒(掉电保持)• 打 印 机:16个字符针式打印,纸宽44毫米• 电源电压:AC220V±10%,50Hz
  • 立德红外智能光电研发产业化基地项目: 抢占区域红外光学发展制高点
    6月26日,在西安市高新区,立德红外智能光电研发产业化基地项目正在全力抢抓工期,加快建设步伐。 本报记者 袁景智摄6月26日7时许,36岁的赵海军准时赶到项目“班前讲评台”,向当日施工人员叮嘱注意事项。“进入夏季施工,项目部为大伙儿准备了绿豆汤、藿香正气水等解暑物品。咱们要打起精神,趁着雨季来临前干完地下室施工,为项目后续建设打好‘提前量’。”立德红外智能光电研发产业化基地项目负责人赵海军说。作为西安市重点项目之一,立德红外智能光电研发产业化基地项目是西安中科立德红外科技有限公司的增产扩能项目。该项目位于西安高新区,主要建设红外光电产品中心、医学红外产品中心、低成本红外探测器中心、精密红外光学加工中心、人工智能光电技术研究院及批量生产线等,预计2024年建成投产。相较于同类工业项目,立德红外智能光电研发产业化基地项目对设备荷载、厂房洁净度等建设要求更为严格。为了全面满足施工进度、质量和安全要求,项目团队倒排工期,逐项分解,明确每月、每周、每日工作进度,根据抢工计划全区域灵活周转,通过“一盘棋统筹、分区域定责”的方式,顺利解决人员紧张和不同区域工艺、工期、材料需求各不相同等难题。“每天中午,我们都要在现场开碰头会,对防水铺设、钢筋绑扎、模板搭设、基坑支护等工作进行总结,下午会同监理、业主等对问题进行复查验收,并将结果同步报送至工作群,随时掌握项目施工情况。”赵海军说,项目自年初开工以来,高新区行政审批服务局、住房和城乡建设局、城市管理和综合执法局等部门组成服务小分队,提供全流程手续办理培训。目前,项目进展顺利,预计7月底全面完成地下室施工任务。作为中科院西光所孵化的一家以红外热成像技术为核心的智能光电设备研制企业,西安中科立德红外科技有限公司是国内知名的红外成像与测量设备供应商。自2015年成立以来,该公司围绕红外成像测量技术,重点聚焦智能红外光电设备研制。近年来,在智能光电产业蓬勃发展的大趋势下,西安中科立德红外科技有限公司业务大幅度提升,预计未来订单金额达亿元。然而,由于场地限制,生产、研发、办公等无法有效运转,部分研制和生产不得不依赖于外协,场地分散严重制约了公司进一步发展。“为保持在红外行业的特色和领先性,公司亟需新的场地和空间实现产品量产。”西安中科立德红外科技有限公司人力行政总监欧秦伟表示,项目建成后不仅可大幅提升公司产能,年产能达到万台(套)以上,营业收入预计突破5亿元,还将形成西北地区完整的红外产业链,助力公司抢占区域红外光学发展制高点。望着眼前耸立的钢筋,赵海军感慨地说:“从前期规划、设计到建设,我全程参与了这个项目。项目工期紧、质量要求高,得时刻紧绷安全这根弦。尽管我时常忙到凌晨,但看着厂房一点点‘长大’,就觉得辛苦都值了。”
  • 2010年近红外光谱技术培训班通知
    主办单位:中国仪器仪表学会分析仪器分会近红外光谱专业委员会  培训对象:(1)近红外光谱仪器用户  (2)对该技术感兴趣用户  (3)仪器开发商或代理商  (4)在校研究生  培训内容:  一、基础理论知识  (1)近红外光谱技术进展  (2)光谱理论基本知识(光谱产生的原理、近红外光谱的特点)  (3)化学计量学基本方法(光谱预处理、多元校正和模式识别)  (4)近红外光谱仪器及其维护  (5)近红外光谱的实验方法(样品处理、测量附件的选用、光谱采集条件的优化选择)  (6)近红外标准方法解析(AACC、ISO、ASTM等)  二、应用  (1)在农业领域中的应用(含饲料等)  (2)在食品领域中的应用(含酒类、果品、调味品、营养品和保健品等)  (3)在医药领域中的应用  (4)在烟草领域中的应用  (5)在石化领域中的应用(含化工、生物质能源等)  (6)其它领域  三、建模技巧提高与讨论  (1)校正集和验证集样本的选择  (2)校正参数的选择(主因子数等)  (3)模型评价参数与意义  (4)用户问题提出与讨论  主讲老师:  (1)陆婉珍院士、严衍禄教授,部分专题讲座、参与学员讨论。  (2)袁洪福教授(光谱理论与仪器原理、石化和化工生产过程检测)  (3)梁逸曾教授、褚小立博士(化学计量学基础理论与建模技巧)  (4)胡昌勤教授或冯艳春博士(医药、西药检测)  (5)李军会博士(农业、烟草检测)  (6)杨辉华教授(药品质量监测)  培训地点:北京总后青塔招待所(北京海淀区沙窝桥)  培训时间:2010年8月27~29日  培训证书:由中国仪器仪表学会分析仪器分会颁发  培 训 费: 人民币1900元/人(含资料、教材、证书等费用),学生凭证件1500元/人 8月1日前报名每人优惠100元。食宿统一安排,费用自理。  联系人:   刘慧颖 13910775473 邮箱:liuhy0008@yahoo.com.cn   褚小立 010-82368342,13501215398 邮箱:cxlyuli@sina.com 附件:2010年近红外光谱技术培训班--主讲老师介绍
  • 三星要让红外光谱仪“民用化”?
    p style="text-indent: 2em text-align: justify "a href="https://www.instrument.com.cn/zc/31.html?IMShowBigMode=&IMCityID=&AgentSortId=&SampleId=&IMShowBCharacter=&sidstr=" target="_blank" style="color: rgb(84, 141, 212) font-family: 宋体, SimSun text-decoration: underline "span style="color: rgb(84, 141, 212) font-family: 宋体, SimSun "strong红外光谱技术(点击进入红外光谱仪专场)/strong/span/aspan style="font-family: 宋体, SimSun "是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析,广泛应用于环境科学、生物学、高分子化学、催化、石油工业、生物医学、生物化学、药学、日用化工等领域。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "随着仪器行业的高速发展,strong各类分析仪器小型化和民用化的趋势日益明显/strong,安捷伦、赛默飞等厂家也纷纷推出了手持式的红外光谱仪,但你觉得红外光谱仪可以做到多小?红外光谱仪距“民用化”还有多远?只有仪器企业才能生产红外光谱设备么?/span/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/zc/31.html?IMShowBigMode=&IMCityID=&AgentSortId=&SampleId=&IMShowBCharacter=&sidstr=" target="_blank" style="font-family: 宋体, SimSun text-decoration: underline "span style="font-family: 宋体, SimSun "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/da7698d3-ce95-4e0a-8085-8dba07b40573.jpg" title="aaedbb91-ef78-4c79-8741-04e8c6407c2d.jpg!w300x300.jpg" alt="aaedbb91-ef78-4c79-8741-04e8c6407c2d.jpg!w300x300.jpg"//strong/span/a/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/zc/31.html?IMShowBigMode=&IMCityID=&AgentSortId=&SampleId=&IMShowBCharacter=&sidstr=" target="_blank" style="font-family: 宋体, SimSun text-decoration: underline "span style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun color: rgb(84, 141, 212) "赛默飞Trudefender 手持红外光谱仪(点击进入红外光谱仪专场)/span/strong/span/a/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "近日,著名手机巨头span style="font-family: 宋体, SimSun color: rgb(255, 0, 0) "strong三星电子向USPTO(美国专利商标局)和WIPO(世界知识产权组织)申请了一项的专利,其名为“包括各种光源的电子设备”/strong/span。该专利于2019年9月26日发布,专利中描述了一种strongspan style="font-family: 宋体, SimSun color: rgb(255, 0, 0) "具有红外光谱仪的设备或红外光谱仪的智能手机/span/strong。/span/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 488px height: 280px " src="https://img1.17img.cn/17img/images/201910/uepic/17a4d9c9-ebd7-4f7f-b2b8-83b4329ac5f4.jpg" title="TIM图片20191002185758.jpg" alt="TIM图片20191002185758.jpg" width="488" height="280"//pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "根据专利图显示,这个设备位于手机背部摄像头侧边,使用时需将三星手机对准目标,红外光谱仪将发送红外光和可见光,然后接收反射的信号,基于该信号可以生成光谱数据。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "据三星介绍,这项技术可以检测用户皮肤是否足够湿润等,此外还可以测量水果的新鲜度和其他营养价值,例如脂肪,蛋白质和碳水化合物等。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun color: rgb(255, 0, 0) "三星这项举措可能将红外光谱仪民用化变为现实/span/strong,虽然达不到科研、检测级红外光谱仪的性能,但可以为大众对生活用品的认识提供一个有力的参考依据。/span/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制