叶绿素荧光高成像仪

仪器信息网叶绿素荧光高成像仪专题为您提供2024年最新叶绿素荧光高成像仪价格报价、厂家品牌的相关信息, 包括叶绿素荧光高成像仪参数、型号等,不管是国产,还是进口品牌的叶绿素荧光高成像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合叶绿素荧光高成像仪相关的耗材配件、试剂标物,还有叶绿素荧光高成像仪相关的最新资讯、资料,以及叶绿素荧光高成像仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

叶绿素荧光高成像仪相关的厂商

  • 400-860-5168转1895
    北京易科泰生态技术有限公司成立于2002年,为中关村高新技术企业,致力于生态-农业-健康研究监测技术推广、研发与服务,特别是在光谱成像技术(高光谱成像技术、叶绿素荧光成像技术、红外热成像技术、无人机遥感等)、植物表型分析技术、呼吸与能量代谢测量技术等方面,与国际领先企业PSI、Specim、Sable等合作,致力于植物科学、土壤与地球科学、动物能量代谢、水体与藻类及生态环境领域先进仪器技术的引进推广和技术研发集成,为植物/作物表型分析、生态修复及生态保护、能量代谢测量等提供规划设计、技术方案与系统集成、技术咨询与科技服务。公司技术团队80%以上具备硕士或硕士以上学位,并与中国科学院研究生院、中科院植物研究所、中科院动物所、中科院地理科学与资源研究所、中国农科院、中国林科院、中国环科院、中国水科院、清华大学、中国农业大学、北京林业大学、北京大学、中国海洋大学、陕西师范大学、内蒙古大学等建立了长期的技术合作交流关系。 公司下设有叶绿素荧光技术与植物表型业务部、EcoTech实验室、光谱成像与无人机遥感事业部及无人机遥感研究中心(与陕西师范大学合作建立)、动物能量代谢实验室、内蒙古阿拉善蒙古牛生态牧业研究院及青岛分公司。实验室拥有叶绿素荧光成像、叶绿素荧光仪、水体藻类荧光仪、SPECIM高光谱仪、WORKSWELL红外热成像仪、EasyChem全自动化学分析仪、MicroMac1000水质在线监测系统、ACE土壤呼吸自动监测系统、SoilBox便携式土壤气体通量测量系统、动物呼吸测量系统、LCpro+光合作用测量仪、Hood土壤入渗仪、年轮分析仪等各种仪器设备,可以进行实验研究分析、实验培训等,欢迎与易科泰生态研究室开展合作研究。 易科泰公司与欧洲PSI公司(叶绿素荧光技术与表型分析技术)、美国SABLE公司(动物能量代谢技术)、欧洲SPECIM公司(高光谱成像技术)、欧洲WORKSWELL公司(红外热成像技术)、欧洲ATOMTRACE公司(LIBS元素分析技术)、欧洲BCN无人机遥感中心、欧洲ITRAX公司(样芯密度扫描与元素分析)、美国VERIS公司、英国ADC公司、德国UGT公司、欧洲SYSTEA公司等国际著名生态仪器技术领域的研发机构和厂商建立了密切的合作关系,在FluorCam叶绿素荧光成像与荧光测量技术、PlantScreen植物表型分析技术、高光谱成像技术、红外热成像技术、光合作用与植物生理生态研究监测、土壤呼吸与碳通量研究监测、动物呼吸代谢测量、水质分析与藻类研究监测、CoreScanner样芯密度CT与元素分析技术、LIBS元素分析技术、无人机生态遥感技术等生态仪器技术及其系统方案集成有着丰富的经验,成为我国农业、林业、地球科学、生态环境研究等领域科技进步的重要研究技术支持力量。由公司研制生产的EcoDrone无人机遥感平台、SoilTron多功能小型蒸渗仪技术、SoilBox土壤呼吸测量技术、PhenoPlot轻便型作物表型分析系统、SCG-N土壤剖面CO2/O2梯度监测系统、植物生理生态监测技术、动物能量代谢测量技术等,在中科院修购项目、农业部学科群项目、CERN网络(生态系统监测网络)等项目中发挥重要作用。 “工欲善其事,必先利其器”,易科泰公司将秉承“利其器,善其事”的经营理念,为国内生态-农业-健康研究与发展提供最优的技术方案和服务。欢迎关注易科泰公众号:
    留言咨询
  • 维高主营:嘉拓直流电子负载、LED电子负载、LED驱动电源测试专用电子负载、纹波输出专用电子负载、CHROMA、艾德克斯、美尔诺(IT8511,IT8512,M9714),安捷伦 Agilent 53150 微波计数器、频率计、美国泰克示波器、FLUKE示波器、FLUKE万用表、Fluke红外热成像仪、FLIR红外热像仪、日本乐声音频分析仪、标准信号发生器、信号源、日本菊水(KIKUSUI)高压测试仪、耐压绝缘电阻测试仪、华银洛氏硬度计、维氏硬度计、科泰电源、二次元等。服务地区:北京、上海、苏州、南京、深圳、广州、东莞、 珠海
    留言咨询
  • 400-860-5168转4713
    北京博普特科技有限公司成立于2008年,公司主要为植物、食品、生态、土壤、环境、气象、遥感行业提供科研仪器以及系统解决方案。涵盖田间表型成像系统、室内表型成像系统、种子表型成像系统、根系表型成像系统、显微表型成像系统等各个领域。公司主营产品有:WIWAM植物表型成像系统(RGB成像模块、多光谱激光雷达模块、叶绿素荧光成像模块、高光谱成像模块、近红外成像模块、计算机断层扫描模块、红外成像模块、3D激光雷达模块等);Videometer植物、种子多光谱表型成像系统、根系多光谱表型成像系统、VideometerLiq液体稳定多光谱成像系统、VideometerMic显微多光谱成像系统、Videometer Minilab 便携式多光谱成像系统、Videometer LabUV紫外光多光谱成像系统、VideometerLab XY高通量种子表型成像系统;Plant-Ditech公司的Plantarray高通量植物生理表型研究平台、植物逆境生物学生理研究平台、植物种质资源精准评价与鉴定平台以及SPAC分析系统;Fraunhofer研究院的便携式植物种子断层扫描系统、台式计算机断层扫描系统、全自动种子断层扫描系统、大型落地式根系表型成像系统;Hiphen 公司Airphen多光谱表型成像系统、Hiphen LITERAL手持植物表型冠层成像系统、Hiphen推车多光谱成像系统、Phenomobile全自动全植株智能表型成像车;HAIP 公司的BlackBird科研级高光谱成像系统、Blackbullet科研级高光谱成像系统、Blackbox科研级高光谱成像系统、BlackIndustry 工业级高光谱成像系统、Black mobile便携式高光谱成像系统;SeQso高通量种子表型与播种一体化系统、CF叶绿素种子成熟度测量仪、自动种子分拣系统(X光、多光谱、高光谱、叶绿素荧光);STEPS公司的植物生理生态监测系统、在线光合生理监测系统、土壤养分测量系统、植物养分测量系统、土壤5合1多参数测量仪、土壤直测PH计、盐度/活度检测仪;Pessl公司的植物生态环境智能传感器平台、植物物候远程监测系统;Inno-concept公司的植物活力胁迫测量系统、植物抗逆研究测量系统、气相离子迁移谱仪;Aquation水陆两用叶绿素荧光检测系统、经典和手持叶绿素荧光仪、Aquation公司的水下光合呼吸测量系统;EMS公司的便携式物联网乙烯气体分析仪、温室气体物联网监测系统;Cleangrow多参数离子测定仪、植物工厂自动8离子测定仪;Schaller全谷物湿度仪;EGC植物生长培养箱和生长室等等。
    留言咨询

叶绿素荧光高成像仪相关的仪器

  • FluorCam便携式叶绿素荧光成像仪被设计用来在田间和实验室内对叶片和小植物的荧光参数成像进行动力学解析。在所有应用中,系统可以对光化光和饱和光诱导的荧光瞬变过程进行成像,光化光照射的时间和强度可以由用户自定义的程序来决定。软件包中包含了各种常用的实验程序和简单实用且功能强大的程序设计语言,用户可以设计自己的闪光序列和测量过程。FluorCam便携式叶绿素荧光成像仪是一个轻巧的便携系统,尤其适用于野外实验,也可以在实验室工作。系统可以通过专用电池包在野外进行供电,稳固轻巧的三脚架使得野外测量更加简单易行。 功能特点: 便携性强,实验室、野外均可使用 可自己编辑测量实验程序(protocol) 具备自动重复测量功能 既能进行持续光化学光成像测量,又可进行PAM成像测量 带暗适应叶夹,可对样品无损伤测量 可选高分辨率镜头,具备快照模式、视频模式(binning模式) 可选配手持式叶绿素快速荧光动力学测量模块 典型样品 藻类如海带、马尾藻、浒苔、蓝藻群落等 地衣、苔藓、结皮等 整株小植物,如拟南芥等 植物冠层、叶片或者果实,如草莓、黄瓜、小番茄、柠檬、瓜类等 其它光合生物技术参数 测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm',Fv/ Fm ,Fv',Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qP,QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数,每个参数均可显示2维荧光彩色图像 具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑a) Fv/Fm:测量参数包括Fo,Fm,Fv,QY等b) Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等荧光参数c) 荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个参数d) 光响应曲线LC:Fo,Fm,QY,QY_Ln,ETR等荧光参数§ 高分辨率TOMI-2 CCD传感器a) 逐行扫描CCDb) 最高图像分辨率:1360×1024像素c) 时间分辨率:在最高图像分辨率下可达每秒20帧d) A/D 转换分辨率:16位(65536灰度色阶)e) 像元尺寸:6.45μm×6.45μmf) 运行模式:1)动态视频模式,用于叶绿素荧光参数测量;2)快照模式,用于GFP等荧光蛋白和荧光染料测量g) 通讯模式:千兆以太网 成像面积:31.5mm×41.5 mm 光源板:4块超亮LED光源板,每个光源板由5×5 LEDs阵列,尺寸4×4 cm 测量光:620nm红光,持续时间10μs–100μs可调 饱和光:标配白光,可选蓝光(455nm)或红光(620nm)白光:最高 3900 μmol(photons)/m2.s 蓝光:最高 4900 μmol(photons)/m2.s红光:最高 3800 μmol(photons)/m2.s 光化学光:标配白光,可选蓝光(455nm)或红光(620nm)白光:0–1000 μmol(photons)/m2.s 蓝光:0–1400 μmol(photons)/m2.s红光:0–800 μmol(photons)/m2.s 远红光:735nm,用于测量Fo’,4颗高能LED OJIP–test(选配):可对植物快速荧光动态光化学相和热相进行分析 FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单 客户定制实验程序协议(protocols):可设定时间(如测量光持续时间、光化学光持续时间、测量时间等)、光强(如不同光质光化学光强度、饱和光闪强度、调制测量光等),具备专用实验程序语言和脚本,用户也可利用Protocol菜单中的向导程序模版自由创建新的实验程序 自动测量分析功能:可设置一个实验程序(Protocol)自动无人值守循环成像测量,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机(带时间戳) 快照(snapshot)模式:通过快照成像模式,可以自由调节光强、快门时间及灵敏度得到清晰突出的植物样本稳态荧光和瞬时荧光图片 成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(1000) 数据分析模式:具备“信号计算再平均”模式(算数平均值)和“信号平均再计算”模式,在高信噪比的情况下选用“信号计算再平均”模式,在低信噪比的情况下选择“信号平均再计算”模式以过滤掉噪音带来的误差 输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等 给光制度:静态或动态(窦式) CCD检测范围:400–1000nm 光谱响应:540nm处量子效率最高(70 %),400nm和650nm处转降50% 读出噪音:低于12eRMS,典型10e 满阱容量:大于70,000 e (unbinned) Bios:固件可升级 通讯方式:千兆以太网 主机重量:1.8 kg 主机尺寸:21.5 cm×13.5 cm×13.5 cm 叶夹:用于夹持测量叶片并进行暗适应 支架系统:1)室内支架,可调整测量高度和角度,用于实验室内测量;2)三角支架(选配),防水防锈材料设计,满足测量稳定性,高度角度可调,最高测量高度1.5m,用于野外测量 供电方式:1)90–240 V交流电,配有专用防电涌稳压电源;2)专用野外电池包(选配),一次充电可支持10小时以上不间断测量 最大功率:200 W 产地:欧洲
    留言咨询
  • 叶绿素荧光光谱包含了植物丰富的光合作用的信息,一直是光合生理研究的热点课题,且被成为研究植物光合作用快速无损的敏感探针。结合荧光光谱的特征和叶绿素等生化生理参数的测定,可为不同水、肥、病胁迫下荧光光谱指标与其他生化参数间的关系,为精准农业和林业研究等提供优化调控和精准管理的理论依据和技术支持。 由于仪器硬件的限制,长久以来,对植物叶绿素荧光的限制光谱的研究大都限制在实验室研究或者卫星高光谱数据的分析,而无法通过有人机载平台进行大面积高精度的高光谱成像遥感探测。作为全球高光谱成像仪领军的制造商之一,Headwall公司推出的 Hyperspec Fluorescence叶绿素高光谱成像仪,专门针对日光诱导叶绿素荧光(Solar-Induced chlorophyll Fluorescence, SIF)的光谱范围(670-780nm),以0.1~0.2nm的光谱分辨率为用户提供叶绿素a和叶绿素b科研级的高光谱立方体数据。 Hyperspec Fluorescence基于Headwall公司独占的像差校正型凸面全息反射光栅专利技术,并选用TE制冷型sCMOS感光器件,以峰值120:1的信噪比(SNR,unbinned),为用户提供高质量的荧光高光谱数据基础。 Hyperspec Fluorescence结构紧凑,尺寸 30 x 30 x 20cm,重量仅为6.3kg左右,可满足众多有人机平台的挂载要求。主要特点:亚纳米级分辨率,具有分辨日光诱导叶绿素荧光的能力制冷型科学级CMOS探测器,在弱光下也有极高的灵敏度在670-780nm范围内,具有2160个光谱通道,光谱采样率约为0.05nm可选配Trimble APX-15 高精度IMU/GNSS模块和紧凑型高速数据处理单元组成机载高光谱系统
    留言咨询
  • Kautsky 与 Hirsch 于1931年首次发表论文“CO2同化新实验”,报道了用肉眼发现叶绿素荧光现象,荧光强度的变化与CO2同化速率呈负相关。Ladislav Nedbal教授与Martin Trtilek博士等基于脉冲调制技术(PAM,Pulse Amplitude Modulated technique)与CCD技术,于1996年研制成功FluorCam叶绿素荧光成像技术(Nedbal etc, 2000),使叶绿素荧光得以在二维和显微(细胞与亚细胞水平)水平上进行成像分析。PAM技术基于人工激发光(脉冲调制测量光、光化学光、饱和光脉冲)Protocols诱导成像,如何在自然光(太阳光)条件下对叶绿素荧光进行成像测量,从而实现对植物光合作用成像作图(mapping),成为科学家特别是生态观测、农业遥感等领域科学家的梦想。 AisaIBIS叶绿素荧光高光谱成像仪由芬兰Specim公司与德国Juelich研究中心为欧洲太空局(ESA)地球探测项目(SIFLEX)研制的Hyplant传感器,是世界上第一款商业化高光谱叶绿素荧光成像仪,采用夫琅和费线深度法,可以检测太阳辐射诱导叶绿素荧光(Sun-induced Fluorescence),用于陆空双基植物叶绿素荧光高光谱成像测量分析,可得到NDVI、EVI、F760(植物叶绿素荧光)等参数。 作为一款功能强大的超高光谱分辨率空陆双基成像系统,适用于地面及航空遥感SIF叶绿素荧光高光谱成像测量,AisaIBIS采用“夫琅和费线深度法”,该方法在670 - 780nm的特定光谱区域内,可对两条吸氧谱线底部的微弱荧光信号进行检测和定量。结合高光通量成像光谱仪和先进的sCMOS成像技术,可在飞行条件下以较高的成像速率和优异的光谱采样间隔(0.11nm)采集高质量、低噪声、高动态范围和信噪比的叶绿素荧光高光谱数据,可以安装在易科泰光谱成像与无人机遥感研究中心提供的近地面遥感平台、通量塔或者航空遥感平台,得到不同尺度的NDVI、EVI、F760(植物叶绿素荧光)等参数。适用于农业、林业、草原、湿地生态系统观测,如光合作用与植被胁迫(如病虫害、干旱等)研究、大田作物表型与种质资源检测、生态系统生产力与作物产量评估等。功能特点1.推扫式高光谱成像技术,采用“夫琅和费线深度法”获取SIF叶绿素荧光成像数据,使太阳光诱导叶绿素荧光测量提高到高空间分辨率水平2.科研级超高性能,光谱采样率达到0.11/0.22nm,高透光率F/1.7,高信噪比680:1 3.陆空双基,既可用于航空遥感,也可以安装于近地面遥感平台、通量塔,以获取不同尺度日光诱导叶绿素荧光高光谱成像数据4.结合易科泰生态技术公司提供的便携式叶片水平叶绿素荧光测量设备,可以满足不同尺度水平的观测研究5.可配置易科泰生态技术公司提供的全波段高光谱成像技术、Thermo-RGB红外热成像与RGB融合成像分析技术等 技术指标:1. SIF叶绿素荧光高光谱成像传感器CMOS科研级检测器,快照模式,珀尔贴制冷 波段范围:670-780nm光谱采样:0.11/0.22nm空间分辨率:384/768像素 透光率F/1.7、信噪比680:1、帧频65fps视野:32.3度,0.5m至无穷远 积分时间:在帧像周期内可调 数据接口:CameraLink 16-bit功耗:一般135W,最大200W成像系统重量(含DPU):<25kg支电机械快门,光温稳定功能2. Thermo-RGB红外热成像与RGB真彩成像融合分析技术,可区分阳光照射叶片或冠层、阴影叶片或冠层以及土壤的温度和覆盖度等,以精确反映作物/植物气孔导度动态,使作物冠层温度测量精准区分阳光照射叶片、阴影叶片及土壤背景,并可进行ROI选区分析、频率直方图分析显示及颜色分析等,适宜于高空间解析度冠层温度检测、物候观测、气孔导度观测、高通量作物表型分析等 3. AisaFENIX双镜头全波段高光谱成像:包括VNIR(380-970nm)和SWIR(970-2500nm)双镜头高光谱成像,高信噪比(1000:1)、分辨率,空间分辨率可达1024x像素4. 遥感平台:可选配航空遥感平台、通量塔、或易科泰生态技术公司提供的近地遥感平台5. 光谱成像近地遥感:可选配扫描式或机器人近地遥感光谱成像,包括叶绿素荧光成像(基于PAM技术)、高光谱成像、红外热成像等应用案例1:ESA(欧洲航天局)与NASA(美国国家航空航天局)合作开展生态健康与碳循环动态研究 ESA与NASA合作,采用基于AisaIBIS的HyPlant SIF航空遥感系统、美国NASA研发的基于LiDAR-高光谱-红外热成像航空遥感系统,同步获取森林的太阳光诱导叶绿素荧光成像、冠层结构信息、可见光至短波红外(400-2500nm)光谱反射成像信息、及冠层温度信息,以观测研究生态系统健康与碳循环动态(Middleton etc. The 2013 FLEX-US airborne campaign at the parker tract loblolly pine plantation in North Carolina, USA. Remote Sensing, 2013)应用案例2:AisaIBIS用于监测农作物长势-德国波恩大学农业试验站 德国Julich研究所、西班牙Valencia大学、意大利Milano-Bicocca大学、芬兰Specim公司等科学家,对基予AisaIBIS的HyPlant航空遥感系统(包括AisaIBIS和AisaFENIX)观测冠层(Top-of-Canopy, TOC)光谱反射与SIF叶绿素荧光技术,进行了全面解读,并采用该系统对农田作物进行了遥感作图分析(参见下图),该系统采用AisaIBIS、AisaFENIX全波段空陆双基高光谱成像(400-2500nm)等(Basbian Siegmann etc. The high-performance airborne imaging spectrometer HyPlant-from raw images to Top-of-Canopy reflectance and fluorescence products: Introduction of an Automatized Processing China. Remote Sensing, 2019)应用案例3:AisaIBIS用于估算不同时间作物初级生产力-德国科隆大学 德国科隆大学等科学家采用HyPlant航空遥感系统(基于AisaIBIS SIF叶绿素荧光高光谱成像和AisaFENIX高光谱成像技术),结合地面光合作用(采用Li6400或LCPro T光合仪)和土壤呼吸测量(采用Li8100或SRS2000土壤呼吸测量系统),对植被初级生产力及胁迫进行了观测研究(参见下图),结果表明,F760对现有GPP评估方法可以起到很好的改善和补充,SIF红色叶绿素荧光与远红波段叶绿素荧光比率可以灵敏地反映环境胁迫(S. Wieneke etc. Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. Remote Sensing of Environment, 2016)其它参考文献:Rascher, U., et al.(2015), Sun-induced fluorescenc – a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Global Change Biology.Rossini, M., et al.(2015), Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis, Geophys. Res. Lett.Wieneke, S., et al.(2016), Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. Remote Sensing of Environment.Colombo, R., et al.(2018), Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest. Global Change Biology.Gerhards, M., et al.(2018), Analysis of airborne optical and thermal imagery for detection of water stress symptoms. Remote Sensing.Max Gerhards, et al.(2018), Analysis of airborne optical and thermal imagery for detection of water stress symptom. Remote Sensing.Bandopadhyay, S., et al. (2018), Examination of Sun-induced Fluorescence (SIF) Signal on Heterogeneous Ecosystem Platforms using ‘HyPlant’. Geophysical Research Abstracts.Giulia Tagliabue, et al. (2019), Exploring the spatial relationship between airborne-derived red and far-red sun-induced fluorescence and process-based GPP estimates in a forest ecosystem. Remote Sensing of Environment.
    留言咨询

叶绿素荧光高成像仪相关的资讯

  • FluorCam叶绿素荧光成像技术应用案例——上海生命科学研究院
    近日,易科泰生态技术有限公司为上海生命科学研究院调试安装一套FluorCam封闭式GFP/Chl.荧光成像系统,该系统具备叶绿素荧光成像分析、GFP绿色荧光蛋白成像分析、PAR吸收与NDVI成像测量分析、实验程序自动运行监测等多项功能模块。上海生命科学研究院青年研究组长、博士生导师Chanhong Kim在苏黎世联邦理工学院(ETH-Zurich)、康奈尔大学博伊斯汤普森研究所(Boyce Thompson Institute at Cornell University)工作期间就已经使用FluorCam叶绿素荧光成像技术进行了大量的研究工作,并先后发表了“1O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid”(PNAS(美国科学院院报),2009)、“Chloroplasts of Arabidopsis are the source and a primary target of a plant-speci?c programmed cell death signaling pathway”(The Plant Cell,2012)等学术论文。2014年,Chanhong Kim博士到上海生命科学研究院工作后,立刻就联系我公司购买了FluorCam封闭式GFP/Chl.荧光成像系统,计划率领他的青年科学家团队运用FluorCam叶绿素荧光成像技术结合特定胁迫因子来筛选拟南芥突变体,并通过Quenching实验程序进一步研究这些突变体光系统中的具体表型变化(Phenotyping)和生理机制,对植物光合作用和抗逆机理进行深入的探索;同时利用该系统绿色荧光蛋白成像分析功能,来定量鉴别检测分析转基因表达。图1. FluorCam封闭式叶绿素荧光成像系统在实验室的工作状态图2. 拟南芥叶绿素荧光Fm(左图)、Fv/Fm(右图)成像分析,图中上半部分为拟南芥野生型,下半部分为突变株,上部选择了3个植株Area 1、2、3,下部选择了3个植株Area 4、5、6,野生型的Fv/Fm远高于突变株图3. GFP成像图,图中发出明亮颜色的植株即为表达了GFP的植株,其颜色越偏向红色,则表明其表达的GFP更多图4:PAR absorptivity/NDVI成像分析(由Ecolab实验室提供)FluorCam叶绿素荧光成像技术由全球知名叶绿素荧光技术专业公司PSI生产,PSI公司最先研制成功并生产叶绿素荧光成像仪器。PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士首次将PAM叶绿素荧光技术与CCD技术结合在一起,研制成功了叶绿素荧光成像技术(Nedbal等,2000),并于1997年为美国华盛顿大学提供了第一台商业FluorCam系统。Nedbal教授也是权威著作《Chlorophyll a Fluorescence, a Signature of Photosynthesis》(Springer, 2009)叶绿素荧光成像技术的作者。Fluorcam叶绿素荧光成像系统是世界上最权威、使用最广、种类最全面、发表论文最多的叶绿素荧光成像仪器,目前易科泰生态技术公司Ecolab实验室有近400篇参考文献供参考查阅。易科泰生态技术公司作为PSI在中国区域的独家代理和技术咨询服务中心,致力于FluorCam叶绿素荧光成像技术的引进推广,以助力于我国植物生理生态与胁迫生理生态研究、植物育种与优良品种筛选、植物表型分析(Phenotyping)、藻类生理生态学研究、污染生态学及生态毒理学研究等,先后引进了FluorCam便携式荧光成像、封闭式荧光成像、开放式荧光成像、移动式大型叶绿素荧光成像系统、FKM多光谱荧光动态显微成像与光谱分析系统、多光谱荧光成像技术、PlantScreen高通量植物表型成像分析系统等;Ecolab生态实验室配备了便携式叶绿素荧光成像系统、FL3500多功能叶绿素荧光仪、FluorPen手持式叶绿素荧光仪、AquaPen手持式水体藻类荧光仪等,并与中科院植物所、中科院海洋所、中科院微生物所、中国农业大学、中国林科院林木遗传育种国家重点实验室等科研单位进行了一系列合作研究实验。欢迎合作研究或来我公司Ecolab实验室做实验。Ecolab实验室联系方式:电话:62615899;邮箱:info@eco-lab.cn, eco-lab@eco-tech.com.cn.
  • FluorCam叶绿素荧光成像技术及其应用研讨会
    —— 会议时间 ——2020年7月7日 (周二) 14:30 – 15:30—— 会议主题 ——FluorCam叶绿素荧光成像技术及其应用叶绿素荧光成像新研究技术介绍、国际知名的 FluorCam产品功能介绍及安装应用案例等—— 主讲人 ——李 川北京易科泰公司Ecolab实验室高级工程师研究领域:植物/藻类光合作用机理、植物逆境胁迫、植物生理生态、作物育种等—— 参会方式 ——腾讯会议 微信群内发会议链接(请扫码报名参会)
  • FluorCam 叶绿素荧光成像技术讲座及操作培训班邀请函
    为了进一步促进FluorCam叶绿素荧光成像技术在光合作用、植物发育生物学、植物抗逆生物学以及作物育种研究领域的应用,北京易科泰生态技术有限公司ECOLAB实验室与中国科学院植物研究所光生物学重点实验室,将于2017年4月中旬在植物所举办FluorCam叶绿素荧光成像技术专题讲座与仪器操作培训,将由相关领域的专家重点介绍FluorCam技术及其操作,详细讲解FluorCam技术在植物相关研究领域的应用。诚邀从事植物表型、光合作用、植物胁迫与抗性以及作物育种等领域的科研工作者参加本次培训班。一、会议组织 主办单位:北京易科泰生态技术有限公司ECOLAB实验室,中国科学院光生物学重点实验室 会议地点:北京市海淀区香山南辛村20号 中国科学院植物研究所 会议时间:2017年4月(具体时间请见后续通知) 二、会议主题 FluorCam叶绿素荧光技术介绍 FluorCam叶绿素荧光技术在植物相关研究领域中的应用 FluorCam叶绿素荧光技术操作与示范 三、报告人(持续更新中) 卢从明研究员(中国科学院植物研究所,中国科学院光生物学重点实验室主任) 彭连伟教授(上海师范大学生命与环境学院) 李川技术总监(易科泰生态技术有限公司ECOLAB实验室)四、仪器操作培训与会者将在植物所光生物学重点实验室和ECOLAB实验室实地参观并操作FluorCam仪器设备。16年培训班-FluorCam野外移动式叶绿素荧光成像系统16年培训班-FluorCam封闭式荧光成像系统农科院购置FluorCam大型叶绿素荧光成像平台FluorCam开放式叶绿素荧光成像系统有意参加者可直接回复联系人邮件,后续会有专人跟您联系联系人:曹洋 邮箱:info@eco-tech.com.cn 电话:010-82611269/1572

叶绿素荧光高成像仪相关的方案

叶绿素荧光高成像仪相关的资料

叶绿素荧光高成像仪相关的试剂

叶绿素荧光高成像仪相关的论坛

  • 叶绿素荧光显微成像技术在光合作用研究中的应用

    [align=center][size=16px][/size][/align][size=16px] 光合作用是地球上最重要的化学反应,植物、藻类及光合细菌等吸收光能、将[/size][size=16px]CO[/size][font='calibri'][sub][size=16px]2[/size][/sub][/font][size=16px]和水转化为有机物并释放[/size][size=16px]O[/size][font='calibri'][sub][size=16px]2[/size][/sub][/font][size=16px]。获得光能的叶绿素分子从基态跃迁到激发态,激发态的叶绿素分子可通过三种途径释放能量回到基态:推动光化学反应、以热的形式耗散、释放光子产生荧光。这三种途径的总和是一定的,因此叶绿素荧光的变化反映了光化学效率和热耗散能力的变化。叶绿素荧光成像是[/size][size=16px]广泛应用[/size][size=16px]的[/size][size=16px]光合生理研究的重要探针[/size][size=16px],[/size][size=16px]叶绿素荧光显微成像又将研究尺度进一步拓展到细胞、亚细胞水平。叶绿素荧光技术发展出了很多不同的测量程序,以慢诱导荧光动力学曲线为例,通过测量光([/size][size=16px]ML[/size][size=16px])、作用光([/size][size=16px]AL[/size][size=16px])、饱和脉冲光([/size][size=16px]SP[/size][size=16px])激发样品,记录动力学曲线并计算叶绿素荧光参数[/size][size=16px],[/size][size=16px]可以用于反映植物光合作用机理和光合生理状况([/size][size=16px]朱新广[/size][size=16px],[/size][size=16px]2021[/size][size=16px])。[/size][size=16px][/size][size=16px] 叶绿素荧光成像技术能记录整个叶片、植株等样品不同区域的荧光动力学分布变化,实现从宏观到微观的光合机理研究。叶绿素荧光成像由于其无损、高通量的技术特征,在光合作用相关突变体筛选领域成为了广泛应用的重要技术,为光合作用机理及抗[/size][size=16px]逆研究[/size][size=16px]提供了强大的技术支持。叶绿素荧光显微成像技术最早出现于[/size][size=16px]2000[/size][size=16px]年,[/size][size=16px]K[/size][size=16px]ü[/size][size=16px]pper[/size][size=16px]等人将叶绿素荧光脉冲调制式激发光源与显微镜结合,首次获得了显微尺度的叶绿素荧光图像([/size][size=16px]K[/size][size=16px]ü[/size][size=16px]pper[/size][size=16px] [/size][size=16px]et al.[/size][size=16px], 2000[/size][size=16px])。叶绿素荧光显微成像技术在国外已经展开多方面研究应用,[/size][size=16px]目前国内的叶绿素荧光成像显微研究尚处于起步阶段,多个课题组都[/size][size=16px]正[/size][size=16px]在[/size][size=16px]探索[/size][size=16px]这项技术[/size][size=16px]在[/size][size=16px]不同研究领域中[/size][size=16px]的[/size][size=16px]应用。[/size][size=16px][/size][size=16px] 叶绿素荧光技术[/size][size=16px]适用研究样品微观结构上光[/size][size=16px]合功能[/size][size=16px]的空间差异,例如叶片横截面栅栏组织与海绵组织的差异,[/size][size=16px]C[/size][size=16px]4[/size][size=16px]植物花环结构[/size][size=16px]中维管束鞘细胞与叶肉细胞的差异[/size][size=16px],藻类中有差异的单个细胞、异形胞[/size][size=16px]等。我们多年来与[/size][size=16px]吉林师范大学、四川省农业科学研究院[/size][size=16px]等[/size][size=16px]单位[/size][size=16px]合作[/size][size=16px],[/size][size=16px]目前已合作发表的[/size][size=16px]3[/size][size=16px]篇相关论文是国内该领域[/size][size=16px]开创性[/size][size=16px]的应用成果,[/size][size=16px]以叶绿素荧光显微成像的特色优势技术[/size][size=16px]为光合作用的微观[/size][size=16px]探究提供有力支撑[/size][size=16px]。[/size][size=16px][/size][size=16px] Yu[/size][size=16px]等[/size][size=16px]发现[/size][size=16px]狗枣猕猴桃[/size][size=16px]([/size][size=16px]A[/size][size=16px]ctinidia [/size][size=16px]kolomikta[/size][size=16px])[/size][size=16px]的白化[/size][size=16px]叶片[/size][size=16px]通过调整叶片结构及基因表达调控,仍然保持了相对较高的光合能力[/size][size=16px]。[/size][size=16px]应用[/size][size=16px]叶绿素荧光显微成像技术[/size][size=16px]比较了[/size][size=16px]白化和绿色叶片栅栏组织、海绵组织的叶绿素荧光参数,[/size][size=16px]揭示了白化叶片海绵组织光[/size][size=16px]合能力[/size][size=16px]增强的机理[/size][size=16px]。[/size][size=16px]绿叶中栅栏组织[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px](最大光化学效率)[/size][size=16px]更高,而白叶中海绵组织[/size][size=16px]显著增厚,[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px]更高[/size][size=16px],[/size][size=16px]光[/size][size=16px]合能力[/size][size=16px]增强,补偿[/size][size=16px]了[/size][size=16px]白化的影响,成为叶片光合作用主力组织[/size][size=16px]([/size][size=16px]Yu [/size][size=16px]et al.[/size][size=16px], 2022[/size][size=16px])[/size][size=16px]。[/size][size=16px]接下来[/size][size=16px]Chen[/size][size=16px]等又比较了两种猕猴桃白化叶片的光保护策略差异[/size][size=16px],狗枣猕猴桃的白叶[/size][size=16px]主要通过反射实现光保护,强光下花青素[/size][size=16px]积累,叶片[/size][size=16px]转变为粉色[/size][size=16px],更有效地保护叶片[/size][size=16px];[/size][size=16px]而[/size][size=16px]葛[/size][size=16px]枣猕猴桃([/size][size=16px]A[/size][size=16px]ctinidia[/size][size=16px] [/size][size=16px]polygama[/size][size=16px])[/size][size=16px]强光下[/size][size=16px]仍为白色[/size][size=16px],[/size][size=16px]具[/size][size=16px]有更[/size][size=16px]强[/size][size=16px]的叶绿[/size][size=16px]素荧光参数,说明[/size][size=16px]它[/size][size=16px]具有更高的强光适应能力[/size][size=16px]([/size][size=16px]Chen[/size][size=16px] [/size][size=16px]et al.[/size][size=16px], 202[/size][size=16px]3[/size][size=16px])。[/size][size=16px]Liu[/size][size=16px]等比较了干旱处理下的玉米叶肉细胞和维管束鞘细胞,发现这两种细胞具有不同的不同光保护策略[/size][size=16px]。对玉米[/size][size=16px]完整叶片的分析显示,[/size][size=16px]随着干旱处理程度增强,[/size][size=16px] [/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px]、[/size][size=16px]Φ[/size][font='calibri'][size=14px][sub][size=16px]PSII[/size][/sub][/size][/font][size=16px](实际光化学效率)[/size][size=16px]降低,[/size][size=16px]NPQ[/size][size=16px](非光化学猝灭[/size][size=16px]系数[/size][size=16px])[/size][size=16px]显著升高[/size][size=16px]。进一步应用[/size][size=16px]叶绿素荧光显微成像[/size][size=16px]的分析结果[/size][size=16px]与完整叶片[/size][size=16px]相符合,并且发现[/size][size=16px]与叶肉细胞相比,维管束鞘细胞[/size][size=16px] [/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px]、[/size][size=16px]Φ[/size][font='calibri'][size=14px][sub][size=16px]PSII[/size][/sub][/size][/font][size=16px]更低,干旱胁迫后[/size][size=16px]NPQ[/size][size=16px]升高更显著[/size][size=16px],[/size][size=16px]不同细胞的变化趋势[/size][size=16px]差异[/size][size=16px]表明它们[/size][size=16px]具有不同的光保护策略[/size][size=16px],[/size][size=16px]维管束鞘细胞中可能具有更强的热耗散能力[/size][size=16px]([/size][size=16px]Liu [/size][size=16px]et al.[/size][size=16px], 2022[/size][size=16px])。[/size][size=16px][/size][size=16px] 叶绿[/size][size=16px]素[/size][size=16px]荧光显微成像技术在光合作用的微观研究领域具有独特的技术优势,在[/size][size=16px]光合作用机理研究、环境及毒理胁迫与抗性筛选、优良品系选育等领域[/size][size=16px]具[/size][size=16px]有广阔的应用前景。目前多家单位的科研人员[/size][size=16px]都[/size][size=16px]在[/size][size=16px]探索该技术[/size][size=14px][size=16px]的新应用,我们也正在[/size][size=16px]将该技术拓展到[/size][size=16px]多个新的领域,例如对[/size][size=16px]原生质体[/size][size=16px]以及[/size][size=16px]种子、茎秆等非叶片器官的[/size][size=16px]研究[/size][size=16px]。[/size][/size][font='黑体']参考文献:[/font][font='calibri'][size=13px][1] [/size][/font][font='calibri'][size=13px]朱新广[/size][/font][font='calibri'][size=13px], [/size][/font][font='calibri'][size=13px]许大全主编[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]光合作用研究技术[/size][/font][font='calibri'][size=13px], [/size][/font][font='calibri'][size=13px]上海科学技术出版社[/size][/font][font='calibri'][size=13px], 2021[/size][/font][font='calibri'][size=13px][2] [/size][/font][font='calibri'][size=13px]H[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Küpper[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]I[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]?etlík[/size][/font][font='calibri'][size=13px], [/size][/font][font='calibri'][size=13px]M[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Trtílek[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] et al. [/size][/font][font='calibri'][size=13px]Photosynthetica[/size][/font][font='calibri'][size=13px], 2000, 38, s553-570 [/size][/font][font='calibri'][size=13px][3] [/size][/font][font='calibri'][size=13px]M[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Yu, [/size][/font][font='calibri'][size=13px]L[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Chen, [/size][/font][font='calibri'][size=13px]D[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] H[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Liu[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] et al. [/size][/font][font='calibri'][size=13px]Front. Plant Sci.[/size][/font][font='calibri'][size=13px], 2022, 13: 856732 [/size][/font][font='calibri'][size=13px][4] [/size][/font][font='calibri'][size=13px]L[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] Chen[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] D[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Q[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] Wen[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] G[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]L[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] Shi[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]et al.[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Physiol. Plant.[/size][/font][font='calibri'][size=13px], 2023, [/size][/font][font='calibri'][size=13px]175:[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]e13880[/size][/font][font='calibri'][size=13px][5] [/size][/font][font='calibri'][size=13px]W[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] J[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Liu, [/size][/font][font='calibri'][size=13px]H[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Liu, [/size][/font][font='calibri'][size=13px]Y[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] E[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Chen[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] et al. [/size][/font][font='calibri'][size=13px]Front. Plant Sci.[/size][/font][font='calibri'][size=13px], 2022, 13: 885781[/size][/font]

  • 激光荧光成像仪特点

    [b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]激光荧光成像仪[/url][/b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]Lab-FLARE[/url]是采用激光发射激发荧光技术的实验室近红外荧光成像系统和多功能光子荧光成像控制器,与各种手持式荧光成像仪一起,提供近红外荧光高清成像,同时提供700 nm近红外荧光图像,800nm近红外荧光成像和彩色视频。[b]激光荧光成像仪特点[/b]控制使用2个4K高清监测器与所有我公司荧光成像头一起工作,获得高清荧光图像满FLARE容量的四个独立的视频流高功率665nm 和760nm激光激发,提供几乎没有近红外光的白光同时700 nm近红外荧光,800纳米近红外荧光成像,彩色视频输出,几何/数学融合。综合GPIO的大功率继电器统一的FLARE软件与脚本笔记本电脑集成锁存器及一套RC系列成像头带关节臂定位RC系列成像头的可选推车可选的VESA安装做它自己的RC系列成像安装头激光荧光成像仪Lab-FLARE:[url]http://www.f-lab.cn/vivo-imaging/rp2.html[/url]

  • 手持式近红外荧光成像仪简介

    [url=http://www.f-lab.cn/vivo-imaging/imaging-head-rc2.html][b]手持式近红外荧光成像仪[/b][/url]专业是实验室[b]近红外荧光成像[/b]而设计的[b]近红外荧光成像仪[/b],非常方便[b]手持式近红外荧光成像[/b]应用。手持式近红外荧光成像仪参数Full FLARE(4)独立的视频流重量只有2磅只有10x3in大小易于抓握的人体工学设计光学定制:大的工作距离为9到15″″可变视场从2.8平方厘米到20厘米对角线完美的Full FLARE通道焦点分辨率为35 µ m所有的FLARE光子控制单元(PCUs)带锁的母榫,可快速稳定地连接到支架上。集成、防水10′光电脐带可选的VESA安装,可自己动手安装可选的sterile drapes[img=手持式近红外荧光成像仪]http://www.f-lab.cn/Upload/Flare-imaging-RC2.jpg[/img]手持式近红外荧光成像仪:[url]http://www.f-lab.cn/vivo-imaging/imaging-head-rc2.html[/url][b][/b]

叶绿素荧光高成像仪相关的耗材

  • 凝胶成像仪配件
    凝胶成像仪配件是一款简单而紧凑的凝胶成像系统,带有数字化控制面板,凝胶成像仪配件可用于琼脂糖和其它光凝胶,彩色凝胶,放射自显影薄片,印迹膜的荧光成像。凝胶成像仪配件包含了一个高达1400万像素的超级相机和8' ' 彩色TFT屏,非常方便直观地观测图像,非常适合安装空间有限,预算有限的用户使用。凝胶成像仪配件特色安全防护:前门打开时紫外透照台自动关闭。图像文件可保存为多种格式,包括RAW格式。1000万像素相机高分辨率8' ' 显示屏数字控制面板轻巧便携多个聚焦面积选择内置紫外透照台不需要计算机可自行操作可连接热敏打印机直接打印结果内部2x3W白光LED照明可选配凝胶分析软件通用电压100-240V凝胶成像仪配件参数相机:佳能Power Shop G11数字照相机像素: 1000万像素, 1/1.7' ' 高密度CCD最大光圈: F/2.8(W)--F/4.5(T)辅助照明光源:LED白灯电源: 110-240V孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于凝胶成像仪价格等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • 高光谱成像仪定标附件
    这款高光谱成像仪定标附件专业为高光谱成像仪的光谱定标和辐射定标而设计,是定量遥感的理想定标工具。这款高光谱成像仪定标附件适合市面上的所有高光谱成像仪的使用。如下是辐射定标前后的光谱图像供客户参考。
  • 红外热成像仪配件MTI384
    红外热成像仪配件MTI384是全球领先的红外热像仪,具有65mk的超高热灵敏度,红外热成像仪MTI384可以识别物体的最小温差并用超清晰的热图像显示温差。红外热成像仪配件MTI384特色可以立刻确定过热/过冷的部分,使用我们专业的热分析软件可以获取有关故障的更多细节。 红外热成像仪配件MTI384特点高度清晰的热图像和高精度的温度测量,精度±2%,热灵敏度为65mk。宽大的温度测量范围,标准范围是从-20°C至350°C,可以选择高达1200℃。激光指示器帮助用户在操作时轻松定位目标。内置麦克风将录制40秒语音注释,用户可以使用麦克风对每一个热图像进行快速语音注释,语音注释将和热图像一起存储。摄像机有可更换IR 镜头,设计更灵活,MTI160和 MTI384可以采用广角镜头或长焦镜头。使用可更换镜头设计,MTI系列可呈现更大的图像部分和用广角镜头进行快速概述,以及使用长焦镜头测量物体对象的更多细节。高温测量选项。将一个高温过滤器透镜安装到原始摄像机镜头上,MTI 160和MTI 384摄像机的温度测量范围可以扩展到1200℃。自动热/冷/平均点识别装置会显示自动热/冷/平均点识别的临界温度条件。确保不间断地错误识别。提供单手操作的直观简单操作菜单,快速简单地对明确的维护应用进行操作。MTI160和MTI384摄像机自带多功能电脑分析软件 IRSee Free IRSee。用户可以使用IRSee软件分析热图像和可见光图像,以及将所有信息导出到微软办公软件中,方便进行编辑报告。 红外热成像仪配件MTI384应用建立诊断电气/机械检验研究与开发自动化应用预防和预测性维护
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制