色谱分析中蛋白质分离分析

仪器信息网色谱分析中蛋白质分离分析专题为您提供2024年最新色谱分析中蛋白质分离分析价格报价、厂家品牌的相关信息, 包括色谱分析中蛋白质分离分析参数、型号等,不管是国产,还是进口品牌的色谱分析中蛋白质分离分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱分析中蛋白质分离分析相关的耗材配件、试剂标物,还有色谱分析中蛋白质分离分析相关的最新资讯、资料,以及色谱分析中蛋白质分离分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

色谱分析中蛋白质分离分析相关的厂商

  • 400-860-5168转0819
    上海华爱色谱分析技术有限公司系上海市高新技术企业,全国气体标准化技术委员会委员,全国气体标准化试验研究与验证-色谱平台,全国半导体设备和材料标准化技术委员会气体分技术委员会委员,中国工业气体协会理事单位,中国工业气体协会气体分析技术及仪器设备专业委员会副主任委员单位,公司致力于工业气体和电力系统两大领域的专用色谱仪的研发和生产,为国内专用色谱制造商。 华爱色谱自2004年成立以来,先后参与了1项国际标准ISO19230-2020《Gas analysis-Sampling guidelines》,和近百项《国家标准》的制修订工作。在气相色谱生产和应用领域,华爱色谱拥有几十项专利技术,先后承担过国家创新基金、重点新产品计划、火炬计划、成果转化等多项国家和上海市的科技项目,确立了华爱色谱在色谱分析行业内的地位。 座落于黄浦江畔的生产车间,具备完善的管理制度和的生产环境,2008年通过ISO9001国际质量管理体系认证;拥有GC-9560系列实验室气相色谱仪、HA-9660在线式气相色谱仪、GC-9760便携式气相色谱仪三大系列,二十余种产品,可配备FID、TCD、FPD、PDD、PED、ZrO2等各种检测器。 在电力行业,华爱色谱承担了GB/T 12022-2014《工业六氟化硫》和国网企业标准《SF6气体分解产物气相色谱分析方法》等标准的制修订工作 产品广泛应用于中国电力科学研究院、 冀北、 安徽省、 陕西省、重庆市、 天津市、 上海市、 福建省、 江苏省、 山东省、 浙江省、 四川省、 辽宁省、 黑龙江、 青海省等国网电力科学研究院、广东省电力科学研究院、 贵州省电力科学研究院、 广州供电局、 深圳供电局等南方电网直属单位,江西省检修公司、 河南省检修公司、 天津市检修公司等单位。 另外,华爱色谱在高纯气体和电子工业用气中痕量杂质检测的色谱仪设备,现已广泛应用于Air Liquide(液化空气)、Linde(林德集团)、Air Products(空气化工)、Praxair(普莱克斯)等国际名企;光明化工研究设计院、黎明化工研究设计院、中国计量科学研究院、中国科学院大连化学物理研究所、中国科学院理化技术研究所等科研机构;盈德气体、苏州金宏、福建久策、福建德尔、佛山华特、中船重工、宝武集团、首钢集团等国内名企。 华爱色谱荣获奖项:2016年荣获上海市科学技术三等奖2018年荣获安徽省科学技术一等奖2018年荣获中国电力科学技术三等奖2020年荣获中国机械工业科学技术三等奖2021年荣获第二十二届中国专利优秀奖2021年荣获广东省技术发明二等奖
    留言咨询
  • 斯卡拉分析仪器(上海)有限公司坐落于上海机器人产业园(富联路858号),专注于研发制造湿化学自动分析仪器,为实验室繁琐的化学分析和检测提供自动化、高效、安全和环保的解决方案。斯卡拉的连续流动分析仪、间断化学分析仪、燃烧法总氮/蛋白质分析仪、总有机碳分析仪和机器人分析仪等都是基于优良的品质和服务。 产品广泛用于水质、土壤、植物、肥料、固废、石化、食品、啤酒和烟草等领域。斯卡拉公司从原材料的选择,产品设计,制造,销售到售后服务全方位的规范化管理。各部门出色的专业人员组成了一个强大的产品开发体系,而每一台分析仪的诞生都是这个体系的结晶。斯卡拉通过不断改进与研发,增添了许多革新产品,以满足现代实验室日益发展的需要。实践证明斯卡拉是现代化实验室最经济可靠的选择。 每台分析仪出厂前的组装和测试均由受过良好培训的应用化学家和工程师来完成,以求达到用户高标准、高精度的要求。 斯卡拉已经有2000多种现成的方法应用于土壤、植物、肥料、固废、水质以及发酵过程和清洁剂、食品、饮料、啤酒、葡萄酒、烟草、制药等行业。为将湿化学自动分析作为一种有效的分析手段推广应用于分析检测领域做出了积极的贡献。
    留言咨询
  • 上海琪特分析仪器有限公司专注于自动核酸蛋白分离层析仪、核酸蛋白检测仪、紫外检测仪等生化仪器的研发生产,有30多年的生产历史经验,技术力量雄厚。一贯秉承注重专业品质,结合尖端科技的理念。拥有一流的研发能力、与众不同的品质和完善的售后服务,坚持信誉第一,用户至上的方针,深得广大用户的信赖与好评。本公司生产的产品涵盖了自动核酸蛋白分离层析仪、自动液相色谱分离层析仪、核酸蛋白检测仪、紫外检测仪、聚合物杂质测定仪、恒流泵系列、自动部份收集器系列、脱色摇床、旋涡混合器、电泳仪、电泳槽、梯度混合器、层析柱系列等。其中蠕动泵(恒流泵)、旋涡混合器、脱色摇床连续出口欧洲国家。2008年,自动核酸蛋白分离层析仪(由核酸蛋白检测仪、自动部分收集器、恒流泵、数据工作站、层析柱配套组成),成为国家教育部首届全国高职高专生物技术技能大赛指定使用产品。 本公司将不断推出高品质的新产品,为用户创造更理想的实验条件。同时希望与各界朋友真诚合作,为我国的科学教育事业做出贡献。
    留言咨询

色谱分析中蛋白质分离分析相关的仪器

  • 仪器简介:作为全球最大的实验室过滤及超滤产品供应商,Millipore 可为您提供l. 0.5mL至1000L处理量的实验室除菌过滤装置,可用于血 清、组织培养基及其他溶液的除菌过滤。高通量,低吸附的除菌滤膜,使蛋白质损失最少。可选择即用式过滤器或可更换膜的过滤装置。2. 0.5mL至3000mL处理量的实验室超滤装置,用于蛋白质,核酸的分离、纯化、浓缩和脱盐,专利 的结构设计和新型的超滤膜,使超滤速度更快,产物回收率更高。单片超滤膜和膜包可清洗并反复使用。3. 高通量纯化系统,特别适合大规模样品纯化实验室的应用,可快速有效地同时处理多达96个样品,大大减轻了实验室的负担。主要产品包括:* Amicon 系列超滤离心装置: 浓缩,脱盐一部到位,* DNA Extraction Kit: 从琼脂糖凝胶中回收DNA,只需10分钟即可回收100bp-10,000kb DNA* Micropure -EZ:从DNA中去除常用的42种限制性内切酶,可与Amicon超滤离心装置连用,一步离心即可完成去酶,浓缩及脱盐。* Immobilon 系列转印膜: Ny+ 用于Southern和Northern Blotting PVDF 用于Western Blotting* ZipTip 微量固相萃取吸嘴:只需数秒即可纯化fmol至pmol的蛋白质样品,提高质谱分析的灵敏度* Montage Plasmid kit:用于质粒DNA纯化2 Montage BAC kit:用于BAC DNA纯化2 Montage SEQ kit:用于测序反应后PCR纯化* Montage In-Gel Digest Kit: 同时处理96个1-D或2-D胶中的蛋白质样品* Millex GP33: 超大面积,超高流速的针头式除菌过滤器。技术参数:1.96孔PCR 纯化板---纯化96个样品只需10分钟2.无须离心,只需真空抽干3.不需要使用任何有机试剂及任何盐溶液,也无须洗涤步骤4.纯化后的PCR样品回收率90%(500bp以上)5.纯化后的DNA纯度极佳--Primer的去除率98%主要特点:1.Albumin Deplete Kit--有效去除人血清中65%以上的白蛋2.预装好亲和层析小柱,只需15分钟离心,洗脱操作3.非特异性蛋白吸附极低4.提高低峰度蛋白质在电泳,层析及质谱分析中的解析度5.此Kit同样可适合于其他多种哺乳动物
    留言咨询
  • Biolot蛋白质纯化系统/蛋白质层系统是为蛋白等生物样品的纯化制备而专门设计的全自动蛋白质层析纯化系统,其系统稳定性能高而且软件易用,配备酸度/电导检测器可准确即时监测分离时的梯度环境,专为进行单次和多次纯化的科学家设计。Biolot蛋白质纯化系统旨在满足您的不同应用需求:不论您是每天只需处理少量样品,还是您的工作量要求仪器能实现更大通量,我们的蛋白质纯化系统统使您可快速制备宝贵且复杂的混合物并获得高纯度、高回收率的完全可信结果。高效的模块化制备色谱系统,广泛应用于天然产物、和蛋白质生物高分子的分离纯化。 Biolot蛋白质纯化系统可用于: ● 多肽纯化 ● 单抗纯化 ● 重组蛋白纯化 ● 天然药物和多糖的纯化 ● 疫苗纯化 ● 血液制品分离纯化 ● 基因治疗药物纯化Biolot蛋白质纯化系统产品性能: 可快速分离蛋白质、多肽等生物大分子化合物 高度灵活的模块化配置,让科研过程更直观 采用高精度柱塞泵、高稳定性、低脉冲 高灵敏度在线检测,可选配UV、PH、电导、示差折光等多种检测器 流路为PEEK材料,生物兼容性好 泵头具有自动清洗功能,避免缓冲液残留、结晶析出 全自动馏分收集器,具有多种收集模式,可配置多种规格收集管 标配梯度程序、客户可根据实验需要进行重新设置 存储和执行色谱分离方法 高度智能化操作系统,使用简单方便 控制软件符合“FDA 21 CFR Part 11 认证”认证要求Biolot100蛋白质纯化系统技术参数:型号Biolot 100系统泵PEEK柱塞泵(高精度、低脉冲)流速范围0.01-100ml/min流速精度± 0.5% 压力范围0—20Mpa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度最小梯度调节±0.5%ABS(双泵)检测器光源进口氘灯+钨灯(系统自动切换灯源)检测波长190~800nm(两波长同时检测)波长精度±1nm吸光度范围-3--3AU (线性 0--2 AU)电导范围0—999.9ms/cmPH范围0—14收集器全自动馏分收集器收集管架2×60支试管(高度150mm,直径15mm)收集模式普通模式、顺序收集、循环收集手动上样阀标配1ml定量环(可选配各种规格定量环)电源85 ~ 264VAC,50Hz控制软件通过RS-232(USB),采用基于Windows XP/Windows7/ Windows8/ Windows10/的PC软件工作站,多模块系统控制、设计符合“FDA 21 CFR Part 11 认证”参考尺寸输液泵:370×240×152mm3 紫外检测器:370×240×152mm3 电导/PH:370×240×100mm3 自动馏分收集器:355×241×320mm3
    留言咨询
  • EA3017蛋白质分析仪简介EA3017可用于测定各种物质中蛋白质含量,例如:食物,动物饲料,大米,油料种子、谷类食品、谷类,大豆、玉米、鱼肉、果汁等。 EA3017蛋白质分析仪优点:■ 完全燃烧产生的混合气体经吸附阱消除CO2和H2O,通过高灵敏的TCD检测器检测N2含量,整个分析过程不到90s;■ 60位零空白自动进样器,适合固体、粘性、液体样品;■ 进样、样品处理过程平稳,进样过程可通过电子倒计时同步进行,操作者可以通过宽视镜清楚观察到当样品在较高温度达到燃烧级别时TurboFlash燃烧的光亮;■ 专利吹扫系统能够瞬时消除空气污染,即使在自动运行时,也可以添加样品,确保出色的精确性;■ 符合AOAC标准推荐的燃烧方法,保证分析结果准确。 EA3017蛋白质分析仪技术应用:EA3017蛋白质分析仪采用独特的 Turbo Flash 动态燃烧技术,不仅可设置合适的氧气体积,还可对注入速率进行优化,使得氧气的供给燃烧在可控、独立、程序化的定量条件下完成,确保样品的彻底氧化燃烧,使其分析能力得到突破性提高。结合成熟的色谱分离技术,及高灵敏度热导检测器,实现对氮元素的精确分析测量,可用于测定各种物质中蛋白质含量,例如:食品、饲料、谷物、种子等。除了能够测定蛋白质中氮的含量,同时可在短时间内升级为(CHN)(O) 或 (CNS) 的检测仪器,该特性可使仪器对生物质、食物、树叶、根等样品进行分析。生物燃料样品的分析可使用 (CHN)(O) 模式,其他应用:如 土壤、植物组织、肥料、种子、食物和废弃物的分析使用 (CNS) 模式。EA3017蛋白质分析仪满足标准:GB 5009.5-2010 食品安全国家标准 食品中蛋白质的测定GB/T 24318-2009 杜马斯燃烧法测定饲料原料中总氮含量及粗蛋白质的计算GB/T 31578-2015 粮油检验 粮食及制品中粗蛋白测定 杜马斯燃烧法
    留言咨询

色谱分析中蛋白质分离分析相关的资讯

  • 沃特世推出新型离子交换色谱柱用于蛋白质定性分析
    沃特世公司(WAT:NYSE)最新推出了Protein-Pak™ Hi Res离子交换(IEX)色谱柱,用于在沃特世 ACQUITY UPLC 系统上分析生物分子,包括单株抗体、重组蛋白质、DNA/RNA和疫苗。生物治疗药物厂商使用该色谱柱分析完整生物分子的各种带点状态,可以获得更高的分辨率,更快的分析速度,以及更好的重现性。,因此,提高了监测能力,有助于厂商高品质和高效率的生产。   沃特世Protein-Pak Hi Res IEX系列色谱柱的开发,是为了使用UPLC技术定性分析目前在众多新型生物制药疗法中发现的重组蛋白质和单株抗体的。这些无孔的、高健合密度颗粒技术与传统的多孔IEX颗粒技术在大分子分离方面比较,具有较高峰值容量和较高的分辨率。另外,新的颗粒技术及表面化学特性也提高了色谱柱的载样能力和分辨率,同时最大限度减小了色谱柱污染。  在聚合物颗粒的表面健合的离子交换的健合相包括强阴离子交换(季胺盐,Q)和弱强阳离子交换物质(羧甲基(CM)和磺丙基(S))。它们在pH值3-10这个范围内可以耐受高盐浓度和高压。离子交换色谱法被证实是重要的用于评估生物分子带电状态的技术。生物分子生产的重现性是个难点问题。是重现,蛋白质带电量的变化是脱酰胺或糖基化作用的良好标志,进而会影响产品稳定性和功效,因此需要密切监测。更多详情,请访问网站 www.waters.com/proteins。  将UPLC技术的能力扩展至生物分子  2004年,沃特世公司推出了ACQUITY UPLC系统,彻底改变了LC分离技术,相比传统HPLC技术,UPLC技术大大的提高了样品通量。沃特世公司最新的Protein-Pak Hi Res IEX色谱柱与ACQUITY UPLC系统的完美结合,可以在保持关键组分的分辨率下,获得最高的灵敏度。另外,每根色谱柱都采用沃特世ACQUITY UPLC eCord™ 技术,有助于监测单根色谱柱在整个色谱柱生命周期内的使用参数 – 信息永远伴随着色谱柱。  总之,这些互相结合的技术极大地增强了单株抗体、重组蛋白质、DNA或RNA以及疫苗成分的定性分析能力。  关于沃特世公司(www.waters.com)  50年来,沃特世公司(NYSE:WAT)通过提供实用且可持续的创新,实现了全球医疗保健、环境管控、食品安全、水质监测等领域的显著进步,为基于实验室的许多机构创造了商业价值。  沃特世的技术突破和实验室解决方案开创了分离科学、实验室信息管理、质谱技术和热分析的相互组合,为客户提供了一个持久成功的平台。  沃特世公司2009年的总收入达15亿美元拥有5,200名员工 公司正在帮助全球客户推进科研进程,并为其提供绝佳的操作体验。
  • 药典蛋白质组学分析标准二次公示!增加QC评价标准
    随着质谱技术以及色谱与质谱联用技术的快速发展,蛋白质组学分析技术在未知蛋白质的鉴定、蛋白质结构的解析、靶向蛋白质定量、以及生物技术药物研发、质量控制和体内药代动力学研究方面应用越来越广泛。药典委拟制定《中国药典》蛋白质组学分析方法及应用指导原则,并于2024年2月20日发布第一版公示稿并征求意见。为确保标准的科学性、合理性和适用性,现将拟增订的蛋白质组学分析方法及应用指导原则(第二次)公示征求社会各界意见(详见附件)。公示期自发布之日起一个月。蛋白质组学分析方法及应用指导原则公示稿(第二次).pdf蛋白质组学分析基本流程主要包括:1. 蛋白样品的提取,变性还原,酶解与多肽分离富集;2. 多肽的分析与鉴定;3. 数据分析。在分离和富集中采用凝胶电泳和色谱技术,分析与鉴定中采用质谱、二维凝胶电泳、X射线分析、核磁共振波谱和透射电子显微镜技术。蛋白质组学分析方法及应用指导原则第二次公示稿修改说明 根据 2024 年 2 月蛋白质组学分析方法及应用指导原则第一次公示稿的反馈意见和建议,国家药典委员会相关专业委员会进行了研讨,在第一次公示稿的基础上修订了部分内容,主要为:一、适用范围1. 将文中“蛋白”修改为“蛋白质”。二、蛋白质组学的分析策略 1. 将“通过质谱分析技术检测到肽指纹图谱进行多肽的鉴定和定量分析”修改为“通过质谱分析技术检测肽段一级与二级谱图进行多肽的鉴定和定量分析”。2. 将文中“图谱”修改为“谱图”。三、蛋白质组学分析方法 1.“2.1 质谱技术”增加其他质谱碎裂技术,修订为:“蛋白质组样品经过提取、分离富集或者进一步变性还原、酶切、多肽分离富集处理后,选择适宜的分离系统导入离子源离子化,电离生成带电荷离子,离子通过碰撞诱导解离(Collision induced dissociation, CID)、高能碰撞诱导解离 High energy collision dissociation, HCD)、电子活化解离(Electron activated dissociation,EAD)或其它适宜的解离技术进行碎片化,后在加速电场的作用下形成离子束进入质量分析器,通过质量分析器分离和过滤不同质核比的离子,过滤后的离子最终经检测系统转换为可测量的信号,从而得到质谱图,以获得蛋白质的相关信息”。 2. 将文中“质核比”修改为“质荷比”。 3. 将“数据库检索对肽段碎裂质谱谱图和数据库中的理论序列谱图进行匹配,实现肽段鉴定”修改为“质谱数据文件的数据库检索对肽段碎裂质谱谱图和数据库中的蛋白质计算机模拟消化肽段碎裂模式进行匹配,以进行肽段鉴定”。4. 将“肽谱图匹配(peptide spectrum matching,PSM)”,“肽谱图匹配(peptide-spectrum matches,PSM)”,统一为“肽段谱图匹配 (peptide-spectrum matches, PSMs)”。 5. 将“统计学分析(如 p 值)”修改为“统计学指标(如 p 值)”。 2024 年 6 月 与第一次公示稿比较,修改处加橙色标记 四、蛋白质组学分析的质量控制 1. 在表 1 中增加样品处理中酶解漏切率、酶解位点特异性等 QC 评价指标及描述;增加色谱分析中峰宽和半峰宽等 QC 评价指标及描述;增加质谱分析中TIC 图等 QC 指标及描述。2. 调整仪器性能参数的描述顺序。将“建议结合仪器的性能进行设置,例如可将两个参数均设置为 20ppm,也可以将母离子质量误差设置为 10ppm,子离子质量误差设置为 0.02Da”修改为“建议结合仪器的性能设置质量误差,如将母离子质量误差设置为 10 ppm,子离子质量误差设置为 0.02 Da,也可将两个参数均设置为 20 ppm”。3. 将“鉴定的蛋白质应具有至少 70%的覆盖率,即被鉴定的多肽的氨基酸序列覆盖蛋白质氨基酸序列的百分比,70%的蛋白覆盖率可提高鉴定结果的可信度和全面性”修改为“蛋白质覆盖率是指被鉴定的多肽的氨基酸序列覆盖蛋白质氨基酸序列的百分比,70%及以上的蛋白质覆盖率可提高鉴定结果的可信度和全面性”。
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙沃特世科技(上海)有限公司实验中心氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。参考文献(1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875(2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61(3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554(4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933.(5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27(6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217(7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22.(8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506(9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167(10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speedand high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820(11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414(12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40(13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52.(14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132(15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem.2011, 3, 172-177(16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press

色谱分析中蛋白质分离分析相关的方案

  • 使用 Agilent AdvanceBio SEC 色谱柱分析聚乙二醇化蛋白质
    通过聚乙二醇化能够改变治疗性蛋白质的物理化学和生物性质(如提高溶解度、降低免疫原性、延长半衰期以及防止蛋白酶破坏),从而显著提高其价值。体积排阻色谱法 (SEC) 是检测分子量大于聚乙二醇化蛋白质杂质的首选方法。由于聚乙二醇介导的与硅胶固定相的相互作用会导致回收率降低、峰形变差以及过度拖尾,因此聚乙二醇化蛋白质的 SEC 分析面临着很大挑战。本应用简报描述了一种用于检测聚乙二醇粒细胞集落刺激因子 (PEG GCSF) 的简单而灵敏的 SEC 方法。采用 AdvanceBio SEC, 130Å , 7.8 × 300 mm, 2.7 μ m 色谱柱在水相流动相下进行 PEG GCSF 的分离和定量分析。线性曲线在 12.5-2000 μ g/mL 的范围内具有优异的相关系数,表明该方法适用于定量分析。该方法具有出色的保留时间和峰面积精度,证明了该方法的适用性。此外,AdvanceBio SEC 还可对强制应激研究中得到的聚集体进行分离与定量分析。
  • 小分子治疗性蛋白的高分离度体积排阻色谱分析
    涉及聚集的蛋白质变性过程是阻碍稳定蛋白质药物制剂开发的因素之一。使用体积排阻色谱 (SEC) HPLC 测定这些蛋白质的纯度和聚集体是一种相对简单的技术。定期校准 SEC 方法可确保更好的重现性,从而提高准确性,还可及早发现样品及批次中的潜在问题。本简报将 Agilent AdvanceBio SEC 120 Å 1.9 μ m 色谱柱与其他供应商的亚 2 μ m 填料色谱柱进行了比较。对重组人生长激素 (hGH)、人粒细胞集落刺激因子 (hG-CSF) 以及干扰素 α -2b (INF α -2b) 蛋白的分析结果表明,AdvanceBio 色谱柱在小分子蛋白质治疗药物应用方面具有卓越性能。
  • 使用 Agilent 6550 Q-TOF 质谱仪进行完整蛋白质分析
    生物制药行业已将 LC/MS 广泛应用于治疗性蛋白质的分子量确定。这种方法快速、准确,可实现相对定量。准确的质量测量有助于确定预期的翻译后修饰 (PTM) 是否表达为正确的蛋白质序列,其还提供了同一样品中不同蛋白质或 PTM 的相对丰度。高分离度和高灵敏度质谱仪有利于这一分析的进行。本应用简报介绍了一种使用 Agilent 6550 Q-TOF 质谱仪进行的完整蛋白质分析。

色谱分析中蛋白质分离分析相关的资料

色谱分析中蛋白质分离分析相关的试剂

色谱分析中蛋白质分离分析相关的论坛

  • 有关蛋白质的分析

    最近在尝试着进行蛋白质提取物的分析,大家有没有做过?能否分享交流一下你成功的色谱分析条件

  • 【资料】蛋白质组学中质谱分析前的预富集研究进展

    自80年代以来一系列新的软电离技术如快原子轰击电离 、基质辅助激光解吸电离 、电喷雾电离等发现后,生物质谱技术迅速发展,已成为现代科学研究前沿的热点之一。而其中又以基质辅助激光解吸质谱(MALD I2MS)和电喷雾电离质谱(ESI2MS)应用最为广泛。基质辅助激光解吸质谱灵敏度高、可操作性强且对生物样品中的无机盐和缓冲溶液具有较好包容性;电喷雾电离质谱选择性好、分析质量范围宽、样品消耗量小、易于与各种色谱联用。在生物样品的处理中常常需要用到非挥发性的盐,用于为细胞营造无毒的环境,稳定溶剂化的样品及维持酶的活性等。此外,许多用于分离生物分子的分离方法也需要高浓度的盐和缓冲溶液 。但是,样品处理及分离过程中所用的NaCl、十二烷基磺酸钠、盐酸胍、尿素、甘油、二甲基亚砜等都会影响后续质谱高灵敏的分析 。因为这些不挥发的低分子量污染物会导致复杂加合物的形成,增加噪音及造成明显的信号抑制 。此外,在复杂的组织或细胞蛋白质组中,与疾病和信号传导相关的蛋白质往往是属于低丰度的蛋白质,这些重要的蛋白质由于本身存在的量极少而很难得以有效鉴定 。因此,对蛋白质/多肽样品的预富集处理将是MALD I2MS或ESI2MS得到高质量质谱图的前提,也是成功鉴定蛋白质的关键。该文献主要侧重于相关工作的概述。

  • 蛋白质质谱分析

    PS1利用基质辅助激光解吸电离-飞行时间(MALDI-TOF)技术来表征生物分子。样品溶于固定的底物中形成晶体,用激光脉冲使其离子化,离子被加速后通过飞行管时分离,所有离子均可被检测。系统包括三个组成部件:样品点样制备工作站(SymBiot 1)、生物质谱工作站(Voyager-DE PRO)和自动化分析软件(AutoMS-Fit)。SymBiot1 是一个自动样品处理系统,支持亚微升级微量点样,具有快速省时、重现性好的特点;Voyager-DE PRO是为蛋白质组研究专门设计的自动飞行时间质谱分析系统,配有AB公司之专利—延迟检测技术,具有高分辨率、质荷比宽等特点;AutoMS软件可以批处理方式或实时动态方式检索Protein Prospector蛋白数据库或您指定的蛋白数据库,查询参数可以任意设定,检索结果以Microsoft Access格式分类编号及储存。 PS 1技术平台建立伊始便受到了许多蛋白质课题研究组的关注。中国科学院上海生物化学研究所戚正武院士课题组从猪肝中提取某一活性蛋白组分,该组分理化性质不清楚,天然含量十分低,并无相关文献报道。用HPLC分离以后对活性组分的成分不能确定。上海基康生物技术有限公司运用PS 1系统对HPLC分离后的活性组分作了质谱分析,仅在一个工作日内就精确确定该组分由分子量极为相近的几种蛋白质构成,分子量精确度达到10 ppm。后经HPLC再次细分(洗脱梯度增加了2.5倍),证实了质谱的结论。此活性组分曾滤过1kD分子筛,基康的质谱数据纠正了研究人员过去对该活性组分分子量的误判,为研究人员明确实验方向、优化实验步骤提供了强有力的依据。 PS1除了可以进行生物大分子的精确分子量测定,还可用于蛋白的肽指纹图谱分析(peptide mass fingerprint,PMF),提供相关生物信息学服务,并且还可以利用源后衰变(Post Source Decay,PSD)技术来获得样品的MS/MS数据,以得到一级结构信息。PSD方法通常增加了激发激光的功率,使其超过产生一般肽指纹谱图所需功率的阈值,过剩的能量使前体离子在源内离子化之后发生裂解,产生一系列碎片离子,在反射器的作用下,最终可以得到一张连续的碎片离子图谱。经特定的软件分析后,即可在数据库中检索到肽段的氨基酸序列。利用PSD分析技术,还可以对磷酸化,糖基化等翻译后修饰进行定位分析,同样也可以鉴定产生翻译后修饰肽段的蛋白质。Neville et al.(1997)将这一方法成功的用于磷酸肽的序列分析。作为重要的蛋白质鉴定手段之一,PS1的精确度可以达到10 ppm,灵敏度为fmol,分子量检测范围可达到500 kDa,每天可自动分析40-100个样品,适用于大规模“蛋白质组学”研究。

色谱分析中蛋白质分离分析相关的耗材

  • 用于蛋白质分析的氧化催化剂
    蛋白质分析氧化催化剂Oxidation catalyst, for protein analysis氧化铝球和氧化铜丝表面镀铂包装:40g/瓶 , 60g/瓶适用仪器及货号Thermo 33840000Eurovector E10148Hekatech HE33840000天津欧捷科技有限公司—进口元素分析耗材供应商—保证质量实验室耗材 元素分析耗材 色谱分析耗材 质谱耗材样品容器 Labco顶空进样瓶 色谱瓶 石英棉 石英燃烧管 进样隔垫 催化剂 标准品 试剂 玻璃碳产品 色谱柱 进样针 针式过滤器 仪器配件这些耗材可用在Thermo、Elementar、Sercon、Shimadzu、leco、Perkin Elmer、Euro Vector等仪器。
  • 重组多肽/蛋白质分析柱
    PLRP-S 色谱柱 耐用的弹性填料提供重现性结果,寿命更长 热稳定和化学稳定性高 遵循USP L21 标准 用于生命科学、化学、临床研究、能源、环境、食品和农业、材料科学和制药行业 宽孔径范围(100?-4000?),适合于分离小分子到大分子复合物和多核苷酸PLRP-S 系列色谱柱包括各种孔径和填料尺寸,它们都具有相同的化学特性和基本吸附特性。这些填料本质上是疏水的,因此不需要键合相、烷基配体来进行反相分离。因此,能得到无硅醇基、无重金属离子的高重现性填料。该色谱柱拥有多种产品系列,适用于纳流/微量分离,包括自下而上和自上而下的蛋白质组学、分析型分离以及制备级纯化。此外,Process 色谱柱可以用大量散装填料进行装填。订货信息:
  • 沃特世蛋白质分离专用色谱柱
    对复杂生物大分子进行准确分析是开发如重组蛋白类生物药物和诊断试剂的重要技术,沃特世的高效反相色谱柱可以满足不同生物大分子应用领域中的复杂分离要求。基于HPLC技术平台和UPLC技术平台的亚乙基桥杂化颗粒技术的BEH300 C4色谱柱,配合科学的方法,可帮助您应对蛋白质分离分析带来的挑战。蛋白分离专用反相色谱柱:改善蛋白峰形可以分离不同大小、不同疏水性和不同等电点的蛋白质没有蛋白质残留,没有交叉污染耐受宽pH范围和苛刻的温度条件专门用蛋白质混合物进行色谱柱质量控制有基于3.5 μm的HPLC色谱柱和1.7 μm的UPLC色谱柱,方便进行方法转换分离度高,适合用于LC/MS应用专为蛋白质分离而设计使用反相色谱技术分离生物大分子一直以来都很有挑战性,通过改变填料颗粒的理化性质可以改善分离。作为C18液相色谱柱的技术和市场领导者,沃特世在过去15年多推出了多种针对蛋白质分离的反相色谱柱,现在我们最新推出的基于BEH(亚乙基桥杂化)颗粒技术的色谱柱,有效克服了硅胶基质色谱填料的性能缺陷,提升了蛋白质的分离性能。300A 孔径C4 键合相很小的次级相互作用即使在提高温度的条件下分离,也几乎检测不到交叉污染BEH色谱柱帮助您获得稳定且重现性好的蛋白质分离结果沃特世投入大量资源来研究和开发解决方案,以应对分析实验室日益增长的挑战。作为分离科学的市场领导者和色谱产品的主要制造商,沃特世一如既往地为用户提供可靠的优质产品和一流的技术服务。BEH C4拥有沃特世公司全球领先的研发和应用支持,真正帮助用户“实现想望”。先进的键合技术耐受低pH值条件,在高温条件下稳定用不同类型蛋白质的混合物进行质量控制批次重现性好 用于蛋白表征的UPLC技术和检测2004年沃特世推出UPLC技术,比传统HPLC技术在分离度和速度方面有显著提升。新型BEH300 C4色谱柱有1.7 μm和3.5 μm两种粒径,分离方法可以无缝转换。此外,BEH300 C4色谱柱在使用与质谱兼容的流动相时也有非常好的分离效果,可以得到更丰富且准确的样品信息。将3.5 μm HPLC分离方法无缝转换到1.7 μm UPLC方法,提高分离效果完全与质谱兼容的流动相体系,充分满足当今先进的检测技术需要注意:本页面内容仅供参考,所有资料请以沃特世官方网站为准。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制