自进样样器

仪器信息网自进样样器专题为您提供2024年最新自进样样器价格报价、厂家品牌的相关信息, 包括自进样样器参数、型号等,不管是国产,还是进口品牌的自进样样器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自进样样器相关的耗材配件、试剂标物,还有自进样样器相关的最新资讯、资料,以及自进样样器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

自进样样器相关的厂商

  • 山东省永兴仪器仪表有限公司创建于一九八六年,一九九八年改制为股份制企业,是专业制造、销售各类实验室仪器,水浴锅系列,自动恒温水浴锅,数显恒温水浴锅;取样器;电热套系列、多用电热套、调温电热套、自动恒温电热套、;搅拌器系列,磁力搅拌器,加热磁力搅拌器,恒温磁力搅拌器,多联恒温磁力搅拌器,大功率磁力搅拌器,集热式恒温磁力搅拌器,电动搅拌器;原油含水试验器;测量仪器;实验室加热板;干燥箱;原油分析仪器;石油密度测定仪器等 永兴仪器厂几十年来,逐年发展成为生产化验室仪器的专业生产厂。由其是近几年来,我厂以出口化验室用电加热器、搅拌器、原油在线自动取样样器为主,产品销往世界各地,并得到了广大用户的好评。 山东省永兴仪器仪表有限公司已通过ISO 9001:2015 ISO14001: 2015 OHSAS18001:2007 管理体系认证,并分别为中石油、中石化网络供应商单位。
    留言咨询
  • 上海进佳科学仪器有限公司位于中国的经济、金融、贸易中心及陆、海、空交通枢纽上海,背靠广阔的国内市场,有着天然独立的贸易优势。主要从事代理进口日本horibastec质量流量控制器,仪器等,日本yamato恒温水槽,干燥箱,搅拌器,灭菌器,马弗炉,等离子清洗机美国setra微差压传感器美国gems压力、流量、液位传感器等,广泛应用于电子半导体,太阳能,暖通,食品,制药,生物工程,智能楼宇,电厂,石油化工,水处理,环境监测,工业制造和实验室等领域。  上海进佳科学仪器有限公司自2002年成立以来,以灵活的经营机制,以始终坚持“质量第一、服务第一、客户第一”的信念,一直为客户提供着更加专业化的、优质的服务,在客户中树立了良好的形象,赢得了用户的好评。  在新世纪,我们将一如既往的为所有的国内外客户提供更优质、高效的服务。
    留言咨询
  • 400-860-5168转5896
    上海进与科学仪器有限公司,是一家专业从事供应链运营,实验室仪器设备销售的公司。与多家国际制造商长期友好合作。上海进与科学仪器有限公司的核心团队在仪器销售、供应链运营方面有着丰富行业经验,可以为客户提供业务咨询和应用指导。公司一直以诚信为本,致力于为客户提供优质的产品、专业的技术支持和良好的售后服务。我们愿意成为广大科研实验人员的忠实合作伙伴,为你们的成功贡献自己一份力!
    留言咨询

自进样样器相关的仪器

  • 冻干系统选择指南 冻干系统的型号和配置多种多样,选择合适的配置,对于样品的冻干效果,提高冻干效率都有很大的帮助。相反,如果选错了型号,可能不仅样品报废,而且有可能损坏机器,污染环境。所以,请有意购买冻干设备的客户认真阅读本指南。如果您对选型、配置方面还有进一步的问题,请联系为您服务的销售代表或拨打800 810 5118进行咨询。冻干系统主要由干燥室(管、箱)、冷阱和真空泵组成。冻干系统的选型配置,也主要从这三个方面入手。干燥室(管、箱)的主要作用就是盛放样品,提供一个密闭的环境。真空泵的主要作用就是产生一个极低的气压,供样品中的溶剂成份升华。冷阱位于干燥室(管、箱)和真空泵之间,主要的作用是将升华的溶剂蒸汽重新冷冻住,这样样品中含有的溶剂就能源源不断地升华出来。同时,这些溶剂分子不能进入真空泵,保护真空泵免受溶剂中一些腐蚀性的成份损害真空泵。这三大组件中,冷阱最为重要。选对了冷阱,剩下两部分的选择也就有了依据。
    留言咨询
  • 产品概述EXPEC 216 全自动多功能样品进样器是用于实验室气相色谱/气质谱联用仪的样品进样设备,涵盖液体针进样、顶空和固相微萃取三大全自动进样功能,能够覆盖日常实验室样品分析需求。性能优势磁吸式进样模块,快速切换液体、顶空和固相微萃取三种进样方式160位针进样样品盘加36位多功能顶空/固相微萃取样品盘,工作效率显著提升独立纤维老化口,解放色谱进样口内置多款控制软件,一机控制多种进样方式支持分析仪联动,前处理/分析连续进行 应用领域环境监测,应急监测,职业卫生,公共卫生,科学研究
    留言咨询
  • 仪器简介:上海通微自动进样器帮助您实现快速方便的液相色谱分析,消除了耗时乏味的手动进样,可在无人看管下连续工作,极大改善工作效率与操作误差。技术参数: 重复性RSD0.5%线型0.999残留-交叉污染0.01%进样方式满环、部分体积和无损耗进样样品数60个1.8ml的样品瓶2组最小进样量0.1ul(250ul标准进样泵)注射泵规格250ul(标准)定量环体积100ul(标配)进样阀开关速度100mSec位置控制精度0.3mm运动方式XYZ.3维坐标式进样针清洗方式内、外壁清洗,无数次限制清洗反复进样次数无数进样次数限制尺寸W300× D505× H230mm电源AC220V,50HZ温度范围10℃-40℃进样器主要特点:◇ 可一次分析120个样品◇ 全定量环、部分定量环、无损微量进样三种进样方式◇ 灵活的编程功能◇ 可在线清洗
    留言咨询

自进样样器相关的资讯

  • Cell子刊:杨扬/韩华团队开发听觉皮层亚细胞结构三维电镜重构算法
    生命科学  Life science  2022年8月2日,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。  中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。  大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。  为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。  为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。  综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。  图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。  该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。  作者专访  Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。  CellPress:  过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?  杨扬研究员:  电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。  CellPress:  多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?  杨扬研究员:  一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。  CellPress:  人工智能算法在这个研究中发挥着怎样的作用?  刘静博士、韩华研究员:  近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。  CellPress:  可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?  刘静博士、韩华研究员:  突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。  CellPress:  您认为该项研究对类脑计算有什么启发吗?  刘静博士、韩华研究员:  类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。  作者介绍  谢启伟   教授  谢启伟,北京工业大学现代制造业基地教授  研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。  韩华   研究员  韩华,中国科学院自动化所研究员  研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。  杨扬   研究员  杨扬,上海科技大学生命科学与技术学院助理教授、研究员  研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。  相关论文信息  ▌论文标题:  Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data
  • 秀水泱泱,科技赋能丨日立科学仪器助力嘉兴南湖科技治水
    嘉兴地处太湖流域下游,城中拥有超过200条河道,水域面积占全市12%。长期以来,上游水源的水质问题严重影响着嘉兴的水环境,导致该市的水域一度被称为“生态之殇”。然而,自2016年国家启动“十三五”期间的水污染控制与治理科技重大专项以来,嘉兴的水环境治理迎来了一次革命性的转变。近日,央视《焦点访谈》报道了嘉兴南湖从“生态之殇”到如今水质达到优良的蝶变过程。报道详细描述了过去7年多来,科学家们所面临的各种挑战以及他们如何凭借现代科技克服这些困难,将嘉兴南湖的水质从原本的Ⅴ类提升至如今的湖库Ⅲ类水(水质级别是依据地表水水域环境功能和保护目标,按功能高低依次划分为五类:Ⅰ-Ⅴ)。嘉兴水生态修复项目的科研团队之一是浙江清华长三角研究院的生态环境研究所。为了快速判断和管控潜在及复杂的污染源,该团队进行了两方面的创新。首先,他们收集了嘉兴市主要河道近十年的数据,并将其整理分析成数据库。一旦某个监测断面出现问题,即可通过实时监测数据与大数据库进行比对,从而快速准确地确定需要重点调查的河道和区域。其次,他们建立了可供比对的污染源指纹库。当出现问题的水样指纹与历史指纹库进行比对分析时,便可迅速锁定所有可能的污染源信息。这里的水样指纹指的是水的“三维荧光指纹”。三维荧光光谱由三个维度的数据组成:激发波长、发射波长和荧光强度。当样品暴露在特定波长的激发光下时,它会发出具有特定频率和强度的荧光。不同类型和浓度的有机物具有不同的荧光特性,因此,通过比较样品的三维荧光光谱和已知物质的标准谱,可以确定样品中存在的有机物种类和浓度。正如刘锐所长所说:“指纹信息是水里有很多可以发射荧光的物质,给它一个激发波长,这个物质就会再发射一个波长,形成一个特定的像指纹一样的图谱出来。”三维荧光光谱法具有高灵敏度、快速分析速度和不需要或仅需要少量前处理的特点,因此被广泛应用于环境监测、水质评价、生物学研究和化学分析等领域。在水环境监测中,它可以帮助准确识别和跟踪水体中的有机污染物,为水质管理提供重要的数据支持。在建立水样指纹库的过程中,日立的荧光分光光度计起到了不小的作用。更高的灵敏度和更宽的波长范围使其能够捕捉到样品中微弱的荧光信号,即使是在极低浓度下也能进行精确的测量。另外,它的扫描速度最快可达60,000nm/min,可以快速的获取样品信息。荧光强度标准化功能可以校正荧光因为测试日期不同而产生的强度微小差别。使得不同时间不同仪器测试的荧光峰强度值有可比性。此外,“EEM Assist” 程序包支持标准化分析,荧光指纹批量输出等功能,使科学家们能够更加高效地处理复杂的水样数据,快速地获取水质信息,为水环境治理和管理提供及时的决策支持。凭借这些优势,日立荧光分光光度计在水环境治理的道路上,助力科学家们克服重重挑战,实现了嘉兴南湖从“生态之殇”到“秀水泱泱”的华丽转变。精准的测量能力和可靠的性能使日立荧光分光光度计成为科学家们的得力工具,为水体中的有机污染物提供了高效、可靠的检测手段。而丰富的产品线也为用户提供了更多选择,包括小型化集成款:F-2700/2710,基础款:F-4700,科研款:F-7100/7000,均可以满足水质检测需求,用户可以根据实际需求选择适合的型号。水环境治理是一项长期而艰巨的任务,需要各方持续不懈的努力。作为全球领先的技术公司,日立时刻关注每个“地球生态红线”的临界点,致力于解决社会课题,努力在保护地球的同时维持社会发展,实现每个人的幸福生活。通过“数字化”、“绿色”、“互联”这三大发展驱动力,日立推动社会创新事业的发展,积极应对SDGs所确定的全球性社会和环境课题,实现可持续发展。让我们共同携手,守护美丽的地球,为子孙后代创造一个更加清洁和健康的未来!
  • 杨扬/韩华团队成功开发小鼠听觉皮层亚细胞结构的三维电镜重构算法
    2022年8月,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。作者专访Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。CellPress:过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?杨扬研究员:电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。CellPress:多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?杨扬研究员:一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。CellPress:人工智能算法在这个研究中发挥着怎样的作用?刘静博士、韩华研究员:近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。CellPress:可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?刘静博士、韩华研究员:突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。CellPress:您认为该项研究对类脑计算有什么启发吗?刘静博士、韩华研究员:类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。作者介绍谢启伟教授谢启伟,北京工业大学现代制造业基地教授研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。韩华研究员韩华,中国科学院自动化所研究员研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。杨扬研究员杨扬,上海科技大学生命科学与技术学院助理教授、研究员研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。

自进样样器相关的方案

自进样样器相关的资料

自进样样器相关的论坛

  • 如何理解 “进样样品要提纯 ”

    看了:【分享】液相色谱仪(hplc)的保养http://bbs.instrument.com.cn/shtml/20101106/2909126/,其中有一条 :5)进样样品要提纯;这句话该如何理解?

自进样样器相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制