视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案

阅读TA的文章
二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

清晰度与辨析度——安徽大学林中清33载经验谈(14)

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2020/11/16 10:56:54
导读: 拍摄扫描电镜图像时经常遇到这样的困惑,30万倍以上的高分辨像往往很难调整清晰。原因何在?本文将以辩证的观点来对图像的清晰度与辨析度加以探讨。

【作者按】日常评价一张图片质量的好坏,清晰不清晰往往排在第一位,大部分的图片没有了清晰度基本都被放入废片的篓子里面。这一评判标准也被许多杂志引入对科学图片的基本要求之中,即便是面对扫描电镜的图片,要求也是如此。许多科研论文被杂志社打回的原因有很多,图片的清晰与否正是常常被提及的重要原因之一。

随着对扫描电镜成像原理的了解越深入、分析的越充分,越觉得以是否清晰做为扫描电镜图像最重要的评判标准,显得过于偏颇。特别是以图像清晰度不足为理由来否定图片中所反映出的形貌信息,这就充满了无理的偏见。

在进行扫描电镜测试时常常发现,图像的清晰度会随着放大倍率的提升而逐渐变差。如果用场发射扫描电镜进行测试,大部分样品的图像在放大到十万倍时还能保持较好的清晰度;超过十万倍,随着倍率的提高,图像清晰度将逐渐变差;放大倍数一旦超过三十万倍,大部分图像的细节清晰度都会下降的极其迅猛,很难获取所谓绝对清晰的结果。电子枪本征亮度和样品密度越低这种清晰度的下降速度就越大。

1.PNG

2.PNG

钨灯丝扫描电镜,电子枪本征亮度低,该变化趋势要低一个数量级。一万倍以下清晰度优异,一万到五万倍清晰度尚可,五万倍以上下降明显,十万倍以上难以获得清晰图片。

3.PNG

4.PNG

为什么会出现这种图像高分辨与高清晰互相脱节的现象,即图像的高分辨却无法保证图像的高清晰?

 下面将从图像的清晰度与辨析度谈起。

一、图像的清晰度和辨析度

1.1 图像的清晰度

影像上各细部纹理及其边界的清晰程度

要保证图像细部纹理能被清晰分辨,纹理边界的明暗差异,也就是衬度,必须达到一定值。纹理边界的衬度差异越大,边界的区分就越明析,清晰度也就越高。 

1.2 图像的辨析度

影像上各细部纹理及其边界的分辨程度

图像辨析度是对图像纹理细节分辨能力的概括性表述。图像的辨析度越高所能分辨的纹理细节就越细小、越丰富。

1.3 图像辨析度的要求

对于相邻两点能被分辨的极限,也就是所谓的分辨率,被认为最具权威性的诠释是“瑞利判据”的概念。 

当两个物点的像斑重叠在一起,就有可能无法分辨这两个物点,到底重叠成怎样的程度刚好能分辨这两个物点?这就是一个分辨极限的问题。对这个问题,国际学术界通常都以瑞利提出的判据为准。

瑞利判据:当一个爱里斑的中心与另一个爱里斑的第一级暗环重合时,刚好能分辨出是两个像。

5.PNG

依据瑞利判据的规定,我们对事物的分辨极限并不是处于清晰分辨,而是处于刚好分辨。此时图像的清晰度也不是要求绝对的清晰,而是足够的清晰,以至能刚好分辨细节。

 1.4 图像的衬度和清晰度

前文有介绍,图像衬度指的是图像上的明暗差异。正是存在明暗差异,才能形成图像,否则就是单纯的灰度或色度板。

图像上细节边界的衬度差异越大,边界越容易被分辨,图像清晰度也就越高。细节衬度的影响因素有两个层次。

6.PNG

7.PNG

从以上实例可见,细节边界的衬度值决定着图像清晰度,衬度越大清晰度越高。对这个衬度的影响来自两个方面:

a. 图像整体对比度调整较差引发细节衬度弱,清晰度不足。

b. 图像细节部位的信息差异较小造成图像的清晰度不足。

无论细节衬度不足来自哪方面的原因,要提升图像清晰度,增加细节的衬度是关键。通过提升图像的对比度来改善图像的清晰度,常常会丢失一部分样品细节。

清晰度和辨析度经常以一种矛盾的态式而存在。提升清晰度是以损失辨析度为基础。清晰度高而辨析度不足、辨析度强但清晰度弱,两者往往很难兼得。该现象在扫面电镜中经常出现,特别在高、低倍率的图像对比中更是普遍现象。

8.PNG

为什么扫面电镜高倍率图像清晰度往往较差,而且倍率越高清晰度越差?下面将从SEM的成像方式说起。

二、扫描电镜图像的清晰度与辨析度

扫描电镜的成像方式类似电视,用一束高能电子在样品表面扫描,如同用电子束将样品分割成一个个小单元。各单元的面积影响着扫描电镜图像的像素单元面积大小,而图像像素单元的面积被认为是图像分辨力的决定因素之一。理论上来说:像素单元的面积越小,图像的分辨能力越强。图像的分辨能力越强,其细节的辨析度也越高。

要提高扫描电镜图像的分辨能力,就要尽可能的将划分出来的像素单元面积降下来。但是当该单元面积降到一定程度时,必然会受到样品中电子信息溢出范围的影响,由此形成了扫描电镜表面形貌像的清晰度与辨析度之间的矛盾关系。如何认识这一矛盾的关系?30万倍以上图像为什么不清晰?是不是这种矛盾的关系只存在高倍率的图像中?

2.1 扫描电镜图像中辨析度与放大倍数的关系

扫描电镜是人类将视力往微观世界中去延伸的工具。

一直以来的主流观点认为,人眼的视力极限为明视距离(25cm)下,最小能分辨相距0.1mm的两个小点,实际上人眼能轻松分辨的最小距离往往大于1mm。

扫描电镜的作用就是将样品上两个小点的最小间距至少放大到人眼所能分辨的最小距离。假如人眼能分辨的最小间距定义为0.1mm,那么仪器要分辨1nm的细节就需要将该细节放大到0.1mm。此时扫描电镜的放大倍率是10万倍,该倍率也被称为1纳米细节的有效放大倍率。现实中人眼能轻松分辨的是1mm左右;对应为30万倍放大3纳米的细节。

9.PNG

2.2 扫描电镜图像细节清晰度与放大倍数的关系

图像清晰度与细部纹理边缘的衬度有关。细部纹理边缘的衬度越大,细节越容易被清晰分辨,图像也就越清晰。扫描电镜图像的细节衬度主要取决于两个因素的比较:

1. 样品上所需区分的细节大小。

2. 形成图像的电子信息集中溢出的单元面积。

这两个面积之间的比值将会对扫描电镜图像的清晰度产生极大的影响。当样品上所需区分的细节面积远大于电子信息的溢出范围时,此时该溢出区的信息可以看成一个均匀的斑点,溢出区的电子信息不均匀分布就不会对细部纹理产生影响,细部纹理边缘的衬度也较大,图像将较为清晰。但是当这两个面积之间比值接近1:1时,甚至细节面积小于信息主体溢出区面积时,电子信息溢出时的不均匀分布就会对细部纹理的衬度产生影响,从而影响图像的整体清晰度。

扫描电镜的细节分辨与放大倍数有很大的关联,放大倍数越大所能分辨的细节面积也就越小,也就越接近信息的扩散面积,对图像清晰度产生的影响也就越大。那么图像清晰度受到影响的放大倍数,即倍率阈值,最大能达到多少?

下面将从扫描电镜放大倍数与样品细节分辨以及电子束斑大小与信息溢出区面积的关系,这两个方面来切入探讨。  

2.2.1 扫描电镜放大倍数与样品的细节分辨

日立扫描电镜图像的采集按照电子束在样品表面的扫描点阵,通常区分为:640×480,1280×960,2560×1920,5120×3840这几种模式,其中1280×960用的最多。该模式表示电子束将样品的扫描区域划分为长1280份、宽960份。

按照传统理念:同等面积,分割份数越多;同等分割份数,分割的总面积越小则分割出来的单元面积越小。单元面积越小获取的细节信息也越多,图像分辨率也越高。

早期的扫描电镜图像尺寸,宽各厂家不一定相同,但是“长”都固定为5吋照片的尺寸,为127mm。因此这个值被称为“照片放大”尺寸,放大倍数也被称为:照片放大倍数。

“照片放大”是目前唯一被各电镜厂家在计算放大倍数时所共同认可并采用的图像尺寸。故以下探讨都以“照片放大”的“长”,也就是127mm为标准来展开。

A. 扫面电镜的放大倍数(M)

扫描电镜的放大倍数(M)被定义为:

图像尺寸(L1)除以电子束在样品上的扫描范围(L2)

10.PNG

B. 电子束在样品表面的扫描范围

依据公式可得出电子束在样品上的扫描范围L2 = L1/M。如果是“照片放大”,L1为定值127mm,那么L2=127mm/M。当M为10万倍时,L2为1270nm。也就是说放大倍数为10万倍时,电子束在样品上的扫描范围的长为1270纳米。

C. 电子束切割样品的单元面积

如果图像采集以1280×960的扫描模式进行,那么电子束在样品上切割的单元面积边长L2' 就是1270 ÷ 1280 ?1nm。

一切都十分理想的话,10万倍在理论上应该能区分1纳米的细节,这也是该倍率被认为是有效放大倍数的缘由。

但扫描电镜分辨率并不是由电子束在样品上切割的单元面积,这个单一因素来决定。人眼的分辨力、样品电子信息溢出区的面积,将叠加在这个因素之上,共同对图像分辨率产生影响。最终结果,取决于这三方面单元面积之间的最短板,也就是取决于单元面积最大的那个因素。

在现实中,人眼在图像上能轻松分辨的是1mm距离,也就是在10万倍分辨10nm或30万倍分辨3nm细节。那么电子信息溢出区的面积,最小是多大呢?

2.2.2 电子束斑大小与信息溢出区面积

电子束轰击样品,将激发出样品的各种信息。二次电子和背散射电子是形成样品表面形貌像各种衬度的两个主要信息源。其在样品表面的溢出区面积影响着样品表面形貌像的细节分辨力,溢出区面积越小,分辨力也就越强。

那么这个溢出区有何特性?与电子束斑的大小有何关联?最小的溢出区有多大呢?下面将一一做详细的讨论。

A. 信息溢出区的特性

在经验谈(1)、(5)中有详细的介绍,在高能电子束轰击样品时,样品电子信息的溢出区将拥有以下两个特点:

1. 随着加速电压增加,电子束在极表层直接产生的二次电子(SE1)会减少,由内部散射电子引发的表层二次电子(SE2)会增多,并逐渐成为电子信息的主体。此时信息溢出区将扩大,样品表面细节随之被大量掩盖,图像辨析度也大大下降。这是低加速电压有更好的细节分辨的缘由。

2. 溢出样品表面的电子信息分布并不均衡。二次电子多集中在中心,形成内强外弱的形态。背散射电子的溢出特性则相反。信息源能量越大,溢出区面积越大、均匀性越差。

11.PNG

B. 电子束斑的大小与信息溢出区面积的计算

以下是SEM三张经典的电子束束流与直径关系图 。

12.PNG

从图中可见,同等条件下,加速电压越小、束流越大,束斑直径越大。直径最小的是冷场电子枪,加速电压30KV、束流1pA,直径1.3nm左右;1kv、1pA,是2.6nm左右。

实测时,电子束流不可能低至1pA,大于3KV的加速电压,对极表层信息抑制过大,不利于呈现5纳米以下细节信息。故该尺度的表面信息常用1KV甚至更低的加速电压来观察。此时束斑直径为2.6nm左右,仅考虑能量最弱的二次电子在样品中的自由扩散,溢出区直径最小也不会小于2.6nm

下面以1KV加速电压为参考来推断仪器的分辨率。

2.2.3 扫描电镜的信息扩散范围与细节的分辨率

依据瑞利判据,理想状态下,假如两个点的半径相同,分辨率可认为等于信息扩散范围的半径。以1KV时束斑直径来计算,扫描电镜的细节分辨应该不优于1.3纳米。

本人的SEM实测经历:从没有测试到被验证确实存在的1纳米细节。所能检测到,被氮气吸附脱附法验证存在的最小细节是:MOF材料中的ZIF-8,孔径为1.3 - 1.5纳米左右。

13.PNG

2.2.3 图像清晰度与溢出区半径的关系

对于扫描电镜来说要想清晰分辨半径为R1和R2的两点,这两点的中心至少应当间隔R1+R2的距离。否则两点之间将部分重合而使得清晰度下降,图像趋向模糊。如果两个斑点大小一致,这个距离就是直径。斑点的均匀性越好,边界衬度就越大,图像的清晰度也越高。

2.2.4 扫描电镜放大倍数与图像清晰度

前面介绍,10万倍,采用1280×960点阵,电子束在样品上分割的单元是边长为1纳米的区域,这完全满足细节分辨的需求,因此讨论图像细节清晰度时不需考虑它的影响。只需对比人眼所轻松分辨的最小距离和信息的扩散范围。

加速电压过高(≥3KV)激发深度过大,极表层信息损失严重,不利于5纳米以下细节信息的呈现。1KV左右加速电压对这些细节的呈现影响小,是探讨分辨率和清晰度的基石。此时信息溢出区直径:≥2.6nm,契合30万倍区分3nm细节。因此保持图像清晰度的最大倍率阈值常为:30万倍。超过30万倍图像清晰度都不可避免的会受到一定程度的影响。

14.PNG

15.PNG

2.3 扫描电镜图像辨析度与清晰度的辩证关系

前面探讨了扫描电镜图像的清晰度和辨析度与放大倍数之间的联系,以及为什么放大倍数到30万倍就必然对图像清晰度产生影响。下面将深入探讨它们之间的辩证关系。

所谓辩证关系是指:对立统一、否定之否定、量变到质变。

图像清晰度和辨析度之间即有相互统一的一面,清晰度好辨析度也优异;但也存在相互对立的一面,辨析度越好清晰度却越差,转换点与放大倍数这个量的改变有关。引发清晰度和辨析度相互对立的放大倍率,可称为:倍率阈值,该值与样品电子信息的溢出范围有关。溢出范围越大,这个倍率阈值就越低,也就是说获取清晰图像的放大倍率越低。

信息溢出范围受以下因素影响:样品特性、电子枪本征亮度、加速电压及束斑大小、信号源能量。

样品结构越松散、电子枪本征亮度越低、束斑越粗、加速电压过高或过低、信号源能量大则信息扩散范围大。引起清晰度变差的放大倍率阈值也低。

A)样品结构越松散,同等条件下SE1就越少,SE2会增多,在样品中形成的电子信息扩散对图像清晰度和表面细节影响也加大,不容易形成清晰的高分辨图像。

B)电子束束斑面积增大,样品电子信息溢出的单元面积也随之增加且均匀性随面积的增加将变差,造成的结果是图像清晰度与辨析度俱佳的倍率阈值降低。

电子枪本征亮度的不足、束流及工作距离的增加、加速电压的减少都会使得电子束束斑面积得到增加。

B1)电子枪本征亮度是表述电子枪性能的最重要指标。该值越小,同等条件下束流密度也就越小、会聚角越大。结果是信息的溢出范围随之增大,而信息量却随之减弱,图像清晰度及辨析度相一致的放大倍率阈值也低。

 由于场发射电子枪和热发射电子枪亮度值相差极大,达三个数量级,因此成像质量如同本文开头所展示的,只要超过五万倍就将出现质的巨大区别。

B2)束流及工作距离的加大都将增加电子束的离散性,同等条件下对图像的清晰度必然会产生影响。而对样品细节辨析度的影响因素不仅包含清晰度,探头对信息的接收角度对较大细节分辨的影响往往更为关键,起的作用也更大。这就引发了清晰度和辨析度偏离点的倍率阈值降低。

B3)降低加速电压,会使得发射亮度减弱,电子束斑的面积及离散度增加,这将降低图像清晰度的倍率阈值。过高的加速电压也会使得间接二次电子(SE2)增多,当其成为形貌像的主要信息时,也会对图像的清晰度产生影响。加速电压越低对样品信息的激发越集中在表面,有利于表面信息的再现。以上特性都会对清晰度与辨析度的偏离程度产生影响。

C)二次电子能量要远低于背散射电子,以它为主形成的表面形貌像在清晰度上拥有优势。但形貌细节是由探头接收样品信息的角度所形成,以背散射电子为主形成的形貌像往往拥有更好的信息接收角度,更擅长表现较大的样品细节。

需要强调的是,任何因素的改变对结果的影响都有一个量变的积累过程,少量的变动对结果影响不大。多种因素的叠加或者单个因素的大范围变化才会带来的明显质变。

D)实例的展示及探讨

D1)样品结构松散,保证图像清晰度的倍率阈值小。

16.PNG

D2)电子枪亮度对图像清晰度的影响

17.PNG

D3)改变加速电压对图像清晰度倍率阈值的影响

18.PNG

增加加速电压,电子束发射亮度随之增大,这有利于扫描电镜图像的高分辨和高清晰。从信息的激发上来看,SE2的增加不利于表面细节的高分辨,当该信息增加为图像的主导因素时,对图像的清晰度也会产生不利的影响。

19.PNG

低加速电压(1KV及以下),如500V。图像清晰度的倍率阈值随工作距离的加大,降低极为迅猛,辨析度也同步下降。

20.PNG

以上三组图片为同一个样品在加速电压为500V时采用5mm、8mm以及15mm工作距离拍的三个不同倍率的图片。

图中可以看到:WD=5mm时在十万倍还能保证足够的清晰度和细节辨析度;WD=8mm时,只能在5万倍保持较好的清晰度;当WD达到15mm时,2万倍都无法保持图像的清晰度。

1KV以下加速电压有利于呈现样品的极表层信息,对结构松散、细节细小的样品影响较小。但要降低该加速电压下的电子束离散现象,必须采用极小的工作距离(WD≦3 mm)。

小于5纳米的样品细节,体积过小,属于样品的极表层信息,大于3KV的加速电压往往对表面信息的激发过深,很容易掩盖掉这些信息。故对于这类信息的呈现常采用小工作距离、低加速电压(1KV及以下)的测试条件,如介孔材料。讨论高加速电压下的分辨率指标,个人经验是无稽之谈。

21.PNG

D4)信息能量对保证图像清晰度倍率阈值的影响

 背散射电子能量较大,在样品中扩散范围大。溢出范围及均匀性都较差,保持图像清晰度的倍率阈值也较低。对极小的样品细节(小于10nm)辨析度影响也较大。但低倍观察较大细节(200纳米),清晰度不受影响,辨析度优势明显。

22.PNG

23.PNG

三、结束语

图像清晰度是指图像细部纹理的清晰程度。细部纹理边界的衬度大小将影响着图像的清晰程度。

图像辨析度指的是图像细部纹理的分辨程度。细部纹理被分辨的越充分,其辨析度也就越高。依据瑞利判据:对图像细部纹理的辨析,只需要有足够的清晰度即可。

扫描电镜图像清晰度取决于信息溢出单元的均匀性及面积大小与图像所呈现的细节面积之间的比值。细节面积越大于信息溢出单元,图像的清晰度越好。辨析度与仪器的放大倍率有关,倍率越高,电子束划分的单元面积越小,图像越能呈现更小的细节,也越接近信息溢出单元的面积大小。当两者面积相当,图像清晰度必然会受到信息溢出区均匀度的影响而变差。进一步的是,辨析度也会受到信息溢出单元面积的限制,分辨率不会优于信息溢出单元的半径。

扫描电镜图像的清晰度和辨析度之间存在着既对立又统一的辨证关系。保持图像清晰度和辨析度的统一,存在一个倍率阈值。一旦越过这个倍率阈值清晰度和辨析度就相互背离,即图像辨析度高而清晰度变差。该倍率阈值与样品的特性、电子枪的亮度、加速电压、束流大小、工作距离、信息源的能量等因素有关。

紧密的样品结构、较大的电子枪本征亮度、较低的信息源能量、较小的工作距离和电子束束流以及合适的加速电压都有利于提升保证图像清晰度和辨析度相统一的倍率阈值。

样品的结构和电子枪本征亮度是扫描电镜测试过程中的固有条件无法更改,但它们却是决定测试结果能获取多大倍率阈值的根基。冷场电子枪本征亮度最大,因此它保证高倍率图像清晰度和辨析度的能力最强。

信息源、工作距离、加速电压以及束流的选择是扫描电镜测试过程中的变量,它们的正确选择对你获取足够充分且清晰的形貌像极为关键。这些条件的选择对最终结果的影响都具有两面性,辨证的思维模式对正确的条件选择极为关键

采用能量较小的二次电子,有利于缩减信息的扩散范围。较小的工作距离会减少电子束的离散度、促进镜筒内探头获取更充分的二次电子、压缩能量较高的背散射电子对图像细节和清晰度的影响。结果:保证图像清晰度的倍率阈值较高,有利于展现较小的样品细节(<10nm)信息。但缺点在于探头接收样品信息的角度不佳,对充分展现较大的样品细节信息(>20nm)不利,使得该类样品信息的图像清晰度足够,表面细节却缺失严重,清晰度和辨析度形成较大的偏离。

束流较低,束斑的尺寸也相应的较小。信号溢出区面积也会较小且均匀,这有利于提升图像清晰度的倍率阈值,但却会引起图像信号量的缺失,不利图像的信噪比和细节辨析。

改变加速电压对图像的清晰度和辨析度同样也会带来正反两个方面影响。提升加速电压会增加电子束的发射亮度,使得电子束的密度增加、会聚角减小,有利于缩小电子束直径同时增加电子束的强度和收敛性,但不利之处在于电子束激发样品内部信息(SE2)增多而直接激发的极表层信息减弱,对极表层信息的呈现不利。依据实际测试经验,大于3KV的加速电压不利于小于5纳米表面形貌细节的呈现,如介孔类样品。这类样品信息需要采用1KV甚至更低的加速电压在极小的工作距离(3mm以下),选用极为充足的二次电子来予以呈现。该加速电压下采用大工作距离,虽然形貌信息更充分但是电子束的离散度及探头接收信息的量都会严重不足,使得保持图像清晰度的倍率阈值也下降的较为明显,超过一定程度也会对细节信息的分辨产生影响。

以上结果的演化都遵循着量变到质变的原理。最终结果取决于各个变量的负面量的积累是否会引发质变的产生。

综合以上分析我们可以推断:扫描电镜表面形貌像的极限分辨率应该出现在1KV加速电压,而此时电子束斑引起的信息扩散范围应该在2.6纳米左右,依据瑞利判据仪器的分辨率应该在半径范围,即1.3纳米左右。即便样品密度极高,引发的信息扩散极少,也很难出现低于1纳米的细节分辨。

人眼在图像上能轻松分辨1mm的细节,对应着图像放大30万倍后轻松分辨3纳米的细节,与1KV加速电压下的信息溢出范围(3纳米左右)相契合,因此在进行扫描电镜测试时往往发现放大30万倍以上的图像,清晰度很难得到保证。

30万倍可被认为是保持图像清晰度的最高倍率阈值。超过30万倍,图像清晰度都会有不同程度的下降,冷场扫描电镜由于电子枪亮度最大,因此下降幅度最小。

随着以上对图像清晰度的不利因素叠加,保持图像清晰度的倍率阈值会有不同程度的下降。对于冷场扫描电镜(regulus82系列)来说:500V加速电压、15毫米工作距离这个极差的测试条件下,保证扫描电镜图像清晰度的倍率阈值还是能保持在1万倍左右。

参考书籍:

《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社

《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社

《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社  

《显微传》 章效峰 2015年10月 清华大学出版社

作者简介:

林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。  

延伸阅读:

【系列专题:安徽大学林中清33载扫描电镜经验谈】

林中清系列约稿互动贴链接(点击留言,与林老师留言互动):

https://bbs.instrument.com.cn/topic/7656289_1


【专家约稿招募】

为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。

若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。

本期分享的是林中清老师为大家整理的33载扫描电镜经验谈之清晰度与辨析度,以飨读者。(本文经授权发布,分享内容为作者个人观点,仅供读者学习参考,不代表本网观点。)


[来源:仪器信息网] 未经授权不得转载

标签: 林中清电镜
用户头像

作者:林中清

总阅读量 8w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~