药代动力学分析系统

仪器信息网药代动力学分析系统专题为您提供2024年最新药代动力学分析系统价格报价、厂家品牌的相关信息, 包括药代动力学分析系统参数、型号等,不管是国产,还是进口品牌的药代动力学分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合药代动力学分析系统相关的耗材配件、试剂标物,还有药代动力学分析系统相关的最新资讯、资料,以及药代动力学分析系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

药代动力学分析系统相关的厂商

  • 400-860-5168转4561
    上海惠分科学分析仪器有限公司汇集了一批专业技术人才,可以根据用户的需要制定配套的分析方法。公司产品有:变压器油分析气相色谱仪,白酒分析气相色谱仪,液化气二甲醚分析仪,非甲烷总烃分析仪,环氧乙烷残留分析气相色谱仪,气相色谱自动进样器,顶空进样器,色谱柱,气体发生器和纯水机等设备及耗材。广泛应用于卫生防疫、食品卫生、环境检测、质量监督、石油化工、精细化工、农药、制药、商检、电力、白酒、矿山等系统以及科研单位和大专院校等。 本公司坚持“创新 高效 开拓 共赢”的企业宗旨,竭诚为用户提供优良的产品及服务,对用户反馈的信息做到快速响应,我们将以及时、周到、高质量的服务,解决用户的后顾之忧!
    留言咨询
  • 广东联捷生物科技有限公司是美国生物化学分析有限公司HT Laboratories在中国开办的分支机构,总公司自2000 年创办于美国圣地亚哥至今,已有超过15年的历史,长期从事分析化学研究和外包服务,在有机和无机物质鉴定,生化分析,药物代谢动力学,结构分析等领域积累了极为丰富的实践经验,15年的历程使我们的合作伙伴遍布世界各地,在顾客中建立了牢靠的信誉和技术权威。 由留美博士带领的联捷生物科技团队具有高素质,高效率,技术力量国际领先的优势。在分析技术服务方面,可为客户提供药物分析、代谢动力学研究服务、材料成分剖析、不明物质解析、食品和农产品检测、土壤检测、环境检测、产品指纹建立、同位素跟踪检测等高端专业分析技术服务。在分析化学领域我公司拥有多项独家技术,具备多快好省解决客户难题的独特能力。我们在仪器设备的维护与开发方面的经验也积累颇丰,能向各个行业提供多种翻修的检测设备并承担售后服务和技术支持。我公司的专家学者还将定期与不定期的开设各类分析技术与设备维护的培训。 我公司现已装备了几十套先进分析仪器设备,包括气质联用仪、液质联用仪、毛细管电泳与质谱联用仪、电感耦合等离子体质谱仪、高分辨质谱仪、同位素比例质谱仪、傅里叶变换吸光光度计、紫外-可见分光光度计、元素分析仪、高效液相色谱仪、制备型高效液相色谱仪、顶空进样气相色谱仪等高尖设备。利用这些一流的仪器设备,我们能定性定量分析任何样品,从化学组分分类,样品可以是有机物、无机物、离子化合物、金属元素、非金属元素、高分子化合物、蛋白质、DNA、糖类化合物等等,从样品来源分类,我们可以分析生物组织、血样、药物食品、酒水饮料、各种材料及合金、矿产农产水产、环境气体和水质等等。用我们的技术和仪器设备能分析世界上所有物质,并将以此发展成配方产品的开发平台。
    留言咨询
  • 上海泉众机电科技有限公司(Naturethink),是一家以工程仿生模拟为核心的企业;Shanghai Naturethink life science & Technology CO., Ltd致力于自主知识产权的生命科学科研实验相关产品及衍生医疗健康产品;致力于自主生物医学相关科研实验装备的研发与销售,并专注于利用现代科技实现对人体生理环境的模拟实现;产品可应用于细胞、组织、器官的体外培养,医学实验,药代分析,药物研究,人体机能分析等多种用途。产品集机械、电子、计算机、信息、物理、生物、化学等多学科技术应用于一身,根据不同的研究目的做出不同的调整,以适应各种研究。由于当今科学对于组成生命体的细胞及其对外界应激反应尚未完全破解,而一种能够重复的,非动物的模拟人体环境的实验方式有着各方面的优势。我们架构了一个用于培养细胞、组织、器官的仿生人体环境用于生命医学的研究和验证与医疗健康相关应用.公司总部位于上海,经过多年的努力,公司业务已遍布全国各地,主要服务领域为生命科学,高校,医院,科研院所,各大生物实验室。已成为广大用户信赖的合作伙伴,服务客户包括:复旦大学医学院、上海中山医院、交通大学医学院、上海第一人民医院、上海健康医学院、上海理工大学、上海长海医院、华中科技大学、湖北医药学院、南京医科大学、南京大学、大连理工大学、东南大学、新乡医学院、南京市第一医院、南京鼓楼医院、河北医科大学、吉林大学、昆明医科大学等各类细胞实验室.目前的产品包括:细胞/组织/器官仿生培养实验仪器细胞生物力学刺激培养仪器药代动力学实验平台体外心血管系统仿生实验平台提供专业的科研仪器装备研发定制服务、医疗仪器装备研发定制服务.
    留言咨询

药代动力学分析系统相关的仪器

  • 一、产品介绍: 该系统适用于药物动力学血液放射活度实时测量研究(可配合于PET、SPECT、PET/MRI系统) Twilite 是由 Swisstrace 公司所研发设计的高灵敏度自动血液取样系统。此系统可与 PET 、SPECT、或 PET/MR 影像系统结合使用,无论是小至实验动物、大至其他更大的个体,均能够在线高分辨率采集血液活度实时变化数据。 Twilite 系统的核心是一个设计精巧的侦测头(探测器),由 LYSO 晶体与屏蔽外来辐射用的医疗级钨加工製成,因此完全与 MR 影像系统相容。闪烁信号透过两条可自订长度的高效率光导管传输至光子侦测单元。此设计的侦测头端完全没有任何电子零件,所以能够避免来自其他设备所造成的电磁干扰问题。此外,这样的设计也能够将人体研究实验的潜在风险最小化。 数据采集是使用 PMOD 公司所开发的 PSAMPLE 软件,藉由 TCP/IP 介面传输,允许同时记录多套 Swisstrace 系统的讯号,例如可同时使用 Twilite 系统与 Twin beta probe 系统。此外,尚有两个类比讯号输入孔可同时记录来自其他仪器的讯号,例如Laser Doppler Flowprobes、ECG 或来自辅助设备的触发讯号。 PMOD 软件的功能模块可对取得的放射活度信号进行离线处理分析。 此系统也脱离计算机独立工作。仪器前方的触摸式面板可直接进行操作,并即时显示测量数据。 Twilite 系统性能优越。除了拥有极佳的灵敏度外,即使在高辐射值的环境下,仍然呈现出稳定的线性度与信噪比。 Swisstrace 公司的开发人员在放射定量实验方面具有相当深厚的经验。系统设计乃针对 PET 系统(包含小动物与人)最佳化。侦测头精巧的尺寸尤其适合使用于小动物正子造影系统中,搭配动、静脉分流管(arterio-venous shunt), Twilite 系统可测得全血的动脉输入函数(arterial input function, AIF)而不必将血液抽离体外。 二、仪器结构组成(1-9项为产品标配): 图1 图2 图31、连接股动脉与股静脉的分流管 (自购)2、蠕动帮浦(Peristaltic Pump)(自购)3、Twilite 钨制探测器4、LYSO 晶体15、LYSO 晶体26、光导管:传输光子讯号至PMT。标准长度2 m,若需使用于MR 系统可延长至10 m7、光子侦测单元8、两个模拟讯号输入孔(可与其他品牌仪器配合使用,监控呼吸、ECG 或血压等)9、TCP/IP 传输接口:可透过因特网传输或直接与计算机连接,使用PMOD 软件PSAMPLE 模块进行数据采集10、安装PMOD 软件的计算机,进行数据采集与分析(自购)结构说明:动静脉分流管(小鼠用PE10,大鼠用PE50)可同时用于血压量测、药物注射及血液样本采集等其他功能,如图3所示。血液样本采集可用解剖刀在导管上划一个小口,在采集时间点将导管往缺口方向推,即可取得血液样本。●结构与曲线函数(如下图)左图为实验架构。血流以蠕动泵驱动,从股动脉流出体外,经过耦合讯号侦测头后,再由股静脉回到体内。t1与t2两个三向阀分别用来进行血液取样与药物注射。右图为Twilite 系统所测得的小鼠动脉输入曲线。 三、系统规格: 四、用户名单: 五、合作伙伴:PMOD Technologies Ltd. UnitectraZurich, Switzerland Zurich, SwitzerlandUniversity of Zurich CSEMZurich, Switzerland Neuch?tel, Switzerland 六、药物动力学实验论文(部分摘要):Quantification of Brain Glucose Metabolism by 18F-FDG PETwith Real-Time Arterial and Image-Derived Input Function in MiceMalte F. Alf1,2, Matthias T. Wyss3,4, Alfred Buck3, Bruno Weber4, Roger Schibli1,5, and Stefanie D. Kr?mer11Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland 2Laboratory of Functional and Metabolic Imaging, Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 3Department of Nuclear Medicine,University Hospital Zurich, Zurich, Switzerland 4Institute of Pharmacology and Toxicology, University of Zurich, Zurich,Switzerland and 5Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, Paul Scherrer Institute PSI, Villigen, SwitzerlaKinetic modeling of PET data derived from mouse modelsremains hampered by thetechnical inaccessibility of an accurateinput function (IF).In this work, we tested the feasibility of IF measurement with an arteriovenous shunt and a coincidencecounter in mice and compared the methodwith an imagederived IF (IDIF) obtained by ensemble-learning independent component analysis of the heart region. Methods: 18F-FDG brain kinetics were quantified in 2 mouse strains, CD1 and C57BL/6, using the standard 2-tissue-compartment model. Fits obtained with the 2 IFs were compared regarding their goodness of fit as assessed by the residuals, fit parameter SD, and Bland–Altman analysis. Results: On average, cerebral glucose metabolic rate was 10% higher for IDIF-based quantification.The precision of model parameter fitting was significantly higher using the shunt-based IF, rendering the quantification of single process rate constants feasible. Conclusion: We demonstrated that the arterial IF can be measured in mice with a femoral arteriovenous shunt. This technique resulted in higher precision for kinetic modeling parameters than did use of the IDIF. However,for longitudinal or high-throughput studies, the use of a minimally invasive IDIF based on ensemble-learning independent component analysis represents a suitable alternative.Key Words: energy metabolism PET molecular imaging glucose kinetic modelingJ Nucl Med 2013 54:1–7 DOI: 10.2967/jnumed.112.107474 PET with 18F-FDG is a commonly used method to determine glucose metabolism in animal and human tissues (1). Full quantification of 18F-FDG kinetics can be achieved by applying a 2-tissue-compartment model (2). The model requires the time course of the 18F-FDG concentration in the target organ(tissue time–activity curve) and in arterial plasma (input function, IF). In human brain PET, the IF is commonly measured from a catheter placed in the radial artery. An alternative is derivation of the IF from PET images via values measured in a volume of interest placed over the cardiac ventricles or a large vessel. A prerequisite of image-derived IFs (IDIFs) is the location of the blood pool and the organ of interest in the same field of view. In general, one or more arterial blood samples are measured to calibrate the IDIF. In a recent review article for human PET(3), the authors concluded that arterial blood sampling remains the preferred method to define the IF, because invasiveness is hardly reduced by the use of an IDIF.In small animals, the small blood volume is the major constraint for manual blood sampling. This constraint prompted the development of several alternative methods, such as the sampling of very small volumes via a microfluidic chip (4) or the use of b-probes for measuring the blood radioactivity (5,6). Despite these new physical methods, the main research focus has been on developing the use of IDIFs, where blood radioactivity is estimated directly from the dynamic PET images. IDIF generation from simple analysis of blood pool volumes such as the liver or the heart ventricles is flawed by 18F-FDG uptake by the liver or spillover from surrounding myocardium, cardiac motion, and partial-volume effects. Compensation can be achieved to varying degrees by image processing methods such as factor analysis (7), modelbased techniques (8), independent component analysis (9), so-called hybrid IDIFs (e.g., 10,11), and cardiac gating combined with improved image reconstruction algorithms (12). Most of these methods rely on at least 1 measure from a blood sample for scaling of the IDIF.Hence, blood sampling is not entirely obviated. To our knowledge, there is currently no gold standard to define the real-time 18F-FDG arterial IF in mice in a reliable and easily accessible manner. In this study, we adapted a method for direct blood radioactivity measurements and an approach for the generation of IDIFs for use in mice. We acquired real-time blood radioactivity curves by means of a new coincidence counter in combination with an arteriovenous shunt and compared the findings to IDIFs generated from PET data of the cardiac region with an ensemblelearning independent component analysis (EL-ICA) algorithm (13).We used 2 different mouse strains to explore the possible strain dependency of our methods: C57BL/6 mice, because they are relevant for studies of genetically modified animals, and CD1 mice, because they are valuable as disease models,such as cerebral ischemia (14). The purpose of this work was 2-fold. First, we evaluated whether the arteriovenous-shunt/ counter technique, which was previously demonstrated in rats (15), is also feasible in mice. Second, we compared 18F-FDG kinetic parameters and fit precisions obtained with the experimental shunt IF and the IDIF.
    留言咨询
  • 热动力学分析软件 400-860-5168转1322
    仪器简介:塞塔拉姆仪器与AKTS软件成为合作伙伴,共同为动力学分析和材料热稳定性的测定提供全球解决方案。 AKTS-热动力学软件包主要用来简化在原材料和产品研究,发展和质量保证过程中对DSC, DTA, TGA, EGA (TG-MS, TG-FTIR) 数据的动力分析。技术参数:这项技术提出在传统热分析方法基础上进一步推断的受检物质的额外的特性和反应的一种方法。这个方法从确定一个给定物质的一系列动力参数开始。这些参数于是用来预测在不同温度情形条件下的反应性质。比较起来,在低温以及复杂的温度类型下直接观测这样的反应是相当困难的(需要非常长的测试周期)。使用AKTS-热动力学 软件,反应速度和过程可以在以下温度分布下进行预测:等温,不等温,逐渐的,波动的或者期间性温度变化,快速升温(热冲击)和实地气候温度类型(多于700种气候)。主要特点:AKTS软件可以应用于物质热稳定性的研究,物理化学过程的安全分析和密封式物质安全性与质量的研究。AKTS 技术提供了一种推断附加特性和检验物质行为的方法,这些都基于传统热分析测量法。其关键优势在于产品热稳定性的精确测定(保存限期转化),包括数量和温度曲线图这些以往由于时间,成本和可行性关系而难以测量到的。 可用于安全评价及有效期、老化分析,包装扩散迁移率等。
    留言咨询
  • 仪器简介:快速淬灭动力学分析已成为检查酶反应途径的首选方法。KinTek RQF-3淬火流动仪能够最有效地进行最明确的实验,保存珍贵的生物样品并提供准确,可靠的数据。KinTek RQF-3已成为分析酶反应机理的国际标准。KinTek RQF-3的独特功能使DNA聚合酶机制的研究成为可能,其中对进行单次周转实验的需求特别重要,并且需要最小的体积来保存昂贵的合成寡核苷酸底物。技术参数:计算机控制的伺服电机驱动系统,性能平稳、可靠。动力学响应时间:最短反应时间2.5毫秒。最小样品量:每次注射每个样品 15 - 20 微升。最大样品体积:每次注射每个样品 5 毫升。注射器体积:5毫升标准。还提供 0.25、0.5、1.0、2.0 和 10.0 ml 体积的注射器。温度范围:4 - 70°C 通过循环水浴保持温度范围主要特点:伺服电机驱动KinTek RQF-3淬火流量仪使用计算机控制的伺服电机驱动器,可提供精确且可重复的反应时间设置。与步进电机技术、高扭矩、低惯量、无刷伺服电机和高性能相比,数字电源取得了重大进步,基本上提供了驱动注射器的瞬时启动和停止。没有其他淬火流能提供这样的性能。结合独特的精密阀门系统,KinTek RQF-3提供了无与伦比的易用性和可靠性。即使是涉及三个混合事件和两个编程反应时间(双延迟淬火)的“四注射器”型实验也可以使用计算机控制的电机驱动器来实现 - 没有四个驱动注射器的复杂性!十多年来,这一直是我们仪器的标准功能。RQF-3阀门系统KinTek RQF-3 独特的阀门布置允许通过三通阀将样品装入 15 微升样品环中。然后通过驱动注射器的缓冲液迫使反应物一起通过延迟线。该阀门系统可实现高效的样品装载,因此可以从每种反应物的 300 微升中收集 20 个数据点,而不会产生浪费!可以使用更大的样品环,或者可以将样品装入驱动注射器中,一次注射即可获得多达 5 ml。八通反应阀为了在3-100毫秒的范围内获得不同的反应时间,有必要使用不同长度的延迟块。在其他淬火流仪器中,这是一项繁琐的任务。在KinTek RQF-3中,使用新颖的八通阀通过简单地旋转阀门来选择每个反应延迟块。然后将计算机控制的电机驱动器设置为精确的驱动速度,以达到所需的反应时间。两种反应物首先在阀门中混合,流过选定的延迟块,然后与淬火溶液混合,从仪器流出进入收集管。示例负载回路三通阀用于将样品环连接到冲洗管路、样品上样注射器或包含缓冲液的驱动注射器。这种方法可实现高效的样品加载和冲洗,而不会在两次运行之间浪费样品。冲洗-负荷-收集循环可在不到两分钟的时间内完成,因此可以在不到 45 分钟的时间内从不到 0.4 ml 的溶液中收集由 20 个数据点组成的整个疗程时间。电脑控制KinTek RQF-3完全由计算机控制,使仪器的操作变得简单方便,并使操作员能够专注于样品收集和分析。只需输入所需的反应时间,计算机就会设置伺服电机并告诉操作员使用哪个反应回路。密封键盘由于淬火流动实验通常涉及使用浓酸或浓碱和放射性物质,因此KinTek RQF-3使用带有LCD显示屏的密封键盘。因此,计算机接口受到保护,免受执行实验所需的恶劣环境的影响。在实验结束时,可以用温和的肥皂和水清洗键盘以消除污染。
    留言咨询

药代动力学分析系统相关的资讯

  • 【热门应用】WAVE基于GCI技术的分子相互作用动力学分析在药物开发中的应用
    Creoptix公司,光学生物传感器的领军企业,2022年加入马尔文帕纳科,拥有专利的光栅耦合干涉(GCI)技术,开创新一代动力学,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据具备先进的GCI技术的WAVE系列分子互作分析仪,究竟能为生物开发领域带来什么样的支持呢?他和传统的分子互作技术相比又有哪些差异和优势呢?本文将针对以上问题予以解答。1关于光栅耦合干涉技术(GCI)光栅耦合干涉技术(Grating-Coupled Interferometry, GCI)是一种近年发展起来的具有极高灵敏度的基于芯片的非标记生物传感器技术,它区别于依赖荧光和免疫等标记分子的传统分子间相互作用技术。通过一次GCI实验,用户可以快速、准确、可靠的获取一整套描述分子间相互作用的信息,包括并不限于结合有无、结合特异性、描述结合强弱的亲和力KD或键合常数KA、描述结合快慢与稳定性的动力学常数(结合速率常数ka与解离速率常数kd)、样品活性浓度、分子间结合机制以及理论热力学信息(范德霍夫焓变)等。GCI技术的商业化产品是Creoptix WAVE系列(2022年初被马尔文帕纳科收购作为旗下Label-Free分子互作分析平台的一员)。 GCI技术具有高灵敏度、分析物的分子量无下限以及捕获快速解离动力学等优势,改进了基于片段的小分子筛选和动力学分析,与无堵塞的流路集成芯片配合使用,加速了药物开发的过程。图1 光栅耦合干涉技术(GCI)示意图2弱相互作用也能得到很好的数据在基于片段的筛选中发现的弱结合物通常是根据亲和力而不是动力学进行排名的,因为它们的解离速率常数kd非常快,这是传统的SPR仪器无法解决的问题。然而,由于具有超快速的流路切换时间,Creoptix WAVE系统可以提供出色的分辨率,在高达10 s-1的解离速率下仍然能够可靠地确定动力学,提供了一个多功能的片段药物筛选和分析平台。使用4PCZ WAVE芯片固定淀粉样纤维蛋白(Amyloid Fibrils),小分子硫黄素(ThT,319 Da)以4种浓度(50 mM ~ 6.25 mM)注入,拟合后显示出10 s-1左右的解离速率常数。图2 淀粉样纤维蛋白与硫黄素的结合分析下图为在PCP WAVE芯片上捕获的6-mer寡核苷酸(1.7 kDa)与其互补的ssDNA结合的传感图,拟合后显示出10 s-1左右的解离速率常数。图3 寡核苷酸与其互补的ssDNA的结合分析3创新的waveRAPID技术加快药物发现的早期阶段对于更快地将新药送到患者手中至关重要。为了满足用户需求,Creoptix推出了测量动力学的新方法。在传统的动力学实验中,分析物以不断增加的浓度被注入,每次注射的持续时间一样。然而,Creoptix创新的waveRAPID (Repeated Analyte Pulses of Increasing Duration)技术通过以不同时长注入单一浓度的分析物,不断增加在芯片表面的脉冲时间来进行动力学分析,该方法免去了浓度梯度的稀释步骤,大大减少了人为稀释误差和实验前的准备时间。图4 waveRAPID与传统动力学的方法比较用waveRAPID和传统的多循环动力学测量小分子化合物FUR(分析物)与碳酸酐酶CAII(配体)的结合。使用WAVEcontrol软件的“Direct Kinetics”分析,两种方法都能提供高度一致的结果。图5 waveRAPID与传统动力学的数据比较使用waveRAPID技术,在18小时内完成了对90个小分子的动力学分析,图中显示的结果为筛选过的具有低统计学误差的速率常数,突出展示了三种不同结合强度的相互作用的传感图和拟合图。图6 小分子药物苗头化合物的waveRAPID动力学筛选结论Conclusion通过Creoptix WAVE所提供的亲和力和动力学信息能够表征药物结合的详细动力学机制,为开发具有高选择性的药物提供了理论基础,使得未来药物设计中的计算和实验更加合理化。提高通量是药物发现过程中经常提到的需求,使用waveRAPID技术大大缩短了总测量时间,在药物发现领域得到了广泛应用。参考文献[1] Kartal O, Andres F, Lai MP, et al. waveRAPID-A Robust Assay for High-Throughput Kinetic Screens with the Creoptix WAVEsystem. SLAS Discov. 2021 26(8): 995-1003.[2] FitzGerald EA, Butko MT, Boronat P, et al. Discovery of fragments inducing conformational effects in dynamic proteins using a second-harmonic generation biosensor. RSC Adv. 2021 11(13): 7527-7537.相关产品WAVE 分子相互作用分析仪WAVE分子相互作用分析仪拥有基于光栅耦合干涉技术(GCI)的光学生物传感器,且具有创新性的微流控技术,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。与传统动力学分子互作分析技术相比具有如下优势:无需配置浓度梯度样品10倍于传统分子互作技术分析速度超高灵敏度,捕获快速动力学微流控技术,不堵塞流路点击下载产品手册马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 气固反应动力学分析方法与仪器研讨会召开
    仪器信息网讯 2011年3月25日上午,由中科院计财局条件装备处组办、中科院过程工程研究所承办的“气固反应动力学分析方法与仪器研讨会”在中科院过程工程研究所举行。会议邀请了煤炭、生物质、矿产资源、环境、石由加工、航天材料、多晶硅等涉及气固反应的重要领域的近20名国内专家学者参加,科技部、科学院、北京市科委和过程所的相关领导出席并致词或介绍了有关政策。此次研讨会的目的在于回顾气固反应动力学分析方法与仪器的发展,把握不同领域的需求,分析尚存问题并探讨解决办法,以期形成自主新型的反应动力学分析方法与分析仪,推动学科发展和分析水平升级,填补方法与仪器的空白。研讨会现场中科院过程工程研究所所长张锁江研究员  中科院过程工程研究所所长张锁江研究员在研讨会前的致词中对各位领导和专家的参会表示感谢和欢迎,并介绍了近年来中科院过程工程研究所在仪器研制、基本建设、人才引进等方面的工作进展。最后,张锁江研究员希望,在座的领导与专家能够对“微型流化床反应动力学分析仪”研制项目以及过程所其它方面的工作提出宝贵的意见。西安近代化学研究所胡荣祖教授报告题目:关于气固反应热分析动力学的几个问题  研讨会首先由《热分析动力学》著者、原西北大学教授胡荣祖先生,《应用化工动力学》译者、原太原理工大学教授郭汉贤先生作了专题报告。胡荣祖教授介绍了气固反应动力学的反应机理、关键参数以及半导体脉冲补偿式量热测试单元的结构原理,最后,胡荣祖教授重点向大家展示了自己多年的研究成果,如经验级数自催化分解反应动力学参数计算系统、含能材料感度估算系统以及自加速分解温度-热点火速度-绝热至爆时间计算系统等。太原理工大学煤化工研究所原所长郭汉贤教授(由过程所余剑博士代讲)报告题目:非催化气固反应动力学分析方法概述  郭汉贤教授的报告由中国科学院过程工程研究所的余剑博士代讲,报告对非催化气固反应化工动力学的研究进行了简要分析,指出:研究非催化气固反应动力学,需要有良好的反应设备和科学的数学模型,硬件、软件同时并举才能事半功倍。而动力学的研究具有层次性的特点,故热重装置和流化固定床反应装置缺一不可。中科院过程工程研究所许光文研究员报告题目:微型流化床反应分析方法、仪器及典型应用  上午,中科院过程工程研究所的许光文研究员还系统汇报了其团队自主研发微型流化床反应分析方法与仪器的过程和已经实现的典型应用。在报告中他介绍到:气固反应分析动力学是化学、化工、能源、材料、环境等众多领域的研发工作的起点,但是,现有的气固反应分析动力学方法几乎均采用非等温加热方法,无法在线供给反应试料,存在着难以测定非稳定物质及快速反应的动力学、受传热及扩散的影响严重等缺点。他团队研发的微型流化床反应动力学分析方法以分析仪(MFBRA:Micro Fluidized Bed Analysis)可克服这些缺陷,提供有效的等温微分反应分析方法和测试工具。微型流化床反应动力学分析仪(MFBRA)  MFBRA首次利用微型流化床作为反应器,构建了气固反应分析方法与分析仪。利用流化床反应器有效抑制了扩散影响,实现了对反应物快速的加热 通过集成微型流化床反应器和脉冲微量反应物进样,实现了流化床中气固反应的等温微分化,形成了定点温度下的气固反应动力学参数的等温微分测试方法与仪器,填补了快速升温条件下等温微分反应测试方法与仪器的空白,可望与热重分析仪器形成互补性科学工具,实现气固反应的等温微分、快速原位(升温)和低扩散影响等技术特点。  经过三年多的应用实践,MFBRA分析方法与各部件结构均得到了很大程度的优化,颗粒反应物供给时间0.1s,测量重复性误差3.0%。通过应用于石墨燃烧过程中的等温微分反应特性的分析测试,成功证实了MFBRA的等温微分特性 运用MFBRA首次成功测试了Ca(OH)2捕集CO2的动力学特性,展示了仪器拥有的原位反应特性;该仪器对生物质及煤热解等快速复杂反应显示了很好的适应性,剔提供揭示反应机理的有效基础数据;比较热重测试的CO还原CuO反应特性,MFBRA对该反应显现了明显了低扩散影响。  最后,许光文研究员提出了进一步研发基于微型流化床的气固反应分析方法与分析仪的计划:将通过集成质谱等分析仪和提高仪器自控及美观水平,希望MFBRA能成为国际先进水平的我国自主创新仪器,与程序升温脱附(TPD)设备、程序升温还原(TPR)设备、热重分析(TG)设备等并驾齐驱,成为国内外市场中的反应分析高端产品。北京市科委政策法规处李萍女士报告题目:北京市支持成果转化及产业化相关政策解读  会议也邀请了北京市科委政策法规与体制改革处的李萍女士通过专题报告,系统介绍北京市对科技创新与科技成果产业化的支持政策,重点解读了北京市支持自主创新与成果转化的12个重点政策,并现场回答了与会者问题。  基于上午的主题报告,研讨会的下午针对“气固反应动力学分析方法与仪器发展”、“自主分析方法与分析仪器及应用”、“不同行业领域对气固反应分析的需求特性”等主题,与会专家展开了积极的讨论与交流互动,各位专家结合自身的研究工作经历,提炼了各行业中在气固反应分析方面尚存的难题,希望的分析方法与测试工具,对中科院过程工程研究所研发的微型流化床等温微分反应分析方法与分析仪的功能扩展和解决尚存问题积极建言献策。  通过总结与会专家的讨论意见,许光文研究员总结了进一步发展等温微分反应分析方法、解决各行业尚存问题或满足各行业特定需求的技术方向。在近四个小时的讨论中,现场气氛十分热烈。  相关报道:  微型流化床反应动力学分析仪研制成功  “微型流化床反应分析方法与分析仪”鉴定会在京召开  先进能源关键技术与仪器装备亟需强化——访中科院过程工程研究所许光文研究员
  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!

药代动力学分析系统相关的方案

药代动力学分析系统相关的资料

药代动力学分析系统相关的论坛

  • 药物代谢动力学研究中总药物分析

    了解不同时间药物在血浆或血清中的浓度,对于计算一种药物的代谢动力学很有必要;反之,药物动力学也是药物吸收、分布、代谢和排泄过程的一部分。准确了解药物在体内吸收、分布、代谢和排泄的规律,便于精确地计算所需药物剂量,既能保持有效的药物浓度,同时避免用药过量致毒。预先对多屏深孔Solvinert(MultiScreen Deep Well Solvinert )和多屏Solvinert滤板进行了验证,进行血浆或血清中蛋白质的板内沉淀,以便展开总药物分析。在滤板上可以快速、细致并完整地转移滤液,这样就可以在进行总药物分析之前为样品制备提供一个自动化兼容的平台。Solvinert滤板过滤的滤液中不含蛋白质,这与质谱分析法和紫外线分析法的结果一致。使用多屏深孔和多屏Solvinert滤板可产生有复验性的结果,它是一个稳定且可靠的平台。血清中的蛋白质被这些滤板过滤并沉淀之后,得到的样本中基本上不含蛋白质,回收率很高,便于萃取。药物动力学特性可以让新药开发商更了解药物的有效性和安全性,而这在新药的注册审批中是必要的。为了更好地了解候选药物的代谢动力,金斯瑞( GenScript)建议用动物来做药物分布及其代谢的研究,分析在不同时间段、不同组织或血清中,药物及其代谢物的情况。金斯瑞进行精确的药物和药物代谢动力学研究,涉及两个主要方面:药物分布及其代谢动力研究和抗体药物的代谢动力研究。群体药代动力学研究的是个体之间药物浓度变异来源及其相关性,这些个体是指按临床上相关剂量接受候选药物的目标患者人群。患者的某些人口统计学特征、病理生理特征以及治疗方面的特征,比如体重、排泄和代谢功能、以及接受其他治疗,都能够有规律地改变药物剂量-浓度关系。例如,主要由肾脏排除的药物,在接受同样剂量的情况下,在肾功能衰竭患者体内的稳态浓度,通常高于肾功能正常的患者体内的稳态浓度。群体药代动力学的研究目的就是找出那些使剂量-浓度关系发生变化的、可测定的病理生理因素,确定剂量-浓度关系变化的程度,当这些变化与临床上有意义的治疗指数改变相关的情况下,能够恰当地调整剂量。在药品开发中使用群体PK方法,使获得完整的药代动力学资料有了可能,不但能从来自研究受试者的相对稀疏的数据中获取资料,而且还能从相对密集的数据或从稀疏数据和密集数据的组合中获取资料。群体PK方法能够分析来自各种不均衡设计的数据,也能分析因为不能按常用的药代动力学分析方式分析而通常被排除的研究数据,比如从儿科患者和老年患者获取的浓度数据,或在评价剂量或浓度与疗效或安全性之间的关系时所获取的数据。传统药代动力学研究的受试者通常是健康的志愿者或特别挑选的患者,一组成员的平均情况(即平均血浆浓度-时间曲线)一直是关注的主要焦点。许多研究将个体之间药代动力学的变异作为一个需要降到最低的因素进行观察,通常是通过复杂的研究设计和对照方案,或通过有严格限制的入选标准/排除标准,将其降到最低。事实上,这些资料对在临床应用期间可能会出现的变异至关重要,但是却被这些限制所掩盖。而且,传统药代动力学研究只关注单个变量(例如肾功能)的作法,还使其难以研究变量之间的交互作用。

药代动力学分析系统相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制