高度处污染物浓度分布

仪器信息网高度处污染物浓度分布专题为您整合高度处污染物浓度分布相关的最新文章,在高度处污染物浓度分布专题,您不仅可以免费浏览高度处污染物浓度分布的资讯, 同时您还可以浏览高度处污染物浓度分布的相关资料、解决方案,参与社区高度处污染物浓度分布话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

高度处污染物浓度分布相关的资讯

  • 《中国持久性有机污染物评估报告》发布
    仪器信息网讯 2011年5月17日,“持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会”(简称“POPs论坛2011”) 在黑龙江省哈尔滨市隆重开幕。“POPs论坛2011”由清华大学持久性有机污染物研究中心、环境保护部斯德哥尔摩公约履约办公室、中国环境科学学会持久性有机污染物专业委员会和中国化学会环境化学专业委员会共同主办,哈尔滨工业大学城市水资源及水环境国家重点实验室承办。来自国际机构、国内相关科研院所、管理部门和行业企业的代表,以及美国、加拿大、日本、韩国、越南等国专家共三百余人出席本届论坛。“POPs论坛2011”现场  大会报告环节中,德哥尔摩公约新POPs审查委员会成员、北京大学胡建信教授发表了题为《中国持久性有机污染物评估报告》的精彩演讲。北京大学胡建信教授  胡建信教授首先简要介绍了《中国持久性有机污染物评估报告》(下简称《评估报告》)的一些基本情况,包括编写目的、评估地区、评估方法、评估过程、评估内容和目标POPs等。  《中国持久性有机污染物评估报告》的编写是以中国环境科学学会持久性有机污染物专业委员会为依托,组织多位专家对我国POPs现状进行了评估。  编写目的:为各级机构、研究单位、大学、企业以及公众提供一个报告——为未来我国开展关于持久性有机污染物领域的研究和开展防治持久性有机污染物污染保护环境和公众健康指出方向;向国际社会和公众进一步表明我国高度重视持久性有机污染物问题。  评估地区:主要包括中国大陆地区;评估以2010年为基线年;《斯德哥尔摩公约》管制的21种化学品(污染物)为评估对象。  评估内容:主要包括评估POPs来源、环境水平、人体暴露和风险分析;对POPs的监测和管理、减排和污染防治。评估立足于现状,预测未来,进行风险分析以及探讨存在的问题等。  评估目标POPs:主要包括杀虫剂类、工业合成化学品类。  杀虫剂类POPs评估结果 中国总体DDT排放和污染在控制水平,HCH没有发现新增排放源  2010年,中国已经停止生产各种杀虫剂类POPs。DDT/HCH作为历史上农业领域大量使用的杀虫剂类POPs在1980年代当时的主要用途停止使用。在环境介质和食品中:大气中,均处于数百pg/m3;土壤中,DDT基本低于100ng/gdw,HCH低于DDT水平;食品中如玉米、大米、茶叶均可以检测到DDT;中国总体DDT排放和污染水平在控制水平,HCH没有发现新增排放源。  目前杀虫剂类POPs相关的热点问题为三氯杀螨醇的残留DDT问题及废弃污染场地的治理问题。  工业合成化学品类POPs评估结果 PFOS已经被证实广泛存在于我国人群中  工业合成化学品类POPs评估以PFOS和PBDE为代表。中国生产和使用PFOS。环境介质来源分布:北京、大同、苏州、平顶山、天津和沈阳地区的污水处理厂进出水及污泥中均有检出,但平均浓度略低于国外水平;中国河流和湖泊主体中PFOS含量在1—10ng/l之间;自来水样品中,多数城市的自来水杨品中都含有低浓度的PFOS,个别城市的自来水样品中PFOS浓度超过10ng/l;国外大气样品多数低于50pg/m3;而在沉积物中PFOS多被检出。  PFOS是一种广泛且高浓度存在于生物体内的污染物,甚至在青藏高原的鱼类体内,也发现了PFOS的存在。PFOS已经被证实广泛存在于我国人群中,对于我国居民中PFOS的浓度报道,主要集中在成人的血液和母乳中,成人血液中PFOS的浓度含量平均为16.5ng/ml;非成人血液中PFOS浓度大致随着年龄的增加而升高。对于成人来说,鱼和海鲜为PFOS主要暴露途径,其次为肉和肉产品、饮用水。中国电镀行业、消防行业是当前PFOS最大的消费行业,也是潜在的排放来源,同时PFOS生产企业、废弃物、污染场地等也是热点问题。  中国多年没有PBDE(十溴代联苯醚除外)的生产和直接使用。大气中,其含量大多数在100pg/m3以内;水体中PBDE的污染处于较低水平,沉积物中PBDE的污染水平与美国相当,处于中等污染水平;土壤中PBDE的污染也处于较低水平;生物体中PBDE的浓度低于美国和巴西。  除了介绍环境、人体存在和人体暴露PBDE情况外,胡建信教授还指出中国没有使用低溴代PBDE的历史,但其环境浓度却并不低,其来源值得关注。  我国POPs监测能力已经大大提高 已建设20多个二噁英实验室  关于POPs监测,胡建信教授在报告中指出,我国POPs监测能力已经大大提高,目前,全国已经建设了20多个二噁英实验室;相关的POPs标准也相继出台,包括国家质量标准、控制标准、监测的标准方法等。我国也制定了多个针对POPs管理的法律规章。  “十二五”POPs污染防治专项规划启动编制  针对“十二五”,我国各省均制定了POPs污染防治规划;与此同时,启动编制中国“十二五”POPs污染防治专项规划,将其纳入中国十二五环境保护规划。这些行动将使POPs污染防治在中国国内全面展开,不仅将为履行国际公约提供充分的政策和组织保障,而且将极大提高中国国内的POPs环境污染及风险控制水平,保障环境安全和公众健康。  《评估报告》初步总结:杀虫剂类POPs,由于排放总量得到控制,环境介质预期将逐步下降;PFOS预期未来一段时间主要来源于电镀、消防领域,未来几年环境浓度预计变化不大;PBDE来源不够清晰,未来几年环境浓度较难判断;监测和管理能力得到发展,并正在完善之中。
  • 新污染物:污染防治攻坚“新战场”
    这是一次与环保有关的会议。会上专家作报告时透露的一组数字引得在场听众投来关注的目光:在国内参与调查的66个城市中,40%左右饮用水的全氟和多氟烷基物质浓度超标,华东和西南地区最为明显;多氯联苯污染主要集中于京津冀、辽东半岛、长三角和珠三角地区,位于典型工业城市的永定新河、海河、辽河沈阳段和松花江哈尔滨段沉积物中浓度较高;得克隆在室内灰尘中普遍存在,检出率较高,且城市地区要高于农村地区,北方地区要高于其他地区……全氟和多氟烷基物质、多氯联苯、得克隆……说起它们的名字会让人感到陌生,但它们可能已遍及我们的生活环境。它们同属于一个类别——新污染物。在近日举行的中国化学品绿色可持续发展大会上,石化业内人士将目光齐聚新污染物,探寻治理之道。每年新增千余种 新污染物分布广而杂我国是世界最大的化学品生产使用国,也是最主要的化工原料供应国,在产在用的化学品超过5万种。“随着化学品的大量生产和广泛使用,化学品生产、加工、储存、运输、使用、回收和废物处置等多个环节的环境风险日益加大。”中国石油和化学工业联合会会长李寿生表示,由化学品生产、交通运输、违法排污等原因引发的突发环境事件频繁发生,由新污染物引起的环境损害与人体健康问题日益显现,化学品环境风险防控形势日趋严峻。目前,已明确纳入新污染物范畴的包括持久性有机污染物、内分泌干扰物、抗生素、微塑料四大类。据生态环境部环境规划院有关专家介绍,新污染物可以从“新”和“污染”两方面辨别。简而言之,新污染物一般是指新近被发现或关注的,对生态环境或人体健康存在风险,且尚未纳入管理或现有管理措施不足以有效防控其风险的污染物,多具有生物毒性、环境持久性、生物累积性等特征,在环境中即使浓度较低也可表现出显著的环境风险与健康风险。与常规污染物不同的是,新污染物环境风险隐蔽性更强、治理复杂性更高。新污染物涉及的领域与经济发展和生产生活息息相关。以《关于持久性有机污染物的斯德哥尔摩公约》新增列和正在开展评估的化学品为例,短链氯化石蜡、十溴二苯醚、得克隆、毒死蜱、紫外线吸收剂等化学品的使用行业众多,部分化学品还与农业生产、生活用品、半导体、航天产品等必需品密切相关。诸如短链氯化石蜡年生产量可达百万吨以上,毒死蜱涉及农业生产和粮食安全。但它们的替代品开发较为困难,在可获得性、性能、成本、环境与安全等方面存在冲突,这给新污染物治理带来巨大挑战。推进治理迫在眉睫 立法、技术、评估等难题待解近年来,我国政府将新污染物治理提到了前所未有的高度。2021年11月,中共中央国务院印发《关于深入打好污染防治攻坚战的意见》提出,针对新污染物实施调查监测。2022年5月,国务院办公厅印发《新污染物治理行动方案》。2023年7月,全国生态环境保护大会明确提出,把新污染物治理作为国家基础研究和科技创新的重点领域,狠抓关键核心技术攻关。“新污染物治理已成为我国污染防治攻坚战的新战场。”全国政协常委、人口资源环境委员会副主任、中国工程院院士王金南指出,新污染物治理将推动我国生态环境保护工作从雾霾、黑臭水体等感官指标向更加长期、隐蔽的新污染战线转变,推进新污染物治理迫在眉睫。多位专家表示,新污染物治理还面临诸多难题。首先,立法薄弱是突出短板。当前,我国尚没有国家层面的化学品环境管理法律法规,现行的法律法规和标准以末端治理、达标排放、监管执法、应急响应为主,且多以常规污染物为对象。这既无法满足有毒有害化学物质从源头到末端管理的“全生命周期”环境风险管控要求,也不能为《新污染物治理行动方案》的实施提供足够的法律依据。其次,我国新污染物研究处于起跑阶段,相关技术比较匮乏。一方面,由于新污染物危害机理复杂、在环境中转移和归趋过程复杂、污染控制难度大,绿色替代品研发技术要求相对较高;另一方面,新污染物来源、途径、机理尚不清晰,生态和健康毒性、风险评估等研究基础薄弱,替代、减排、治理技术支撑不足,检测分析方法缺失,配套技术规范和指南也不完善。再次,现有新污染物管控机制不畅、管理能力不足。具体表现为:尚无明确的化学品环境管理协调机制,有关部门职责不明;管理部门内部缺乏横向和纵向的管理机制;专职工作人员有限;财政资金支持不足且缺乏稳定的专职专家技术团队;未开展系统的监督执法技术培训,基层工作人员几乎没有新污染物管理能力。除此之外,如何对正在生产和使用的化学品进行识别、评估并实施管控也是新污染物治理面临的重大挑战之一。生态环境部固体废物与化学品管理技术中心化学物质环境风险评估中心主任陈瑛谈道,发达国家和地区的经验表明,化学物质环境管理面临巨大的数据收集和风险评估需求,我国需要开展大量数据调查、环境监测、环境风险评估与管控等基础性工作,以支撑新污染物环境风险的管控与治理。石化行业既是化学品的生产者,也是供应商。谈及石化行业开展新污染物治理面临的困难,王金南认为主要有4方面。一是我国石化行业尚处于产业链底端,部分领域存在技术门槛低、产品质量要求低、产业结构不合理、发展水平参差不齐、易发生价格战等现象。二是行业面临的绿色贸易技术壁垒严重,部分领域的发展速度落后于发达国家,供应链前端核心技术的自主研发能力不强。三是企业自身管理能力有待提升,大部分生产制造企业的环境风险意识和环境管理水平仍明显落后于外企,还有部分生产制造企业不掌握风险源识别和制定风险控制措施的方法。四是国家整体化学物质危害识别能力较为落后,国际谈判和国内工业发展易受牵制。风险管理是核心 防控还需“筛”“评”“控”“都有哪些物质?从何而来?哪些物质风险最高?哪些物质需要优先管理?哪些物质现阶段能管得了?”对于新污染物如何治理,王金南提出这样5个问题。他表示,新污染物治理要体现风险管理理念、全生命周期理念和优先管理理念。其中,风险管理理念为化学物质管理的最核心理念,全生命周期理念和优先管理理念嵌套于风险管理理念之内。在此基础上,新污染物治理应构建以“筛”“评”“控”为主线的防控思路。具体来说,“筛”“评”是方法和基础,“控”是目的和手段,前者决定后者的内容。“筛”是结合环境与健康危害以及环境暴露情况,从数以万计的在产在用化学物质中选出潜在环境风险较大的污染物,纳入优先开展环境风险评估的范围。“评”是针对筛选出的优先评估化学物质,对其生产、加工使用、消费和废弃处置全生命周期进行科学的环境风险评估,精准锚定其中对环境与健康具有较大风险的化学物质作为重点管控对象。“控”是对于经“筛”和“评”确定的重点管控对象实施以源头淘汰、限制为主,兼顾过程减排和末端治理的全过程综合管控措施。王金南还提到,构建新污染物风险管控体系,相关部门要着力实施五大战略。包括要构建新污染物治理法规制度、深化新污染物全过程管理、夯实新污染物治理基础、建立新污染物调查监测评估体系、强化新污染物治理科技支撑。与此同时,政府要通过政策引导企业由被动转为主动,不断提升企业的自主创新力和竞争力,推动生态环境风险防控从突发风险防控型向累积和突发兼顾型转变。中国石油和化学工业联合会副会长周竹叶认为,石化行业要主动谋划新污染物治理,积极落实有关规定要求,持续推进行业绿色可持续发展。一是加快有毒有害化学品替代,强化源头管控。认真履行《关于持久性有机污染物的斯德哥尔摩公约》《关于汞的水俣公约》等环境公约,围绕管控化学品开展替代技术和替代产品的研发和推广。二是推进绿色技术改造,加强过程控制,加快重点行业清洁生产评价指标体系制修订,开展清洁生产技术改造和清洁生产审核。三是深化污染综合治理,减少污染排放。四是完善绿色制造体系,打造绿色化工。五是推进环境信息公开,履行社会责任。积极配合政府有关部门做好重点化学品生产使用信息调查、环境风险筛查与评估,掌握行业化学品环境风险信息。
  • 新污染物“新”在哪儿
    新污染物危害生态环境和人体健康,是全球面临的主要环境问题之一。什么是新污染物?从改善生态环境质量和环境风险管理视角来看,新污染物是指排放到环境中的,具有生物毒性、环境持久性、生物累积性等特征,对生态环境或人体健康存在较大风险,但尚未纳入管理或现有管理措施不足的有毒有害化学物质。新污染物涵盖了广泛的人工合成化学品,不同国家和国际组织对新污染物的认知与其管理需求相关,因此对新污染物概念定义存在共性和差异。新污染物的“新”从不同角度来看具有不同含义。从科学研究角度出发,新污染物是新出现或者近期受关注的物质,即生产、使用时间相对较短,主要关注这些物质的毒性效应、迁移转化、生成及降解机制等关键科学问题;从环境管理角度出发,相对于管理体系较为完善的常规污染物而言,新污染物“新”在尚无法律法规政策予以管控或管控举措不完善,更关注如何减少新污染物排放、降低其生态风险以及保障人体健康。新污染物有哪些,影响有多大?目前,国际上尚未对新污染物分类达成共识。2022年12月,生态环境部等六部委发布了《重点管控新污染物清单(2023年版)》,明确了禁止生产、使用、进出口、新建以及纳入强制性生产审核、风险管控等措施的14类新污染物。目前,国际上普遍关注的新污染物种类主要包括:全氟和多氟烷基化合物等持久性有机污染物、内分泌干扰物、抗生素以及微塑料。持久性有机污染物是指具有毒性、持久性、生物蓄积性且能够在环境中长距离迁移的一类有机化学物质,广泛应用于化工、纺织、涂料、皮革、合成洗涤剂、炊具制造、纸质食品包装材料等。为了保护人类健康和环境免受其危害,国际社会通过了《关于持久性有机污染物的斯德哥尔摩公约》,以减少或消除有意生产和使用的排放。内分泌干扰物具有生殖和发育毒性,会干扰生物体内分泌活动,导致发育畸形,增加癌症风险,扰乱免疫和神经系统功能等。典型物质有邻苯二甲酸酯、双酚A、多溴二苯醚等,主要用于塑化剂、阻燃剂、抗氧剂、农药等精细化工产品。抗生素经人和动物使用与代谢后进入环境,会引发环境细菌抗药性,诱导生物体产生抗性基因,给人体健康及生态环境带来安全隐患。微塑料为直径小于5毫米的塑料纤维、颗粒或者薄膜,在海洋、地表水、地下水、沉积物、土壤、室内外空气等介质中广泛存在,具有刺激免疫等毒性效应,也能作为其他污染物的载体,可能导致生物存活率和繁殖力降低、繁殖减少、基因表达改变、DNA损伤等危害。新污染物在我国环境介质和生物体内的分布存在共性规律,在我国部分地区的空气、土壤、沉积物、地表水以及地下水等环境介质中均有存在,蔬菜、鱼类、蛋类等生物介质和血液、尿液、母乳等人体样本中也曾被检出。然而,新污染物通常为痕量污染物,只有超过一定的浓度阈值才会有健康效果体现。研究表明,当前我国多数地区新污染物环境浓度较低,对环境和人体健康的影响可以忽略。 新污染物的来源与治理挑战。新污染物和常规污染物的来源类似,源于工业生产、日常生活以及农业活动,涵盖化工、塑料、医药、纺织、汽车制造等工业生产过程,以及生活消费、农业水产种植养殖、建筑材料、消防泡沫等众多行业和场景。其中,化学品是新污染物的重要来源,化学品的生产和使用的全生命周期存在新污染物排放风险。我国是化学品生产和使用大国,大部分新污染物涉及的化学品产量和使用量位居世界前列,化学品生产和使用的快速增长成为新污染物增加的重要原因。相比于传统污染物,新污染物治理难度更高。首先,新污染物具备环境持久性和生物累积性,多数新污染物在环境中难以自然降解,在环境中会持续存在,并在生态系统中易于富集,可长期蓄积在环境中和生物体内。其次,新污染物危害较大,对器官、神经、生殖发育等方面都会产生威胁,其生产和使用往往与人类生活息息相关,对生态环境和人体健康存在较大风险。最后,新污染物来源广泛,普遍存在于工业生产、日常生活以及农业活动中,其特殊理化性质使得新污染物长距离迁移扩散,即便是青藏高原这样人迹罕至的区域也检测到了一些典型污染物。同时,新污染物风险较为隐蔽,多数新污染物短期危害并不显著,但其长期累积排放仍能对生态环境和人体健康产生影响。国家对新污染物治理已做出明确部署,未来可期。《中共中央国务院关于深入打好污染防治攻坚战的意见》中提出了到2025年实现新污染物治理能力明显增强的目标。2022年,国务院办公厅印发了《新污染物治理行动方案》,从六个方面部署行动举措,突显了新污染物治理的重要性和紧迫性。新污染物治理的总体思路可概括为“筛”“评”“控”。“筛”指的是结合环境与健康危害以及环境暴露情况,从数以万计的在产在用化学品中筛选出潜在环境风险较大的污染物,纳入优先开展环境评估的范围。“评”主要针对筛选出的优先评估化学品,对其生产、加工、使用、消费和废弃处置全生命周期进行科学的环境风险评估,精准锚定对环境与健康具有较大风险的化学品作为重点管控对象。“控”是对于“筛”“评”确定的重点管控对象,实行以源头淘汰为主,兼顾过程减排和末端治理的全过程综合管控措施。同时,要积极推动新污染物研究成果转化为治理标准,解决科学研究和科学管理之间存在的脱节问题,高度关注传统污染物与新污染物共同存在的现实情况,解决常规污染物与新污染物协同控制技术体系的构建问题。此外,新污染物治理涉及产业方方面面,未来环境管理要更多依靠科技、大数据及人工智能技术。—————————————————————————————————————————为了促进食品及农产品行业分析检测技术交流,研讨国内外最新研究应用进展,仪器信息网3i讲堂将于6月19-21日举办第四届“食品及农产品质量安全及检测新技术”主题网络研讨会。届时,我们将特别邀请行业专家及相关厂商技术人员参与本次网络研讨会,把最新的科研成果和检测技术呈现给大家。本次会议,特别设立食品与农产品中新污染物检测技术分论坛,邀请到多位专家分享精彩报告。点击报名》》》》》

高度处污染物浓度分布相关的方案

高度处污染物浓度分布相关的论坛

  • 【分享】土壤水环境中污染物运移双点吸附解吸动力学模型

    《土壤水环境中污染物运移双点吸附解吸动力学模型》摘要:在考虑对流弥散、平衡/非平衡双点吸附解吸、微生物降解等情况下,建立了土壤环境中有机污染物迁移转化的动力学模型,并给出了有限差分解。在此模型的基础上,详细讨论了有机污染物在土壤中的分布规律,并对一阶吸附解吸速率常数k和平衡吸附点位所占总点位的比例f进行了灵敏度分析。分析研究表明:参数k对于土壤中有机污染物浓度分布有着重要的影响,其影响程度又与非平衡吸附点位所占总点位的比例(1-f)有关;污染后期土壤吸附相的存在,也会起到增加土壤水溶质浓度的作用,且k越大,这种作用越明显。1 引言2 数学模型的建立2.1 污染物在土壤中迁移转化的控制方程2.2 定解条件3 数学模型的有限差分解4 模型分析4.1 有机污染物在土壤中的分布规律4.2 对模型参数k 的分析4.3 平衡吸附点位所占比例f 对参数k 的灵敏度的影响5 结论本文建立了双点平衡/动力学吸附溶质运移模型,并用有限差分法对其进行了离散,通过编制的相应程序对模型进行了初步研究。研究表明:(1)土壤中各点的浓度随着时间的增加,总是呈现先增加后减小的趋势,且在某一时刻形成一个峰值;随着深度的增加,这个峰值会逐渐减小;远离输入端的峰值要比靠近输入端的峰值出现的晚一些。(2)靠近输入端的土壤前期浓度要比远离输入端的土壤前期浓度大很多,而靠近输入端的土壤后期浓度要比远离输入端的土壤后期浓度略小些。(3)停止污染物输入之前,对应于每一时刻的土壤水相浓度沿深度均呈递减趋势,且随着时间的增加,土壤中各点的浓度也不断地增加。停止污染物输入之后,呈现先上升再下降的趋势,而且随着时间的增加,浓度的峰值逐渐降低且峰值点沿深度逐渐下移。(4)在污染后期土壤吸附相的存在,在一定程度上也会增加土壤水的溶质浓度。(5)参数k 对于土壤中浓度分布有着重要的影响; k 的敏感性与非平衡吸附点位所占总点位的比例有关,比例越大, k 的敏感性越强。

  • 关于烟气监测中污染物浓度未检出时排放浓度的计算问题

    如题,主要是两个问题:1. 污染物实测浓度未检出,折算浓度应该如何表示?因为折算浓度需要通过空气过剩系数进行折算。看过一种表示方式是“折算浓度取检出限值的1/2计算”2. 排放浓度如何表示?我看过有两种表示方法,一种是“污染物未检出,无法计算排放浓度”,一种是“排放浓度取检出限值的1/2计算”到底哪种表达方式才是正确规范的表达方式?

高度处污染物浓度分布相关的资料

高度处污染物浓度分布相关的仪器

  • 清洁排放污染物控制过程及监测方案 赛默飞世尔科技严格契合国家和地方日益严格的法规标准,推出了为中国客户量身定制的固定污染源清洁排放监测方案,精确测量低浓度烟气条件下的组份。SO2可监测到10mg/m3, NOx可监测到5mg/m3,颗粒物浓度可以准确测量到3mg/m3以下。另外我们还提供烟气汞连续监测系统,全方位为客户做出有力支持和保障。 对低浓度气态污染物监测,通常直接抽取法CEMS受方法限制,最低量程的误差难以满足精度要求。赛默飞采用稀释法,从根本上保障了系统测量的准确性。 l 稀释法可以彻底解决凝结水问题,可以适应高温、高尘或高湿低温等恶劣工况l 恒定的稀释比例;温度、压力的变化不会影响稀释比l 高精度的分析仪和系统保证测量的精度和准确性,可以测量烟尘、SO2,NOx,NH3,Hg和SO3采用:? 43i型二氧化硫分析仪? 42i型氮氧化物分析仪? 48i一氧化碳分析仪? 410i二氧化碳分析仪? 17i氨分析仪? 颗粒物连续排放监测系统(PM CEMS)? 汞连续排放监测系统 (Mercury FreedomTM)l 全系统校准,确保测量准确l 用于脱硫、脱硝、汞等清洁排放连续监测;低浓度条件下获得理想精度,准确测量
    留言咨询
  • 产品概述EXPEC 2300 分布式多通道气体监测系统主要由全新自主研发的多通道采样仪和化学电离源飞行时间质谱仪(PTR-MS)组成,同时兼容NH3、H2S、有机硫、有机胺等多种异味因子分析仪。最多可实现124个点位监测,单点位分析周期小于30s,覆盖范围超过7.07km2。满足园(厂)区有毒有害和异味因子的连续监测需求,可实时掌握有毒有害和异味因子的排放水平和园(厂)区的风险状况,通过复合模型模式实现异味因子的精准溯源并构建完善的风险预警体系。产品特点1.多点位轮巡采样,覆盖面广;2.轮巡周期短,监测效率高;3.监测因子多,可分析有毒有害气体和异味因子;4.样品间避免交叉干扰,监测结果更精准;5.可自定义通道配置,适应不同监测需求,调整轮巡顺序,自动增加轮巡频次;6.配备智能信息化平台;应用领域园区异味溯源
    留言咨询
  • 1 引言包气带是指位于地表面以下、潜水面以上的地质介质。在包气带中发生的各种物理、化学和生物过程尤为复杂,它既是大气水、植物水、土壤水和地下水相互联系与转化的枢纽, 又是各种化学物质(如在地表施加的农药、化肥, 来自于地表渗滤液和地下水的各种溶质)运移和反应的载体。目前, 包气带物质和能量迁移转化过程日益得到人们的重视,成为农田施肥管理、土壤学、水文学、环境学、生态学等学科的重要研究内容之一。在包气带水分和溶质的迁移转化过程中,各种来源的污染物,如过度施肥的产物硝态氮、垃圾渗滤液中的有机污染物和各种重金属是土壤污染、地下水污染等问题的主要原因。广泛开展包气带污染物溶质运移实验室土柱模拟试验研究, 能够充分了解污染物在包气带中的迁移速率和浓度的时空分布规律,为深入研究包气带水分溶质运移机理、完善基于多孔介质水和溶质运移的数值模型提供科学基础,对于合理施肥、盐渍化土壤治理、土壤污染控制、地下水污染控制、生态环境恢复和改善等应用有着重要的指导意义。 2 观测系统设计2.1 目标包气带中污染物运移由于地下水的耦合作用,是一个非常复杂的动态过程,在实验室土柱模拟研究中,如何把地下水的作用耦合到数值模型中,如何精确测定包气带土壤含水量、基质势等水分参数,以及如何精确测定污染物的浓度梯度等溶质运移参数是研究的难点和重点。AZ-ES100包气带污染物运移试验模拟研究系统采用某一特定高度的微型土柱,填装原状土样,沿土体剖面埋设高精度土壤水分、土壤水势传感器,数据采集器自动采集数据,从而精确测量土壤水分的变化梯度;在土柱体底部安装有陶土盘,用于渗漏水的取样和土体张力模拟,能够有效控制土柱体底部的水势,并测量排水量。沿土体剖面埋设土壤溶液自动取样器,利用全自动离子分析单元或便携重金属分析单元进行污染物溶质浓度分析。 2.2 样品采集及传感器布设 根据研究需要,采集直径300mm、高度为300mm或600mm或1200mm的原状土,或用进行了预处理的特定类型土壤,装填入模拟土柱。300mm高的土柱沿土体剖面按3个层次、600mm高的土柱沿土体剖面按4个层次、1200mm高的土柱沿土体剖面按5个层次分别安装土壤水分、土壤水势传感器和土壤溶液取样器。土壤水分和土壤水势的数据采集时间间隔可通过数采进行统一设置为1、5、10、30s,或1、5、10、30min,或1、2、4、12、24h,也可每个 通道单独设定合适的采集时间间隔。 2.3 观测指标 包气带土壤水参数:土壤水分、土壤水势梯度值。包气带污染物参数:氨、氯化物、六价铬、氰化物、可溶性铁、亚硝酸盐、硝酸盐、硝酸盐+亚硝酸盐、联氨、正磷酸盐、挥发酚、硅酸盐、总磷、总氮、硫酸盐等溶质浓度梯度;或Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb等重金属元素的浓度梯度。 2.4 观测系统组成 AZ-ES100包气带污染物运移试验模拟研究系统由微型实验室土柱、土壤水分水势测量传感器、土壤溶液取样器、全自动土壤离子分析单元或便携重金属分析单元共同组成。 3 数据处理 包气带中污染物浓度的变化是由于污染物在地下水和土壤水的协同作用下在包气带中经过土壤孔隙运移、土壤颗粒的吸附以及土壤微生物的降解等多种因素共同影响的结果。由于污染物质主要是沿垂向运移,所以其运移模型常按垂向一维问题处理。一般认为水在土层中运移符合推流模式,若仅考虑弥散、吸附、降解作用,则污染物质在土层中垂直向下迁移的基本方程为 式中:c — 水中污染物浓度值(mg/ L) x — 垂向运移距离(m) D — 弥散系数(m2/ d) v —x 方向渗透速度(m/ d) s — 包气带土壤中污染物吸附浓度(mg/ mg) ρ— 土层干容重(g/ cm3) η— 有效空隙度。 4 参考文献 [1] 周睿,赵勇胜,任何军,等。不同龄渗滤液及其在包气带中的迁移转化研究,环境工程学报,2008,2(9):1189-1193。.[2] 刘期凤,廖家莉,张东,等。包气带土壤对Eu( Ⅲ) 的吸附,核化学与放射化学,2005,27(4):210-215。[3] 杨建锋,万书勤,邓伟,等。地下水浅埋条件下包气带水和溶质运移数值模拟研究述评,农业工程学报,2005,21(6):158-165。.[4] 高太忠,黄群贤,刘野,等。有机污染物在包气带中迁移转化试验研究,环境污染治理技术与设备,2004,5(2):42-45。.[5] 张云, 张胜, 刘长礼,等。包气带土层对氮素污染地下水的防护能力综述与展望,农业环境科学学报,2006,25(增刊):339-346。[6] 宋国慧,史春安。铬在包气带的垂直污染机理研究,西安工程学报,2001,23(2):56-58。
    留言咨询

高度处污染物浓度分布相关的耗材

  • 石油类污染物的检测分析方法:荧光法
    快速测油仪,便携式水中油分析仪,紫外测油仪,手持式测油仪--美国特纳TD-500D(美国特纳TD-500D便携式水中油分析仪,海上溢油应急监测!)海上溢油应急监测/海洋原油泄漏监测/原油管道溢油快速监测便携式水中油分析仪TD-500D,是一款用正己烷代替红外法的四氯化碳萃取剂的紫外测油仪、快速测油仪,可快速、轻松和可靠地测量水中油含量(原油、燃油、润滑油、柴油,部分的凝析油及精炼的碳氢化合物),测量范围可从0.01ppm到1000ppm。一、仪器简介:品名:便携式水中油分析仪型号:TD-500D检测对象:水中油、石油类,水中碳氢化合物品牌:美国特纳Turner Designs便携式水中油分析仪TD-500D是市面上最实惠、最容易使用的、精确及可复验的水中油及土壤中油类的分析仪,用相对安全的正己烷代替红外法的四氯化碳。TD-500D采用世界领先的技术,最简便的操作,最小型化设计,能准确地测量水中、土壤中原油、燃料油、润化油等石油污染物。TD-500D具有体积小、重量轻、精度高、操作简单、检测速度快、萃取剂相对安全等优点,广泛应用于江河湖泊等地表水的环境监测,石油石化、水文水利、火力发电厂、钢铁制造等工业污水废水、冷凝水、循环水检测,海洋溢油、管道漏油和土壤中油份含量的测定。检测原理:紫外荧光法。水中石油类的芳香烃成分,在紫外区特定波长的紫外光照射下,经激发后发射出波长更长的荧光强度,荧光强度与石油类组分含量成正比。TD-500D通过检测该特定荧光强度,测出水中石油浓度。测量范围:原油及凝析油、柴油、润滑油、液压油、燃油……应用领域:生产用水、工业废水、轮船压舱水、水力发电站水质、泄油应变、探漏、土壤中的油类等。适用标准:《水污染物排物总量监测技术规范 HJ/T 92—2002》《海洋监测规范》 GB17378.3-1998》《污水综合排放标准 GB8978-1996》《石油炼制工业水污染物排放标准 GB3551-83》《石油化工水污染物排放标准 GB428119-1984》《钢铁工业水污染物排放标准 GB123456-1992》二、检测步骤: 取100mL待测水样 ,加入10mL正己烷萃取液,振荡萃取2分钟 ,静置2分钟,待水-正己烷萃取液分层,取上层萃取液用比色管在TD-500D检测,5秒后在仪器直接显示石油类浓度。(步骤简单速度快、用相对安全的正己烷代替红外法的四氯化碳。)三、仪器特点:◆采用最先进的紫外荧光检测法,检测限更低(大部分油类),针对性更强;◆用相对安全的正己烷代替红外法的四氯化碳,且与所有的常用萃取溶剂或新的“无溶剂方法”均兼容;◆双通道 : 通道 “ A ” 用于凝析油及精炼油类(能测1ppm), 新的通道 “ B ” 则用于原油,测量范围大幅度大(> 1000ppm ),无需进行样本稀释。◆双通道设计能减少操作者误差的影响,因为操作者可能在并未进行稀释的情况下扩大测量范围以致仪器显示有高浓度,而双通道则能有效减少该影响。◆高精密度和高重复性,与红外法具有良好的相关性,大部分用途与标准的实验室重量分析方法及红外法相关。◆最快速的分析程序(分钟/样本),最少的步骤(四步)。◆一次性试管,免除清洗繁琐,方便、快捷。◆不会出现其它方法中(如红外线方法)出现的溶剂蒸发现象。◆用石油类标准溶液或其它方法的相关系数进行简易的校准。◆校准简便,CheckPointl固体校准样提供了校准的野外快速校准,允许在没有标准溶液的情况下进行即时的重新校准。◆便携式,手持式,重量大约为400克。◆电源为 4 节AAA 电池,每次更换电池后可测量的次数:1,000 次。◆CE, IP67,防尘,防水,根据ISO 9001/2000标准制造。四、技术参数:仪器名称:TD-500D便携式水中油分析仪;原理:紫外荧光法(UV);检测对象:水中的碳氢化合物:原油、凝析物、柴油、润滑油、燃油、机油、柴油类有机物;测量方法:溶剂萃取;适用溶剂:正己烷,Vertrel,AK-225,二甲苯,氟利昂,Horiba;线性范围:最高可达1000ppm,取决于碳氢化合物的种类;准确性:高于全标度的2%;重现性:高于全标度的2%;灵敏度:0.1ppm;校准:单点校准;预热时间:5秒;响应时间:5秒;测量时间:分钟或用户偏好;尺寸:4.45cm×8.9cm×18.4cm;重量:0.4kg;外壳材料:非金属;IP防护级别:符合IP67标准;防尘,防水;工作环境温度:5oC~40oC (41F~104F);适用试管:API比重,微型试管;API比重45,8mm试管,适用于所有溶剂;电源:四节AAA电池(可连续检测1000个以上样本);自动断电:被闲置3分钟后;信号显示:有,液晶显示;输出信号:无;警报:电池电量不足、线路故障、高空白样本;保修期:1年,出厂零件及售后服务。五、关于美国特纳美国特纳(Turner Designs Hydrocarbon Instruments, Inc.)仪器公司是领先的碳氢化合物分析仪、水中油监测仪的研发生产公司,在水中油分析仪领域拥有顶尖的技术和丰富应用经验。公司开发了包括便携式快速测油仪、实验室台式水中油分析仪、在线式水中油监测仪,提供了一整套完整的石油类水质监测的解决方案。美国特纳水中油分析仪广泛用于石油石化、海洋钻井平台、工业企业和环境监测等部门,以优异的产品性能帮助客户提升石油类水质检测技术。美国特纳有全面的产品线,覆盖各种用户的多种检测应用要求:TD-500D:便携式双通道水中油分析仪,现场/野外应急用;TD-3100:台式,实验室用;TD-1000C:在线式水中油监测;TD-4100C:在线式水中油监测(密闭式流通池);TD-4100:在线式水中油监测(非接触式流通池);TD-4100XDC:在线式水中油监测(密闭式流通池,防爆版);TD-4100XD:在线式水中油监测(非接触式流通池,防爆版);TD-4100XD & XDC (EO9版):软件远程控制,A/B双通道切换、仪器/USB/远程软件数据读取、保存。
  • 持久性有机污染物 (POP) 筛选工具包
    持久性有机污染物 (POP)筛选和结构确证应用工具包持久性有机污染物 (POP) 筛选工具包Description(描述)目录 编号数量持久性有机污染物 (POP) 筛选工具包TS-MKITG5011包含以下组件:TRACE TR-Dioxin 5MS GC 色谱柱:30m x 0.25mm x 0.10μm26AF047P1支S/SL 进样器 – BTO 隔膜,直径 17mm3130321150个S/SL 进样器 – 分流/不分流衬管, 5mm ID x 8mm OD x 105mm 长453500335支S/SL 进样器 – 银密封垫2903362910个S/SL 进样器 – 石墨衬管密封垫2903340610个S/SL 进样器 – 石墨刃环,适用于 0.25mm ID 色谱柱2905348810个MS 接口 – 石墨/Vespel 刃环,适用于 0.25mm ID 色谱柱2903349610个1.1mL 螺口锥形瓶,Clear Gold 级玻璃制品1.1-STVG500个带预装硅树脂/PTFE 密封垫的 8mm 螺旋盖8-SC-ST15500个10μL 固定式针头注射器,50mm 长,25 号,锥形针头365005251支持久性有机污染物 (POP) 结构确证工具包Description(描述)目录 编号数量持久性有机污染物 (POP) 结构确证工具包TS-MKITG5021包含以下组件:TRACE TR-Dioxin 5MS GC 色谱柱:60m x 0.25mm x 0.25μm26AF154P1支S/SL 进样器 – BTO 隔膜,直径 17mm3130321150个S/SL 进样器 – 分流/不分流衬管,5mm ID x 8mm OD x 105mm 长453500335支S/SL 进样器 – 银密封垫2903362910个S/SL 进样器 – 石墨衬管密封垫2903340610个S/SL 进样器 – 石墨刃环,适用于 0.25mm ID 色谱柱2905348810个MS 接口 – 石墨/Vespel 刃环,适用于 0.25mm ID 色谱柱2903349610个1.1mL 螺口锥形瓶,Clear Gold 级玻璃制品1.1-STVG500个带预装硅树脂/PTFE 密封垫的 8mm 螺旋盖8-SC-ST15500个10μL 固定式针头注射器,50mm 长,25 号,锥形针头365005251支
  • 持久性有机污染物 (POPs) 筛选工具包
    产品特点:订货信息:持久性有机污染物 (POPs) 筛选工具包描述  部件号数量持久性有机污染物 (POPs) 筛选工具包 TS-MKITG5011 包含以下组件:    TRACE TR-Dioxin 5MS GC 色谱柱:30m x 0.25mm x 0.10μm26AF047P1 支S/SL 进样器 - BTO 隔垫,直径 17mm 3130321150 个S/SL 进样器 - 分流/不分流衬管,5mm ID x 8mm OD x 105mm 长 453500335 支S/SL 进样器 - 银隔垫  2903362910 个S/SL 进样器 - 石墨衬管隔垫 2903340610 个S/SL 进样器 - 石墨密封圈,适用于 0.25mm ID 色谱柱2905348810 个MS 接口 - 石墨/Vespel 密封圈,适用于 0.25mm ID 色谱柱2903349610 个1.1mL 螺口样品瓶,透明玻璃 1.1-STVG500 个带硅胶/PTFE 隔垫的 8mm 螺口盖 8-SC-ST15500 个10μL 固定式针头注射器,50mm 长,25 号,锥形针头365005251 支

高度处污染物浓度分布相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制