当前位置: 仪器信息网 > 行业主题 > >

高功率激光物理联合实验室

仪器信息网高功率激光物理联合实验室专题为您整合高功率激光物理联合实验室相关的最新文章,在高功率激光物理联合实验室专题,您不仅可以免费浏览高功率激光物理联合实验室的资讯, 同时您还可以浏览高功率激光物理联合实验室的相关资料、解决方案,参与社区高功率激光物理联合实验室话题讨论。

高功率激光物理联合实验室相关的资讯

  • 中国自由电子激光物理研究取得系列进展
    近期,中国科学院上海应用物理研究所科研人员在自由电子激光物理研究领域取得了一系列新进展。  1.相位汇聚高次谐波放大(PEHG)自由电子激光后续研究进展  外种子机制是短波长自由电子激光的一个重要发展方向。目前,人们已经相继提出了高增益高次谐波放大(HGHG)和回声高次谐波放大(EEHG)等外种子自由电子激光机制。但是,外种子自由电子激光的谐波转换次数通常会受到直线加速器所产生电子束能散的限制,较难向更短的波长发展。上海应物所科研人员于2013年提出了相位汇聚高次谐波放大(PEHG)自由电子激光运行模式(Phys. Rev. Letts. 111 (2013) 084801),能够有效地克服电子束能散的限制,从而大大提高谐波转换次数。PEHG为未来全相干X射线自由电子激光装置的建设提供了一种非常有吸引力的方案。  在后续研究中,研究人员从三维的束流物理学出发,详细分析了相位汇聚(phase-merging)的物理机制,系统地研究了PEHG对种子激光、电子束、波荡器的各种参数的依赖关系(New J. Phys. 16 (2014) 043021) 并提出了种子激光相位倾斜等实现PEHG原理的新方案(Phys. Rev. ST-AB. 17 (2014) 070701)。研究发现,相位汇聚原理不仅可以提高外种子自由电子激光的高次谐波转换效率,在粒子加速器领域中还有着更为广阔的应用前景。  PEHG在自由电子激光领域有着极为重要的意义,上海应物所邓海啸博士受邀参加了2014年8月在瑞士巴塞尔召开的第35届国际自由电子激光会议并作了&ldquo PEHG相关物理研究&rdquo 的大会邀请报告。目前,研究人员正在积极准备在上海极紫外自由电子激光装置(SDUV-FEL)进行相关实验,力争实现从概念原理提出到实验验证,都由我国科学家独立完成。该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持。    图1. 实现PEHG原理的三种技术方案:a)电子束能量调制和相位汇聚均由TGU完成 b)电子束团能量调制和相位汇聚由常规调制段和TGU分别完成 c)电子束相位汇聚由波前倾斜的外种子激光完成。  2.外种子自由电子激光(FEL)的噪声演化研究进展  外种子自由电子激光的主要优势是可以继承种子激光的优秀特性,具有优异的横向相干性、纵向相干性和波长稳定性等。同时,和任意一个信号系统类似,在外种子FEL的高次谐波转换过程中,种子激光和电子束团的微小噪声和缺陷也会被继承,并被进一步放大。一般认为,外种子FEL的输出信噪比与其谐波转换次数的平方成反比,即随着谐波次数的增大,外种子FEL频谱等性能会严重退化,也就是所谓的噪声演化问题。因此,噪声问题被认为是限制外种子FEL向X射线扩展的一个重要因素。  上海应物所研究人员近日在外种子FEL噪声研究方面取得新进展,修正揭示了外种子FEL的噪声演化规律,相关研究成果发表在Phys. Rev. ST-AB 16(2013) 060705,Nucl. Instr. Meth. A 737(2014) 237 和 Nucl. Instr. Meth. A 753(2014) 56。通过引入种子激光和电子束团之间的相对滑移,研究人员发现,种子激光相位噪声的放大并非简单地遵守N平方规律,可以通过增加调制段波荡器周期数来有效抑制,从而改善外种子FEL性能。当种子激光为超短脉冲情况下,理论和模拟均证明,外种子FEL可以完全补偿种子激光的相位噪声,从而输出纵向相干性非常优秀的辐射脉冲。同时,研究人员还系统地分析了不同模式外种子FEL对电子束团噪声的响应,发现PEHG和EEHG两种模式可以做到对电子束能量噪声较小的响应。  外种子FEL噪声问题的研究修正了以前的理论预期,证明目前的激光技术可以非常好的满足外种子FEL对种子激光的要求,并为全相干FEL装置向更短波长发展提供了理论依据,对建设中的大连相干光源和上海软X射线试验装置都有积极意义。该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持。   图2. 左:随着调制段波荡器的周期数增加,外种子FEL的噪声放大倍数逐渐变小。右:电子束团的非线性能量chirp对不同模式外种子FEL频谱的影响,可以看出,HGHG输出的纵向相干性明显降低,EEHG对电子束团能量的chirp不太敏感,而PEHG对这种电子束团能量的不完美型天然免疫。  3.基于电子束团相干辐射的外种子FEL波荡器准直与调试方法研究进展  短波长自由电子激光的饱和出光,不单需要直线加速器提供高品质电子束团,而且需要确保电子束团在波荡器系统中高精度扭摆,这就涉及到波荡器系统准直、波荡器间隙设定、波荡器段间相位匹配和尾场补偿等问题。因此,在交付用户之前,FEL装置都要经历漫长的调束阶段,以便掌握和优化整个FEL装置的性能。  基于电子束团的准直(BBA)是粒子加速器领域常用的准直方法。利用BBA技术,美国LCLS自由电子激光在132m波荡器达到了小于5&mu m的束流轨道。波荡器的BBA过程需要改变电子束能量、读取大量BPM数值和复杂的数值算法,鉴于此,LCLS是目前唯一成功运行BBA的FEL装置。基于电子束团自发辐射的准直(PBA),是近年发展起来的FEL波荡器准直方法。利用波荡器下游的光学系统,独立测量各段波荡器的自发辐射谱,推出束流轨道相关信息,从而加以反馈调整。日本SACLA自由电子激光利用PBA在110米波荡器达到了1&mu m的束流轨道。  由于其优越的全相干性和波长稳定性,外种子FEL已经成为紫外至软X射线波段用户装置的首选工作模式。外种子FEL电子束团能量相对较低,通常在0.3-1GeV量级,电子束刚性差,大幅改变电子束能量的BBA几乎无法正常工作 另外,外种子FEL的工作波段没有可用的晶体单色仪,无法进行类似SCALA的自发辐射准直。因此,对于外种子FEL,探索新的波荡器系统调试方法,是极具意义的一个科学问题。  上海应物所长期从事外种子FEL物理和实验研究,科研人员在总结调试经验的基础上,提出了基于电子束团相干辐射的外种子FEL波荡器调试方法,并在SDUV-FEL试验装置上完成了实验验证,相关研究成果近日发表在Phys. Rev. ST-AB. 17 (2014) 100702。研究表明,通过分析已群聚电子束在辐射段波荡器的相干辐射性能,同样能得到波荡器内的束流轨道和共振关系等信息,便可以实现外种子FEL波荡器系统的束流轨道准直。另外,基于电子束团相干辐射的准直技术与整个FEL调试浑然一体,更为直观,除波荡器准直之外,还可以用来设定波荡器的工作磁间隙和波荡器的段间相位匹配等。  目前,我国首个高增益FEL用户装置(大连相干光源)和首个X射线FEL(上海软X射线FEL试验装置)均采用外种子FEL工作模式,并在2~3年内进入FEL调试阶段。因此,基于电子束团相干辐射的波荡器准直和调试方法的提出,对我国FEL装置建设有十分重要的实际意义。该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持,由上海应物所冯超博士和邓海啸博士等合作完成。  图3. 在基于电子束团相干辐射的外种子FEL波荡器准直调试方法中,当电子束在水平方向以一个倾角进入波荡器,并且波荡器的gap大于FEL共振关系所需时,在下游CCD上看到的电子束团相干辐射的空间分布,左:SDUV-FEL实验结果,右:从头至尾的数值模拟结果。  4.全光学X射线光源的辐射性能提升  相对于射频电子加速器驱动的X射线光源,发展全光学X射线光源,对减小同步辐射和自由电子激光的装置规模很有好处。所谓全光学光源,即利用激光等离子尾场加速原理获得高能量电子束团,并用激光电场来替代常规的波荡器。激光等离子加速能产生比常规射频加速器高2-3个量级的加速梯度,而激光波荡器的周期长度比常规磁铁波荡器小2-3个量级,因此,全光学方法可以将光源规模急剧缩小,是桌面型X射线光源的可行方案,对于同步辐射和自由电子激光等光源的普及应用具有十分重要的意义。  激光等离子加速产生电子束团峰值流强高(一般可达数千安培),束团长度短(一般仅有几个飞秒),横向发射度极低(如0.1微米弧度),这些特性均十分符合高亮度X射线光源对电子束团的要求。然而,目前为止,激光等离子体加速产生的电子束团能散在1%以上,尚远远大于X射线FEL的需求,这就限制了其在高增益X射线FEL方面的应用。  上海应物所研究人员发现,通过耦合电子能量和横向位置,并调节电子束在激光场中扭摆的中心位置,便可以补偿全光学X射线光源中电子束团的能散效应,相关研究成果近日发表在Optics Express 22(2014)13880。具体原理如下:首先利用横向色散元件将电子束团的纵向能量映射到横向分布 其次激光场在横向天然具有高斯分布,即场强从横切面中心位置向四周递减,只要入射电子束团不在激光场中心扭摆,便自然感受到横向场梯度的存在,也就是所谓的具有横向梯度的激光波荡器。这样安排下,不同能量电子均满足自由电子激光共振条件,便可将能量转换效率提高2-3个量级,并改善FEL横向模式。  该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持,由上海应物所张彤博士和邓海啸博士等合作完成。  图4. 左:全光学光源中,电子束团(红色圆点)以一个横向偏移进入激光波荡器场扭摆 中:纵向能量和横向位置关联的电子束团在激光波荡器梯度场中符合共振关系 右:全光学光源辐射功率随激光束斑大小和横向偏移的变化情况,红色区域为优化区域。
  • 华南理工组建“发光物理与化学国家重点实验室”
    科技日报4月15日讯(华轩)科学技术部网站于日前正式发布新建国家重点实验室的名单,全国共计新增49个国家重点实验室,以华南理工大学为依托单位的“发光物理与化学国家重点实验室”榜上有名,获批立项建设。  据了解,该国家重点实验室的获批,使华南理工在已有2个国家重点实验室、4个国家工程(技术)研究中心、3个国家工程实验室(与企业共建)的基础上,又新增1个国家级科技创新平台。截至目前,华南理工国家级科研机构的总数已达10个,位居全国高校前列和广东高校首位。  新组建的“发光物理与化学国家重点实验室”,是针对我国战略性新兴产业中光电信息、能源领域的发光显示、光纤通信与传感、节能照明等方面的重大需求,瞄准发光学的国际研究前沿,围绕发光动力学过程、发光、光伏材料与器件的关键科学问题,开展发光物理与化学的基础研究和应用基础研究。该国家重点实验室聚集了包括1位中科院院士、6位国家杰出青年科学基金获得者、2位教育部长江特聘教授在内的优秀科研团队,在科学源头创新方向取得了国际公认的学术成绩,开创了多个新的研究方向,得到了国际同行的高度认可。  该国家重点实验室的建设,必将提升华南理工在材料学科方面的基础研究能力,显著提高广东省乃至我国光电功能材料与器件研究的国际地位和影响力,增强我国在平板显示、绿色照明等基础与前沿学科领域的自主创新能力和核心竞争力,对我国国民经济和社会可持续发展都具有重要意义。
  • 科研人员在实验室实现激光驱动湍流磁重联
    记者从北京师范大学了解到,我国科研人员依托上海高功率激光物理国家实验室“神光Ⅱ”装置,首次在实验室实现激光驱动湍流磁重联物理过程,并通过标度变换用于解释太阳耀斑爆发现象,实验证实湍流过程对耀斑快速触发以及加速高能带电粒子的重要性。相关论文于北京时间1月17日刊发在《自然物理》期刊上。太阳耀斑是一种最剧烈的太阳活动现象,一次典型耀斑爆发释放的能量相当于数十亿枚氢弹的爆炸。耀斑能产生多波段辐射,剧烈的耀斑会严重影响日地空间环境和人类生活。因此,认识和了解耀斑活动具有重大意义。目前的理论认为磁重联导致了耀斑触发。磁重联是等离子体中方向相反的磁力线因互相靠近而发生的重新联结的过程,重联会将磁能快速转化为等离子体热能和动能。在天体物理中,磁重联模型还被广泛应用于恒星形成、太阳风与地球磁层的耦合、吸积盘物理以及伽马暴研究。湍流磁重联是等离子磁流体中磁场能量耗散的最有效方式之一,然而其尚未在实验室得到直接证实和系统研究。论文通讯作者、北京师范大学天文系仲佳勇教授领导的实验室天体物理研究团队,长期专注于利用强激光近距离、主动可控地模拟各类天体等离子体物理过程。早在2010年,仲佳勇与合作者就成功模拟了太阳耀斑中环顶X射线源和重联喷流。仲佳勇介绍,利用高能量激光系统,科学家能在实验室中获得极端物理实验条件,模拟多种高能量密度天体物理现象。这种研究方法不仅可以用来验证天文观测理论模型,还可为发现新物理过程提供新途径。团队此次在前期工作的基础上,提出了利用“神光Ⅱ”四路激光多点烧蚀金属靶,设计具有微扰特征且磁性相反的等离子体磁环来增大磁场相互作用区,进而实现湍流磁重联的实验构想。仲佳勇告诉科技日报记者,他们此次在实验上首次利用激光等离子体的方式驱动湍流磁重联,激光等离子体更加容易标度变换到太阳耀斑等离子体,从而可对太阳耀斑进行更加细致和系统的定量研究。该研究还发现,实验湍流磁重联中高能电子的加速主要来源于重联电场,而费米加速过程可以忽略,这对传统高能电子加速机制提出了新的认识和理解。
  • 半导体所等在高功率、低噪声量子点DFB单模激光器研究中获进展
    分布反馈(DFB)激光器具有结构紧凑、动态单模等特性,是高速光通信、大规模光子集成、激光雷达和微波光子学等应用的核心光源。特别是,以ChatGPT为代表的人工智能领域呈现爆发态势,亟需高算力、高集成、低功耗的光计算芯片作为物理支撑,对核心光源的温度稳定性、高温工作特性、光反馈稳定性、单模质量、体积成本等提出了更高要求。近期,中国科学院半导体研究所材料科学重点实验室研究员杨涛-杨晓光团队与研究员陆丹,联合浙江大学兼之江实验室教授吉晨,在高功率、低噪声的量子点DFB单模激光器研究方面取得重要进展。该团队采用高密度、低缺陷的叠层InAs/GaAs量子点结构作为有源区,结合低损耗侧向耦合光栅作为高效选模结构,研制出宽温区内高功率、高稳定、低噪声、抗反馈的高性能O波段量子点DFB激光器。在25-85 °C范围内,激光器输出功率均大于100 mW,最大边模抑制比超过62 dB;最低的白噪声水平仅为515 Hz2 Hz-1,对应的本征线宽低至1.62 kHz;最小平均RIN仅为-166 dB/Hz(0.1-20 GHz)。此外,激光器的抗光反馈阈值高达-8 dB,满足无外部光隔离器下稳定工作的技术标准。该器件综合性能优异,兼具低成本、小体积的优势,在大容量光通信、高速片上光互连、高精度探测等领域具有规模应用前景。相关研究成果以High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers为题,发表在Laser & Photonics Reviews上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1. 量子点材料的形貌和荧光特性,以及器件与光栅结构图2. 器件的输出特性、光谱特性、光频率噪声特性和外部光反馈下的光谱稳定性
  • 物理所精密可调谐窄线宽深紫外激光研究获进展
    具有极窄线宽的单纵模深紫外可调谐激光由于其高的光谱分辨率及光子能量,是精密光谱学、紫外光刻、激光同位素分离、高分辨成像等诸多领域具有重要需求的光源,但因其涉及到线宽压窄技术、频率稳定技术、精确调谐技术及波长变换技术等一系列复杂的难题,该激光研究工作极具挑战性。为了获得紫外波短的波长,通常需要借助非线性晶体混频已有成熟激光器件的方案,从而获得该波段的相干辐射。我国科学家在非线性激光晶体研究方面成果显著,以BBO、LBO、KBBF等晶体为代表的紫外及深紫外波段非线性晶体蜚声国际。但是由于不同晶体在通光波段、相位匹配范围、有效非线性系数及光学质量、生长工艺、使用寿命等方面的不同表现,很难有可完全取代其他晶体的&ldquo 全能&rdquo 非线性晶体,不断挖掘新的非线性晶体并结合实用激光器件获得技术指标先进的紫外及深紫外激光,是激光材料及激光技术人员追求的重要内容之一。  针对极窄线宽可调谐深紫外激光的应用研究任务,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室魏志义研究组基于他们掺钛蓝宝石激光研究的经验,近年来通过深入系统的研究工作,相继克服了压缩线宽、稳定频率、精调波长、提高增益等技术难题,部分工作已发表于Applied Optics等杂志上【Appl. Opt., 51: 1905(2012)及Appl. Opt., 51:5527 (2012)】。最近,魏志义研究员、滕浩副研究员及博士研究生王睿在进一步成功获得平均功率6.5W、线宽小于0.4pm的可调谐窄线宽纳秒钛宝石激光的基础上,通过与福建物质结构研究所洪茂椿、陈长章、林文雄研究员合作,利用他们最新研制成功的BBSAG (Ba1-xB2-y-zO4SixAlyGaz)晶体四倍频该激光,在195~205nm的深紫外波长范围内获得了线宽小于200MHz、单频稳定性优于50MHz、调谐步长小于50MHz的可调谐窄线宽稳频激光输出,最高输出功率达130mW。图1为波长计测量到的基频光典型线宽结果,图2依次为各阶谐波的调谐曲线,对比BBO晶体,BBSAG在紫外波段不仅倍频效率提高了25%,而且由于近两倍高的光学破坏阈值、更高的硬度及完全不潮解的特性,表现出更加优良的连续稳定运行时间及可靠的线宽稳定性、精确的波长调谐能力,可望作为一种新的紫外非线性晶体,在激光科学技术中发挥重要作用。目前该激光器已在合作单位取得成功应用。  相关结果已发表在Optics Letters 39,2105(2014)上,此项工作得到了中科院知识创性工程方向性项目和国家自然科学基金委重大研究计划项目的资助。 图1 基频光的线宽测量结果  图2 各次谐波的光谱调谐范围,采用BBSAG的四倍频激光的调谐范围约从193~210nm。最高平均功率135mW。
  • 众星联恒将携手日本NTT-AT参加第四届国际高功率激光科学与工程学术研讨会
    第四届国际高功率激光科学与工程学术研讨会,为您带来疫情期间全球高功率激光研究最新进展。由中国科学院上海光学精密机械研究所发起并主办,中国激光杂志社、中国工程物理研究院、上海交通大学IFSA协同创新中心等联合主办的第四届国际高功率激光科学与工程学术研讨会(HPLSE 2021)将于2021年4月12–16日(报道:12日,大会时间:13-16日)在苏州举办。HPLSE国际学术研讨会已经成为国际上高功率激光和高能量密度物理领域最具规模和水平的国际会议之一,为全球高功率激光和物理学专家打造高端、活跃的学术交流平台。 众星联恒将携手日本NTT-AT共同亮相本次大会,并将有幸于14日下午在大会专题1分会场和各位专家学者就《X射线多层膜——原理、工艺、特点及其在静态和超快X射线衍射中的应用》主题进行交流分享。NTT-ATNTT-AT有着多年的EUV/XUV/SXR/X-RAY光学元件的研发与销售经验。在全球范围内,与来自高能密度物理,等离子体物理,同步辐射科学,阿秒科学等领域的众多科学研究者开展了紧密合作,积累了大量独特的设计、制造技术,其产品在业内享有很高的评价。专题一: 高能量密度物理激光等离子体相互作用惯性约束核聚变实验室天体物理核光子学超亮X射线及其应用激光驱动电子与离子加速极端非线性与相对论光学众星在主会场(17)及专题一分会场(13)均设有展台,诚挚邀请各位专家学者莅临,我们将在现场为您提供专业化的咨询服务。大会专题Topic 1: High energy density physics 高能量密度物理Topic 2: High power laser systems 高功率激光系统Topic 3: Laser components for high power laser 高功率激光单元器件Topic 4: Advanced laser technologies and applications 先进激光技术及应用
  • 国防科大突破高功率光纤激光技术 超过国外3.6倍
    实验室就是战场搞科研也是打仗——国防科大光电学院创新纪实  2013年3月,国防科技大学光电科学与工程学院某课题组突破了光纤后处理、光纤盘整体冷却、宽波段光纤色散特性测量和光纤模式控制技术等具有自主知识产权的核心关键技术,研制出“高平均功率近红外全光纤超连续谱光源”,平均功率超过了国际同类研究的3.6倍,入选“2012年中国光学重要成果”。  该院院长秦石乔教授刚刚主持召开了一个项目阶段性报告会,又急匆匆地赶往某实验室,组织课题负责人现场会商某难题,他接受采访时说:“习主席要求我们牢记能打仗、打胜仗是强军之要,作为军队的科技工作者,就是要牢固树立实验室就是战场、搞科研也是打仗的理念。”  在科研中啃硬骨头  光纤激光代表了高能激光的发展方向和趋势,具有重要的应用价值。单根光纤单模到底能出多大功率的激光?美国的劳伦斯国家实验室断言最大可以达到36千瓦,该院高能激光技术研究所周朴副研究员愣是不信这个邪,他带领学员通过扎实的理论分析,作出了73千瓦的论断,论文发表后,引起国际光学界的高度关注。  光纤激光相干合成是激光领域的一个研究热点,由于系统复杂、研制难度很大,此前国际上此类系统的最大输出功率仅为725瓦。该所刘泽金教授率领课题组从最基本的物理机制出发,发明了两种新的相位控制方法,研制出“千瓦级光纤激光相干合成试验系统”,各项技术指标均达到了该领域国际最高水平。  “在战场上赢家只有第一,第二就意味着失败,我们在高能激光的研制领域要始终保持冲锋姿态,在核心关键技术上牢牢掌握主动权。”高能激光技术研究所所长许晓军研究员说。  今天的丢脸是明天的光荣  该院某研究所从事某激光器件研制已经40多年了,他们早在上世纪80年代就研制出了原理样机,但是能否真正在武器装备上发挥作用,当时大家心里都没有底。第一代学术带头人高伯龙院士鼓动大家:“我们研制的器件,只有能够在装备上得到应用,才算尽到了军人的职责。我们必须一直到研制出实用性强的器件为止。”最终在上世纪90年代研制出了实用化的激光器件。  新世纪初,某新型器件由于性能优异,被海军部队选作核心导航部件,靶场试验屡获成功。海军某领导在试验现场夸奖道:“这是海军部队此类试验第一次取得百分百的成功,非常值得庆贺啊。”但是,研究所的科研人员生怕器件还存在问题影响作战性能,又组织了一次次严格的试验。果然发现器件光强不太稳定,会对若干年后的使用造成隐患。  在党委会上,研究所的科研人员统一了思想:不能因为今天丢脸,就为明天的使用留下隐患。他们主动找到海军相关部门,说明了情况。海军领导对此很是理解,主动提出给他们半年时间查找解决问题的方法。最终,他们改进了该型器件,并使得某武器平台的打击精度有了较大的提高。海军领导高兴地说:“你们是干实事的人,武器装备由你们研制,我们上战场一百个放心。”  不苦不累不科研  2010年,上级把某重大设备研制的任务交给该所。院党委有意识锤炼年轻人,安排了一批平均年龄不到40岁的年轻干部担当技术负责人。当时,面对一些接近物理极限的技术指标,大家一筹莫展。所党委及时组织思想动员,邀请老领导老专家讲传统话使命。李传胪教授当年“挖地三尺干革命”的科研故事,激发了年轻一代的斗志。大家天天泡在郊外的试验外场,早上很早就赶去,晚上十一二点钟才拖着疲惫的身子回来。  平时工作忙,没有时间交流,研究所就实行每周6天工作制,利用周六组织大家集中交流研讨。小袁和小张是一对夫妻,同在研究所。两人一个负责微波源部分的研制工作,一个负责天线部分的研制工作。为了完成任务,夫妻两人把小孩丢给老人,每天一起去外场试验,见面就讨论技术问题,在相互的启发中收获了很多灵感。这种定期开“诸葛亮会”的做法已经坚持了两年多,许多技术难题因而得到了解决。  2012年,研制工作取得重要进展,顺利通过了上级部门组织的转阶段评审。该所政治协理员曹亮激动地说:“年轻的科技工作者面对不亚于战场的环境压力,表现得非常顽强,这一点非常值得骄傲和自豪。”  质量过硬才能打得赢  近年来,学院承担的装备型号研制任务越来越多。学院为此专门成立装备研制工程与质量管理办公室,从一线科研人员中抽调经验丰富的工程技术人员专职从事装备研制的工程与质量管理工作。  办公室成立后,部门人员认真查阅了总部、工业部门几千份有关装备研制质量管理的文件规定,虚心向业内的专家请教,制订了一系列质量管理的规章制度,组织开展装备研制过程质量工作。某型号装备交付部队,一般保修期为1年,但是考虑到该装备属高新技术武器,装备使用部队对维修保养工作存在疑虑,学院主动提出将保修期延长1年。  在采访中,该办公室主任表示:“我们虽然是院校,是装备承研单位,但是我们同样是军人,深知为部队提供管用、好用的高新装备的重要性。”就是抱着这样一颗心,前仆后继的光电人为铸造共和国利剑作出了重大的贡献。
  • 脉冲功率激光技术国家重点实验室顺利通过验收
    11月2日,受科技部基础司委托,基础研究管理中心组织专家对依托中国人民解放军电子工程学院的脉冲功率激光技术国家重点实验室进行了验收。科技部基础研究司相关人员出席会议。  专家组听取了脉冲功率激光技术国家重点实验室主任的建设情况报告,并进行了实地考察。经过认真研究讨论,专家组认为脉冲功率激光技术国家重点实验室在科学研究、人才培养、平台建设和管理运行等方面基本完成了建设计划任务,同意其通过建设验收。  脉冲功率激光技术国家重点实验室是首个建设的军民共建国家重点实验,是军民共建科研体制的有益探索。该实验室以脉冲功率激光产生机理为主线,重点开展脉冲功率激光传输与控制和脉冲功率激光与物质作用等基础科学和军民应用技术的研究。
  • 物理所等二维纳米材料锁模全光纤激光器研究获进展
    p  超短脉冲激光具有峰值功率高、作用时间短、光谱宽等优点,在基础科学、医疗、航空航天、量子通信、军事等领域有着广泛的应用。特别是近年快速发展的飞秒光纤激光器由于结构简单、成本低、稳定性高以及便于携带等特点,表现出越来越广泛的应用前景。目前光纤锁模激光器,包括其它类型的固体激光器,要实现稳定的锁模运行,更多时候还得依靠可饱和吸收体,但由于可饱和吸收体所带来的激光损伤及损耗等问题,不仅制约着所能产生的激光脉宽与功率,也会影响到长期运行的可靠性。因此研究发展具有高损伤阈值及低损耗的新型可饱和吸收体,倍受激光专家及材料专家的关注。近十多年来,随着凝聚态物理与材料制备技术的发展,碳纳米管、石墨烯、拓扑绝缘体等材料作为可饱和吸收材料相继成功地应用于激光锁模中,特别是新发展起来的二维纳米材料由于具备窄带隙、超快电子弛豫时间和高损伤阈值等特点,表现出优良的可饱和吸收特性,利用该材料的锁模激光研究也成为人们广泛关注的热点研究内容之一。/pp  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L07组一直致力于超快激光的研究,近年来针对小型化飞秒激光的发展,先后实现了多类晶体及光纤激光的可饱和吸收被动锁模。通过使用脉冲激光沉积方法将锑化碲拓扑绝缘体材料均匀生长在拉锥光纤的表面所形成的可饱和吸收体,首次实现了光纤激光的混合锁模,得到了70 fs的输出脉冲结果。通过使用具备超短电子弛豫时间的二硫化钨作为可饱和吸收材料,结合减小拉锥光纤的纤芯直径,得到了67 fs锁模脉冲输出,验证了该混合锁模光纤激光具有脉宽更短、定时抖动更低等优点。此外针对暗孤子产生技术的限制,通过理论计算Ginzburg- Landau方程中光纤激光器的增益、损耗、色散和非线性等参数的关系,理论分析了暗孤子脉冲形成的动力学机制,获得了信噪比高达94 dB的结果,实验上实现了最宽光谱的暗孤子脉冲输出。/pp  最近该研究组与北京邮电大学合作,将二硫化钨作为饱和吸收材料用于光纤激光锁模,进一步实现了脉宽246 fs的锁模脉冲激光输出,据知这是迄今为止过渡金属硫化物全光纤锁模激光器所产生的最短脉宽报道。相关结果发表在新出版的一期Nanoscale(2017, 9: 5806)上,并被该杂志选为Highlights进展作为Inside front cover论文刊出(如图所示),论文第一作者为刘文军,通讯作者为北京邮电大学教授雷鸣及中科院物理所研究员魏志义。/pp  该项研究获得了科技部“973”项目(2012CB821304)及国家自然科学基金项目(批准号11674036, 11078022 和 61378040)的支持。/pp  相关论文:/pp  [1] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, 70 fs mode-locked erbium doped fiber laser with topological insulator, Scientific Reports, 6 (2016) 19997./pp  [2] Wenjun Liu, Lihui Pang, Hainian Han, Mengli Liu, Ming Lei, Shaobo Fang, Hao Teng and Zhiyi Wei, Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Optics Express, 25 (2017) 2950-2959./pp  [3] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Optics Express, 23 (2015) 26023-26031./pp  [4] Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng and Zhiyi Wei, Dark solitons in WS2 erbium-doped fiber lasers, Photonics Research, 4 (2016) 111-114./pp  [5] Wenjun Liu, Lihui Pang, Hainian Han, Ke Bi, Ming Lei and Zhiyi Wei, Tungsten disulphide for ultrashort pulse generation in all-fiber lasers, Nanoscale, 9 (2017) 5806-5811./pp style="text-align: center "img width="300" height="395" title="W020170616579709764036.png" style="width: 300px height: 395px " src="http://img1.17img.cn/17img/images/201706/noimg/9d1831a1-51e9-41cb-a069-261a0f0bc4cb.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "图:Nanoscale(2017, 9: 5806)论文被选为该期Inside front cover论文刊出/pp/pp/p
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 新一代高功率激光浮区法单晶炉助力哈尔滨工业大学 极端材料晶体生长实验及相关研究
    Quantum Design公司近期推出了激光浮区法单晶生长系统,该系统传承日本理化研究所(RIKEN,CEMS)的先进设计理念,具有更高功率、更均匀的能量分布和更加稳定的性能,其优越的技术性能将助力同行学者和专家的晶体生长工作!浮区法单晶生长技术因其在晶体生长过程中具有无需坩埚、样品腔压力可控、生长状态便于实时观察等诸多优点,目前已被公认为是获取高质量、大尺寸单晶的重要手段之一。激光浮区法单晶生长系统可广泛应用于凝聚态物理、化学、半导体、光学等多种学科领域相关单晶材料制备,尤其适合端材料(诸如:高饱和蒸汽压、高熔点材料及高热导率材料等),以及常规浮区法单晶炉难以胜任的单晶生长工作!跟传统的激光浮区法单晶生长系统相比,Quantum Design公司推出的新一代激光浮区法单晶炉系统具有以下技术优势:■ 功率更高,能量密度更大,加热效率更高■ 采用技术五路激光设计,确保熔区能量分布更加均匀■ 更加科学的激光光斑优化方案,有助于降低晶体生长过程中的热应力■ 采用了特的实时温度集成控制系统新一代激光浮区法单晶炉系统主要技术参数:加热控制激光束 5束激光功率 2KW熔区高温 ~3000℃*测温范围 900℃~3500℃温度稳定性 +/-1℃晶体生长控制大位移距离 150mm*晶体生长大直径 8mm*晶体生长大速度/转速 300 mm/hour 100rpm晶体生长监控 高清摄像头晶体生长控制 PC控制其它 占地面积 D140 xW210 x H200 (cm)* 具体取决于材料及实验条件哈尔滨工业大学科学工程专项建设指挥部暨空间基础科学研究中心致力于各种高熔点、易挥发的超导、磁性、铁电、热电等材料的单晶生长实验及相关物性研究,近日,我司再次同院校哈尔滨工业大学合作,顺利完成新一代高功率激光浮区法单晶炉设备采购订单,推动单晶生长工作迈向更高的台阶,我们也将一如既往,秉承精益求精的研发、设计和加工理念,为用户提供优质的技术和服务,助力用户科研事业更上一层楼!RIKEN(CEMS)设计的五束激光发生器原型机实物图 采用新一代激光浮区法单晶炉系统生长出的部分单晶体应用案例: Sr2RuO4 SmB6 Ba2Co2Fe12O22Y3Fe5O12 * 以上单晶图片由 Dr. Y. Kaneko (RIKEN CEMS) 提供
  • 大口径方形激光能量计研制成功
    经过近两年的努力,中科院上海光学精密机械所高功率激光物理联合实验室测量课题组成功完成了大口径方形能量计的研制任务。  目前,高功率激光装置采用多程放大和方型光束方案来提高泵浦光能量的利用率已成为一种发展趋势。研制中的神光Ⅱ升级装置也采用了此种技术方案,升级后装置的光束口径为310mm×310mm,现有最大口径能量计Φ400mm也无法满足测量需求。而从国外购买的大口径能量计价格高,标定校准难。为满足升级后的神光Ⅱ装置和未来的神光Ⅲ主机对激光能量测量的需求,在863高技术的支持下联合实验室的测量课题组承担了能量计的研制任务。  研制完成的大口径方形能量计测量口径达420×420mm,适用基频、二倍频、三倍频三个波段,灵敏度大于50μv/J,面均匀性优于±1.8%,在稳定性、信噪比、面响应均匀性这三个激光能量计的主要技术指标都做到了较高的实用水平。大口径方形能量计于近日获得了中国计量科学研究院授权的校准证书,将用于神光Ⅱ升级项目中激光能量的测量。  这是课题组继成功研制口径为Φ20mm、Φ50mm、Φ100mm、Φ300mm、Φ400mm的能量计之后,又一次出色完成了大口径方形能量计的研制。在此次的研制任务中,课题组不仅形成了一套方形、大口径激光能量计设计方法和制作工艺,而且大大丰富了实际的研制经验,为今后研制更大口径的能量计打下了坚实的基础。
  • 大口径方形激光能量计研制成功
    7月2日消息,经过近两年的努力,高功率激光物理联合实验室测量课题组成功完成大口径方形能量计的研制任务。  目前,高功率激光装置采用多程放大和方型光束方案来提高泵浦光能量的利用率已成为一种发展趋势。研制中的神光Ⅱ升级装置也采用了此种技术方案,升级后装置的光束口径为310mm×310mm,现有最大口径能量计Φ400mm也无法满足测量需求。而从国外购买的大口径能量计价格高,标定校准难。为满足升级后的神光Ⅱ装置和未来的神光Ⅲ主机对激光能量测量的需求,在863高技术的支持下联合实验室的测量课题组承担了能量计的研制任务。  研制完成的大口径方形能量计测量口径达420×420 mm,适用基频、二倍频、三倍频三个波段,灵敏度大于50μv/J,面均匀性优于±1.8%,在稳定性、信噪比、面响应均匀性这三个激光能量计的主要技术指标都做到了较高的实用水平。大口径方形能量计于近日获得了中国计量科学研究院授权的校准证书,将用于神光Ⅱ升级项目中激光能量的测量。  这是课题组继成功研制口径为Φ20mm、Φ50mm、Φ100mm、Φ300mm、Φ400mm的能量计之后,又一次出色完成了大口径方形能量计的研制。在此次的研制任务中,课题组不仅形成了一套方形、大口径激光能量计设计方法和制作工艺,而且大大丰富了实际的研制经验,为今后研制更大口径的能量计打下了坚实的基础。
  • 滨松成功研发出适用于高功率CW激光器的空间光调制器
    滨松公司利用其独特的光学半导体制造工艺,成功研制出世界上最大规模的液晶型空间光调制器(Spatial Light Modulator,以下简称SLM※1),该SLM的有效面积约较以往产品增加了4倍,且耐热性更高。该开发器件可应用于工业用高功率连续振荡(以下简称CW)激光器,实现激光分束等控制,应用到如金属3D打印,以激光烧灼金属粉来模塑成形车辆部件等,同时有望提高激光热加工的效率和精度。本次研发项目的一部分是受量子科学技术研发机构(QST)管理的内阁办公室综合科学技术和创新会议战略创新创造计划(SIP)第2期项目“利用光和量子实现Society 5.0技术”的项目委托,开展的研发工作。该开发器件将于4月18日(星期一)至22日(星期五)在横滨Pacifico(横滨市神奈川县)举办为期5天的国内最大的国际光学技术会议“OPIC 2022”上发布,敬请期待。※1 SLM:通过液晶控制激光等入射光的波前,调整反射光的波前形状,来校正入射光的光束和畸变 等,是可自由控制激光衍射图形的光学设备。传统开发产品(左)和本次研发器件(右)产品开发概要本次研发的器件是适用于高输出功率CW激光器的SLM。激光器分为在短时间间隔内可重复输出的脉冲激光器和连续输出的CW激光器。脉冲激光器可以减少热损坏,实现高精度加工;而CW激光器可用于金属材料的焊接和切割等热加工,因此成为激光加工的主流。滨松凭借长期以来积累的独特的薄膜和电路设计技术,已经成功开发了全球耐光性能最佳,适用于工业脉冲激光器的SLM。通过应用SLM,将多个高功率脉冲激光光束进行并行加工,相较于仅聚焦到1个点的加工方式,它的优势在于它可以实现碳纤维增强塑料(CFRP)等难加工材料的高速、高精度地加工。但在应用于CW激光器时,存在随着SLM温度上升导致性能下降的问题。SLM结构和图形控制原理SLM由带像素电极的硅衬底、带透明电极的玻璃衬底,以及两衬底中间的液晶层组成。它通过控制在像素电极上的液晶的倾斜角度,来改变入射光的路径长度然后进行衍射。其结果便是,通过对入射光进行分支、畸变校正等,实现对激光束照射后衍射图形的自由调控。此次,滨松公司运用了大型光学半导体器件在开发和生产中积累的拼接技术(※2),将SLM的有效面积扩大到30.24×30.72 mm,约为现有尺寸的4倍,为世界上最大的液晶型SLM,也因此它可以减少SLM单位面积的入射光能量。同时,由于采用耐热性和导热性俱佳的大型陶瓷衬底,提高了散热效率,成功地抑制了因CW激光器连续照射而引起的温度升高,使得SLM可适用于工业用的高功率CW激光器。此外,大面积硅衬底在制造过程中容易出现弯曲、平整度恶化的情况,进而导致入射图形的光束形状产生畸变,针对这一问题我们运用了滨松独特的光学半导体元件生产技术,使SLM在增大面积的同时,保持了衬底的平整度。至此,实现了光束的高精度控制。※2拼接技术:在硅衬底上反复进行光刻的技术。适用于完成无法一次性光刻的大型电子回路。本次研发的器件适用于工业用高功率CW激光器,实现多点同时并行加工,有望提高如金属3D打印为代表的激光焊接和激光切割等激光热加工的效率。此外,通过对光束形状进行高精度的控制,该开发器件可根据对象物体的材料和形状进行优化,进而实现高精度的激光热加工。今后,我们将继续优化SLM结构中的多层介质膜反射镜,以进一步提高耐光性能。此外,我们也会将此开发器件搭载到激光加工设备中,进行实际验证实验。研发背景SIP第2期课题旨在通过将网络空间(虚拟空间)和物理空间(现实空间)高度融合的信息物理系统(Cyber Physical System,以下简称CPS)验证具有革命性的创新型工业制造。其中,“利用光和量子的Society 5.0实现技术”中,我们研发的主题包括激光加工在内的3个领域,旨在通过CPS激光加工系统验证创新型制造的可能性。随着CPS激光加工系统的实现,我们期待通过AI人工智能收集在多种条件下用激光照射物体得到的加工结果数据,选择最佳的加工条件,进而优化设计和生产过程。SLM被定义为CPS激光加工系统中必需的关键设备,为此,我们将继续致力于提高SLM的性能。本次研发的器件在CPS激光加工系统中的应用场景主要规格
  • 应用实例|STFC-UKRI:用于高功率激光实验的高精度微流控装置
    在英国科学与技术设施委员会(STFC-UKRI)中央激光研究所,微靶制造科学家们正积极投身于高功率激光实验的微靶研究。新一代激光器提升了重复频率(高达10Hz),这让高重复制靶法成为了重要的研究途径。在这些高功率激光实验中,科学家们依赖微流控装置实现亚微米级的液体片靶。然而,他们发现,依赖传统的机械加工或蚀刻来制造微流控通道,既耗时又昂贵。因此,研究小组正在寻求一种创新的解决方案,以便能够快速制作新的靶设计几何体原型来满足他们的实验需求。01、研究开发靶研究团队利用微流控设计了一种液体靶,当液体从微通道流出时产生了液体叶片靶。通道的设计会直接影响到叶片的质量,通过叶片的宽度和厚度判断。设计目标为制造出宽度为几毫米、厚度为几百纳米的叶片,以实现高精度实验需求。图1:当液体从通道中流出时产生的液体叶片靶由于液体的行为随通道的变化而变化,因此通道设计对实验来说尤为关键。需要平滑的通道以减少湍流,同时要严格控制出口的形状,因为它对最后的叶片质量起到重要影响。02、精密3D打印制造通道为了创建液体片,该团队利用摩方精密microArch S240打印出 20mm x 15mm x 5mm 的结构,其中有一个30μm 深的通道和一个 100μm 的出口。当然,与微型且精确的通道相比,该结构尺寸相对较大。但使用摩方精密设备打印较大的零件时,可同时保持通道所需的精度和准确度。现今通道选用钨材质,得益于钨能实现精确加工。在这种背景下,研究团队运用摩方精密 microArch系列设备的高精度 3D 打印系统,迅速准确地构建通道,为科研和快速原型设计提供了高效且成本较低的解决方案。图2:原钨件图3:高精度3D打印制造零件的特定部分原文链接:https://bmf3d.com/resource/high-precision-microfluidic-devices-for-high-power-laser-experiments/microArch S240microArch S240 作为摩方精密一款面向工业批量生产的超高精密3D打印机,不仅荣获全球光电科技领域最高奖—"棱镜奖(Prism Award)",且具有以下突出特点和优势:高公差低层厚:光学精度高达10μm,±25µ m的加工公差,打印层厚10~40μm 打印体积扩大:满足工业打印的需求,可达100mm×100mm×75mm,实现更大规模的小部件产量;打印速度提升:最高提升10倍以上,快速缩短加工周期,为客户节省时间和成本;多种材料支持:支持多种高粘度陶瓷浆料(≤20000cps),以及耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料的打印;应用领域广泛:卓越的精度、扩大的打印体积和多材料兼容性,满足客户在尺寸、性能和效率方面的多重需求。摩方精密作为目前全球唯一可以生产最高精度达到2μm精度,微尺度3D打印技术及颠覆性精密加工能力解决方案提供商,会持续专注于精密器件免除模具一次成型能力的研发,为客户提供制造复杂三维微纳结构技术解决方案。
  • 我国高功率拉曼光纤激光器研究取得进展
    近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。  近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。  该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。  该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。   千瓦级掺镱-拉曼集成的光纤放大器结构示意图  输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
  • 长光华芯联合中科院苏州纳米所共建“氮化镓激光器联合实验室”
    11月29日,苏州半导体激光创新研究院与中科院苏州纳米所“氮化镓激光器联合实验室”在苏州长光华芯正式揭牌成立。苏州半导体激光创新研究院负责人、长光华芯董事长闵大勇,与中科院苏州纳米所党委书记邓强、技术转移中心主任冀晓燕等参加揭牌仪式并交流座谈。氮化镓是第三代半导体中具有代表性的材料体系,氮化镓蓝绿光激光器未来在激光显示、有色金属加工等诸多领域都有巨大的应用优势以及不可替代的作用。“基于氮化镓的蓝绿光激光器,是第三代半导体光电器件中最具技术难度和产业高度的关键产品。”闵大勇介绍说,长光华芯正处于上市后的快速发展阶段,建设“氮化镓激光器联合实验室”是研究院围绕核心的半导体激光器领域所做的一个重要的横向业务扩展,将长光华芯核心的半导体激光器从短波红外和近红外领域拓展到可见光领域。中科院苏州纳米所党委书记邓强表示,要发展半导体及光电子,既需要研发能力,也需要区域聚集。“长光华芯拥有良好的科研平台,对市场需求也有敏锐的嗅觉,是科研项目产业化的典型。希望通过建立联合实验室,双方强化前端的技术科研能力、后端技术、工艺、质量水平,通过市场需求引导定向技术研究,突破前端技术,提升产品水平,促进市场牵引和成果转化,打造最强的创新联合体。”苏州高新区管委会副主任、虎丘区副区长吴旭翔表示,当前,苏州高新区正全力建设世界级光子创新中心,打造千亿级光子产业创新集群。此次上市企业与研究所联手,共同攻克前沿技术难题,将有力推动“东纳米”和“西光子”在高端创新资源的强强联合,打造“太湖光子中心”建设范例。据悉,“氮化镓激光器联合实验室”将以氮化镓激光器的前沿物理基础和技术研究为牵引,整合纳米所学科力量,攻坚克难,共同凝练并合作开展相关方向的导向性研究,率先填补国内在氮化镓的蓝绿光激光器等第三代半导体光电器件领域的空白,全力构建中国激光产业链的完整性、领先性。
  • 上海光机所在SEL-100PW激光装置前端精密光同步方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室在SEL-100PW激光前端精密光同步方面取得进展。科研团队基于自主建设的时间同步系统实现了超快强激光飞秒级同步。相关研究成果以Timing fluctuation correction for the front end of a 100-PW laser为题,发表在《高功率激光科学与工程》(High Power Laser Science and Engineering)上。高精度时间同步是促进超快强激光装置与加速器光源等大科学装置协同工作和融合发展的关键技术之一。“硬X射线自由电子激光装置”是我国在建的科技基础设施项目。该项目将建设一台100PW超强激光和一台硬X射线自由电子激光,通过泵浦-探测实验研究极端条件下真空量子电动力学、高能量密度物理等基础科学问题。由于超强激光和X射线激光的脉冲宽度均在20fs量级,两者之间的飞秒级同步是泵浦-探测实验成功开展的基础。科研团队发展了激光同步技术,对激光装置前端作了高精度时间抖动测量和实时反馈,实现了复杂强激光系统的飞秒级同步。激光装置前端结构如图1所示。该研究利用平衡光学互相关测量、时间延迟反馈等技术,分别对种子源系统、预放大系统作了时间抖动的测量和校正(结果如图2所示)。基于自主搭建的时间同步系统,种子源系统的同步精度达到1.82fs,预防大系统的同步精度达到4.48fs,实现了百太瓦级激光系统的飞秒级同步。该研究为超强激光及同类大科学装置的同步系统建设奠定了技术基础,并为基于超强激光和自由电子激光的联合实验研究提供了条件。研究工作得到硬X射线自由电子激光装置项目、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。图1. 100PW激光装置前端同步系统示意图。图2. 时间同步结果。(a)(d)分别为预防大和种子源系统时间同步结果;(b)(e)分别为开环状态下两系统时间漂移情况;(c)(f)为对应环境温度波动。
  • 物理所利用高对比度飞秒激光产生超强极短X射线源
    中科院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室张杰研究组的陈黎明研究员等,与日本原子力研究所合作在激光硬X射线源研究方面取得重要进展。研究成果发表在Physical Review Letters 104, 215004(2010)上。  飞秒脉冲强激光与靶物质相互作用时,产生的超热电子通过K壳层电离辐射和轫致辐射产生硬X射线。由于此种X射线源在理论上具超快的特点,非常适合对物质进行飞秒时间分辨的动力学探针,加上其微小的X射线发射源尺寸,极低的建造成本,比拟甚至高于同步辐射源的源峰值亮度,成为第三代同步辐射光源之外的最具应用价值的补充光源,具有在医学、生物学和材料学等方面的极大的应用前景,因此成为国际上相关领域研究热点之一。  但是实际应用中现有的激光X射线源都表现出信噪比差等缺点,造成能实际利用的K光子总额较少,大量的能量包含在连续的轫致辐射本底中,极大地降低了成像的对比度 同时由于电子在靶材料中反复多次震荡或长程输运和碰撞,使产生的X射线辐射的时间宽度都在皮秒甚至纳秒量级,造成这些激光X射线源在原子分子学和材料学中的应用受到极大限制,基于激光的硬X射线源的实际应用价值大打折扣。因此,如何有效控制和优化激光硬X射线的产生效率、单色性和脉冲宽度是一个值得研究、亟待突破的课题。  陈黎明研究员及其合作者继利用高对比度激光与固体靶相互作用产生了低本底、高转换效率的Ka射线源【Physical Review Letters 100, 045004(2008)】之后, 为了进一步提高上述各种参数以产生更强,单色性更好的X射线源,采用了高对比度的飞秒激光脉冲与小尺寸气体团簇相互作用。这项工作是基于前期的实验观察【Applied Physics Letters 90, 211501(2007)】之上的,最新的结果将光子产额有提高了一个量级。  目前国际上利用团簇的研究均普遍采用普通对比度的激光,由于这类激光脉冲有强的预脉冲,为保持团簇在主脉冲到来时依然具有能引起线性共振的临界密度,往往采用大尺度的团簇。这样,在团簇中产生的超热电子在团簇中多次碰撞产生大量的连续本底,并且由于大尺度团簇膨胀的整体不均匀性,使K壳层X射线的能量转换效率很低(~10-6)。最新研究在实验中利用了高对比度的激光防止了团簇的先期膨胀,再利用激光强电场驱动纳米级尺寸的团簇在相互作用中的非线性共振机制,这种机制的特点是团簇电子只在激光电场和电荷分离场的共同作用下运动,这些电子的共振将只在脉冲的前几个周期内激发,激光脉冲过后电子能量迅速消失,所产生的X射线源具有10飞秒量级的时间分辨 同时,共振加热的电子是和纳米尺度的团簇碰撞,不会产生高能轫致辐射本底 另外,研究人员还在实验中成功地实现了团簇的非线性共振和线性共振加热之间的相互转换,得到清晰的相互作用物理图像。  由于他们在实验中产生了高信噪比、极短的K壳层X射线源,比较彻底地克服了前述激光X射线源的不利因素。这将极大地推动此领域的发展并确立基于激光的X射线源在超快研究中真正的实际应用价值和地位。  本项目得到中科院、国家自然科学基金、973国家基础研究计划和863高技术研究计划的支持。
  • 陕西省高功率激光器及应用产业联盟成立
    3月26日上午,由陕西省发展和改革委员会主办,中国科学院西安光学精密机械研究所、陕西电子信息集团、西安炬光科技有限公司等单位承办的“陕西省高功率激光器及应用产业联盟成立揭牌暨项目签约仪式”在西安光机所隆重举行。陕西省副省长吴登昌、陕西省决策咨询委员会副主任崔林涛、中国科学院院士侯洵、中国科学院院士姚建铨以及陕西省、西安市政府有关部门领导,该产业联盟所有成员单位代表等共400余人出席了揭牌暨项目签约仪式。  为了贯彻落实《关中——天水经济区发展规划》,以建设西安统筹科技资源改革示范基地为契机,中国科学院西安光机所、陕西电子信息集团、西安炬光科技有限公司等三家单位发起组建陕西大功率激光器及其应用产业联盟的倡议。倡议指出,陕西在大功率激光器产业的技术和产业配套等方面具有较好的基础,为集群形成和发展提供了良好的条件,但还存在着产业分散、关联度低等问题,在一定程度上制约了全省大功率激光器产业的发展。因此,为大力促进我国大功率激光器产业快速发展,组建陕西大功率激光器及其应用产业联盟将刻不容缓。  在陕西省发改委等单位的大力支持下,目前陕西省高功率激光器及应用产业联盟已集合了全省在该领域中的近20家企业、大专院校和科研单位入盟。通过整合资源,并充分利用中国科学院西安光机所和西安炬光科技有限公司在高功率半导体激光器领域的技术、人才和产业等优势,建设陕西省激光产业集群,打造一条技术领先、产业集聚、竞争力强的全新的产业链,以加快培育战略性新兴产业,推动结构调整和发展方式的转变。  在本次签约仪式上,西安炬光科技公司与国投高科技投资有限公司签署了战略投资协议 与美国知名的激光器制造企业阿波罗公司(Apollo Instruments)签署了“光学整形与光纤耦合业务收购协议” 与西安光机所签署了“激光投影仪项目协议”,同时还与在陕的工业加工、医疗设备、科学研究等十余个激光器应用企事业单位签约了投融资项目和产品研发项目,总额近2亿元。  大会期间,陕西省发改委副主任张振红代表省发改委宣读了“关于成立陕西省高功率激光器及应用产业联盟的复函” 中国科学院西安光机所所长赵卫代表陕西省高功率激光器及应用产业联盟在大会讲话 陕西省副省长吴登昌、陕西省决策咨询委员会副主任崔林涛、中国科学院院士侯洵、中国科学院院士姚建铨为联盟的成立共同揭牌。
  • 我国高功率全固态激光器成功实现应用
    工欲善其事,必先利其器。高功率全固态激光器技术就是先进制造领域的一把利器。长期以来,国外在高功率激光技术领域一直对我国实行严密的技术封锁,严重制约了我国先进制造领域工业关键激光成套装备的发展。为摆脱我国在这一技术领域的长期被动落后局面,抢占战略主动权,自&ldquo 十五&rdquo 开始,863计划持续对该项技术进行大力支持,经过多年攻关,相继突破3kW、4kW、6kW和8kW的激光输出,到&ldquo 十一五&rdquo 中期,成功研制了具有完全自主知识产权的工业级5KW全固态激光器,打破了国际禁运。  为加速成果转化应用,&ldquo 十二五&rdquo 期间,863计划继续设立&ldquo 先进激光材料及全固态激光技术&rdquo 主题项目,中国科学院半导体研究所牵头承担,以工业应用需求为导向,研制系列化的高稳定、高可靠的工业级全固态激光器及其装备,并在激光焊接、表面处理等领域实现产业化应用。目前,在项目研究成果基础上,我国首个具有自主知识产权的高功率全固态激光器生产线已在江苏丹阳建成,并实现批量生产 在汽车零部件激光焊接领域,自主研制的全固态激光器成功打破国外垄断,实现了产业化应用突破,自2012年以来,已为奇瑞汽车焊接了超过10万套自动变速箱的核心部件,为北京奔驰汽车焊接了近3万套天窗 攻克无预热情况下的激光熔覆防微裂纹、微气孔等核心技术,为全球第三大石油装备制造商威德福公司成功研制出超高耐磨转井部件,实现威德福首次将该类高难度核心部件从英国的剑桥转移到亚洲进行生产。  经过863计划长期的持续支持,我国的高功率全固态激光器产品已初步形成了从自主研制激光器到成套装备集成再到应用的完整产业链。随着我国激光技术的不断进步,更多的高功率全固态激光器产品走上成熟的工业化进程,将为提升我国先进制造产业核心竞争力,扭转关键成套装备基本依靠进口的被动局面,加强国防建设提供有力的装备保障和技术支撑。
  • 半导体所携IS-3000CB工业用高功率全固态激光器亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院半导体研究所携IS-3000CB工业用高功率全固态激光器亮相国家“十一五”重大科技成就展。IS-3000CB工业用高功率全固态激光器  高功率全固态激光器是应用于现代工业加工的新一代激光光源。与传统的气体激光器相比,具有体积小、重量轻、效率高、寿命长等优点。我国自主研制的全固态激光器,功率高达6kw,功率不稳定度优于±0.77%,关键部件全部国产化,可广泛用于汽车焊接、铁路轮轨及风电轴承的表面淬火和熔覆等工业加工中,对提升我国工业加工装备水平具有重要意义。  关于中国科学院半导体研究所:  中国科学院半导体研究所是1956年按照“12年科学发展远景规划‘中’四项紧急措施”开始着手筹建的,是集半导体物理、材料、器件研究及其系统集成应用于一体的国家级半导体科学技术的综合性研究所,正式成立于1960年。目前,该所是集半导体物理、材料、器件及其应用研究于一体的半导体科学技术的综合性研究所。为了适应知识创新的需要,经过学科调整和目标凝练,主要研究领域包括:光电子及其集成技术 体材料、薄膜材料、微结构半导体材料科学技术 低维量子体系和量子工程、量子器件的基础研究 半导体人工神经网络和特种微电子技术。
  • 滨松成功研发只有桌子尺寸大小的高功率、高重复频率激光器
    滨松光子学株式会社(静冈县滨松市,董事长:昼马 明 ,以下简称“滨松光子学(株)”)将传统泵浦用半导体激光器的功率提高了三倍,并优化了放大器的设计 ,成功开发了只有桌面尺寸大小,可以产生1焦耳(以下,j)的高能量、300赫兹(以下,hz)高重复频率的功率激光器。一般的激光器的输出功率与设备的尺寸、重复频率成正相关关系,而该课题实现了小型却高功率、高重复频率的激光器。本产品的诞生,通过去除细小的污垢的激光清洁来提高了传统加工的生产效率,同时,期待它在金属材料的激光成形、延长金属器件的使用寿命的激光喷丸等方面的新应用。该产品的开发是内阁办公室主导的综合科学技术与创新研发推进项目(impact)的一部分,是佐野雄二负责的“普及功率激光器以实现安全、安心、长寿社会”研发项目的一环,由滨松光子学(株)中央研究所产业开发研究中心副所长川嶋利幸等人开发,而且今后我们也将继续推进研究成果的产品化。此外,该新研发的产品将于11月1日(星期四)起连续3天在actcity滨松(滨松市中町区)举行的滨松光子综合展“2018photon fair”上展出。<关于功率激光器>功率激光器主要由振荡器和放大器组成。 振荡器由泵浦用半导体激光器、激光介质、全反射镜、输出镜和光开关组成,放大器由泵浦用半导体激光器和激光介质组成。 由振荡器发出的激光通过放大器时,从三种高能量状态(激发状态)的三段激光介质接收能量实现高功率输出。功率激光器的结构<新产品概述>该产品搭载了最新研发的泵浦用半导体激光器,虽然只有桌子尺寸大小,但却是可以产生1j的高脉冲能量且300hz的高重复频率的功率激光器。滨松光子学(株)已经开始制造并销售300hz的重复频率下输出功率为100w的泵浦用半导体激光器。此次,结合公司独有的晶体生长技术和镀膜技术,将传统泵浦用半导体激光的功率提高到世界最高水平300w,同时放大器在激光介质的长度和横截面积上下功夫,并采用具有提高冷却效率的放大器,解决了由于热问题导致激光介质损坏或破坏的问题,成功输出了传统放大器的3倍能量。这是因为放大器采用了新的散热设计,提高了激光的放大效率。此外,由于采用半导体激光器作为泵浦光源,具有高于市面上销售的氙灯泵浦脉冲激光器约10倍的光电转换效率,约100倍的泵浦光源的寿命。通过控制零部件的数量,成功实现了器件的稳定输出、小型以及低成本。一般激光器的功率与设备的尺寸、重复频率成正相关关系,但本产品却实现了小型而又高功率和高重复频率的特性。利用该产品,可以对附着于材料上的小污垢进行激光清洁,以提高传统加工的生产效率。此外,我们也期待脉冲激光器在工业领域的新应用,如飞机的金属材料等可以在不使用模具的情况下进行变形加工完成激光成形,以及通过激光喷丸来提高金属器件的使用寿命等。<研发背景>激光在金属材料的钻孔、焊接、切割等方面有着广泛地加工用途,为了提高生产效率,光纤激光器和co2激光器等各种各样的激光都在朝着高功率的方向发展。激光分连续输出一定强度激光的cw(continuous wave)激光和短时间内重复输出激光的脉冲激光,目前cw激光是激光加工领域的主流。另一方面,脉冲激光不同于cw激光,它正在朝着新型激光加工的应用方向发展。采用半导体激光器作为泵浦光源的功率激光器,它具有高功率、高重复频率的特性,但因为半导体激光器价格昂贵很难推向产品的实用化,而市场上销售的j级脉冲激光器上使用的泵浦光源多采用氙灯光源,对激光器内部有严重地热影响,因此重复频率只能限制在10hz左右。像这样,为了进一步提高生产效率,同时扩大用途,对小型且可以发出高功率、高重复频率脉冲激光的激光器的需求日益增加。主要规格<委托研究信息>此研究成果,是通过以下的科研课题项目得到的。内阁办公室创新研发推进项目(impact)项目负责人:佐野雄二研发项目:普及功率激光器以实现安全、安心、长寿社会研发课题:开发高功率小型功率激光器研究负责人:川鸠利幸(滨松光子学株式会社 中研研究所 产业开发研究中心 中心副主任)研发时间:2015年~2018年本研究开发课题是致力于开发桌子大小、高功率、高重复且稳定性高的脉冲输出的功率激光器。<项目负责人佐野熊二的评论>“普及功率激光器以实现安全、安心和长寿的社会”的impact计划,推动了大功率脉冲激光器的小型化、简化和高性能的发展,这对于探索最先进的科学和工业是不可缺的,同时,我们也正在推进相关基础技术和应用技术的开发,旨在提供可以随时随地使用,具有高稳定性的廉价激光器,向工业领域的创新努力。此次,滨松光子学(株)的开发团队采用了自有的先进半导体激光器作为泵浦高能脉冲激光器的光源,通过优化激光器件,以低价格实现前所未有的小型、高功率、高重复的激光设备。从限制成本和生产效率的角度来看,在我们之前放弃引入激光设备的领域,也期待会有更多的应用。功率激光器设备的结构 功率激光器设备外观
  • 首届超快激光应用发展大会在东莞松山湖材料实验室开幕
    激光享有“最快的刀”、“最准的尺”、“最亮的光”等美誉,是20世纪最伟大的发明之一。超快激光作为激光领域重要的研究方向,一直是国际科技关注的研究重点,也是推动基础科学实现重大突破、驱动战略性新兴产业发展的动力源泉。10月26日,超快激光应用发展大会在东莞松山湖材料实验室新园区开幕。大会邀请近500名行业知名院士专家、企业代表,以技术交流、产业论坛、需求对接、项目路演等形式,共同探讨超快激光技术发展趋势、技术应用及前沿进展,展示我国超快激光领域优秀成果案例,加强超快激光政产学研用深度合作,推动超快激光产业高质量发展,助力制造强国、质量强国建设。本次活动由中国光学工程学会主办,东莞松山湖高新区管委会、中国光学工程学会激光技术及应用专业委员会、中国科学院物理研究所、松山湖材料实验室承办。英国皇家工程院院士、中国科学院宁波材料技术与工程研究所激光极端制造研究中心主任李琳,中国科学院院士、松山湖材料实验室主任汪卫华,中国光学工程学会秘书长赵雪燕,东莞市委副书记、松山湖党工委书记刘炜,中国科学院西安分院院长赵卫,华南师范大学党委常委、副校长杨中民等领导嘉宾出席活动。国内首台先进阿秒激光设施筹建中,助推未来新质生产力加速生成超快激光兼具超短时间和高峰值功率特点,随着我国制造强国、质量强国战略的贯彻实施,超快激光已成为微加工领域的重要手段,正加速推动中国制造制造业实现转型升级。“今年的诺贝尔物理学奖颁给了阿秒激光领域的科学家,充分体现超快激光科学技术领域的重要位置。”开幕式上,大会主席、中国科学院院士王立军在视频致辞中表示,以皮秒、阿秒为代表的超快激光器,在新一代信息技术、增材制造、航空航天、海洋环境以及新能源汽车、新材料、生物医药等领域拥有广泛应用前景。在此背景下,首届超快激光应用发展大会迎运而生。王立军表示,希望与会嘉宾以此次大会为契机,聚焦超快激光技术发展,深化交流对接,推进务实合作。东莞作为海内外闻名的制造业城市,拥有超21万家工业企业、1.3万家规上工业企业、79家上市企业和3家千亿企业组成的先进制造体系,初步形成了激光与增材制造材料、激光器、整机装备、公共服务平台等协调发展的激光产业链,在超快激光的应用上有着非常广阔的前景。东莞市委副书记、松山湖党工委书记刘炜表示,松山湖科学城作为大湾区综合性国家科学中心先行启动区,是引领东莞高质量发展的核心引擎,当前集聚了中国散裂中子源等国家大科学装置、松山湖材料实验室等30家科研平台及新型研发机构、大湾区大学(筹)等6所高校以及华为、生益科技等一批龙头企业,初步构建起全链条、全过程、全要素的创新生态体系。“期待与各位科技大咖、产业专家一起,深入探讨超快激光的发展之路,推动更多科技成果、优质项目在东莞、在松山湖科学城落地。”“可以说,超快超强激光是拓展人类认知的重要工具之一,在某些方面甚至是独一无二、不可替代的研究手段。”中国科学院院士、松山湖材料实验室主任汪卫华表示,作为当前国际科技最重要的前沿方向之一,超快科学为解决室温超导材料制造、超高速计算,以及信息传输等关乎国家重大需求所涉及的底层共性科学问题提供了强大助力,也是未来形成新质生产力的关键。汪卫华表示,松山湖材料实验室将联合中国科学院物理所、西安光机所共建国内第一台先进阿秒激光设施,其中8条束线建设任务将落地东莞。目前松山湖材料实验室已组建了阿秒科学中心,引入了首席科学家魏志义,集聚了一大批国内外优秀的研究员和工程师,希望将来实验室能建成一个超快物质科学的研究中心,依托周边中国散裂中子源等大装置,在能源材料、信息材料等领域做出国际一流的成绩。超快激光产业链领军人物汇聚,数十场报告共论激光技术与产业新趋势近年来,随着全球加工行业精细化程度的不断提升以及我国制造业转型升级,超快激光凭借其精度高、热效应低等优势,在3C产业、增材制造、精准医疗、微纳加工、超快检测等领域拥有广阔的应用前景。大会报告环节,英国皇家工程院院士、中国科学院宁波材料技术与工程研究所激光极端制造研究中心主任李琳,中国科学院物理研究所研究员、松山湖材料实验室首席科学家魏志义,深圳技术大学教授唐定远,北京大学物理学院副院长、核物理与核技术国家重点实验室副主任颜学庆,中国科学院上海光学精密机械研究所研究员胡丽丽等业内专家,分别从飞秒激光纵波红外远场超衍射极限纳米加工探讨、超快激光科学研究对高新技术产业应用和大科学设施建设的推动、激光等离子体加速器应用与展望,应用于超快激光系统的玻璃及光纤材料研究等不同领域做主题报告,对超快激光发展与应用的若干热点课题进行了分享交流。本次大会作为业内重量级交流活动,吸引了来自全国近百所知名科研院所及高校的专家学者、近30家业内知名企业代表参加,超快激光产业链领军人物汇聚,覆盖激光产业政产学研金服用全领域。“目前国际激光加工产业应用中国做的是最好的,全球市场占比约30%,其中大湾区集聚了很多头部的激光上下游企业,为支撑我国激光制造和应用起到了很大的作用。”李琳院士是国际激光加工领域知名专家,除在大会上做主题报告外,他特别关注超快激光应用层面的新技术、新原理,以及包括激光器在内的工具层面的发展。“这次来参会很多还都是物理领域的科学家及工艺工程师,从激光光源以及激光关键器件、激光加工,激光测量以及其他科学研究,都有很多讨论。”李琳表示,此次500多人的参会规模也说明我国在这个研究领域非常活跃。另一方面,李琳对筹建中的先进阿秒激光大科学装置也非常期待。“这个装置未来对超快光学、超快物理、超快化学、超快工程学都会有很重要的促进作用,能够让全国各个大专院校,科研院所及企业申请使用这一国际上最先进的科学装置,我们也期待它早日建成,为科学进步起到推进作用。”“这次大会我实际是来学习取经,希望能在超快激光赛道上走得更远。”参会企业广东大族粤铭激光集团股份有限公司,是东莞本土成长起来的知名激光企业,该公司董事、总经理卓劲松表示,公司非常重视新技术研发,坚持每年以不低于销售收入10%的研发经费投入到产品研发中。他希望东莞的政府、企业、学校科研院所可以联动呼应,打造高端制造业的产业基础、人才支撑、学术氛围,互相联合进行产学研一体输出,更快推动超快激光产业大步向前。接下来两天时间内,大会还将围绕超快激光技术与产业两大专题,先后开展超20场专题研讨或主题报告,共同探讨新形势下的前瞻思想、创新成果,以及资本、技术、市场如何促进激光产业发展等关注热点。与此同时,大会多措并举共助成果转化落地,邀请各级产业链头部企业、重点科研团队、高校研究所等,集中展示优秀科技成果、应用案例,现场还将进行多场技术交流、项目路演、人才招聘、对接洽谈等活动。
  • 国家重大科学仪器专项高功率窄线宽光纤激光器研发取得重要进展
    p  由山东海富光子科技股份有限公司牵头承担的国家重点研发计划重大科学仪器设备开发重点专项“高功率窄线宽光纤激光器”项目经过近两年的努力,突破了半导体增益芯片设计制备与高效封装耦合、玻璃光纤制备中新型热熔键合及高浓度均匀掺杂、窄线宽光纤激光放大器非线性效应抑制等关键技术,开发出高功率窄线宽光纤激光器样机。近日,项目通过了科技部高技术中心组织的中期检查。/pp  高功率窄线宽光纤激光器兼备高峰值功率及窄线宽特性,同时采用全光纤结构,是激光精密测量、激光测距和遥测等重大科学仪器的关键核心部件之一。目前国内高功率窄线宽光纤激光器主要依赖国外进口,国内还不能实现产品级整机供货。项目通过采用非对称光栅的脊波导和大光腔的锥形增益结构,优化光栅结构参数减少激光器的线宽值,开发出高可靠性窄线宽脉冲激光种子源 研究了高倍率低噪声光放大、窄线宽光纤激光器中的SBS抑制、SPM补偿和模式控制等关键技术,获得高功率窄线宽光纤激光输出 开发了可工程化应用的高功率窄线宽光纤激光器 开展了激光雷达遥感的应用示范研究和产业化推广。/pp  该项目下一步将加强仪器可靠性的整体设计,加快可靠性试验验证,提高产品稳定性 进一步加快应用示范的进度及工程化实施。/p
  • 为自由电子激光装置“减负”
    记者从中国科学院上海光学精密机械研究所获悉:强场激光物理国家重点实验室利用自行研制的超强超短激光装置,在国际上率先完成台式化自由电子激光原理的实验验证,对于发展小型化、低成本的自由电子激光器具有里程碑意义,相关研究成果于7月22日作为封面文章发表于国际学术期刊《自然》杂志。  X射线自由电子激光被广泛用于探测物质内部动态结构,研究光与原子、分子和凝聚态物质的相互作用过程,在物理、化学、结构生物学、医学、材料、能源、环境等多学科领域广泛运用。然而,传统的X射线自由电子激光装置动辄几百米、甚至是几公里长的“庞大”规模,造价昂贵、难以普及。研制小型化、低成本的X射线自由电子激光成为该领域重要的发展方向。  该成果的主要完成人、中科院上海光机所研究员王文涛表示,我们的工作是利用新技术把电子加速器的长度缩短,并且把电子束做到稳定、可用,来研制体积小、成本低的自由电子激光器,整个装置长度仅为12米。“打比方说,电子束加速需要‘跑道’,传统方式相当于客机起飞,需要长跑道;我们采取激光加速这一全新方式,可以短距离内把电子束加速至高速度,大大缩短所需距离。”王文涛说。  “该项研究不仅证明了激光可以加速产生可控的、可用的电子束,而且电子束可以进一步用于产生自由电子激光。”中科院上海光机所副所长、强场激光物理国家重点实验室主任冷雨欣说。  用这种加速方式获得的电子束,在品质和稳定性方面尚未达到实际应用的要求,相关研究处于起步阶段,到真正应用还有一段距离。下一步,研究团队将继续提升自由电子激光的输出功率和光子能量,并作为上海超强超短激光实验装置中超快化学与大分子动力学研究平台的重要组成部分,提供开放共享。
  • “高功率激光器产业化关键技术”通过中期检查
    会议现场  3月28日,科技部高技术中心组织专家对中科院半导体研究所承担的863新材料领域主题项目课题“高功率激光器产业化关键技术”进行了中期检查。  半导体所副所长陈弘达、项目首席专家林学春研究员、课题负责人侯玮研究员等参加了会议。检查专家来自清华大学、华南理工大学、北京大学等高校。  在听取了课题的进展报告,并现场考察了课题研制的高功率激光器样机后,检查专家一致认为该课题的执行情况良好,取得了重要进展,按照合同书的年度计划要求全部达到或超过了任务书的考核指标,并对下一步的工作给出了建议。
  • 630万!齐鲁中科光物理与工程技术研究院计划采购高精度光学面形测试仪
    一、项目基本情况项目编号:SDSM2022-4295项目名称:齐鲁中科光物理与工程技术研究院高精度光学面形测试仪采购项目预算金额:630.0000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1高精度光学面形测试仪1是630合同履行期限:合同签订后10个月内本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:(1)在“信用中国”网站(www.creditchina.gov.cn)、“中国政府采购网”网站(www.ccgp.gov.cn)中被列入失信被执行人、税收违法黑名单、政府采购严重违法失信行为记录名单的投标人,不得参加本次政府采购活动。(2)本项目非专门面向中小企业采购。(3)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的投标人,不得参加本项目投标。(4)投标单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。(5)按本投标邀请的规定获取招标文件。3.本项目的特定资格要求:投标货物为进口产品的,须提供制造商或可追溯到制造商的授权书(复印件胶装至投标文件中并加盖投标人公章)三、获取招标文件时间:2022年05月26日 至 2022年06月01日,每天上午8:30至12:00,下午13:30至17:00。(北京时间,法定节假日除外)地点:济南市市中区二环南路6636号中海广场8楼805(山东三木招标有限公司)方式:线上获取招标文件。登录山东三木招标网(http://www.chinasanmu.com.cn),点击“报名系统入口”报名,审核通过后招标文件将发送至报名邮箱。未按上述要求报名及未报名但已获取招标文件的,报名均无效。本项目实行资格后审,报名成功不代表评标现场通过资格审查。报名咨询电话:0531-81764009(开户单位:山东三木招标有限公司,开户银行:中国工商银行济南六里山支行,账号:1602001319200062147)。招标文件售出不退。售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年06月16日 09点30分(北京时间)开标时间:2022年06月16日 09点30分(北京时间)地点:济南市市中区二环南路6636号中海广场11层1105B室。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜本项目落实的政府采购政策1、政府采购促进中小企业发展2、政府采购支持监狱企业发展3、政府采购促进残疾人就业4、政府采购鼓励采购节能环保产品七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:齐鲁中科光物理与工程技术研究院     地址:山东省济南市历城区彩石镇中科光物院(济南科创城内)        联系方式:0531-55853088      2.采购代理机构信息名 称:山东三木招标有限公司            地 址:济南市市中区二环南路6636号中海广场8层805室            联系方式:王传栋、陈涵0531-82906138            3.项目联系方式项目联系人:王传栋、陈涵电 话:  0531-82906138
  • 英国国家物理实验室开发超稳定激光器和光学时钟
    据英国国家物理实验室(NPL)网站报道,NPL、英国空间署(UKSA)和欧洲空间局(ESA)正为未来的太空任务开发超稳定激光器和光学时钟,以改进未来的导航和计时。NPL的立方腔专利设计使光学腔的频率稳定性对振动高度不敏感,具有独特的鲁棒性,可将商业激光系统的谱线宽度从几个MHz降低到1 Hz以下。这提供了超稳定的激光器,既可作为独立的频率参考,也可作为光学原子钟的子组件。这种光学原子钟和超稳定激光技术在未来科学(基础物理学和宇宙学)、地球观测(相对论大地测量学)和导航(未来全球导航卫星系统)计划等方面具有较大应用前景。在NASA/ESA的下一代重力任务中,NPL的立方体空腔可用来测量地球重力场作为地球表面位置的函数。在极地地区,这种技术可比以前的GRACE和GOCE任务更精确地监测冰川变化。在未来NASA/ESA 2030激光干涉仪空间天线(LISA)任务中,可作为空间引力波测量的参考。注:本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 用户动态|祝贺中科院物理研究所完成基于相对论激光驱动的超快X射线衍射系统的研制
    在超快时间尺度上获得物质的动力学演化过程一直是人们努力的重要方向。基于激光等离子体相互作用产生的飞秒硬X射线源由于具有脉宽短、亮度高和源尺寸小等突出的优点,可广泛应用在瞬态微成像/相衬成像、时间分辨吸收谱学和X射线衍射等实验研究中。其中,激光泵浦--超快X射线衍射能为我们提供飞秒级时间尺度、亚埃级空间尺度上材料的结构动力学信息。图1. 超快X射线衍射装置示意图 中国科学院物理研究所/北京凝聚态物理国家研究中心光物理实验室L05组博士研究生朱常青(指导教师为原物理所陈黎明研究员、现上海交通大学物理与天文学院教授),利用L05组的高脉冲能量(100mJ)、低重频(10Hz)激光器,研制了一套飞秒时间分辨的X射线衍射系统。该装置工作在相对论的激光强度(2×1019W/cm2)下,可以有效地激发高Z金属材料的Kα射线,并且能够通过优化X射线多层膜反射镜,进一步提高X射线的聚焦强度。利用该装置对SrCoO2.5薄膜样品的瞬态结构进行了探测,结果表明该装置不仅可以用来分析样品的超快动力学行为,并且和KHz等小能量装置相比对于不同的特殊应用具有高度的灵活性。该装置有望将来在物理、化学和生物领域的超快动力学探测方面发挥重要作用。图2. 在光泵浦下超快X射线衍射信号随延时的变化:(a)泵浦光作用20ps后劳厄衍射斑的角移;(b)不同的泵浦-探针延时,所对应的光致拉伸度。 相关成果以“快速通讯”的形式发表于最近的Chinese Physics B上,并被选为该期的亮点文章。这也是该团队利用激光超快X射线源在成像和衍射应用方面,最新获得的创新成果。前序成果包括Rev. Sci. Instrum. 85 113304 (2014)、Chin. Phys. B 24 108701 (2015)等。文章链接:http://www.iop.cas.cn/xwzx/kydt/202110/P020211011413338249349.pdf我们提供专业、细致的技术论证只选取最优方案众星联恒作为德国Incoatec公司在中国的授权总代理,很荣幸为该超快X射线衍射装置提供了Montel多层膜镜片。在基于激光驱动的超快X射线衍射实验中,如何提升样品端的光通量?如何获得低发散角的单色光束?如何抑制飞秒脉冲的时间展宽?又如何能同时兼顾以上的实验要求?...... 这些都是需要考虑的问题。所以在实验前期,我们的技术团队与该小组成员就这些问题进行了深入的交流与探讨,详细的对比了四种常见(弯晶、多层膜镜、多毛细管和单毛细管)的光学组件和激光驱动X射线源的耦合效果,由于多层膜聚焦镜,单色性好、时间展宽较小、有效立体角大、Kα输出通量高的特点,最后选取了Montel multilayer mirror用于收集并聚焦Cu-alpha射线的技术方案。关于Montel的详细介绍可参考我们之前的文章:X射线多层膜在静态和超快X射线衍射中的应用。我们提供贴心、本地化的售后服务解决用户后顾之忧我们的售后工程师均为接受过原厂深度培训,经原厂认证的专业技术团队,为国内用户提供贴心、本地化的安装调试服务,同时在后期使用过程中提供持续的技术支持,为用户的实验保驾护航,解决用户的后顾之忧。此次我们也有幸参与,与用户就Montel多层膜镜片的安装、调试及与X射线源耦合进行了交流探讨,并与用户一起完成了镜片与光源的耦合。在这个过程中不仅进一步强化了我们售后工程师针对特定用户实验场景的镜片调试与耦合能力,也体会到了作为科研人的快乐。图3 我司售后工程师正在调试 Montel 多层膜镜片众星X射线实验平台等你来联在专业、敬业、拼搏的理念指导下,不断进取学习,时刻关注顶尖科学领域的发展和创新,北京众星联恒科技有限公司一直致力于引进高端的EUV/SXR/X射线产品、及新孵化高新技术产品给中国的同步辐射,研究所,高校及高端制造业的客户。作为制造商与中国科研用户的桥梁,我们尊重知识产权、接纳不同的文化习俗、信仰专业技术,在和制造商和用户的沟通中不间断在提升自己的技术能力,以给用户提供最优的产品及技术方案和快捷、专业的本地化服务。为了更好地为客户服务,满足客户试用需要,为客户提供更直观更专业的售前演示,众星正在搭建我们自己的X射线实验室(新实验室即将落成:众星联恒研发中心落户电子科大科技园 ),目前配备多台X射线源、各种光学镜片及探测器。可以实现X射线衍射,荧光及成像等多种实验配置。如果您有感兴趣的产品想体验产品性能如果你目前暂时没有经费支撑,想免费借用我们的产品如果您有新的idea想与我们共同实现如果你想加入我们以上所有请不要犹豫马上联系我们
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制