高功率激光物理联合实验室

仪器信息网高功率激光物理联合实验室专题为您整合高功率激光物理联合实验室相关的最新文章,在高功率激光物理联合实验室专题,您不仅可以免费浏览高功率激光物理联合实验室的资讯, 同时您还可以浏览高功率激光物理联合实验室的相关资料、解决方案,参与社区高功率激光物理联合实验室话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

高功率激光物理联合实验室相关的资讯

  • 中国自由电子激光物理研究取得系列进展
    近期,中国科学院上海应用物理研究所科研人员在自由电子激光物理研究领域取得了一系列新进展。  1.相位汇聚高次谐波放大(PEHG)自由电子激光后续研究进展  外种子机制是短波长自由电子激光的一个重要发展方向。目前,人们已经相继提出了高增益高次谐波放大(HGHG)和回声高次谐波放大(EEHG)等外种子自由电子激光机制。但是,外种子自由电子激光的谐波转换次数通常会受到直线加速器所产生电子束能散的限制,较难向更短的波长发展。上海应物所科研人员于2013年提出了相位汇聚高次谐波放大(PEHG)自由电子激光运行模式(Phys. Rev. Letts. 111 (2013) 084801),能够有效地克服电子束能散的限制,从而大大提高谐波转换次数。PEHG为未来全相干X射线自由电子激光装置的建设提供了一种非常有吸引力的方案。  在后续研究中,研究人员从三维的束流物理学出发,详细分析了相位汇聚(phase-merging)的物理机制,系统地研究了PEHG对种子激光、电子束、波荡器的各种参数的依赖关系(New J. Phys. 16 (2014) 043021) 并提出了种子激光相位倾斜等实现PEHG原理的新方案(Phys. Rev. ST-AB. 17 (2014) 070701)。研究发现,相位汇聚原理不仅可以提高外种子自由电子激光的高次谐波转换效率,在粒子加速器领域中还有着更为广阔的应用前景。  PEHG在自由电子激光领域有着极为重要的意义,上海应物所邓海啸博士受邀参加了2014年8月在瑞士巴塞尔召开的第35届国际自由电子激光会议并作了&ldquo PEHG相关物理研究&rdquo 的大会邀请报告。目前,研究人员正在积极准备在上海极紫外自由电子激光装置(SDUV-FEL)进行相关实验,力争实现从概念原理提出到实验验证,都由我国科学家独立完成。该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持。    图1. 实现PEHG原理的三种技术方案:a)电子束能量调制和相位汇聚均由TGU完成 b)电子束团能量调制和相位汇聚由常规调制段和TGU分别完成 c)电子束相位汇聚由波前倾斜的外种子激光完成。  2.外种子自由电子激光(FEL)的噪声演化研究进展  外种子自由电子激光的主要优势是可以继承种子激光的优秀特性,具有优异的横向相干性、纵向相干性和波长稳定性等。同时,和任意一个信号系统类似,在外种子FEL的高次谐波转换过程中,种子激光和电子束团的微小噪声和缺陷也会被继承,并被进一步放大。一般认为,外种子FEL的输出信噪比与其谐波转换次数的平方成反比,即随着谐波次数的增大,外种子FEL频谱等性能会严重退化,也就是所谓的噪声演化问题。因此,噪声问题被认为是限制外种子FEL向X射线扩展的一个重要因素。  上海应物所研究人员近日在外种子FEL噪声研究方面取得新进展,修正揭示了外种子FEL的噪声演化规律,相关研究成果发表在Phys. Rev. ST-AB 16(2013) 060705,Nucl. Instr. Meth. A 737(2014) 237 和 Nucl. Instr. Meth. A 753(2014) 56。通过引入种子激光和电子束团之间的相对滑移,研究人员发现,种子激光相位噪声的放大并非简单地遵守N平方规律,可以通过增加调制段波荡器周期数来有效抑制,从而改善外种子FEL性能。当种子激光为超短脉冲情况下,理论和模拟均证明,外种子FEL可以完全补偿种子激光的相位噪声,从而输出纵向相干性非常优秀的辐射脉冲。同时,研究人员还系统地分析了不同模式外种子FEL对电子束团噪声的响应,发现PEHG和EEHG两种模式可以做到对电子束能量噪声较小的响应。  外种子FEL噪声问题的研究修正了以前的理论预期,证明目前的激光技术可以非常好的满足外种子FEL对种子激光的要求,并为全相干FEL装置向更短波长发展提供了理论依据,对建设中的大连相干光源和上海软X射线试验装置都有积极意义。该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持。   图2. 左:随着调制段波荡器的周期数增加,外种子FEL的噪声放大倍数逐渐变小。右:电子束团的非线性能量chirp对不同模式外种子FEL频谱的影响,可以看出,HGHG输出的纵向相干性明显降低,EEHG对电子束团能量的chirp不太敏感,而PEHG对这种电子束团能量的不完美型天然免疫。  3.基于电子束团相干辐射的外种子FEL波荡器准直与调试方法研究进展  短波长自由电子激光的饱和出光,不单需要直线加速器提供高品质电子束团,而且需要确保电子束团在波荡器系统中高精度扭摆,这就涉及到波荡器系统准直、波荡器间隙设定、波荡器段间相位匹配和尾场补偿等问题。因此,在交付用户之前,FEL装置都要经历漫长的调束阶段,以便掌握和优化整个FEL装置的性能。  基于电子束团的准直(BBA)是粒子加速器领域常用的准直方法。利用BBA技术,美国LCLS自由电子激光在132m波荡器达到了小于5&mu m的束流轨道。波荡器的BBA过程需要改变电子束能量、读取大量BPM数值和复杂的数值算法,鉴于此,LCLS是目前唯一成功运行BBA的FEL装置。基于电子束团自发辐射的准直(PBA),是近年发展起来的FEL波荡器准直方法。利用波荡器下游的光学系统,独立测量各段波荡器的自发辐射谱,推出束流轨道相关信息,从而加以反馈调整。日本SACLA自由电子激光利用PBA在110米波荡器达到了1&mu m的束流轨道。  由于其优越的全相干性和波长稳定性,外种子FEL已经成为紫外至软X射线波段用户装置的首选工作模式。外种子FEL电子束团能量相对较低,通常在0.3-1GeV量级,电子束刚性差,大幅改变电子束能量的BBA几乎无法正常工作 另外,外种子FEL的工作波段没有可用的晶体单色仪,无法进行类似SCALA的自发辐射准直。因此,对于外种子FEL,探索新的波荡器系统调试方法,是极具意义的一个科学问题。  上海应物所长期从事外种子FEL物理和实验研究,科研人员在总结调试经验的基础上,提出了基于电子束团相干辐射的外种子FEL波荡器调试方法,并在SDUV-FEL试验装置上完成了实验验证,相关研究成果近日发表在Phys. Rev. ST-AB. 17 (2014) 100702。研究表明,通过分析已群聚电子束在辐射段波荡器的相干辐射性能,同样能得到波荡器内的束流轨道和共振关系等信息,便可以实现外种子FEL波荡器系统的束流轨道准直。另外,基于电子束团相干辐射的准直技术与整个FEL调试浑然一体,更为直观,除波荡器准直之外,还可以用来设定波荡器的工作磁间隙和波荡器的段间相位匹配等。  目前,我国首个高增益FEL用户装置(大连相干光源)和首个X射线FEL(上海软X射线FEL试验装置)均采用外种子FEL工作模式,并在2~3年内进入FEL调试阶段。因此,基于电子束团相干辐射的波荡器准直和调试方法的提出,对我国FEL装置建设有十分重要的实际意义。该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持,由上海应物所冯超博士和邓海啸博士等合作完成。  图3. 在基于电子束团相干辐射的外种子FEL波荡器准直调试方法中,当电子束在水平方向以一个倾角进入波荡器,并且波荡器的gap大于FEL共振关系所需时,在下游CCD上看到的电子束团相干辐射的空间分布,左:SDUV-FEL实验结果,右:从头至尾的数值模拟结果。  4.全光学X射线光源的辐射性能提升  相对于射频电子加速器驱动的X射线光源,发展全光学X射线光源,对减小同步辐射和自由电子激光的装置规模很有好处。所谓全光学光源,即利用激光等离子尾场加速原理获得高能量电子束团,并用激光电场来替代常规的波荡器。激光等离子加速能产生比常规射频加速器高2-3个量级的加速梯度,而激光波荡器的周期长度比常规磁铁波荡器小2-3个量级,因此,全光学方法可以将光源规模急剧缩小,是桌面型X射线光源的可行方案,对于同步辐射和自由电子激光等光源的普及应用具有十分重要的意义。  激光等离子加速产生电子束团峰值流强高(一般可达数千安培),束团长度短(一般仅有几个飞秒),横向发射度极低(如0.1微米弧度),这些特性均十分符合高亮度X射线光源对电子束团的要求。然而,目前为止,激光等离子体加速产生的电子束团能散在1%以上,尚远远大于X射线FEL的需求,这就限制了其在高增益X射线FEL方面的应用。  上海应物所研究人员发现,通过耦合电子能量和横向位置,并调节电子束在激光场中扭摆的中心位置,便可以补偿全光学X射线光源中电子束团的能散效应,相关研究成果近日发表在Optics Express 22(2014)13880。具体原理如下:首先利用横向色散元件将电子束团的纵向能量映射到横向分布 其次激光场在横向天然具有高斯分布,即场强从横切面中心位置向四周递减,只要入射电子束团不在激光场中心扭摆,便自然感受到横向场梯度的存在,也就是所谓的具有横向梯度的激光波荡器。这样安排下,不同能量电子均满足自由电子激光共振条件,便可将能量转换效率提高2-3个量级,并改善FEL横向模式。  该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持,由上海应物所张彤博士和邓海啸博士等合作完成。  图4. 左:全光学光源中,电子束团(红色圆点)以一个横向偏移进入激光波荡器场扭摆 中:纵向能量和横向位置关联的电子束团在激光波荡器梯度场中符合共振关系 右:全光学光源辐射功率随激光束斑大小和横向偏移的变化情况,红色区域为优化区域。
  • 华南理工组建“发光物理与化学国家重点实验室”
    科技日报4月15日讯(华轩)科学技术部网站于日前正式发布新建国家重点实验室的名单,全国共计新增49个国家重点实验室,以华南理工大学为依托单位的“发光物理与化学国家重点实验室”榜上有名,获批立项建设。  据了解,该国家重点实验室的获批,使华南理工在已有2个国家重点实验室、4个国家工程(技术)研究中心、3个国家工程实验室(与企业共建)的基础上,又新增1个国家级科技创新平台。截至目前,华南理工国家级科研机构的总数已达10个,位居全国高校前列和广东高校首位。  新组建的“发光物理与化学国家重点实验室”,是针对我国战略性新兴产业中光电信息、能源领域的发光显示、光纤通信与传感、节能照明等方面的重大需求,瞄准发光学的国际研究前沿,围绕发光动力学过程、发光、光伏材料与器件的关键科学问题,开展发光物理与化学的基础研究和应用基础研究。该国家重点实验室聚集了包括1位中科院院士、6位国家杰出青年科学基金获得者、2位教育部长江特聘教授在内的优秀科研团队,在科学源头创新方向取得了国际公认的学术成绩,开创了多个新的研究方向,得到了国际同行的高度认可。  该国家重点实验室的建设,必将提升华南理工在材料学科方面的基础研究能力,显著提高广东省乃至我国光电功能材料与器件研究的国际地位和影响力,增强我国在平板显示、绿色照明等基础与前沿学科领域的自主创新能力和核心竞争力,对我国国民经济和社会可持续发展都具有重要意义。
  • 科研人员在实验室实现激光驱动湍流磁重联
    记者从北京师范大学了解到,我国科研人员依托上海高功率激光物理国家实验室“神光Ⅱ”装置,首次在实验室实现激光驱动湍流磁重联物理过程,并通过标度变换用于解释太阳耀斑爆发现象,实验证实湍流过程对耀斑快速触发以及加速高能带电粒子的重要性。相关论文于北京时间1月17日刊发在《自然物理》期刊上。太阳耀斑是一种最剧烈的太阳活动现象,一次典型耀斑爆发释放的能量相当于数十亿枚氢弹的爆炸。耀斑能产生多波段辐射,剧烈的耀斑会严重影响日地空间环境和人类生活。因此,认识和了解耀斑活动具有重大意义。目前的理论认为磁重联导致了耀斑触发。磁重联是等离子体中方向相反的磁力线因互相靠近而发生的重新联结的过程,重联会将磁能快速转化为等离子体热能和动能。在天体物理中,磁重联模型还被广泛应用于恒星形成、太阳风与地球磁层的耦合、吸积盘物理以及伽马暴研究。湍流磁重联是等离子磁流体中磁场能量耗散的最有效方式之一,然而其尚未在实验室得到直接证实和系统研究。论文通讯作者、北京师范大学天文系仲佳勇教授领导的实验室天体物理研究团队,长期专注于利用强激光近距离、主动可控地模拟各类天体等离子体物理过程。早在2010年,仲佳勇与合作者就成功模拟了太阳耀斑中环顶X射线源和重联喷流。仲佳勇介绍,利用高能量激光系统,科学家能在实验室中获得极端物理实验条件,模拟多种高能量密度天体物理现象。这种研究方法不仅可以用来验证天文观测理论模型,还可为发现新物理过程提供新途径。团队此次在前期工作的基础上,提出了利用“神光Ⅱ”四路激光多点烧蚀金属靶,设计具有微扰特征且磁性相反的等离子体磁环来增大磁场相互作用区,进而实现湍流磁重联的实验构想。仲佳勇告诉科技日报记者,他们此次在实验上首次利用激光等离子体的方式驱动湍流磁重联,激光等离子体更加容易标度变换到太阳耀斑等离子体,从而可对太阳耀斑进行更加细致和系统的定量研究。该研究还发现,实验湍流磁重联中高能电子的加速主要来源于重联电场,而费米加速过程可以忽略,这对传统高能电子加速机制提出了新的认识和理解。

高功率激光物理联合实验室相关的方案

高功率激光物理联合实验室相关的论坛

  • 【建设新闻】生物物理所和微生物所中日联合实验室启动新一轮合作

    [font=Arial,Helvetica,sans-serif]6月11日上午,中国科学院生物物理研究所、微生物研究所与日本东京大学医学研究所三方领导在生物物理所举行了第二个五年合作的签字仪式,标志着双方合作进入一个崭新的阶段。为了共同促进SARS、禽流感、艾滋病等新型传染病的预防与研究,中国科学院与日本东京大学强强联合,于2005年在生物物理研究所和微生物研究所分别成立“中日结构病毒学与免疫学联合实验室”和“中日分子免疫学与分子微生物学联合实验室”。联合实验室提供了一个相互协作、共同研究的科研创新平台,双方在第一个五年合作周期中通过人才培养、学术交流、设备共享等开展了广泛实质性的合作,取得了丰硕的成果。有了这样一个良好的开端,中日双方都对第二期的合作充满期待。在签字仪式上,生物物理所所长徐涛、微生物所常务副所长黄力、东京大学医学研究所所长Motoharu Seiki分别讲话,都充分肯定了过去五年里联合实验室所取得的进展,并表示将在第二期合作中一如既往地大力支持联中日的合作研究,从人员、设备、实验室空间上提供良好的保障。此次签字仪式得到了中国科学院国际合作局的特别关注,国际合作与交流处和中日联合实验室筹划委员会所有成员共同见证了这一历史性时刻。[/font]

  • 强激光高能量密度物理研究新进展——局域超临界场致正负电子对产生过程的磁场控制

    量子场论被认为是描述最本质物理规律的学科之一。利用最基本的关系式,狄拉克方程,所提出的多种预测已经被证实,并得到具有重大意义的结果。到目前为止,关于最具挑战性且有重大价值的一项预测的真实性验证还仍然在探索中:光是否能够直接转化成物质,即强场下真空中是否能够激发出正负粒子对。1951年诺贝尔奖得主Julian Schwinger给出了电子对在均匀稳恒电场中产生率的表达式,这项先驱性的工作引起了人们对这项对物理基础学科发展和应用极富挑战性的重大科学课题的注意,并激发人们开始投入大量精力来挑战这个未解的难题。超快超强激光技术的快速发展正在为开展这项研究提供前所未有的实验条件,使其逐渐成为物理学的一个新的前沿热点。迄今为止,人们在实验上已经得到一些有意义的结果,重离子对撞实验以及美国斯坦福线型加速器上进行的46.6GeV电子束和强激光碰撞实验,已经证实了正负电子对的产生。但是到目前为止,由强光场直接引起的真空击穿和相应的正负电子对产生过程的实验还未能实现,主要原因是目前激光系统的最大强度虽然已经高达2×1022W/cm2,但仍不足以直接“击穿“真空。为了获得更高功率的激光系统,跨国研究中心也正在建设中。我们能够预期,在不久的将来,激光就可接近甚至达到“击穿”真空并自发产生正负电子对的强度,在避免其它效应的情况下对超临界场产生正负粒子对的过程进行直接检验。如果能够实现,将是人类首次证实光可以直接转化成为物质,即爱因斯坦的能质公式E=mc2, 这对于物理学的发展和所带来影响是不可估量的。 对于这一重要问题,理论和数值方面已经得到了非常有意义的结果,但大部分工作都只考虑了电场而并没有考虑磁场效应。最近中科院物理所/北京凝聚态物理国家实验室(筹)光物理实验室强激光高能量密度物理组与美国伊利诺斯州立大学、中国矿业大学和上海交通大学的合作者一起,首次研究了磁场效应对局域超临界电场下正负电子对产生过程的影响。通过运用基于量子场论的非微扰的精确数值模拟,发现在超临界的电场中即使考虑强度非常小的磁场,只要其空间宽度足够宽,仍然可以关闭正负电子对产生通道,使系统变为次临界,并且伴随产生粒子数在时间上的震荡效应(见图1)。一直被公认的Schwinger公式和Hund公式都无法对这种效应做出描述。通过计算系统总哈密顿量的能量本征值得出,磁场变宽的同时正负能态的上下限随之相互远移,当磁场宽度达到粒子在磁场中的回旋半径的时候系统就变为次临界(见图2),并且出现离散的朗道能级引发粒子数在时间上的震荡效应。上述研究结果发表在近期的物理评论快报上:http://prl.aps.org/abstract/PRL/v109/i25/e253202。该工作得到了国家基金委、科技部、科学院和美国国家基金委的资助。http://www.iop.cas.cn/xwzx/kydt/201212/W020121231638765715614.png 图1. 不同磁场宽度下正负电子对的产生数随时间的变化关系。其中WB=1.25/c约为电子在磁场中的回旋半径:磁场宽度小于回旋半径时,粒子数持续产生,系统为超临界;磁场宽度大于回旋半径时,系统变为次临界。http://www.iop.cas.cn/xwzx/kydt/201212/W020121231638765722390.gif 图2. 根据总哈密顿量得到的能级分布随磁场宽度WB变化关系。宽度小于回旋半径时,正负能态交叠,能够持续产生电子对;宽度大于回旋半径时,正负能态分离并出现离散的朗道能级。

  • TESCAN中国-兰州大学物理科学与技术学院联合实验室挂牌成立

    八月的兰州,云清风淡,凉意缓缓。在这美好的季节里,TESCAN中国入驻兰州大学物理科学与技术学院,成立了在中国区域的第一家联合实验室,这不仅仅是TESCAN在中国迈出的新一步,更是TESCAN与兰州大学物理科学与技术学院合作的新篇章。 8月1日下午5时,在兰州大学学术活动中心的礼堂里,物理科学与技术学院彭勇教授宣布TESCAN中国-兰大物理科学与技术研究联合实验室正式挂牌成立。并就此发表简短演说,彭老师提到:“与TESCAN的多年合作关系中,大家彼此像亲人兄弟一样,同甘苦共患难,苦与乐都共同度过。也曾有过分歧隔阂,但时间是一剂良药,予以我们最有效的治疗。未来还要携手并肩走过很多艰难险阻,彼此间的信任最重要,相信不论遇到什么。大家都能够同心协力,共赴难关。”TESCAN中国区总经理冯骏先生也发表了简短演说:“非常感谢西北五省电子显微镜协会和兰州大学的彭勇老师给我们这个机会!这是我们在国内的第一个挂牌实验室,我们希望通过这个机会加强和兰州大学物理科学与技术学院的合作。我们双方也的确正在酝酿进一步的合作事宜。我们的合作经过了一些周折,相信大家也听到过一些传言。事情终归是要寻求解决方案的,也非常感谢彭勇老师给我们机会重新测试了场地,最终我们免费提供了一台进口的主动式消磁器,电镜使用达到非常完美的效果,也获得了彭老师对我们产品性能的认可,并非常赞赏我们积极主动解决问题的态度,双方决定开展更深入的合作。” 共建实验室的建设是TESCAN公司今后一年的重要市场活动,我们会逐步建立我们的共建实验室体系,为我们的VIP客户提供更优质的服务和产品支持。我们会逐步和我们的一些老的VIP客户洽谈共建实验室的合作,针对共建实验室,我们会提供如下的特殊支持:定期的免人工费的保养,每年两次安排工程师免费上门服务,使电镜保持在最佳的工作状态上运行。购买耗材和零配件给予额外的折扣。免费试用TESCAN演示实验室的电镜,配合用户测试样品。目前我们在上海有一台FIB和一台扫描电镜,在北京的实验室8月装修完成,会安装一台超高分辨的扫描电镜,我们都会提供给共建实验室的老师免费使用。并愿意和老师们共同承担一些科研项目。定期举办操作培训,我们在上海交大刚举办了第一次的TESCAN Academy,将来会在其他不同区域的共建实验室开展类似活动。虽然我们的发展经历了一些挫折,但2014年我们依然取得了70%的增长,我们今年在这个基础上还将保持大幅增长。我们的高端产品逐渐进入主流市场,一年多的时间里,我们销售了数台FIB和几十台场发射电镜,感谢广大中国用户对我们的认可,TESCAN中国的明天会更好! 最后由彭勇教授和冯骏总经理携手为联合实验室揭牌,台下掌声雷动,在经久不息的喝彩声中彭勇教授和冯骏总经理共同宣布:“TESCAN中国-兰州大学物理科学与技术学院联合实验室成立!”。至此挂牌仪式圆满结束。挂牌仪式视频

高功率激光物理联合实验室相关的资料

高功率激光物理联合实验室相关的仪器

  • FlashSENS激光闪光光解光谱仪FlashSENS 激光闪光光谱仪是卓立汉光公司开发的用于研究分子激发态行为,特别是反应历程的分析工具。该系统使用的激光闪光光解技术是基于动力学和瞬态光谱的检测,用来研究光化学、光生物学、光物理学体系中通过激光激发诱导产生的单重态、三重态的激发态分子,价键重排后的自由基和电子(质子)转移产生的正、负离子等瞬态中间体,探讨这些瞬态中间体的产生和衰退时间及各种性质和影响因素。FlashSENS 激光闪光光谱仪应用领域涵盖光化学(photochemistry)、光生物学(photobiology)、光物理学(photophysics)等多学科领域,主要应用包括: 分子内、分子间能量转移、电荷转移 电子能级跃迁、振动弛豫 电荷(空穴)转移(注入)时间 多激子效应(MEG)和俄歇复合 激发态吸收 染料敏化太阳能电池电子转移 半导体材料光催化电子转移 非线性光吸收 半导体载流子动力学 双光子或多光子吸收 单线态-三线态电子交换 单碳纳米管的光物理 量子点的能量转移和电子迁移的竞争 配合物同分异构体分析 CdSe/PbS量子点的非线性吸收 富勒烯衍生物太阳能电池性能 金属配位化合物的光物理 …… 激光闪光光解光谱仪系统特点: ■ 一体化的光学调校,系统性能更稳定■ 时间分辨率:7ns (可选:3ns Ultra Fast) ■ 内置超连续白光作为探测光,相比传统脉冲氙灯光源具有更高的探测效率■ 探测光点:5mm ■ 探测光光谱范围:190-2100nm ■ 适合于固体、液体等多种样品形态的样品架和测量光路■ 全自动测量操作,开机即用,操作简便■ 可升级至瞬态光电流、瞬态光电压测试系统 激光闪光光解光谱仪技术规格: SZ900-KM SZ900-SM 测量模式动力学测量模式光谱测量模式光谱范围300-1100nm 200-850nm 灵敏度* 0.05mOD 0.00024OD 泵浦激光单波长Nd:YAG激光器,1064nm,532nm,355nm,266nm 可调谐OPO激光器UV-NIR,210-2400nm 探测光源类型基于LDLS的超连续白光光源模式连续光谱范围190-2100nm 单色仪/光谱仪型号Omni-λ300i 焦距300mm 狭缝0.01-3mm连续可调,自动控制光谱范围330-2400nm(可扩展) 光谱分辨率优于0.1nm@1200g/mm 优于0.6nm@300g/mm 探测器类型标准硅探测器铟镓砷探测器ICCD 光谱范围300-1100nm 900nm~1600nm 180-850nm 暗电流0.5nA0.1nA 带宽45MHz 10MHz门宽- 7ns (可选3ns Ultra Fast)有效像素- 960*256像面尺寸- 25*6.7mm制冷温度- -25°C激光闪光光解光谱仪系统选型表 型号说明SZ900-KM 动力学测量模式,标准硅探测器,系统不包括激光器SZ900-SM 光谱测量模式,ICCD,系统不包括激光器SZ900-KSM 动力学+光谱双测量模式,标准硅探测器、InGaAs任选一种+ICCD,系统不包括激光器
    留言咨询
  • 高功率光纤激光光源 400-860-5168转3512
    高功率光纤激光光源型号:JF814B系列产品介绍: 该产品为本公司开发的具有自主知识产权的高输出功率光纤激光光源。整个系统采用MOPA(Main Oscillation Power Amplifying:主振荡功率放大)结构。以通信用DFB激光器为种子光源,以铒镱共掺双包层放大技术为功率放大。 核心器件和技术采用铒钇共掺双包层光纤以及多模大功率Pump为核心器件。运用独特的APC(自动功率控制)和ATC(自动温度控制)电路,使得输出功率稳定度高、可靠性好;独特的光路设计保证优秀的光路指标;采用高稳定和高精度的MPU(微处理器)系统使用调节、显示方便、可靠。该光源可广泛应用于科研、教学、实验室、工厂测试中。也可提供模块产品应用于系统中。◆应用:1.器件耐受性测试 2.激光打标 3.医学研究 4.自由空间光通信 5.教学科研领域◆特点:●高功率单模输出:最高可达10W的输出功率 ●极优的光谱特性:FWHM0.1nm, SMSR35dB ●稳定化的输出功率:0.1dB的长期稳定性 ●单模光纤输出:SMF-28, FC/APC接头 ●智能化温控系统:采用专用控温芯片,散热和功耗比常规技术降低30% ●高稳定性和高可靠性:MTTF>100000小时 ●良好人机界面:LCD状态显示,输出功率可调 ●完善的网管接口: RS-485或RS-232网络接口 ●C波段和1060nm波段内任意波长可选 ●提供1%测试端口 ●可根据客户要求提供OEM定制产品 ●所有性能符合Bellcore GR-1312-CORE 要求光性能指标参 数符号最小值典型值最大值单位工作波长 注1λc 153015501560nmλ1060103510601080nm输出功率 注1Po------------10W-3dB带宽 FWHM------------0.1nm边模抑制比SMSR35------------dB输出功率稳定性ΔPo-----±0.05±0.1dB回波损耗RL---------------45dB注1:客户可选环境性能指标参 数符号最小值典型值最大值单位工作温度Tw-5-----40℃存储温度Ts-40-----80℃湿度(3)------10------85%(3):无凝露电气性能指标参 数符号最小值典型值最大值单位电源供给电压※Vps170 264VAC功耗P----------100W※: 110VAC可选光谱特性 机械结构JF814B:280*260*112mm 订货信息
    留言咨询
  • 高功率光纤激光光源 400-860-5168转3512
    高功率光纤激光光源型号:JF814B系列产品介绍: 该产品为本公司开发的具有自主知识产权的高输出功率光纤激光光源。整个系统采用MOPA(Main Oscillation Power Amplifying:主振荡功率放大)结构。以通信用DFB激光器为种子光源,以铒镱共掺双包层放大技术为功率放大。 核心器件和技术采用铒钇共掺双包层光纤以及多模大功率Pump为核心器件。运用独特的APC(自动功率控制)和ATC(自动温度控制)电路,使得输出功率稳定度高、可靠性好;独特的光路设计保证优秀的光路指标;采用高稳定和高精度的MPU(微处理器)系统使用调节、显示方便、可靠。该光源可广泛应用于科研、教学、实验室、工厂测试中。也可提供模块产品应用于系统中。◆应用:1.器件耐受性测试 2.激光打标 3.医学研究 4.自由空间光通信 5.教学科研领域◆特点:●高功率单模输出:最高可达10W的输出功率 ●极优的光谱特性:FWHM0.1nm, SMSR35dB ●稳定化的输出功率:0.1dB的长期稳定性 ●单模光纤输出:SMF-28, FC/APC接头 ●智能化温控系统:采用专用控温芯片,散热和功耗比常规技术降低30% ●高稳定性和高可靠性:MTTF>100000小时 ●良好人机界面:LCD状态显示,输出功率可调 ●完善的网管接口: RS-485或RS-232网络接口 ●C波段和1060nm波段内任意波长可选 ●提供1%测试端口 ●可根据客户要求提供OEM定制产品 ●所有性能符合Bellcore GR-1312-CORE 要求光性能指标参 数符号最小值典型值最大值单位工作波长 注1λc 153015501560nmλ1060103510601080nm输出功率 注1Po------------10W-3dB带宽 FWHM------------0.1nm边模抑制比SMSR35------------dB输出功率稳定性ΔPo-----±0.05±0.1dB回波损耗RL---------------45dB注1:客户可选环境性能指标参 数符号最小值典型值最大值单位工作温度Tw-5-----40℃存储温度Ts-40-----80℃湿度(3)------10------85%(3):无凝露电气性能指标参 数符号最小值典型值最大值单位电源供给电压※Vps170 264VAC功耗P----------100W※: 110VAC可选光谱特性 机械结构JF814B:280*260*112mm 订货信息
    留言咨询

高功率激光物理联合实验室相关的耗材

  • 高功率激光衰减器
    高功率激光衰减器由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,先后为清华大学,山东大学,中科院上海光机所,沈阳自动化所,安徽光机所,西安光机所等单位提供激光能量衰减器。这款高功率激光衰减器,又称为高功率激光能量衰减器,使用了两个高质量的布儒斯特型偏振片, 反射s光,而透过p光。两个布儒斯特偏振片安装于特殊设计的光机适配器上。可旋转的半波片安装在入射的偏振光束方向。通过旋转该半波片,s光和p的光强比值就可以连续改变而不改变其参数。这样,出射光束的强度和s/p光强比值就可以在很大范围内实现可调。可以让p光全部透过而s光几乎为零,也可以让s光的强度达到最大,而p光的强度几乎为零。高功率激光衰减器特色:*高功率激光衰减器非常适合飞秒激光应用* 激光能量衰减器把激光束分成两个平行的光束,二者强度比可以手动调节* 激光能量衰减器微小可忽略的光速偏离*高功率激光衰减器高损伤阈值 *高功率激光衰减器低色散(非常适合飞秒激光和高能激光)激光能量衰减器标准参数Central wavelengths266 355 400 515 532 780 800 1030 1064 1550nm other available upon requestAperture diameterstandard 15mm, max 50mmDamage Threshold5J/cm2 10ns pulsed at 1064 nm, typicalAntireflection CoatingR Time dispersiontPolarization Contrast (after 1st polarizer)100:1Polarization Contrast (after 2nd polarizer)500:1高功率激光衰减器标准配置型号高功率增强型配置λ/2 ZO Waveplate + 2x Brewster type thin film polarizers工作波长范围+/-10 nm损伤阈值5 J/cm2更多高功率激光衰减器,激光能量衰减器
  • 适用于高功率激光加工的Iris变形镜
    产品信息Iris自适应光学系统Iris分段式可变形镜Alpao自适应光学系统适用于高功率激光加工的Iris变形镜所属类别: ? 调制器 ? 可变形反射镜/自适应光学系统所属品牌:美国Iris AO公司产品简介Iris AO公司针对激光加工应用专门设计的分立镜面MEMS变形镜具有专业的水冷系统与镀膜技术,大幅提高了损伤阈值,适用于高功率激光加工系统,可对光学元件带来的像差予以校正,并有效提高激光的光束质量!关键词:变形镜,DM,deformable mirror,MEMS,分立镜面变形镜,分立式变形镜,分立式MEMS变形镜 ,分离镜面变形镜,Discrete MEMS deformable mirror,Iris变形镜,微变形镜,MEMS变形镜,静电变形镜,像差校正、场镜像差校正、F-Theta Lens像差校正适用于高功率激光加工的Iris变形镜在高功率激光精细加工领域,光束质量对于加工精度与质量至关重要。通常光束质量的影响主要来自激光器本身的光束质量的波动与激光加工系统中光学元器件引入的光学像差。在该领域,所使用的激光器的腔镜会受到激光的直接辐照而产生对激光能量的吸收,特别是随着功率的提高,腔镜吸收的能量也随之增加,腔镜温度升高而产生热变形。腔镜热变形将引起腔内光束的光程发生变化,使得谐振腔的工作参数偏离设计值,从而引起腔内模式发生改变,致使波前相位高频成分及Zernike高阶像差增大,波前畸变程度也将变大,输出光束质量退化,输出功率下降,从而影响激光微加工的精度和质量。而激光加工系统中的光学元器件所引入的光学像差则不可避免地会导致激光光束质量下降。Iris分立镜面MEMS变形镜,采用全球领先的分立镜面混合表面微加工工艺技术,是美国Iris AO公司专门为高功率激光精细加工过程中腔镜热变形和光学器件像差造成的波前畸变进行校正补偿而开发的新型封装变形镜器件,是改善高功率激光精细加工应用中光束质量,提供加工精度与加工质量的有效工具。Iris使用独创MEMS专利技术制造的变形镜采用111个内切孔径3.5或7.0mm的驱动器,37片PTT镜片单元组成蜂窝状阵列。每一个镜面单元可以在三个自由度方向上,伸缩,翻倒,倾斜独立控制。产品特点和优势: 专业介质镀膜可承受高功率激光 配有水冷散热系统,更利于散热并提高产品寿命 配有清除有机物的清洗口,避免水冷系统阻塞 体积紧凑,方便集成 高性价比权威测试结果:1. 全球领先的激光微加工系统制造商使用紫外脉冲激光器(355nm,15W平均功率,ps脉冲)对Iris AO的新型封装并镀膜的PTT111变形镜进行测试显示: Iris变形镜在5W激光功率下测试60小时,10W激光功率下测试70小时,15W激光功率下测试80小时,均没有显示影响光束质量的损坏迹象。在激光功率15W测试时入射到变形镜上的是一束光斑直径大约1mm的激光。测试显示即使在更高的功率强度上,变形镜也没有出现永久损坏的迹象。2. 另一位业内领先的激光加工系统制造商Raydiance Inc.( http://www.raydiance.com/)公司利用平均功率10W的1550nm飞秒脉冲激光器成功对镀金薄膜的PTT111DM和采用新型封装PTT111DM进行测试对比。测试显示这种专为激光应用开发与优化的最新封装,进一步增大镀金薄膜变形镜所能承受的平均功率。3. 测试显示Iris分立镜面MEMS变形镜无需热沉就可以承受300W/cm2平均功率密度,在进行热沉和改善镀膜后,变形镜可以承受3KW/cm2的平均功率密度。对于脉冲激光,变形镜可以承受峰值功率密度1.7GW/cm2。在使用新型封装后,变形镜所能承受的功率密度进一步增大,并且无损连续工作时间显著延长。以上测试均表明专业表面介质薄膜以及为适应恶劣环境进行的新型封装对提高变形镜的损伤阈值与高功率激光下的工作性能非常有效。Iris AO公司下一步将进行1000小时的超长时间测试,来进一步验证和改善这种新型封装镀膜变形镜的承受高功率激光的性能。目前Iris AO由于出色的研发实力,已赢得了美国国家航空航天局的Phase II SBIR项目资金,用来支持其进一步发展变形镜在高功率激光器方面的应用。Iris AO将进一步开发适用更宽波长范围的镀膜技术,适用从288nm到1600nm激光器,(深紫外准分子激光器到ND:YAG激光器),为激光微加工、激光精细加工和激光整形行业应用提供优秀的波前校正与光斑整形方案。分享到 : 人人网 腾讯微博新浪微博 搜狐微博 网易微博
  • 高功率单频激光二极管 780nm 180mw (高功率边发射激光器)
    PH780DBR系列高功率边发射激光器基于Photodigm先进的单频激光技术。它提供衍射受限的单横向和纵向模式光束。端面经过钝化处理,具有高功率和高可靠性。该装置应用于以铷基光电材料的原子光谱学中。中心波长780nm输出功率180mW技术参数技术DBR单频激光芯片砷化铝镓量子阱(QW)AlGaAs QW 有源层Epi设计,可靠性高特征多种封装样式可供选择短脉冲长度下的脉冲操作,确保光谱稳定性适用于 CW 应用的高功率高斜率效率绝对最大额定参数参数符号单位最小值最大值储存温度TSTG°C080工作温度TOP°C5.070连续波激光正向电流, T=TopIFmA-~150**脉冲激光正向电流, T=25°C,IFA-0.3PW=300 ns, DC=10% 激光器反向电压VRV-0.0光电二极管正向电流1/2/IPmA-5.0光电二极管反向电压 1/2/VRV-20.0光电二极管暗电流, VR=10V, LD IF=0, 1/2/IDnA-50制冷器电流 1/2/ITECA-1.81.8制冷器电压 1/2/VTECV-1.91.9热敏电阻电流 1/2/ITHRMmA-1.0热敏电阻 1/2/VTHRMV-10外部背反射-dB--14焊接温度, 10 sec. Max.1/2/-°C-260光纤牵引力 1/-N-5.0光纤弯曲半径 1/-mm-351/ 蝶形封装 2/ TO8 封装 **不超过所提供的LIV的驱动电流或操作功率 TC = 25°C时的连续波特性参数符号单位最小值典型值最大值中心波长λcnm778780782光输出功率 @ LIV 电流PomW请参阅Power Options Call-out斜率效能, 1/ηdW/A0.250.36斜率效能ηdW/A0.600.75-阈值电流IthmA-5070激光器串联电阻RSΩ-2.02.5激光正向电压VFV-2.02.5热敏电阻阻抗 @ 25°C, 1/2/RTKΩ-10-光电二极管暗电流, VR=10V, LD IF=0, 1/2/IDnA--50激光线宽∆vMHz-0.51偏振消光比, 1/PERdB-16-19-光束发散度 @ 半峰全宽θװ X θ┴º-6 X 268 X 28边模抑制比SMSRdB-30--激光偏振TE模结构基谐模 1/ 蝶形封装 2/ TO-8 封装

高功率激光物理联合实验室相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制