面议

暂无评分

SciDre

暂无样本

S1100

--

欧洲

  • 银牌
  • 第2年
  • 一般经销商
  • 营业执照已审核
核心参数

紧凑的两区Bridgman炉,气密工艺室,生长温度为1100℃

Bridgman熔炉1100是一种最先进的晶体生长系统,设计用于典型最高工作温度为1100°C的应用。这款多功能垂直管式炉具有两个独立控制的隔热加热区,每个加热区长度为160毫米,以及一个气密工艺室,用于在生长过程中调节特定的气氛。

电阻加热元件位于距离内管约10毫米的地方,内管作为气密处理室和保护屏障,在保持有效热传递的同时提高了加热元件的使用寿命。炉子配备了先进的PID温度控制精确无级温度调节跨越两个加热区。

安全是最重要的,集成过热保护机制和控制热电偶,精确测量过程管和加热元件之间的关键区域的温度,特别是在每个加热区的中心。

该炉在悬挂坩埚或直径达26毫米的密封石英管中促进有效的晶体生长。

该设计可容纳拉动和旋转驱动,使坩埚或密封石英管在晶体生长过程中实现垂直运动和旋转。控制速度可以设定在0.2毫米/小时和5毫米/小时之间。坩埚的安装和拆卸可以在炉膛下方的自由空间内轻松完成,只需将拉拔驱动器的末端从下加热区拉出即可。

在与用户密切协商的情况下,我们提供了为系统配备额外功能的选择,并在炉组件和软件方面不断适应新的要求。

Bridgman熔炉1100是研究人员和制造商寻求可靠有效的基础Bridgman晶体生长平台的理想解决方案,结合了精度,安全性和易于操作。

加热

两个电阻加热区,每个长160毫米

工作温度Top = 1100℃

最高温度Tmax = 1200°C

每个区域的独立温度调节,由单独的热电偶控制

大气

气密工艺室

预期气体为氩气、氮气、氧气和5%的氢气

坩埚

坩埚位置:悬挂在平移轴上

坩埚直径:最大26毫米。

可以使用带锥形端和上钩的密封石英管

操作

坩埚安装:下加热区后驱动平移轴出下加热区

坩埚运动:由上区降至下区

自由行程范围500毫米

翻译速度:在大约的范围内可变。0.2 mm/h ~ 5mm /h

转速高达50转/分钟

快速定位齿轮

专门开发了GUI软件,基于Linux的操作系统

远程控制由TeamViewer或RustDesk可能

所需的实验室连接

工艺用气供气

工艺气体的通风和排风系统

不需要冷却水

电源与交流230v, 16a, 50/60Hzy

炉内尺寸

高:2500mm,宽:540 mm,深:480mm

腿可在手术台上取下(高度大于1780毫米)



发表文章

1. (2020)Single crystal growth and luminescent properties of YSH:Eu scintillator by optical floating zone method  Chemical  Physics Letters, Volume 738, 136916

2. (2020)Anisotropic character of the metal-to-metal transition in Pr4Ni3O10   Phys. Rev. B 101, 104104

3. (2020)Synthesis of a New Ruthenate Ba26Ru12O57 Crystals 2020, 10(5), 355

4. (2020)Synthesis and characterization of bulk Nd1- SrxNiO2 and Nd1- xSrxNiO3  Phys. Rev. Materials 4, 084409

5. (2020)Magnetic phase diagram and magnetoelastic coupling of NiTiO3 Phys. Rev. B 101, 195122

6. (2019)High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3 Crystals 2019, 9(7), 324

7. (2019)Magnetic properties of high-pressure optical floating-zone grown LaNiO3 single crystals Journal of Crystal Growth Volume 524, 15 October 2019, 125157

8. (2019)Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce) Phys. Rev. Materials 3, 024204

9. (2019)Pushing boundaries: High pressure, supercritical optical floating zone materials discovery Journal of Solid State Chemistry 270 (2019): 705-709

10. (2018). Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO3. Nature Communications 9:43

11. (2017). Single-crystal growth and physical properties of 50% electron-doped rhodate Sr 1.5 La 0.5 RhO 4 Physical Review Materials 1(4), 044005

12. (2017). Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy) 1- xCaxCoO3-δJournal of Solid State Chemistry 254, 69-74

13. (2017). Large orbital polarization in a metallic square-planar nickelate. Nature Physics 13, 864–869

14. (2017). High-Pressure Floating-Zone Growth of Perovskite Nickelate LaNiO3 Single Crystals. Crystal Growth & Design 17(5), 2730-2735.

15. (2017). High-pressure optical floating-zone growth of Li(Mn,Fe)PO4 single crystals. Journal of Crystal Growth, 462, 50-59.

16. (2016). Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562.

17. (2016). Stacked charge stripes in quasi-2D trilayer nickelate La4Ni3O8. PNAS 2016 113 (32) 8945-8950.

18. (2016). Single Crystal Growth of Pure Co3+ Oxidation State Material LaSrCoO4. Crystals, 6(8), 98.

19. (2015). Floating zone growth of Ba-substituted ruthenate Sr2?xBaxRuO4. Journal of Crystal Growth, 427, 94-98.

20. (2015). High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12O19. APL Materials 3, 062512.

21. (2015). Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds. Journal of Physics D: Applied Physics, 48(16), 164016.

22. (2014). Brownmillerite Ca2Co2O5: Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions. Chemistry of Materials, 26(24), 7172-7182.

23. (2014). Low-temperature properties of single-crystal CrB2. Physical Review B, 90(6), 064414. (Also on archiv.org.)

24. (2014). Effect of annealing on spinodally decomposed Co2CrAl grown via floating zone technique. Journal of Crystal Growth, 401, 617-621. (Also on arxiv.org.)

25. (2013). de Haas–van Alphen effect and Fermi surface properties of single-crystal CrB2. Physical Review B, 88(15), 155138. (Also on arxiv.org.)

26. (2013). Phase Dynamics and Growth of Co2Cr1–xFexAl Heusler Compounds: A Key to Understand Their Anomalous Physical Properties. Crystal Growth & Design, 13(9), 3925-3934.

27. (2011). Exploring the details of the martensite–austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements. Applied Physics Letters, 98(25), 252501.

28. (2011). Challenges in the crystal growth of Li2CuO2 and LiMnPO4. Journal of Crystal Growth, 318(1), 995-999.

29. (2011). Self-flux growth of large EuCu 2 Si 2 single crystals. Journal of Crystal Growth, 318(1), 1043-1047.

30. (2010). Influence of heat distribution and zone shape in the floating zone growt·h of selected oxide compounds. Journal of materials science, 45(8), 2223-2227.

31. (2009). Highly ordered, half-metallic Co2FeSi single crystals. Applied Physics Letters, 95(16), 161903.

32. (2009). Single-crystal growth of LiMnPO4 by the floating-zone method. Journal of Crystal Growth, 311(5), 1273-1277 (Also on uni-heidelberg.de.)

33. (2008). Crystal growth of rare earth-transition metal borocarbides and silicides. Journal of Crystal Growth, 310(7), 2268-2276.


用户单位

中国科学院物理研究所

中国科学院固体物理研究所

北京师范大学

中山大学

南昌大学

上海大学

北京大学

北京航空航天大学

......


售后服务承诺

产品货期: 200天

整机质保期: 1年

培训服务: 安装调试现场免费培训

用户评论
暂无评论
问商家

SciDre单晶炉S1100的工作原理介绍

单晶炉S1100的使用方法?

SciDreS1100多少钱一台?

单晶炉S1100可以检测什么?

单晶炉S1100使用的注意事项?

SciDreS1100的说明书有吗?

SciDre单晶炉S1100的操作规程有吗?

SciDre单晶炉S1100报价含票含运吗?

SciDreS1100有现货吗?

德国SciDre两区Bridgman单晶生长炉1100度低压信息由南通宏腾微电子技术有限公司为您提供,如您想了解更多关于德国SciDre两区Bridgman单晶生长炉1100度低压报价、型号、参数等信息,宏腾微电子设备客服电话:400-860-5168转6134,欢迎来电或留言咨询。
移动端

仪器信息网App

返回顶部
仪器对比

最多添加5台