质谱扫描范围表示方法

仪器信息网质谱扫描范围表示方法专题为您提供2024年最新质谱扫描范围表示方法价格报价、厂家品牌的相关信息, 包括质谱扫描范围表示方法参数、型号等,不管是国产,还是进口品牌的质谱扫描范围表示方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱扫描范围表示方法相关的耗材配件、试剂标物,还有质谱扫描范围表示方法相关的最新资讯、资料,以及质谱扫描范围表示方法相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

质谱扫描范围表示方法相关的厂商

  • 400-860-5168转2735
    谱标科技始于2009年,现总部位于东莞市寮步鑫龙盛科产业孵化园,在全国多个地区设立分公司(上海华东分公司、成都西南分公司、武汉华中分公司)及办事机构(福建、江苏),是中国领先的实验室仪器设备和耗材供应商及生产商。主营范围:二手仪器,二手分析仪器,分析仪器维修维保,分析仪器设备,实验室管理软件系统LIMS、食品快检仪器、色谱、质谱、光谱类产品及周边配件耗材、化学试剂、标准品、药物中间体、药物杂质、实验室劳保用品、CNAS技术培训、方法开发、实验室流程优化,仪器租赁、人才培养以及输出。 客户群体广泛分布于食品、制药、政府机构、环境测试机构、化工、新能源、高校、临床、生物工程等,其中已与1000多个用户建立了中长期合作关系。诸如东莞市质量监督检验中心、东莞清华大学研究创新中心,华为、欣旺达、东莞理工大学、信立泰药业、联邦制药、健康元药业、东阳光药业、曼秀雷敦、华东理工大学、上海药物所、药明康德、华海药业、天龙药业、中鼎检测、华测检测、SGS、ITS、TUV、BV等国内外知名企业单位。
    留言咨询
  • 400-611-9236
    服务科学,世界领先--赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:https://www.thermofisher.cn/cn/zh/home.html。 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站https://www.thermofisher.cn/cn/zh/home.html。 联系方式:电话:400-611-9236售前咨询电子邮箱:yang.chen4@thermofisher.com售后服务电子邮箱:cru.cn@thermofisher.cn扫一扫,关注 “赛默飞色谱与质谱中国”官方微信
    留言咨询
  • 企业简介武汉上谱分析成立于2013年1月,拥有CMA资质认证,GeoPT、G-Probe国际盲样分析检验水平全球领先,是专业的地球化学分析综合测试平台,提供微区原位分析(U-Pb同位素定年、原位Rb-Sr等时线定年、主微量元素分析、S-Sr-Nd-Pb-Hf-B同位素分析)、全岩主微量元素分析、Sr-Nd-Pb-Hf-Ca-Fe-Cu-Zn-Li-Mg同位素分析、电子探针分析、样品前处理等测试服务。累计服务国际SCl论文超2800篇,包括NC、PNAS、EPSL、GCA等。发展历程2013年,上谱成立,初建50平米千级超净实验室,引进第一套质谱分析设备,可完成锆石制靶、微量元素检测,初步形成地化分析能力。2014年,取得CMA认证,参加GeoPT国际盲样比拼,测试结果处于国际一流水平。2015年,引进第一台激光分析设备,可提供U-Pb同位素定年和微区主微量元素分析。2016年,建成形貌分析实验室,引进IT100扫描电镜和第二套质谱,检测效率进一步提升。2017年,主量实验室成立,引进X荧光光谱仪和第二套激光、第三套质谱,正式开展全岩Sr、Nd、Pb、Hf同位素前处理,形成微区原位、全岩主微量两大分析板块。2018年,乔迁2000平实验楼,建成220平米千级超净实验室,引入第一套MC(NeptunePlus)和第三套激光,开启同位素分析时代,开展微区Sr、Nd、Pb、Hf、S同位素分析。2019年,建成电子探针实验室,引进JAX-8230探针和IT300电镜,丰富地学测试项目。2020年,建立前沿同位素方法,第二套MC(NeptuneXT),建立Ca、Fe、Cu、Zn等前沿方法。2021年,成立上谱地质开展制片、岩矿鉴定、矿物分选、无污染碎样等,引进第四套激光和质谱,打造一站式地学综合分析平台。2022年,地学分析综合测试平台,新建200平超净仪器房,300平实验室,进一步提升测试能力,健全地学分析项目服务国际SCI文章超过1500篇。2023年 走向世界 服务全球测试项目上谱分析测试项目包括激光微区原位分析、电子探针分析、全岩主微量元素分析、同位素分析以及地质样品前处理等,样品类型涵盖岩石、矿物、土壤、水、珠宝、材料、生物样品以及高纯物质等。全心服务上谱分析始终坚持“专业、快速、贴心”的服务理念,依托标准化的实验硬件设施、规范化的样品管理制度、精细化的优质服务体系,为广大科研工作者提供地学样品一站式服务,实现“上门取样→样品前处理→分析测试→数据处理”全流程一站解决!
    留言咨询

质谱扫描范围表示方法相关的仪器

  • GaiaField 地面目标大范围扫描高光谱成像仪GaiaField 地面目标大范围扫描高光谱成像仪是一种采用先进的高光谱成像技术的地面遥感器,它的核心是一台带有光学机械扫描器的成像光谱仪,可进行远距离、大范围目标物体的高光谱扫描,得到目标的影像及光谱信息,广泛应用于目标识别、伪装与反伪装研究应用领域以及地面物体遥测、海洋水体遥测、湖泊水体遥测等生态环境研究领域,如农作物生长状况监控、虫害监控、大范围果蔬成熟度监控等。根据光谱覆盖范围的不同,GaiaField 地面目标大范围扫描高光谱成像仪,分为三个光谱波段:VNIR(400-1000nm)、NIR(900-1700nm)和SWIR(1000-2500nm),并根据实际应用的需求,提供三个标准系统规格。GaiaField 地面目标大范围扫描高光谱成像仪主要技术规格*:型号(GaiaField-)V10V10EN17EN25E光谱覆盖范围(nm)VNIRVNIRNIRSWIR标准镜头焦距(mm)25252525垂直方向视角(FOVac,°)20202020垂直方向视角分辨率(IFOVac,°)0.050.01-0.050.050.05水平方向扫描角度范围(FOVal,°)45454545水平方向瞬时视角(IFOVal,°)0.10.050.050.05扫描速度(line images/s)25-12025-120100100扫描幅面(m,垂直×水平,距离10m处)3.5×83.5×83.5×83.5×8可充电电池满电使用时间(小时)8888便携式设计,配备长效电池,便于长时间户外测量GaiaField 地面目标大范围扫描高光谱成像仪采用便携式设计,便于携带和运输,同时配备长效可充电锂离子电池,最长可提供超过12小时的使用时间,可适应长时间的户外测量需求。反射率测量模式GaiaField 地面目标大范围扫描高光谱成像仪,是基于自然光环境下,对植被、湖泊、海洋、森林等进行反射率测量,通过对于吸收光谱的分析,进行相关的研究。右图是典型的植被的全波段反射光谱图。以植被为例,研究表明,影响植被反射率的主要因素有植被的本体颜色特征、细胞组织结构以及水份含量。在对农作物生长进行监控的实际应用中,通常可采用可见光-近红外波段(400-1000nm或400-1700nm)测量,进行叶绿素监控和氮素营养监控,从光谱上来看就是蓝移和红边现象,反映的是植物光合作用的强弱(即植物的活力),蓝移表示活力减弱。针对一些水体的研究和应用,通常采用全波段(400-2500nm)反射率光谱测量,可反映出水体中可溶性物质、叶绿素和悬浮物的情况。全波段可提供超过700个光谱通道,可自由选择GaiaField 地面目标大范围扫描高光谱成像仪采用的高分辨率的成像光谱仪,在可见光波段光谱分辨率高达3nm,在短波红外波段也能达到10nm的光谱分辨率,因而全波段内可以获得超过700个光谱通道,更多的光谱通道意味着更多的信息,可以帮助研究人员通过对连续光谱的分析、反演,获得更多的研究对象的细节。标准三维数据立方体数据格式,可直接通过ENVI软件进行数据处理440nm 550nm670nm 720nm750nmGaiaField-V10-PS—“可见光-近红外型”地物高光谱成像仪系统包含内容:V10高光谱成像仪、数据采集软件、三脚架、电控扫描机构及充电电池等系统主要功能及规格:◇ 可用于远距离、大范围目标物体的高光谱成像◇ 扫描幅面:3.5m×8m(距离10m处)◇ 垂直视场角:20°◇ 水平扫描角度范围:45°◇ 水平扫描角分辨率:0.1°◇ 测量光谱范围:400-1000nm◇ 扫描头可进行俯仰(±90°)和旋转(±180°)方向手动调整◇ 扫描头采用三脚架通用接口◇ 充电电池在满电状态下可以8小时连续供电GaiaField-V10-PS—“可见光-近红外型”地物高光谱成像仪分项规格一)高光谱成像仪1. 成像光谱仪可见光-近红外波段光谱仪波长范围:400nm-1000nm光谱分辨率:3nm光谱采样点:0.63nm狭缝长度:14.2mm狭缝宽度:30μm相对孔径:F/2.4总通光效率:50%杂散光:0.5%2. 配套镜头波长范围:400-1000nm焦距:25mm光圈:F/1.4~F/17接口:C-Mount透光率:≥85%视场角:20°配套CCD探测器CCD满帧像素:1392x1040像元尺寸:6.45*6.45μm数据接口:Ethernet全幅帧速:25 –120fps曝光时间:1μs-120sA/D输出:14bits镜头接口:C-Mount动态范围:60dB3.类型:常温型二) 光谱图像采集配套软件光谱及图像实时采集,界面实时显示光谱数据可视,可存储可通过鼠标选取图像上任何位置(或区域),以获取该位置的光谱并显示CCD参数可自由设置,电控位移台速度设置原始数据可存储为标准raw格式,可供第三方分析软件(如ENVI等)读取分析三) 一体化电控扫描机构电控扫描水平角度:45°扫描角度分辨率:0.05°电控扫描机构控制接口:USB2.0三脚架最大负荷:10kg三脚架最低高度:0.6m充电电池在满电状态下可以8小时连续供电四) 图像处理机CPU: 主频2.0GHz以上内存:不小于2GB硬盘容量:不小于500GB独立显卡:不小于512M独立显存五) 其它主机重量:8Kg外观:手提式一体设计 GaiaField-V10E-PS—“可见光-近红外增强型”地物高光谱成像仪系统包含内容:V10E高光谱成像仪、数据采集软件、三脚架、电控扫描机构及充电电池等系统主要功能及规格:可用于远距离、大范围目标物体的高光谱成像扫描幅面:3.5m×8m(距离10m处)垂直视场角:20°水平扫描角度范围:45°水平扫描角分辨率:0.05°测量光谱范围:400-1000nm扫描头可进行俯仰(±90°)和旋转(±180°)方向手动调整扫描头采用三脚架通用接口充电电池在满电状态下可以8小时连续供电GaiaField-V10E-PS—“可见光-近红外增强型”地物高光谱成像仪分项规格一) 高光谱成像仪1. 成像光谱仪可见光-近红外波段光谱仪波长范围:400nm-1000nm光谱分辨率:3nm光谱采样点:0.63nm狭缝长度:14.2mm狭缝宽度:30μm相对孔径:F/2.4总通光效率:50%杂散光:0.5%2. 配套镜头波长范围:400-1000nm焦距:25mm光圈:F/1.4~F/17接口:C-Mount透光率:≥85%视场角:20°3. 配套CCD探测器类型:常温型CCD满帧像素:1392x1040像元尺寸:6.45*6.45μm数据接口:Ethernet全幅帧速:25 –120fps曝光时间:1μs-120sA/D输出:14bits镜头接口:C-Mount动态范围:60dB二)光谱图像采集配套软件光谱及图像实时采集,界面实时显示光谱数据可视,可存储可通过鼠标选取图像上任何位置(或区域),以获取该位置的光谱并显示CCD参数可自由设置,电控位移台速度设置原始数据可存储为标准raw格式,可供第三方分析软件(如ENVI等)读取分析三)一体化电控扫描机构电控扫描水平角度:45°扫描角度分辨率:0.05°电控扫描机构控制接口:USB2.0三脚架最大负荷:10kg三脚架最低高度:0.6m充电电池在满电状态下可以8小时连续供电四)图像处理机CPU: 主频2.0GHz以上内存:不小于2GB硬盘容量:不小于500GB独立显卡:不小于512M独立显存五)其它主机重量:8Kg外观:手提式一体设计
    留言咨询
  • 室温 压电运动⽅ 案 —“Carrier. 系列“ ⼤ ⾏ 程扫描载物台 — 精密光学,半导体表征⼤ 范围压电扫描台Carrier.S200.XY产品特⾊ &bull 两维度XY 扫描运动 200 um × 200 um;&bull 闭环定位精度优于 1nm;&bull 最⼤ 负载 500 g;&bull 针对光学显微镜-超分辨定制化解决⽅ 案;&bull ⽀ 持⽆ 磁( .NM)和⾼ 真空( .UHV)选件升级Carrier.S200.XY ⼤ 范围压电扫描台 — 技术参数 可选版本 ⇨ 正常版本.NM 绝对⽆ 磁版本;.HV, ⾼ 真空版本 .UHV ,超⾼ 真空版本;1 底⾯ 尺⼨ *⾼ 度180 mm × 150 mm × 20 mm2 主体材料铝合⾦ 3 中空透孔80 mm × 60 mm4 运动⾏ 程200 um × 200 um5 闭环分辨率优于1nm6 推荐最⼤ 负载500 g7 闭环传感器电容式8 电容精度0.3 nm9 压电电容(X, Y)6.5 uF15 到 40 摄⽒ 度10 推荐使⽤ 温度11 质量1 kg12 安装螺纹孔⾃ 动兼容 Carrier.L7550.XY
    留言咨询
  • 室温 压电运动⽅ 案 —“Carrier. 系列“ 大行程载物台 — 精密光学,半导体表征产品特⾊ &bull XY ⽅ 向⼤ ⾏ 程 75 mm × 50 mm&bull 最⼩ 步伐尺⼨ 约20 nm&bull 最⾼ 速度 20 mm/s&bull 闭环传感,空间分辨率 100 nm / 10 nm&bull 全⾏ 程运动中,保证通孔 85 mm × 65 mm&bull ⽀ 持⽆ 磁 ( .NM ) & 超⾼ 真空 ( .UHV )&bull 主体铝合⾦ (硬质氧化发⿊ )2D 尺⼨ 图Carrier.L7550.XY ⼤ 范围压电扫描台 — 技术参数 可选版本 ⇨ 正常版本.NM.HV.UHV.NM 绝对⽆ 磁版本;.HV, ⾼ 真空版本 .UHV ,超⾼ 真空版本;1 运动⽅ 向X Y2 外形尺⼨ 250 mm × 200 mm × 30 mm3 必须安装空间325 mm × 250 mm4 有效穿孔85 mm × 65 mm5 主体材料铝合⾦ 6 线缆 & 接头标准屏蔽线缆DSub9 接头kapton漆包线,PEEK-2mm插针7 ⼯ 作温度10 – 40 °C运动参数-空间推荐安装形式 I. (下列性质均在推荐安装形式下测得)8 运动⾏ 程75 mm × 50 mm9 最⼤ 速度~ 20 mm/s10 最⼩ 步伐~ 30 nm11 驱动频率Max. 20 kHz (超安静运动)12 最⼤ 负载2 kg13 全⾏ 程俯仰/偏摆0.8 mrad传感精度14 位置传感类型- 电阻型传感( .R )- 光栅尺传感( .O )75 mm × 50 mm15 位置传感量程- 电阻型传感( .R ), 100-200 nm- 光栅尺传感( .O ), 10 nm, 1nm可选(默认 10nm)
    留言咨询

质谱扫描范围表示方法相关的资讯

  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 扫描探针显微镜宽动态范围电流测量系统的研制
    成果名称 扫描探针显微镜宽动态范围电流测量系统的研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 &radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产 成果简介: 扫描探针显微镜(SPM)是研究材料表面结构和特性的重要分析设备,具有高精度和高空间分辨的优点,可以在多种模式下工作。其中,扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。SPM中用于探测针尖与样品间电流的关键部件是电流-电压转换器(I-V Converter),其作用是把探测到的微弱电流信号转换为电压信号以便后续处理。目前商用SPM设备中采用的是虚地型固定增益线性电流-电压转换器,典型灵敏度为108 V/A,其主要缺点是电流测量的动态范围较小,只能达到3~4个数量级,这使得目前SPM的电流测量能力被限定在10pA~100nA之间,阻碍了SPM在微纳电子学领域的应用。 2012年,信息学院申自勇副教授申请的&ldquo 扫描探针显微镜宽动态范围电流测量系统的研制&rdquo 获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持,在项目资金的支持下,申自勇课题组开展了富有成效的工作,包括:(1)宽动态电流测量系统总体设计;(2)测量系统与SPM控制系统的接口设计;(3)测量系统加工制作和联机调试;(4)测量系统性能指标的测试评估与优化。此外,课题组还克服了皮安级微弱电流的高精度低噪声测量、反馈回路中用于非线性转换的双极结型晶体管的温度补偿等技术难题,所研制的测量系统取得了良好的效果。目前,该项目已经顺利结题,其成果装置已经在该课题组相关仪器上正常使用,并在向校内外相关用户推广。 应用前景: 扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。
  • 手机上的化学物质会“出卖”你 质谱分析缩小范围
    如果你担心手机里的私密信息被泄露以至于辗转难眠,那也许你会考虑给手机外壳来个彻底的清洗和消毒。  科学家们表示,他们可以通过手机外壳上残留的化学物质推断出一个人生活方式,具体到使用了什么美容产品、吃了哪些食物以及服用了什么药物。  专家还指出,分析个人手机上的遗留化学物质对医疗保健服务和警察办案都将有所裨益。  该研究的合著者之一、来自加利福尼亚大学Pieter Dorrestein说:“你可以据此判断对方的性别,如果发现对方使用了防晒霜,那么可以判断此人可能是个热爱野外活动的人。所有这些细微线索都能帮助调查人员缩小范围。”  这项研究发表在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)上,来自美国和德国的研究者介绍了他们的实验过程:借助医用海绵擦拭39位受访者的手机外壳与右手,然后采用高灵敏度的质谱法对样本进行了分析。  结果显示,每位被调查者手上的化学物质都有着独特的“印迹”,能够与其他人区别开。这些化学物与手机外壳上的物质相重合,使得电子设备也能够彼此区分,与各自的主人相匹配。     “我们发现,在99%的被调查样本中,每个个体手上的化学物质都是独一无二的。只有在两例案例中没能完美得出上述结果,但这其中一例是因为被调查者生活在一起,”Dorrestein说,“在69%的案例中我们可以将手机外壳化学物构成报告与其所有者完美匹配。”  但他同时补充道,此项技术的前景不是用来区分个人,而是建立起使用者的个人档案。  通过参考数据库对化学“足迹”做出分析之后,调查人员可以将这些化学物质与已知及相近化学成分进行对比,从而揭示出被调查者个人的生活方式,比如他们是否使用了防脱发洗护品,是否服用了抗抑郁药物。  其中部分诸如驱蚊剂DEET之类的化学物质,距离手机主人最后一次接触4个多月后仍然能够被检测到。  研究者认为,警方可以根据这一调查方法建立起广泛的数据库,借助手机、钥匙或其他私人物品上的化学物质来推测嫌疑人的生活信息。同时他们还提出了许多其他的用途建议,比如监控个人接触污染物的严重程度,检查病人是否在遵照医嘱服药或对特定药品有反应。  英国萨里大学法医鉴定专家Melanie Bailey认为这项研究颇有价值。“以往鉴定的关键问题在于是否能从手机上提取到指纹,但如果被提取者信息根本不在数据库中,或者指纹被弄脏了,那就会毫无用处,”她说,“他们掌握的化学信息能帮助缩小嫌犯范围,或者说至少给出了一些应该关注哪类人群的参考情报。”  但北安普敦郡警察局法医部门前负责人、莱斯特大学犯罪学副教授John Bond对该研究的前景看法就没那么乐观了。他认为,目前已经能够从物体上侦测到枪炮、爆炸物和毒品的蛛丝马迹,而化学物质是否能帮助确定肇事者并不清楚。“问题在于这并不是特别有区分度的东西,即便你可以识别出某个特定品牌的化妆品,也不能就此缩小要搜寻的对象范围。”

质谱扫描范围表示方法相关的方案

质谱扫描范围表示方法相关的资料

质谱扫描范围表示方法相关的论坛

  • 质谱扫描范围

    [color=#444444]我的样品分子量大约是700,在计算时候却算成了300,质谱谱图回来时候看见扫描范围仅到500. [/color][color=#444444]问:做质谱的老师会不会因为没扫那个范围而把分子离子峰屏蔽了?还是在我要的700处根本就没有那个分子离子峰?做质谱时候扫描范围都定在多少区间?[/color]

  • 求助 质谱中超过了扫描范围还会出峰吗

    质谱中超过了扫描范围还会出峰吗? 我的质谱有明显的峰,但是不确定具体分子量,就选了100-2000进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]的scan,正模式有明显的峰但是离子很干净只有274和318 (推测是杂质),我的目标化合物的分子量很大,就想问问是不是因为超过了扫描范围,看不见离子对?

质谱扫描范围表示方法相关的耗材

  • 扫描电镜线宽标样 CDMS ISO标准特征尺寸放大标样蚀刻线
    符合ISO 17025:2017标准的CDMS产品。NIST标准的可追溯性或单独认证有证书。Pelcotec CDMS ISO校准标样是一种独特的经济实惠、功能齐全、可追溯的校准标样,可用于快速精准的扫描电镜(SEM)、场发射扫描电镜(FESEM)、离子束刻蚀(FIB)、CD-SEM、LM和AFM放大倍数校准。这些标样采用蚀刻制造技术制成,可以覆盖广泛的测量范围。Pelcotec CDMS ISO校准标样有两种特征尺寸范围,分别是 Pelcotec CDMS-1T ISO和 Pelcotec CDMS-0.1T ISO,都提供可追溯和认证标样,共有4个种:Pelcotec CDMS-1T ISO: 可追溯,特征尺寸范围为2.0毫米到1微米,放大倍数范围为10倍到20,000倍,非常适合台式扫描电镜和低到中等放大应用。产品编号描述单位701-1Pelcotec CDMS-1T ISO,2mm - 1um,可追溯,没有样品台,蚀刻线个699-1Pelcotec CDMS-1T,2mm - 1um,可追溯,没有样品台,蚀刻线个Pelcotec CDMS-1C ISO: 经过NIST标样认证的特征尺寸范围为2.0毫米到1微米,放大倍数范围为10倍到20,000倍,非常适合台式扫描电镜和低到中等放大应用。产品编号描述单位711-1Pelcotec CDMS-1C ISO,2mm - 1um,经过认证,没有样品台,蚀刻线个703-1Pelcotec CDMS-1C,2mm - 1um,经过认证,没有样品台,蚀刻线个Pelcotec CDMS-0.1T ISO: 可追溯,特征尺寸范围为2.0毫米到100纳米,放大倍数范围高达10倍到200,000倍,适用于所有扫描电镜和大多数场发射扫描电镜应用。产品编号描述单位708-01Pelcotec CDMS-0.1T ISO,2mm - 100nm,可追溯,没有样品台,蚀刻线个700-01Pelcotec CDMS-0.1T,2mm - 100nm,可追溯,没有样品台,蚀刻线个 Pelcotec CDMS-0.1C ISO: 经过NIST标样认证的特征尺寸范围为2.0毫米到100纳米,放大倍数范围高达10倍到200,000倍,适用于所有扫描电镜和大多数场发射扫描电镜应用。产品编号描述单位712-01Pelcotec CDMS-0.1T ISO,2mm - 100nm,经认证,没有样品台,蚀刻线个704-01Pelcotec CDMS-0.1T ,2mm - 100nm,经认证,没有样品台,蚀刻线个 Pelcotec CDMS ISO标样的特征尺寸范围为2mm、1mm、0.5mm、0.25mm、10um、5um、2um和1um(适用于 Pelcotec CDMS-1T ISO 和 Pelcotec CDMS-1C ISO)。而Pelcotec CDMS-0.1T ISO 和 0.1C ISO 的特征尺寸范围为2mm、1mm、0.5mm、0.25mm、10um、5um、2um、1um、500nm、250nm和100nm。较小的特征尺寸被嵌套在一起,以便于导航和快速校准。特征的精度为0.3%或更高。标样的实际尺寸为2.5 x 2.5mm,厚度为525um ±10um,在硅表面上没有涂层。每个Pelcotec CDMS ISO校准标样都有一个独特的识别编号。Pelcotec CDMS ISO校准标样可供选择不安装或安装在SEM样品台A-R上。对于AFM应用,Pelcotec CDMS ISO安装在12mm的AFM圆片上,而对于LM应用,则安装在25 x 75mm的载玻片上。也可以制备在自定义的支架上。可选的样品座。Pelcotec CDMS-1-ISOPelcotec CDMS-0.1-ISO基底:硅是是基底尺寸:2.5×2.5mm是是基底厚度:525±10μm是是唯一序列识别号是是2mm、1mm、0.5mm、0.25mm 的校准方块是是垂直于 X 轴的刻度线,间距为 10μm、5μm、2μm 和 1μm是是仅高分辨率版本 - 垂直于 X 轴的附加刻度线以 500、250 和 100 nm 节距标出—是可在晶圆级追溯到 NIST(ISO 17025:2017 认证标准)T 版本T 版本CDMS 标样直接获得 NIST 标准认证(ISO 17025:2017 认证标准)C版本C版本不装在样品台上可用是是可安装在 SEM样品台上是是精度优于0.3%是是线边缘粗糙度为每 1um 线边缘长度 +/- 0.3nm是是测量报告的不确定性 (k=2)* 为 ±0.012μm是是
  • 扫描电镜XY线宽标样 CDMS ISO标准特征尺寸放大标样蚀刻线
    符合ISO 17025:2017标准的CDMS产品。NIST标准的可追溯性或单独认证有证书。Pelcotec CDMS-XY ISO标样是一种用于扫描电镜、场发射扫描电镜、离子束雕刻、CD-SEM、激光扫描显微镜和原子力显微镜快速、精确校准的便捷工具。该标样提供了 X 和 Y 两个坐标轴的比例尺线,可在不旋转样品台的情况下轻松进行二维校准。Pelcotec CDMS-XY ISO蚀刻线标样使用蚀刻技术制成,具有卓越的线缘质量,可提供广泛的测量范围。该标样有两种特征尺寸范围可选,分别是 Pelcotec CDMS-XY-1T ISO和 Pelcotec CDMS-XY-0.1T ISO,每个尺寸范围都提供可追溯和认证标样,总共有四种:Pelcotec CDMS-XY-1T ISO:特征尺寸范围为 2.0mm 到 1um,适用于放大倍率在 10x - 20,000x 之间的台式扫描电镜和低到中等放大应用。 2mm、1mm、0.5mm、0.1mm、50um、10um、5um、2um 和 1um。Pelcotec CDMS-XY-0.1T ISO 和 0.1C ISO 的特征尺寸为:2mm、1mm、0.5mm、0.1mm、50um、10um、5um、2um 和 1um、500nm、250nm 和 100nm。可选的预先安装在样品座上。Pelcotec CDMS-XY-1-ISOPelcotec CDMS-XY-0.1-ISO基底:硅是是基底尺寸:2.5×2.5mm是是基底厚度:525±10μm是是唯一序列识别号是是 产品编号描述单位709-1Pelcotec CDMS-XY-1T ISO,2mm - 1um,可追溯,没有样品座,蚀刻线个701-1Pelcotec CDMS-XY-1T ,2mm - 1um,可追溯,没有样品座,蚀刻线个Pelcotec CDMS-XY-1C ISO:每个标样均根据 NIST 标准进行了单独认证,特征尺寸范围为 2.0mm 到 1um,适用于放大倍率在 10x - 20,000x 之间的台式扫描电镜和低到中等放大应用。产品编号描述单位713-1Pelcotec CDMS-XY-1C ISO,2mm - 1um,已认证,没有样品座,蚀刻线个705-1Pelcotec CDMS-XY-1C ,2mm - 1um,已认证,没有样品座,蚀刻线个Pelcotec CDMS-XY-0.1T ISO:特征尺寸范围为 2.0mm 到 100nm,适用于所有扫描电镜和大多数场发射扫描电镜应用,放大倍率可达 10 - 200,000x。 产品编号描述单位710-1Pelcotec CDMS-XY-0.1T ISO,2mm - 100nm,可溯源,没有样品座,蚀刻线个702-1Pelcotec CDMS-XY-0.1T ,2mm - 100nm,可溯源,没有样品座,蚀刻线个 Pelcotec CDMS-XY-0.1C ISO:每个标样均根据 NIST 标准进行了单独认证,特征尺寸范围为 2.0mm 到 100nm,适用于所有扫描电镜和大多数场发射扫描电镜应用,放大倍率可达 10 - 200,000x。 产品编号描述单位714-01Pelcotec CDMS-XY-0.1C ISO,2mm - 100nm,已认证,没有样品座,蚀刻线个706-01Pelcotec CDMS-XY-0.1C ,2mm - 100nm,已认证,没有样品座,蚀刻线个该标样的特征尺寸范围见下表:Pelcotec CDMS-XY-1T ISO 和 -1C ISO 的特征尺寸为: 2mm、1mm、0.5mm、0.25mm 的校准方块是是垂直于 X 轴和 Y 轴的刻度线,间距为 10um、5μm、2μm 和 1μm是是 仅限高分辨率版本 - 垂直于 X 和 Y 轴的附加刻度线以 500、250 和 100 nm 节距标出—是可在晶圆级追溯到 NIST(ISO 17025:2017 认证标准)T 版本T 版本CDMS 标样直接获得 NIST 标准认证(ISO 17025:2017 认证标准)C版本C版本不装在样品台上可用 是是可安装在 SEM样品台上是是精度优于0.3%是是线边缘粗糙度为每 1um 线边缘长度 +/- 0.3nm是是测量报告的不确定性 (k=2)* 为 ±0.012μm是是
  • 微阵列芯片扫描仪配件
    微阵列芯片扫描仪配件专业为扫描基因芯片,蛋白质芯片等微阵列芯片而设计,是功能强大的高分辨率荧光扫描仪。适合所有微阵列芯片,如DNA芯片,蛋白质芯片和细胞和组织,并适用于各类型的应用研究,如基因表达,基因分型,aCGH,芯片分析片内,微RNA检测的SNP,蛋白质组学和微阵列的方式。微阵列芯片扫描仪配件是完全开放的系统,兼容任何标准的显微镜载玻片25x75mm(玻璃基板,塑料,透明和不透明),可以扫描生物芯片,有3 1.mu.m/像素的分辨率,同时保持高图像质量。能够同时扫描两个检测通道3.5分钟(10.mu.m/像素,最大扫描区域),InnoScan900是市场上最快的扫描器,扫描速率可调节,达10到35行每秒。 微阵列芯片扫描仪配件共焦扫描仪配备有两个光电倍增管(PMT),非常敏感,整个工作范围(0至100%)线性完美,允许用户简单地改变PMT,调整2种颜色的荧光信号。使用这种独特的动态自动聚焦系统,提供的是不敏感的基板的变形,整个扫描表面上完美,均匀。微阵列芯片扫描仪有出色光度测定性能,特别是在灵敏度和信噪比方面。 微阵列芯片扫描仪有一系列可满足您的应用程序,四扫描器(710,710 U,900 U和900)。该Innoscan® 900和900AL系列(磁带自动加载机)是专为现在和未来的高密度微阵列发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制