新能源电池研究用高压平流泵

仪器信息网新能源电池研究用高压平流泵专题为您提供2024年最新新能源电池研究用高压平流泵价格报价、厂家品牌的相关信息, 包括新能源电池研究用高压平流泵参数、型号等,不管是国产,还是进口品牌的新能源电池研究用高压平流泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合新能源电池研究用高压平流泵相关的耗材配件、试剂标物,还有新能源电池研究用高压平流泵相关的最新资讯、资料,以及新能源电池研究用高压平流泵相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

新能源电池研究用高压平流泵相关的厂商

  • 400-860-5168转6092
    武汉电弛新能源有限公司是一家在锂电池、氢燃料电池领域专注于前沿检测技术与仪器开发,制造,以及销售服务的科技创新型企业。我们不断发掘客户的前沿需求,坚持自主创新,追求产品的智能化、数字化和人性化,并立志成为全球一流的测试技术提供商。领先的产品开发技术、多场景需求导向、配套的测试技术服务、高质量人才基础上的广泛合作是我公司的四大优势。公司设立了2个事业部,锂电池事业部与氢能事业部。锂电池事业部的产品覆盖了锂电池生产的全生命周期,为锂电池的研发、测试、验证等环节提供了系统、专业的解决方案和服务,能够满足电池新材料的开发、工艺优化以及电池安全评估等多场景的需求。我们致力于让我们的测试仪器能够实现从实验室研究到生产线检测的快速转换,提高测试效率,降低测试成本。氢能事业部的产品,则包括了催化剂研究,膜电极(MEA)研究,电解水制氢测试等。DSR 数字型旋转圆盘电极装置,可以评价氧还原(ORR)、二氧化碳还原(CO2RR)等催化剂。980系列PEM燃料电池膜电极测试装置,780系列电解水制氢测试装置都可以方便相关科研领域的研究。公司秉承“创新,匠心”的理念,依托国内211/985高校的技术支持和人才基础,与国内主流厂商建立深度应用孵化的合作关系,服务于中国新能源研究领域和制造业,提供卓越的测试设备、直接有效的解决方案以及高效周到的技术服务。专于电池,精于测试。武汉电弛新能源有限公司竭诚为您!
    留言咨询
  • 武汉之升新能源有限公司是由东莞市之升化工有限公司电池事业部全班人马由于业务快速发展需要组建而成,是专业从事液流电池测试系统(包括硫酸体系/混酸体系/有机体系的钒液流电池、锂液流电池、锌溴液流电池等)、锂电实验成套装置、燃料电池实验装置开发的高科技企业,致力于为高校、研究所以及企业提供各种电池类型实验室研究的全套设备解决方案。公司与国内外多所大学(清华大学、北京大学、辛辛那提大学、香港城市大学、香港科技大学、新加坡南洋理工大学、浙江大学、南开大学等)、研究所(中科院化学所、山东省科学院新材料研究所、东岳集团研究院等)拥有良好的合作关系,承担了众多单位的技术服务和产品开发工作,为企业和科研机构节省了大量的研发和人员费用,在行业内拥有较高的声誉。
    留言咨询
  • 深圳市新威尔电子有限公司成立于1989年,是一家专业的电池检测设备制造商,致力于提供全方位的电池检测系统的高新 技术企业。 公司自成立伊始,始终坚持“技术创新,真诚服务”的经营方针,不断开拓进取,推陈出新,研发出了应用于各类电池检 测领域的测试产品,包括高精度电池测试仪、电池化成分容柜、大功率动力电池化成分容检测设备及高精端内阻仪等。 深圳新威尔电池检测产品遍及全国各地以及出口到欧美等多个国家和地区,广泛的应用于国内外电池生产厂家、电池应用企业及各大专院校、研究所和质检部门。服务的大客户群:深圳比克、天津比克,比亚迪、珠海银通 洛阳中行锂电 国光、哈尔滨光宇、优科能源、GP、TCL、迈科、东莞新能源(ATL). 台湾必翔(BTS-5V1000A)、雷天动力电池(BTS-5V50A)、海霸集团 长城集团 奇瑞 江苏双登集团 中强集团 合肥国轩(BTS- 5V100A)、杭州万向 宁波维科(BTS-5V20A)、杭州万马(BTS-20V5)、德赛、富士康等等;清华大学、复旦大学、北京大学、武汉大学、武汉理工大学、哈尔滨工业大学、重庆大学、天津大学、郑州轻工业学院、昆明理 工大学、西安建筑科技大学、厦门大学、华南师范大学、湖南大学等。
    留言咨询

新能源电池研究用高压平流泵相关的仪器

  • 三为科学致力于高精度耐强酸强碱高压输液泵、高压平流泵的开发,可以耐受各种强酸溶液强碱溶液的高精度输送,是国内少数能生产高精度低脉冲耐腐蚀流体高压输液泵的高科技企业。产品广泛应用于化工、环境、质检、石化、精细化工、能源工业、高分子、制造业、材料化学等领域。XD50高压高精度双柱塞输液泵(50ml泵头30Mpa)产品特点:流量精度高 运用微处理器控制、双驱动的平行泵头设计,溶剂压缩补偿,多点流量曲线校正技术,实现从低流速到高流速的宽动态范围内的高精度流体输送;梯度设计 高压输液泵运用全新梯度设计,通过将等度、线性和阶梯梯度进行组合,衍生出无数具有不同形状的梯度曲线,极大增加您的分离条件;压力脉冲低 采用凸轮曲线补偿和流量脉冲电子抑制技术,有效控制流体压力脉冲;质量优异 浮动柱塞设计,减少高压密封圈的磨损,提高 密封圈的使用寿命,凸轮传动设计,瑞士原装进口单向阀,品质保证,故障率低;操作界面人性化 内置10个用户程序,可实现流量、梯度编程,人性化的人机界面;反控程序 泵的计算机反控通讯协议是开源的,你也可以使用其它常用的工作站控制泵的操作;XD50高压高精度双柱塞输液泵(50ml泵头30Mpa)技术参数: 序号描述指标1输液方式双柱塞并联模式,浮动柱塞设计2流量范围0.01-50.00/min3增量0.01ml/min4流量准确度± 0.5%5流量重复性≤ 0.1%6压力范围≤ 30Mpa7压力脉动≤ 0.2Mpa8流路材料316L不锈钢、红宝石、PTFE、陶瓷9管路链接1/16"标准管路链接10显示参数256*64点液晶显示,自发光显示屏11控制方式手动面板控制或计算机反控12电源85 ~ 264VAC,50Hz13尺寸370×240×152 mm3 更多高压输液泵、色谱泵、中压平流泵、恒流泵、注入泵近40个型号详见官网:流量:10ml/min----10000ml/min 压力范围:2Mpa---42Mpa材料:不锈钢泵、钛泵、聚四氟泵(PTFE泵)、PCTFE泵、哈氏合金泵、peek泵输液方式:恒压输送液体 恒流输送液体
    留言咨询
  • Sanotac致力于流体技术的研究,公司生产的恒流泵、高压恒流泵、平流泵、高压平流泵系列产品具有流量精度高、压力脉冲低,重复性好,质量优异等特点,广泛应用于微反应器、化工反应装置、催化评价装置中的化学品进料、反应物添加、催化剂添加以及超临界流体输送、发泡挤出工艺、新能源研究、催化炼化釜式反应、液相色谱系统、层析系统等装置的配套。该系列产品流量范围包含:0.001—10ml/min 0.01—50ml/min 0.01—100ml/min 0.01—200ml/min 0.01—300ml/min 0.01—600ml/min 0.1—1000ml/min;0.1-3000ml/min。该系列产品按泵头材料分类包含:不锈钢泵、哈氏合金泵、高压四氟泵、peek泵产品特点:多点流量校正:实现全量程范围内的高准确度及高重复性流体输送流量脉冲抑制:凸轮曲线补偿与流量脉冲电子抑制,有效控制压力脉冲压力设定修正:流路的保护压设定、零点值修正排除环境干扰柱塞清洗功能:柱塞后清洗,减少密封圈磨损,延长泵的使用寿命压缩补偿技术:在高压力环境中实现液体的精确输送 远程端口:RS232、RS485、USB、开关量通讯协议:Modbus RTU/ASCII支持系统集成:并入SCADA/DCS/PLC控制系统及组态应用 可通讯扩展功能 通讯协议:Modbus TCP、ProfibusDP、Profinet远程端口:有线/无线Ethernet、模拟量输入(0-5V/4-20mA) 软件功能(选配)输送单位切换:切换流速单位,选择按体积输送或按重量输送流速变化控制:恒定、线性、梯度流速输送,可任意组合衍生读数实时显示:流速压力曲线实时绘制、程序运行进度条显示数据记录导出:实时记录流量压力数据,以表格图形形式导出方法保存调用:保存调用多种流速程序,控制方法间便捷切换校准维护功能:自定义流量校准满足特定工况、恢复出厂参数远程控制功能:选配远程软件,远程实时操作和监控流体设备仪器参数表型号AP0010SP0530流量范围0.001-9.999ml/min0.01-50.00ml/min流量准确度±0.1%±0.5%流量重复性≤0.1%压力范围≤40MPa≤30MPa压力脉动≤0.1MPa流路材料316L不锈钢、红宝石、PTFE、陶瓷通讯功能USB,RS232;RS485/422(选配);自定义通讯协议和Modbus协议电源85~264VAC,50Hz功耗75W重量8kg外形尺寸370×240×152mm³
    留言咨询
  • 管式反应器是一种呈管状、长径比很大的连续操作反应器,反应器的结构可以是单管,也可以是多管并联;可以是空管,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。三为科学推出管式反应器配套高压输液泵、平流泵、高压柱塞泵具有广泛的应用范围,包括:化学品进料、反应物添加、催化剂添加、超临界流体输送、发泡挤出工艺、新能源研究、催化炼化反应等装置的配套。GS0530高压平流泵(50ml泵头30Mpa)产品特点:流量精度高 运用微处理器控制、双驱动的平行泵头设计,溶剂压缩补偿,多点流量曲线校正技术,实现从低流速到高流速的宽动态范围内的高精度流体输送;梯度设计 高压输液泵运用全新梯度设计,通过将等度、线性和阶梯梯度进行组合,衍生出无数具有不同形状的梯度曲线,极大增加您的分离条件;压力脉冲低 采用凸轮曲线补偿和流量脉冲电子抑制技术,有效控制流体压力脉冲;质量优异 浮动柱塞设计,减少高压密封圈的磨损,提高 密封圈的使用寿命,凸轮传动设计,瑞士原装进口单向阀,品质保证,故障率低;操作界面人性化 内置10个用户程序,可实现流量、梯度编程,人性化的人机界面;反控程序 泵的计算机反控通讯协议是开源的,你也可以使用其它常用的工作站控制泵的操作;GS0530高压平流泵(50ml泵头30Mpa)技术参数: 序号描述指标1输液方式双柱塞并联模式,浮动柱塞设计2流量范围0.01-50.00/min3增量0.01ml/min4流量准确度± 0.5%5流量重复性≤ 0.1%6压力范围≤ 30Mpa7压力脉动≤ 0.2Mpa8流路材料316L不锈钢、红宝石、PTFE、陶瓷9管路链接1/16"标准管路链接10显示参数256*64点液晶显示,自发光显示屏11控制方式手动面板控制或计算机反控12电源85 ~ 264VAC,50Hz13尺寸370×240×152 mm3更多高压输液泵、色谱泵、中压平流泵、恒流泵、注入泵近50个型号详见官网:流量:10ml/min----10000ml/min 压力范围:2Mpa---42Mpa材料:不锈钢泵、钛泵、聚四氟泵(PTFE泵)、PCTFE泵、哈氏合金泵、peek泵输液方式:恒压输送液体 恒流输送液体管式反应器 管式反应装置 加料高压输液泵 平流泵 实验室管式反应器 高压平流泵 化学泵 恒流泵 管式反应器设计水平 管式反应器 立管式 盘管式反应器 U形管 多管并联管式反应器
    留言咨询

新能源电池研究用高压平流泵相关的资讯

  • 有“锂”走天下,兰格智能泵助力新能源锂电池行业
    最近,国内成品油价一直在变动,成为街头巷尾的谈资。与此同时,锂电池作为新能源汽车的动力来源行业也面临材料价格上涨,相关话题频上热搜。受益于新能源汽车行业飞速发展,锂电池新材料的研究也愈发火热。其中,全固态锂离子薄膜电池由于安全性更高等优点,日益受到重视。薄膜型全固态锂电池是在传统锂离子电池的基础上发展起来的一种新型结构的锂离子电池。其基本工作原理与传统锂离子电池类似,即在充电过程中Li+从正极薄膜脱出,经过电解质在负极薄膜发生还原反应;放电过程则相反。过程中电解质起着至关重要的作用,直接影响到薄膜电池的充放电倍率、循环寿命、自放电、安全性以及高低温性能。以某个全固态薄膜锂电池生产试验线的实际应用为例:兰格某客户在电解质试验工艺中,需要三个泵为一组,在不同的时间点输送试剂,一个小时为一个循环,一天连续工作8小时。挑战对于这种复杂的进样体系,常规的实验室人工管理显然无法满足要求,需要使用PLC、电脑等实现设备的自动化管理。对于常规的化学、材料实验室,这就大大增加了试验的难度,需要通过自动化工程来完成。尤其,研究人员想要随时改变实验参数,也难以灵活实现。兰格解决方案对于实验的过程进行模块化分解,兰格智能型蠕动泵可提供9种运行控制模块(匀速、匀加速、匀减速、阶梯加、阶梯减、正弦、均匀分配、减量分配、增量分配)和8种逻辑控制模块(方向、暂停、循环、事件触发、延时、跳转、外控输出、结束)。研究人员可以像搭建乐高积木一样,来使用智能蠕动泵。例如上述的电解质试验工艺,兰格智能泵程序可以做如下设定:更多优势:如果研究人员需要改变其中的步骤,只需插入或删除相应模块即可。如果要修改某个模块的运行参数,直接进入模块进行修改即可。同时整个工作过程可以保存为方法,在后续的试验中可以直接调用。新能源车行业是我国战略性新兴产业,而且锂电池和5G、化学储能、碳中和等等也都息息相关,未来仍将有“锂”走天下。兰格智能蠕动泵应对不同需求,可提供多种运行/逻辑控制模块的灵活选择,助力科学家与工程师实现更便捷的操作,提高有效性、可靠性和智能体验,为全球碳中和事业作出贡献!
  • 蔡司《新能源汽车电池质量保证白皮书》:工业检测助推动力电池高质量发展
    新能源汽车行业竞争迈入新阶段,市场呈现多元化趋势,产品不断升级与创新。在此竞争环境下,动力电池企业成为关键角色,致力于提高电池性能、安全性和降低成本,以满足市场需求。加强质量管控成为动力电池企业提升竞争力和行业可持续发展的关键举措。近日,蔡司正式发布《新能源汽车电池质量保证白皮书》,该报告通过趋势解读、技术解析和未来挑战等方面,解析了动力电池企业如何运用质量控制手段来实现技术创新和降本增效,并从"更高性能、更高安全、更优成本"三个角度出发,阐述了工业检测在动力电池研发和生产中扮演的重要角色。白皮书首先从电芯入手,分析多种检测维度,如何通过探索电池材料和结构,提高电池性能,推动新能源汽车电池基础研究取得更大突破。一、对新型电芯的探索,永无止境动力电池产品的高安全性、高能量密度、高倍率性能、经久耐用和更低成本,是决定其是否能取得市场成功的关键因素。竞争打法的全面升级,意味着在"性能"、"安全性"、"成本"这三 个方面的全面升级。电池企业都想在这些关键因素上表现优异,这就需要超过同行的质量控制手段。首先就要在研发环节,充分了解和控制电池相关材料的特性,选择良好的材料。材料从根本上决定着电池性能。通过改进材料提高电池性能、优化电池老化机制、应用新型材料、改变电芯结构是电芯研发的主要方向。例如,材料体系方面,采用新型材料体系(高镍正极、硅基负极、锂金属负极、固态电解质等),提高单体能量密度;或者研制出磷酸锰铁锂,探索钠离子电池的商业化应用,降低成本;或者加快固态电池的研发进程,使电池性能更高,更耐久。电芯形状方面,方形电池,尤其是LFP短刀兼顾性能、集成与制造,成为主流企业的优选方案之一;大圆柱电池也是热门方向,特斯拉和宝马均已提出具体的实施规划。快充技术方面,多家主机厂开始导入800V高电压平台,并联合电池企业推出2C~4C快充方案。材料的改性、新型材料的研制、电芯结构的设计,往往多策并举,促成电池的升级和创新。诸如,从2020年到现在,由特斯拉开局,国内电池企业共同推进的大圆柱电池拥有极其独特的杀手锏:1. 由于采用钢壳的圆柱外壳以及定向泄压技术,电芯本身的束缚力比较均匀,有效抑制膨胀,为电池包的整体安全提供第一层的有力保障。这也使大圆柱电池在材料上的探索更加大胆,当下高比能路线下的主流用材,高镍三元正极材料、硅基负极材料在大圆柱电池上的使用更为广泛。2. 全极耳设计,电池直接从正极/负极上的集流体引出电流,成倍增大电流传导面积,缩短电流传导距离,从而大幅降低电池内阻,提高充放电峰值功率。对于更低成本的锰铁锂电池体系,宁德时代的M3P电池将在第三季度搭载于特斯拉国产Model 3改款车型。网络不断有消息指出M3P电池就是LFMP磷酸锰铁锂电池。宁德时代则在调研中表示,准确说来,M3P不是磷酸锰铁锂,还包含其他金属元素——该公司将其称为"磷酸盐体系的三元"。容百科技在8月10日的全球化战略发布会上指出,其LFMP率先实现了73产品(锰铁比)大批量供货,并以此为基推进LFMP与三元的复合产品M6P以及下一代工艺产品。他们认为,到2030年,广义的三元材料和磷酸盐仍旧占据主体,三元里面的高镍材料、磷酸盐里面锰铁锂以及钠电都会迎来非常高速的增长。另一方面,行业也需要支持更高倍率的动力电池。这就需要电池企业在加强电池热管理的同时,还要从电池材料(尤其是负极材料的选择和微观结构的设计)、电极设计、电池形状等出发,降低内阻、加强散热,提高电池的倍率性能。目前已有多个企业推出快充电池方案。欣旺达在今年上海车展着重推出其闪充电池,在核心材料上部署了专有技术,自主设计闪充硅材料技术、高安全中镍正极和新型硅基体系电解液技术等关键技术,支持电动汽车10分钟可从20%充至80%SOC,让充电像加油一样快。二、工欲善其事,必先利其器在电池企业为大众剖析"高性能"、"高安全"、"低成本"电池新品之时,"自研"、"微观"、"纳米级包覆"、"掺杂"、"原位固态化技术"等关键词频频闪现,为主流电池材料进行改性之外,加速LFMP、固态电池等新类型电池的应用。以近年火热的LMFP为例,该类型电池原存在导电性能、倍率性能以及循环性能较差等问题,但随着碳包覆、纳米化、离子掺杂等改性技术的进步,其电化学性能得以改善。甚至,目前企业正在研究将LFMP或NCM组合使用,兼具低成本、高安全性及高能量密度的优势。蔚来使用的150kW半固态电池,由卫蓝新能源提供,采用了原位固态化技术。该技术是通过注液保持良好的电解质与电极材料的原子级接触,之后将液体电解质部分或全部转换为固体电解质,这样的好处是能够做到原子尺度的结合,而不是宏观的把电极材料和固态电解质压在一起。凡此种种,不一而足,充分展现出电池基础研发人的耐心值和创造力,犹如炉火纯青的雕刻家,对微观结构有着清晰的掌握,将每一个微小的纹路都打磨得精雕细琢。正所谓"工欲善其事,必先利其器",更优秀的动力电池产品离不开更高效有力的检测工具。材料的微观结构表征是电芯研发的关键,目前多种材料表征方法被推出并得到广泛应用。在研发环节,工程师利用光学显微镜、X 射线显微镜、3D 检测来观察电极材料,检测电极缺陷并分析电池失效原理。还可观察材料的粒径尺寸、各种成分的配比及分布情况等,加深研发人员的认识和理解。这些都可以在提高研发效率的同时更好的改善电池性能,进而为材料、工艺的改进提供依据。三、电池材料的二维显微成像和表征光学显微镜利用光学原理对物体进行放大,最早成型于 17 世纪。光学显微镜的分辨率与可见光的波长(390~780nm)有关,其最大放大倍数可达 1000 多倍,实现微米级别分辨率,在生命科学、材料科学等领域被广泛应用。在动力电池研发中,光学显微镜可用来观察电极结构,检测电极缺陷并分析电池失效原理、观察锂枝晶的生长行为等,进而为材料、工艺的改进提供依据。不过,由于受制于可见光的波长,光学显微镜的放大倍数有限,无法实现对更微观结构的观测,而电子显微镜则很好的解决了这个问题。电子显微镜最早由英国物理学家卢卡斯于 1931 年发明,利用电子束代替光束,最大放大倍数可达 300 万倍,实现纳米级别分辨率。由于电子显微镜具备更高的分辨率,在电池研发中,搭配不同的探头,可以得到多维度的信息(成分、表征信息,粒度尺寸,配料占比等),实现对正负极材料、导电剂、粘结剂及隔膜等更微观结构的检测(观察材料的形貌、分布状态、粒径大小、存在的缺陷等)。常用的观察样品表面形貌的电子显微镜是扫描电子显微镜(SEM)。由于具备高分辨率,SEM 能清楚地反映和记录材料的表面形貌特征,因此成为表征材料形貌最为便捷的手段之一。配合氩离子抛光技术(又称 CP 截面抛光技术),SEM可以完成对样品内部结构微观特征的观察和分析。这也是目前最有效的制备锂电池材料极片解剖截面的制样方式。SEM还可以用来观测电池颗粒循环老化的情况。目前,经分析发现,颗粒碎裂表征成为学者改善正极材料性能的切入点。四、电池检测:从 2D 走向 3D传统的检测手段通常局限在 2D 平面,但 2D 图像会有局部偏差(比如,制备样品时刚好切到没有问题的部位),3D 图像可以更好的表征材料结构,使检测结果更为直观,有助于加深研发人员的认识和理解,提高研发效率的同时更好的改善电池性能。在不对电池进行拆解的情况下,通过 X 射线显微镜可以对电池内部特定区域进行高分辨率成像,实现样品的 3D 无损成像,分辨电极颗粒与孔隙、隔膜与空气等,可以大大简化流程,节省时间。高分辨率显微 CT 可以实现电池内部结构的三维可视化,解决因拆卸等原因造成的内部结构二次损伤等难题,清晰地展示出电池内部的真实情况。在此,X 射线显微镜技术得到应用。当前,CT 成像的精度进入亚微米阶段,可以对电池材料及孔隙进行分析检测。在 X 射线显微镜的基础上,蔡司推出了可以实现随时间(4D)变化的微观结构演化表征方法。利用空间分辨率可达 50nm、体素尺寸低至 16nm 的真正的纳米级三维 X 射线成像,可以获得更多信息,识别更微小的细节特征。目前,X 射线显微镜可达到最高 50nm 级别的分辨率,当需要研究更高分辨率的细节时,则需要用到新一代聚焦离子束(FIB)技术。FIB 利用高强度聚焦离子束(通常为镓离子)对材料进行纳米加工,配合扫描电镜(SEM),可同时实现对样品的加工和观察。目前,蔡司和赛默飞都推出了聚焦离子束显微镜。蔡司双束电镜 Crossbeam 系列结合了高分辨率场发射扫描电镜 (FESEM) 的出色成像和分析性能和 FIB 的优异加工能力,无论是用于多用户实验平台还是科研或工业实验室,利用 Crossbeam 系列模块化的平台设计理念,都可基于自身需求随时升级仪器系统(例如使用Laser+FIB 进行大规模材料加工)。在加工、成像或是实现三维重构分析时,Crossbeam 系列将大大提升 FIB 的应用效率。当需要分析各种成分的分布,需要模拟仿真,需要看到内部结构时,FIB 可以依托低电压成像,能扫描更多 3D 细节,可以做多种测试,令研发工作成效更高。五、电池的原位测试和多技术关联应用无论是光学显微镜,电子显微镜,还是 X 射线显微镜和工业 CT,不同的测试手段各具优势,适用于不同的场景。但一种检测手段常常无法完全表征材料属性。所以,行业将不同的测试设备协同应用,实现多手段的关联,则可以在测试中得到多维度的信息,使结果更为直观。早期,多手段关联的出发点,是以不同分辨率来观察被测对象的需求。例如,CT和X 射线显微镜可以无损探测,但分辨率相对较低,因此,初看材料时,就可以利用二者先观看形貌特征。扫描电镜具有更高分辨率,例如蔡司以扫描电镜为基础,推出 FIB-SEM 产品,可以实现高分辨率(3nm)的 3D 成像。如此,利用 CT→X 射线显微镜→ FIB-SEM,选定区域并逐级放大,就可以得到更为全面和精确的信息,同时可以实现快速定位,使检测更为高效。电子显微镜上设有多个拓展口,来添加不同的探头。但在电池研发中,配备的 SE、BSE 和 EDX 探测器,不足以完全表征材料的属性。尤其在样品尺寸大的情况下,不容易聚焦到同一特定颗粒。拉曼探头则可以帮助分析分子结构与组成,界面结构等。但一般情况下,拉曼电子显微镜是独立分开的。因此,如果能对同一被测对象使用BSE、EDS 和拉曼,拍摄三重图像的重叠信息,就能实现原位多角度分析。显微镜厂商在做如上努力。如德国 WITec、捷克 Tescan、蔡司等推出了 RISE 系统,可以实现拉曼成像与 SEM 等技术的联合应用,通过电池表面形貌(SEM)、元素分布(EDS)与电极材料分子组成信息(Raman 图谱)结合,实现材料的原位多角度分析,了解电池状态以及不同位置材料的形貌、元素和分子组成,进而评价电池性能。材料测试通常伴随制样过程,由于 FIB-SEM 需要对同一个样品进行多次制样测试来构建 3D 图像,采用常规制样方法需要消耗很长时间。为解决这个问题,蔡司提出了一组非常巧妙的联合方案。首先,可以用 Versa 大视野范围、无损情况下得到 3D 成像,发现可疑位置。然后,为了对可疑位置进行更深入的分析,需要剖切到指定位置。使用 Fs-laser 飞秒激光可以实现样品高速率切割(107μm3/sec),进行快速粗制样,迅速完成样品深处的分析,同时不影响 FIB-SEM的高性能和高分辨率。最后,再用 FIB 精细抛光,并拍照分析。通过 Versa、FIB-SEM 和 Fs-laser 的联合应用,实现对检测对象的快速定位和制样,使检测更为简单快捷,帮助研发人员提高工作效率。
  • 线上研讨会 | 新能源电池研发及相关材料研究
    课程简介新能源( NE),又称非常规能源,通常是指传统能源之外的各种能源形式,包括太阳能、风能、海洋能、生物质能、氢能和核能等。随着技术的进步和可持续发展观念的树立,以环保和可再生为特质的新能源是满足人类社会绿色可持续发展需要的主要能源选择之一。而随着新能源技术的发展,新能源电池技术也日臻成熟。为进一步推动新能源电池技术发展,提高行业相关人员对新能源电池研发和材料检测相关技术水平,化工仪器网联合大昌洋行(上海)有限公司(大昌华嘉科学仪器部)于2022年6月14日推出《新能源电池研发及相关材料研究(暂定)》主题网络课堂。此次主题网络课堂为业内专家、科学技术人员、仪器仪表供应商提供了一个突破时间与空间限制的网络交流平台,方便各方共同探讨、交流与学习。日程安排扫码报名会议主题:新能源电池研发及相关材料研究开播时间:2022年6月14日 14:00主讲老师:代立恒、侯志云、樊润、管秀鹏讲师介绍代立恒 华东理工大学化工学院分离膜与能源材料课题组 博士研究生在读2018年在华东理工大学化工学院取得工学学士学位。2018年至今在华东理工大学攻读博士学位。所在课题组为化工学院分离膜与能源材料课题组,课题组负责人为徐至教授。博士期间课题主要围绕二维材料膜的设计制备及其分子/离子传输行为的研究。以作者在Angew Chem Int Ed., Green Energy&Environ.上发表论文两篇。侯志云 应用专家 大昌华嘉科学仪器部曾工作于华谊集团、全球知名颗粒表征仪器有限公司,长期从事材料物性表征,专注于应用方法的开发和建立。多年的颗粒行业工作背景,具有丰富的材料颗粒表征经验,与颗粒表征标准化技术与委员会也保持长期的协作。樊润 产品经理 大昌华嘉科学仪器部北京化工大学材料学硕士毕业,2003.9-至今,一直从事材料颗粒表征的相关仪器销售和应用工作,并且对新能源领域众多材料的检测多有涉及,希望将相关的检测技术与大家分享。就职于大昌华嘉科学仪器部,负责物理/化学吸附产品的应用和销售。管秀鹏 技术销售经理 大昌华嘉科学仪器部毕业于北京石油化工研究院,东华大学,2005年开始悬浮体系稳定性分析表征工作。具有新能源等行业固悬体系分析检测的丰富经验,帮助大量客户解决产品开发过程中的工艺问题和配方问题,以及确定合理的表征流程。

新能源电池研究用高压平流泵相关的方案

新能源电池研究用高压平流泵相关的资料

新能源电池研究用高压平流泵相关的论坛

  • 新能源电池模组测试压缩机常识说明

    新能源电池模组测试的压缩机其性能是很关键的,所以,无锡冠亚新能源电池模组测试的压缩机都建议选择品牌厂家的压缩机为好,另外,对于新能源电池模组测试压缩机的一些常识故障也需要及时解决。  新能源电池模组测试压缩机效率下降的原因是由于运动件的磨损,使配合间隙过大,或吸、排气阀破裂,或缸垫石棉板击穿所造成。一般表现为排气压力下降,吸气压力升高,压缩机缸盖和吸、排气腔温度过高。如果在吸、排气管口接低压表和高压表,当排气压力在0.6Mpa以上时,吸气压力仍停留在0Pa或只能达到真空度52.5Pa以上时,即可判断压缩机效率低。  新能源电池模组测试压缩机过热,造成启动不久即停机(保护器动作),请检查是否为制冷剂不足或过多,请补漏抽真空,加足制冷剂或放出多余的制冷剂;毛细管组件(含过滤器)堵塞,吸气温度升高,请更换毛细管组件。 四通阀内部漏气,构成误动作,确认损坏后更新。压缩机本身故障,如短路、断路、碰壳通地等,检查确认后更换压缩机。新能源电池模组测试保护继电器本身故障,请用万用表检查在压缩机不过热时其触点是否导通,若不导通更换新的保护器。当更换5528、5532压缩机时,需检查启动电容和启动继电器(如其中之一损坏,则必须两者同时更换)。新能源电池模组测试压缩机高压压力过高,压力继电器动作,请分析原因,针对情况予以排除。冷凝器通风不良或气流短路,请排除室外侧的障碍物,清洗冷凝器。系统混有不凝液气体(如空气等),请抽真空重新灌注。压缩机运转电流过大,请查明原因予以排除。新能源电池模组测试机组环境温度过高,请远离热源,避免日晒。压缩机卡缸或抱轴。可用橡胶锤或铁锤垫上木块敲击振动压缩机外壳,或采用并联电容、放氟空载的方法,可能使得压缩机启动运转,但若无效则应更换压缩机。  新能源电池模组测试的操作人员需要对其的常见故障有一定的认识,在遇到上述故障的时候,及时解决。

  • 新能源电池试验箱冷媒泄漏的解决方案

    新能源电池试验箱冷媒泄漏的解决方案

    [b][url=http://www.linpin.com/]新能源电池试验箱[/url][/b]用风冷式压缩机制冷,其工作原理与空调制冷原理相同,在制冷过程中将采用冷介质冷却,一旦制冷剂泄漏,会引起试验箱内停机。  要排除故障,先要了解故障的工作原理,新能源电池试验箱里的制冷压缩机从进气管吸进超低温,低电压的冷媒汽体,通过电动机运行时带动活塞压缩之后,将一种高温、高压、将制冷剂气体、排放到排气管中,从而实现压缩-凝结-膨胀-蒸发(吸收)的制冷循环。假如冷媒泄露怎么办?[align=center][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2022/06/202206161623358899_7890_1037_3.jpg!w690x690.jpg[/img][/align]  方案1:  新能源电池试验箱的冷冻系统的核心部件是压气机,要先查一查设备,再用肥皂水、检漏仪等检测设备是否有泄漏,若发现为热气体旁边周围的通电磁阀的阀杆裂开有细缝,则更换此电磁阀,若发现其他部位有泄漏,则用氧焊接补焊泄漏处,系统再次加氟后,系统可恢复正常运行。  方案2:  若为复叠式制冷,可观察试验箱后侧压力计,看压力是否在正常范围内,若低于正常值,表明有制冷剂泄漏,要检漏蓄设备的制冷系统,在铜管中注入高压氮,用肥皂水与检漏器相结合的方法检测泄漏点,通常仅在一处,有时候漏点很少出现,这是很罕见的。找出漏点后,采用氧焊法将漏焊处封口,然后给制冷系统充氮,进行48小时保压,发现压力表指针不变,结果表明,泄漏点补焊正常,释放氮气,向系统注入环保制冷剂R404和R23,制冷系统就可以恢复正常。  压气机制冷系统是新能源电池试验箱的心脏,出现问题我们要及时解决,而且制冷剂泄漏也是一个很大的问题,现在大家都知道这样的问题应该怎么解决,我这里就不多说了。

新能源电池研究用高压平流泵相关的耗材

  • iCR100型高压平流泵
    平流泵是液相色谱(含离子色谱)输液系统中的核心部件之一,其主要作用是通过等浓度或梯度浓度的方式在高压下将流动相输送到色谱柱内并对待测物质进行洗脱。平流泵的性能直接影响了整个色谱系统的稳定性、准确性及使用寿命等。iCR100型平流泵是德合创睿设计的一款高准确性、高稳定性、全塑流路的凸轮型双泵头串联高压输液泵,所有输送流体接触的部分均为非金属材质,避免离子色谱淋洗液中酸的腐蚀。具备自校正的电子脉动抑制功能,保证基线的平稳运行。同时iCR100型平流泵具备一键冲洗、超压保护、使用记录等功能。
  • 高压平流泵
    该机是微处理器控制的双柱塞往复泵,采用先进的智能控制算法,能使泵的流量脉动降至最低水平。具有先进的密封技术及泵头自清洗功能,使泵可在较高压力下正常持久工作。配有压力传感器,当工作压力超过或低于设定的上线或下限时,泵将自行关闭。具有RS-232/485接口,可实现二至四元梯度淋洗及计算机远控。当采用PEEK泵时,适合PH为0?14的淋洗液及反相有机溶剂。耐压试验:≥36MPa 流量范围:0.001ml/min~9.999ml/min流量精度(流量稳定性):RSD<0.1%流量设定误差:<0.1%梯度比例精度:≤±0.1%(2.0mL/min)梯度比例设定误差:≤±0.1%(2.0mL/min)压力传感器:压力显示精度为0.1MPa过压保护:工作压力超过或低于设定的上限或下限时,泵将自行关闭且报警。泵头及流路材质:PEEK、不锈钢、带陶瓷内衬、带钛钢内衬、用户任选。
  • PEM燃料电池单电池夹具
    PEM燃料电池单电池夹具品名:PEM燃料电池单电池测试夹具品牌:电弛新能源型号:5*5cm产地:中国材质:石墨+镀金集流板加工工艺:CNC加工适用膜电极MEA尺寸:5*5cm 品名:PEM燃料电池单电池测试夹具品牌:电弛新能源型号:2*2cm产地:中国材质:石墨+镀金集流板加工工艺:CNC加工适用膜电极MEA尺寸:2*2cm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制