小光源近场光线分布测量系统

仪器信息网小光源近场光线分布测量系统专题为您提供2024年最新小光源近场光线分布测量系统价格报价、厂家品牌的相关信息, 包括小光源近场光线分布测量系统参数、型号等,不管是国产,还是进口品牌的小光源近场光线分布测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小光源近场光线分布测量系统相关的耗材配件、试剂标物,还有小光源近场光线分布测量系统相关的最新资讯、资料,以及小光源近场光线分布测量系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

小光源近场光线分布测量系统相关的厂商

  • 400-860-5168转2948
    光傲科技,专注于光电计量测试解决方案秉持测试就是生产力的理念,以所代理的欧美一流仪器设备为核心,结合十多年的行业经验,与客户一起工作,提升研发能力、品质管理能力!五大领域业务领域发光测量在200-30 微米的范围内,提供光谱辐射度计、成像式亮度计、分布式光度计,用于光源、灯具、显示器、遥感等高精度测量,以及相关产业的在线分析材料测量在 紫外-可见-中远红外波段,提供材料透过率、反射率、漫反射率测试,以及在线过程分析,色差控制解决方案探测器测量提供探测器,包括各种单点探测器、CCD、光电系统的绝对光谱响应测试系统,并提供追溯 NIST 的标准探测器。标准计量提供各种光谱辐射度标准灯、精密电源用于分光光度计校正的光谱透射、反射标准、荧光标准OEM 产品为仪器仪表行业提供 OEM 光谱仪、信号读出电路、光电器件等全球合作伙伴光谱辐射度计行业鼻祖企业 ,NIST 计量科学家1970 创立 ,提供光谱辐射度计、光谱辐射度标准灯、标准探测器等。位于美国专注成像亮度色度计30年,是成像亮度计标准 CIE 244 2021 主席单位,以及近场分布式光度计的国家技术标准制定企业。位于德国。专注产线测试应用光电测试系统和传感器 ,适应苛刻产线环境 ,并节约客户的测试成本。位于德国。简单、创新的光及颜色测量仪器,位于美国加州。设计制造经济型、便携式高精度光谱辐射度计。德国企业。标准板、标准物质,光学涂料联系我们售前客服售后客服电话:021 52960771 邮箱:sales@light-all.com
    留言咨询
  • 无锡布里渊电子科技有限公司是一家由“庄松林院士-叶声华院士两院院士工作站”和聚光科技的传感器部门核心研发团队,于2014年合并创立的国家高新技术企业,注册资本1000万。公司每年以超过50%以上的增长速度,快速成长。公司团队专注于各类高端传感设备研发与生产,核心研发团队十年以上研发经验,均为硕士及以上学历。公司专注于分布式光纤传感设备研发与生产,提供OEM,ODM服务,“专注、专业、技术与服务并重”,是我们的发展理念。公司产品线丰富,分布式智能光纤传感系统具备单台设备负载16万只传感器的能力,包含分布式拉曼光纤温度传感系统(DTS)、分布式光纤声波振动传感系统(DAS)、分布式光纤布里渊温度&应变传感系统(BOTDA)以及准分布式光纤光栅传感系统(FBG)。 1.正式认定为2019年国家高新技术企业2.江苏省民营科技企业代表3.公司研发人员发表5项发明专利、3项实用新型、16项软件著作权、18项嵌入式软件产品、商标3份4.获得“双软认定”,软件类企业5.国家税务局认定的A级纳税人6.连续三年获得企业研究开发费用省级财政奖励7.设备出口美国、泰国、新加坡、台湾、中东、印度尼西亚等,部分产品性能指标超过安捷伦、西门子、日本住友等国际知名公司8.公司已成为中国科学院、航天四院、航天五院、清华大学、哈尔滨工业大学等知名企业及研究机构的合格供应商
    留言咨询
  • TILO天友利是规模化运作的集团公司,旗下包括1998年成立的首家颜色管理全系统专业化企业-—深圳市天友利标准光源有限公司、控股的研发生产销售服务四位一体行业唯一工商许可的生产型企业——深圳市三恩驰科技有限公司、上海卡罗卡超仪器有限公司、苏州天友利仪器有限公司、北京天友利仪器有限公司和卡罗卡超香港有限公司。注册商标有TILO、TAYOLE、天友利、3nh、三恩驰等;持续投资研发、技术不断创新,每年都要申请多项国家**和知识产权(已拥有各项**或证书31项,正在申请的**10余项)。不断壮大的人才团队目前有博士、硕士以上人才11人,本科学历以上47人。深圳总部拥有3666平方米的研发中心、营销中心和生产基地,全球各地设有分支机构或授权代理,在深圳、上海、北京、苏州、广州等地都有自购的办公物业。工厂通过ISO、CE、TUV、RoHS、SCM、SIMT认证。集团生产经营的主要产品系列有:TILO标准光源对色灯箱、3nh电脑色差仪、3nh分辨率测试卡ISO12233、光学影像测试用照明光源及解决方案、国际色卡和光泽度仪、光测量仪等。发展历程1998年,TILO天友利深圳公司成立。1999年,天友利研发成功全球第一台多功能标准光源箱,TILO产品开始替代进口。2000-2004年,天友利上海、北京、香港、江苏、浙江分公司相继成立,同时在福建、四川、山东、天津、广州等地设立办事处。2004-2005年,TILO品牌标准光源箱的产量首超国际老牌,产销量长期稳居全球第一。2005年,开始专业销售美国爱色丽(X-rite)分光测色仪和印刷密度仪。2006年,获得日本柯尼卡美能达(KONICA MINOLTA)电脑测色仪中国授权代理。2009年,冠名赞助第31届省港杯足球赛。2000-2012年,先后获得创新科技国家**和知识产权31项。2011年,通过ISO9001国际质量管理体系认证。2012年,TILO品牌对色灯箱和3nh品牌色差仪服务客户超十万家。
    留言咨询

小光源近场光线分布测量系统相关的仪器

  • SIG 系列分布式光度计,可以直接得到LED 等光源的近场光线数据Ray DATA,从而通过权重法超高精度模拟不同距离下的远场数据,测试数据可以直接导入Zemax、LightTool、TracePro 等光学设计软件;可以了解你芯片的发光特点,改进封装设计工艺,提高出光效率;对于LED 应用,无需再为LED 光学模型重建而苦恼;让你轻松实现业界领先的光学设计; SIG400光源近场分布测试系统
    留言咨询
  • 光谱角分布测量系统■ 全波段光谱透过率测量,反射角分布测量■ 全波段光谱反射率测量,反射角分布测量■ 波长范围:200nm-IR■ 不同的光谱范围可能需要不同的光学光路设计结构■ 双层平台独立旋转,重复定位精度0.005度,分辨率0.00125度;■ 样品置于上层旋台,探测器置于下层旋台,样品和探测器可以任意角度工作;■ 台面上放置一个五维调整镜座,可将样品调整到旋台的旋转中心并且垂直于台面■ 功能扩展:测量光栅衍射效率
    留言咨询
  • SIG系列小光源近场光线分布测量系统特点 :? 支持垂直光源及水平光源设置测量? 提供亮度及颜色的近场测量模型? 视觉范围及分析的多光学结构配置? 用集成影像数据来产生RSM的模型? 稳定性极高的LED光源及弧光光源精准测量模式应用 :? 测量待测光源所有角度近场光强度分布与色度? 提供精确的射线组合提供光学设计套件软件使用? 提供光学设计与原型测试的近场模型SIG-300 光源效率的精准模拟是需要经过研制计算的,光学设计、装置的设计选项、装置的筛选和质量控管以及亮度的设置,这些都需要经过直接且精确的测量实际上的光源效率。SIG-300 是光源影像式角度机,其可采集并汇集光源周围多角度面向的亮度及颜色测量,这些光信号会汇整至Radiant Source Model(RSM) 进一步分析出光源的效率,这些分析数据可用来提供光学设计上使用。 SIG-300 透过坚固的机械设计、精准的光学配置及软件控制来达到工业等级般的精准测量。SIG-300 可适用于一般大多数的光源,从LED 光源到中尺寸的光源测量,垂直方向或是水平方向的光源测量皆适用,并且有微小影像分析、标准影像分析及微小视觉范围可做选配。 RSM 是光源近场效率刻划显示的工业标准模型,它有着丰富的信息,可提供亮度值及色坐标数值,还可保存所有测量的影像,并且能够使用ProSource® 的功能使其更精准,产生更完整的射线组合用来提供光学设计用的原型,减少光学设计时不必要的时间。 Radiant Imaging 提供完整全系列的光源影像式角度机,适用来量测LED 光源用的SIG-400 系列到大面积光源的SIG-310 系列机型。SIG系列小光源近场光线分布测量系统? 大面积光源优化测量? 支援垂直光源及水平光源设置的测量? 提供亮度及色度的近场模型? 多样光学结构配置强化视野范围及分辨率? 采用集成影像数据产生RSM模型应用 :? 测量大面积待测光源所有角度近场光强度分布? 测量大面积光源近场色度分布等特性? 提供精确的射线组合提供光学设计套件软件使用SIG-310 光源近场亮度的精准测量和大面积光源的颜色分布需要精准的光学、机械和软件设计的组合,架构于Radiant Imaging 工业等级的SIG-300 及SIG-400 系统的设计上,SIG-310 系列实现高阶的色度计,坚固的机械结构配置让此系统能够更精确更稳定的量测,搭配容易使用的控制软件,SIG-310 可以广泛的适用于各种测量应用,不论是垂直光源的配置或是水平光源的配置皆可适用。 SIG-310 利用多视角来采集大面积光源亮度及色度的影像空间结构来产生高准确的近场模型。 记录在工业标准的Radiant Source Model(RSM) 格式内,这些数据使用ProSource® 软件功能,可提供详细的数据分析及数据输出给大多数主要的光学设计套件,更精确的近场模型量测能产生更精准的射线配置而得到更好的光源系统设计。SIG-310适用于一般光源的测量,可用于研发或产品特性的测量。SIG-400 因应LED 组件及光源应用的迅速成长,对于LED 组件及光源的发展研制、估算及光学设计来说,准确的LED 模型效能是必须的,这可透过低成本的方式来选择组件设计、质量控制以及发光效率的设计等应用。 SIG-400 是光源影像式角度机,可采集和整理LED 光源或相似的小面积光源的多角度亮度及色度值,精准的刻划出实际的光效率。汇总入Radiant Source Model(RSM) 的数据数据可进一步做光效率的分析和光学设计中射线的配置。 SIG-400 是对LED 光源的优化测量系统,可减少系统的体积及降低成本,并简化测量的工序;此外,也提供了多样化的选配,如像素的分辨率、微观视野、标准视野、巨观视野的范围选择。 SIG-400 透过坚固的机械结构设计、精准的光学配置以及软件控制,使其成为业界领导等级的准确量测系统,SIG-400 在测量整个待测件的时后能够精准的定位到待测件的中心点,经测试后不超过15 微米,当量测LED 裸片时可让测量错误降到最小。特点 :? LED芯片、颗粒及组件的优化测量系统? 多样光学结构配置强化视野范围及分辨率? 提供亮度及色度的近场模型? 用集成影像数据来产生RSM模型应用 :? 测量LED或是小面积光源所有角度近场光强度分布? 测量LED或是小面积光源近场色度分布? 提供光学设计与原型测试的近场模型
    留言咨询

小光源近场光线分布测量系统相关的资讯

  • 激光驱动白光光源|每天使用3小时,至少可用8年的高亮度光源
    众所周知,传统的辐射校准光源,如氘灯、石英窗卤素钨灯、长弧氙灯等无法在200 nm-800 nm范围内保持较高的输出,并且在使用100小时或更短时间后需要进行重新校准,在使用500小时后还需要更换灯泡。图1 LDLS与其他传统光源的性能对比基于此,Hamamatsu集团旗下的Energetiq公司研发出单点激光驱动光源技术,并将其命名为激光驱动白光光源(Laser Driven Light Source, LDLS),该类光源不仅可以在170nm-2500nm的光谱范围内提供超高发光亮度,而且整个光源的发光寿命相比较于传统光源也高出了整整一个数量级。激光驱动白光光源(LDLS)激光驱动白光光源(以下简称,LDLS)由一个特殊设计的灯室、驱动激光光源、激光聚焦光路、光源输出光路、光源控制器等主要部分组成。图2 LDLS发光原理其原理是采用无电极结构,将外置1000 nm左右波长的激光汇聚到光源灯室中,加热氙等离子体至足够高温时发光,灯室发光后系统会自动给灯室断电,发光等离子体的状态就一直由外部激光器所保持。图3 LDLS产品参数与常见的有氘灯、钨灯、氙灯等传统光源相比,LDLS在亮度、稳定性、UV波长覆盖、寿命上都有很大突破。LDLS性能优势1、高亮度LDLS是高亮度光源,可以将光源压缩成一个极小的点,拥有极高的功率密度,超小光点成像(~0.1 mm)变得更容易,也更容易耦合进光纤、光谱仪等各种光学设备。适用于成像应用和测量诸如微芯片、生物细胞等精密测量样本的应用。图3 氙灯光源灯焰与LDLS灯焰比较2. 宽光谱范围LDLS光谱分布涵盖了深紫外—可见光—近红外的光谱范围(170nm-2500nm),光谱分布平坦相比于传统光源在深紫外波段光谱有极高光谱强度(10X)。图4 EQ-99X和卤钨灯光谱分布对比图5 LDLS系列光源光谱强度分布和传统光源对比3. 长寿命LDLS具有超长灯室寿命,超9000小时典型时长(低耗材成本),与传统光源(氙灯、氘灯、卤钨灯)相比校准时间间隔更长、漂移更低。图6 LDLS光源寿命4. 高稳定性LDLS 以每秒200帧的速度收集和存储2500张图像 ,使用ImageJ(图像分析软件)计算每张图像的质心; 发光等离子体质心位置标准差: 水平方向—0.145 µ m;垂直方向—0.094 µ m。产品应用紫外-可见光光谱分析单色仪光源薄膜检测 滤光片/光学元件测试原子吸收光谱材料特征检测环境分析高光谱成像气相分析测量光学传感器检测生命科学与生物成像
  • 杭纬课题组成功研制近场解吸成像质谱仪 用于药物单细胞内分布研究
    p style=" text-align: justify text-indent: 2em " 厦门大学杭纬教授课题组与颜晓梅、李剑锋教授课题组合作,成功研制近场解吸成像质谱仪,实现纳米级形貌与化学成分共成像,并将该仪器用于药物在单细胞内分布的研究。相关研究成果以“Chemical and Topographical Single-Cell Imaging by Near-Field Desorption Mass Spectrometry”为题发表于Angewandte Chemie International Edition。 /p p style=" text-align: justify text-indent: 2em " (DOI: 10.1002/anie.201813744) /p p style=" text-align: center " img title=" 15504658321311979.png" alt=" 15504658321311979.png" src=" https://img1.17img.cn/17img/images/201902/uepic/82c26a15-9659-4955-b1c7-d3f85f19bfb2.jpg" / /p p style=" text-align: justify text-indent: 2em " STED和PALM等高分辨光学技术已被用于鉴定基因表达及分子在细胞内分布,但这些技术均依赖荧光探针与目标分子结合的标记方法。质谱具有分子直接鉴别能力,虽然二次离子质谱能够达到纳米级的分辨,但谱图干扰十分严重。通用性极好的激光解吸技术由于受光学衍射极限的限制其分辨率停留在微米水平。特别是生物样品表面起伏不平干扰成像结果。 /p p style=" text-align: justify text-indent: 2em " 针对这些挑战,该团队使用有孔光纤传导激光,光纤尖端开孔仅200纳米,使用尖端的倏逝波进行解吸,通过原子力显微镜控制光纤尖端到样品表面的距离,同时实现形貌与化学成分的成像。该技术无需探针标记,便可得到多种药物在单细胞内的分布成像,成像分辨率达250 nm。该质谱仪将近场解吸的分子通过深紫外激光后电离,具有离子产率高、传输性好等特点,达到amol级绝对检出限,能够得到清晰的谱图。该仪器克服了样品表面起伏对成像结果的干扰,实现形貌和化学成分的精准成像。 /p p style=" text-align: justify text-indent: 2em " 文献链接: a style=" color: rgb(0, 32, 96) text-decoration: underline " href=" https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201813744" target=" _blank" span style=" color: rgb(0, 32, 96) " https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201813744 /span /a /p p style=" text-align: justify text-indent: 2em " 文献原文可联系仪器信息网编辑部提供。联系方式:010-51654077-8223 /p p br/ /p
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。

小光源近场光线分布测量系统相关的方案

  • 如何用多波长近场光线集准确模拟车灯光源系统
    随着LED等新型光源技术的发展,在各个领域里面得到广泛应用,而对于高端照明,如何得到一个优化的灯光效果通常需要用近场光线集进行光学模拟灯具设计效果;常见的白光LED光源的光线文件通常基于近场的两个波长区域的测量,一个在蓝色区域,一个在黄色区域。此数据可用于描述光线的基本效果,例如在使用LED芯片中遇到的角度-颜色偏移。然而,仅有两个波长区域近场测量的数量太少,限制了在使用这些数据模型去模拟真实情况的场景。特别是对于小型的光学系统中,比如车灯照明,光源的尺寸在整个光学系统相对较大,光源模型需要多的细节,比如更多光谱通道的近场数据;
  • 光源相对光谱能量分布测量
    随着新型光源的不断产生,光源的光谱分辨率在测量中变得日益重要,而光源的光色特性及其表征量如色坐标、色温和显色指数等是由光源的光谱能量分布决定的,所以需要更好地了解光源的光谱分布特性。一般的光源是不同波长的色光混合而成的复色光,如果将它的光谱中每种色光的强度用分光光度计测量出来,就可以获得不同波长色光的辐射强度的数值。本文介绍使用紫外可见分光光度计测量光源相对光谱能量分布的方法。
  • 岛津:光源相对光谱能量分布的测量
    随着新型光源的不断产生,光源的光谱分辨率在测量中变得日益重要,而光源的光色特性及其表征量如色坐标、色温和显色指数等是由光源的光谱能量分布决定的,所以需要更好地了解光源的光谱分布特性。一般的光源是不同波长的色光混合而成的复色光,如果将它的光谱中每种色光的强度用分光光度计测量出来,就可以获得不同波长色光的辐射强度的数值。本文介绍使用紫外可见分光光度计测量光源相对光谱能量分布的方法。

小光源近场光线分布测量系统相关的资料

小光源近场光线分布测量系统相关的论坛

  • 【分享】微型光纤光谱仪---荧光测量系统

    当前,微型光纤光谱仪非常流行,受到了众多应用领域的青睐。与大型光谱仪相比较,微型光纤光谱仪价格便宜(仅是大型光谱仪的零头);携带方便(只有手掌大小);测量速度快(毫秒级的数据采集,实现在线实时分析);操作方便,性能稳定可靠(无需专人维护)等长处。因此,在满足使用要求的前提下,微型光纤光谱仪是一种最佳的选择。 我司微型光纤光谱仪的主要功能有:吸光度测量;反射率测量;透射率测量;颜色测量;相对辐射和绝对辐射测量。具体应用包括吸光度测量系统(包括气体、液体、固体的吸光度测量);颜色测量系统(纸张、油漆、颜料、布料、动物皮肤、植物、光源等等);膜厚测量系统(感光保护膜、半导体薄膜、金属膜、等离子体镀膜、光学镀膜等);SLM系列光源测量系统(白炽灯、荧光灯、ARC、HRC、以及发光二级管等光源的各种参数测量);SMS光照度/辐照度测量系统(光通量、光强、光照度或光亮度测量);LCS系列LED测量系统(测量LED光源、大型光源的光学、光谱、颜色、纯度等特征信息);氧含量测量系统(连续测量氧饱和度、总含量、含氧和去氧血色素的浓度);[color=#00008B][color=#00FFFF][color=#DC143C][size=4]荧光测量系统(测量皮克级的含有荧光团的物质);[/size][/color][/color][/color]近红外测量系统(糖、酒精、湿度、脂肪等成分的分析);拉曼测量系统(药物、爆炸物、水质、现场材料的分析,制药监控,石化工业过程控制等);LIBS2500光纤光谱仪系统(无损地对气体、液体、固体进行定性和半定量的实时元素分析);PlasCalc等离子监控器系统(监测等离子蚀刻,检查表面清洁处理,分析等离子反应腔控制情况,检测异常污染和排放现象,等离子开发过程的检测和控制,等等);防晒指数测量系统(化妆品、防晒用品、防紫外服、感光乳剂等的SPF值测量);量子效应测量系统(量子效率的测量等)。另外,我司还有闪光光解光谱仪(演示化学动力学原理);各种光源(钨光源、氘光源、氘-钨光源、氙光源、LED系列光源、校准光源等)及各种光纤(普通光纤、中红外光纤、红外光纤、高功率传输光纤、图像传输光纤、医疗光纤等)。 谢谢您的关注!详情请见我司的网站(http://www.psci.cn)或与我联系(电话:0571-88225151-8020,13738178070,Email:zqchen@psci.cn 陈振泉)。

  • 【转帖】分布式拉曼光纤放大器的应用

    【转帖】分布式拉曼光纤放大器的应用

    摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。光纤拉曼放大器是SRS的一个重要应用。由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181034_274815_1759541_3.gif1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181034_274817_1759541_3.jpg(2)分步式拉曼放大器。拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。通过使用不同的泵浦波长组合可以在一个很宽的波长区间获得平坦的增益谱型(见图3)。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181035_274818_1759541_3.jpg1.4 拉曼泵浦模块图4中的绿色框图部分是一个为后向泵浦配置应用的拉曼泵浦激光器模块示意图。在这种配置中,DRA一般和系统的EDFA联合使用,用作EDFA的前级放大器(Pre-amplifier)。这就是大家熟知的RAMAN/EDFA混合放大器。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181035_274819_1759541_3.jpg摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。光纤拉曼放大器是SRS的一个重要应用。由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。http://www.gtxren.com/uploads/allimg/100722/0042092A8-0.gif图1 光纤中的受激拉曼增益谱1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。http://www.gtxren.com/uploads/allimg/100722/0042092b8-1.gif图2 分布式/集总式光放大器的比较(2)分步式拉曼放大器。拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。通过使用不同的泵浦波长组合可以在一个很宽的波长区间获得平坦的增益谱型(见图3)。 http://www.gtxren.com/uploads/allimg/100722/0042093501-2.gif图3 使用多泵浦波长获得平坦的宽带增益谱1.4 拉曼泵浦模块图4中的绿色框图部分是一个为后向泵浦配置应用的拉曼泵浦激光器模块示意图。在这种配置中,DRA一般和系统的EDFA联合使用,用作EDFA的前级放大器(Pre-amplifier)。这就是大家熟知的RAMAN/EDFA混合放大器。http://www.gtxren.com/uploads/allimg/100722/00420943T-3.gif图4 简化的后向泵浦的拉曼放大器应用框图图5表示的是采用某个拉曼泵浦模块在G.652光纤中的测试结果,包括增益谱及噪声指数(NF)随泵浦功率变化的情况。从图5中可以看出,在C-BAND范围,增益可以达到14dB以上,增益平坦度可以控制在1dB以内。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181036_274820_1759541_3.jpg2 分布式拉曼放大器(DRA)的应用掺铒光纤放大器是一种成熟、可靠、经济有效的技术,在光网络中的广泛应用已经超过10年。虽然分布式拉曼放大器在很多应用方面可以弥补EDFA的不足,但是也要考虑DRA应用中的各种挑战。(1)激光安全。由于向传输光纤引入了高的泵浦功率,需要关注激光功率安全问题。(2)端面清洁。为了防止光连接器的损伤、烧毁,影响系统性能,端面的清洁非常重要。(3)拉曼增益对传输光纤的特性敏感,例如光纤类型、光纤衰耗系数等。(4)投入成本与运营成本的考虑。因此,在讨论DRA的应用时,应主要考虑体现其重要价值和优越性的应用,而不是使用传统EDFA产品技术也可以满足的应用。广泛地说,DRA的应用可以分为无法在线路中间放大的长距离光纤通信线路的连接和LH,ULH高容量、长距离传输系统中的应用。2.1 单跨段长距离的通信线路对于2个相距遥远的无法在线路中间使用EDFA等中继设备的通信站点而言,选择使用分布式拉曼放大器产品是必须的,如海缆通信链路,偏远无人区站点间的通信链路,不便设立中继站点或中级放大器的通信链路。一般来说,如果光纤线路距离小于160km,在线路两端使用传统的EDFA即可,对于更长距离的线路,需要考虑使用分布式拉曼放大器(DRA)。图6进一步说明了这个问题。从图6可以看出,在不同的拉曼增益下OSNR与链路损耗的关系。假定每个通道的发送光功率为8dBm,前置EDFA的噪声指数为5dB;同时假定系统容量较低,通道数较少,不考虑色散及非线性效应引起的通道

  • 一般粒度分布测量是通过系统识别和接收光信号来实现的

    [font=&]一般的,粒度分布测量是通过系统识别和接收光信号来实现的。而光信号的强弱又是由悬浮[/font][font=&]液中的颗粒个数决定的。[/font][font=&]以激光法为例,悬浮液中颗粒浓度越高,散射光信号越强,但随之而来的复散射的现象同时[/font][font=&]加剧,影响测量结果;反之悬浮液中的颗粒浓度越低,虽然复散射现象得到缓解,但信噪比[/font][font=&]下降,代表性也不够,同样影响测量结果。其它粒度分布测量方法的情况也类似,所以在粒[/font][font=&]度分布测量过程中合适的颗粒浓度很重要。[/font]

小光源近场光线分布测量系统相关的耗材

  • LED光电测量系统配件
    LED光电测量系统配件是一款进口的满足LED电光参数和性能测量的系统,它可以测量LED, OLED,激光等任何发光光源的光电参数和特性,可快速而准确地测量各种发光光源辐射,光度学,色度以及效率参数。为了测量各种光源,孚光精仪公司为LED光电测量系统配件提供各种类型的灯具,光采样选项和电探针附件。这种齐全的附件配备,使得这套LED光谱分析系统能够适合世界上任何商业标准封装或作为实验样品的各种发光器件的测量,使用积分球可以更为有效地收集光辐射,而不受光发射角的分布影响。其它光采样附件也可配置,以满足标准测量的要求,能够适应外部光源测量的需要,融入最好的输出功率等级和精度的测量工具,也可根据用户的要求提供定制系统,更可以根据用户已有的仪器提供定制服务。LED光电测量系统配件参数发射光谱 Emission Spectrum辐射通量 Radiant Flux (W)辐照度 Irradiance (W/cm2)亮度 Luminance (Cd/m2)色度坐标Chromaticity Coordinates(x,y)色纯度 Color Purity主波长 Dominant Wavelength峰值波长 Peak Wavelength发光效率Luminous Efficiency (Cd/A)外部量子效率 External Quantum EfficiencyLED光电测量系统配件软件*能够把所有重要参数测量结果展现到一个屏上,这个独具特色能够帮助用户更好地全面监测发光。×控制采集点血和光谱数据,精确控制测量样品的供电, (具有外部源仪表接口,用户能以所需电压或电流范围扫描测试)×集合所有电学和光谱参数,用户还能获得“外部量子效率”和“发光效率”之类的重要指标;*实时测量发光器件OLED测量系统配件规格组成:光谱仪,光纤,积分球,样品台,仪表,数据接口,软件光谱范围:200-850nm或 350-1000nm探测器:2048像素Si CCD阵列采光周期: 1毫秒--65秒光谱分辨率:1.5nm(FHWM)电压源 测量范围:±5μV - ±200V电流源测量范围:±10pA - ±1A电源要求:110/230VAC,系统尺寸:320x360x180mm系统重量:9.8kg
  • 多功能量子效率测量系统配件
    超级多功能量子效率测量系统配件成功问世,一套量子效率测试系统可以测量:薄膜厚度, 折射率,透过率,光学常数, 光谱响应,外量子效率和 内量子效率。 多功能量子效率测量系统配件是特别为太阳能光伏电池(器件)的测量而设计开发的新一代量子效率测试系统。它可以测量光伏器件的 光谱响应(Spectral Response, SR, A/W), 外量子效率(External Quantum Efficiency, EQE/IPCE,%) 和 内量子效率(Internal Quantum Efficiency, IQE,%) 多功能量子效率测量系统配件特色 ×光路全部采用光纤传导替代自由空间光系统(Free-Space Optics), 从而可以保证用户长时间使用而不需要准直或调节光路,也不需要日常频繁地移动光学器件或维护,×光路传导系统也规避了周围环境光线对测量的影响。 ×快速测量EQE/IQE测量(5分钟内就可测量串联光伏电池的全部特性); ×真正全部匹配各种光伏技术(C-Si,多晶硅,硅薄膜电池, CIS/CIGS,有机光谱电池等); ×根据用户的需求提供订制化服务; ×集成其它光学测量功能,如”薄膜厚度测量“功能。 内量子效率测量系统测量方法 多功能量子效率测量系统配件由300-1100nm的光源和1/4m的单色仪构成。内部还配置电动的6位滤波片轮实现高精度地测量。而光电流(Photocurrent)测量是通过锁相放大器和数字控制的chopper实现的。 外量子效率测量系统的软件控制光源(LED), 使用高性能光电二极管作为参考,可对串联电池进行偏置测量(Biasing Measurement)。 多功能量子效率测量系统配件对于内量子效率(IQE)的测量是通过使用两个积分球与一个微型光谱仪联合实现的。其中微型光谱仪用于确定反射率和透过率,标定(校准)单色仪的输出光谱带宽。 对于我们还有重要的配件供用户选择:安装样品的温度控制基座和外部电压偏倚源共选择。 多功能量子效率测量系统配件的软件全天候控制这个套系统。该软件基于LABVIEW构建,不仅可以控制系统工作,处理电子和光谱测量,还具有极其广泛的拓展性。 软件采用”指导提示性”界面设计,指导用户一步步完成实验操作,从而大大方便用户的使用。即使没有使用经验的人员也能在软件的提示下工作。 量子效率测试系统软件提供如下两个工作模块: 1) EQE-模块用于测量外部量子效率,控制所有二级模块如温度和偏置测量等》 2) IQE-模块用于反射率和透过率,计算内量子效率,定义单色仪的输出带宽,不要激光和特殊校准配件和程序。
  • 太赫兹近场探针
    Eachwave推出的低温砷化镓光电导太赫兹近场探针系列是新一代的高性能光电导型微探针,利用此太赫兹近场探针,样品表面的近场太赫兹电场可被以被空前的分辨率测量,信号质量好,噪声低。这些太赫兹探针可以无缝的与激发波长低于860nm的THz-TDS系统配合使用。THz近场探针提供了一个低成本的解决方案,可将您的THz-TDS升级为高分辨率的近场扫描成像系统。产品特点:— 市场上最小的太赫兹近场探针— 专利设计— 空间分辨率可达3um— 探测频率范围:0-4THz— 适用于所有基于激光的THz系统 — 安装可兼容标准的光机械组建— 集成过载保护电路横向场太赫兹近场探针规格参数TeraSpike TD-800-X-HRHRS最小空间分辨率3um20umPC gap size1.5um2um暗电流 @1V 偏置电压0.5nA0.5nA光电流1uA0.6uA激发波长700..860mW平均激发功率0.1-4mW接头类型SMP纵向场太赫兹近场探针规格参数TeraSpike TD-800-A-500GN最大空间分辨率8 um8 umPC gap size5 um2 um暗电流 @1V 偏置电压0.4 nA0.4 nA光电流0.5 uA0.1 uA激发波长700..860mW平均激发功率0.1-4mW接头类型SMP反射式太赫兹近场探针 反射式太赫兹近场探针是一款收发一体化的太赫兹近场探针产品。探针具有双天线结构,此结构极大的缩短了太赫兹的传输路径,可有效的应用于太赫兹近场时域谱测试以及成像测试系统中。规格参数 型号暗电流@1V偏压光电流激发波长平均激发功率链接头TeraSpike TD-800-TR.5 1.5nA 0.5uA700-860nm0.1-4mW2×SMP适用于1550nm波长的太赫兹近场探针规格参数型号脉冲上升时间带宽激发波长激发功率悬臂材料TeraSpike TD-1550-Y-BF1ps0.01-2.5THz700-1600nm 0.1-4mWInGaAs(n-type)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制