蛋白质结构分析仪

仪器信息网蛋白质结构分析仪专题为您提供2024年最新蛋白质结构分析仪价格报价、厂家品牌的相关信息, 包括蛋白质结构分析仪参数、型号等,不管是国产,还是进口品牌的蛋白质结构分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白质结构分析仪相关的耗材配件、试剂标物,还有蛋白质结构分析仪相关的最新资讯、资料,以及蛋白质结构分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

蛋白质结构分析仪相关的厂商

  • 上海祎鸿分析仪器有限公司由分析化学行业资深团队凝聚而成。从2000年起就致力于智能化化学分析仪器的研究开发。经历12年的经验探索,得到分析化学行业使用用户的高度评价,智能一体化指标达到国内先进水平。上海祎鸿分析仪器有限公司,是一家专业针对食品安全、食品蛋白质含量分析测试等等的高新技术企业,公司依托化学分析行业资深研发、销售、生产团队的精湛技术,高品质服务理念,聚集了智能操作、远程控制、人性化软件及个性化定制的多方面高科技人才,自主开发、锐意进取,现拥有各类电位法凯氏定氮仪、颜色法凯氏定氮仪、碳纤维红外消化炉等多种研发项目。完美的用户需求,使我们永不止步,将心注入、创造卓越品质。上海祎鸿分析仪器有限公司积极拓展与众多国内外检测机构、食品企业、高校取得良好的业务合作,为客户提供优质的服务、急客户之所急,想客户之所想是我公司的一贯服务承诺,力求在公司自身发展的同时给客户创造更多、更完美的服务需求。"因为专注,所以专业"。我们的追求是:让用户的需求、得到完善系统的解决……
    留言咨询
  • 斯卡拉分析仪器(上海)有限公司坐落于上海机器人产业园(富联路858号),专注于研发制造湿化学自动分析仪器,为实验室繁琐的化学分析和检测提供自动化、高效、安全和环保的解决方案。斯卡拉的连续流动分析仪、间断化学分析仪、燃烧法总氮/蛋白质分析仪、总有机碳分析仪和机器人分析仪等都是基于优良的品质和服务。 产品广泛用于水质、土壤、植物、肥料、固废、石化、食品、啤酒和烟草等领域。斯卡拉公司从原材料的选择,产品设计,制造,销售到售后服务全方位的规范化管理。各部门出色的专业人员组成了一个强大的产品开发体系,而每一台分析仪的诞生都是这个体系的结晶。斯卡拉通过不断改进与研发,增添了许多革新产品,以满足现代实验室日益发展的需要。实践证明斯卡拉是现代化实验室最经济可靠的选择。 每台分析仪出厂前的组装和测试均由受过良好培训的应用化学家和工程师来完成,以求达到用户高标准、高精度的要求。 斯卡拉已经有2000多种现成的方法应用于土壤、植物、肥料、固废、水质以及发酵过程和清洁剂、食品、饮料、啤酒、葡萄酒、烟草、制药等行业。为将湿化学自动分析作为一种有效的分析手段推广应用于分析检测领域做出了积极的贡献。
    留言咨询
  • 400-860-5168转1721
    上海嘉鹏科技有限公司,成立于1998年6月,是一家专注于生命科学和分析化学领域的**型企业。凭借雄厚的技术与研发实力,公司已拥有国家砖利、著作权等二十多项,产品通过欧盟CE认证、ISO9001:2008质量体系认证。目前,公司已形成超微量核酸蛋白测定仪、化学发光成像系统、凝胶成像分析系统、紫外分析仪、核酸蛋白检测仪、紫外检测仪、蛋白质分离纯化系统、光化学反应仪、旋涡混合器、恒流泵、自动部分收集器等十几个产品系列。公司在国内各地均设立了渠道代理商,同时面向全球100多个国家和地区,以国际化的前瞻视野,打造嘉鹏品牌。面对未来,上海嘉鹏始终坚持“践行科技**,造国产好仪器”的理念,不断超越,矢志不渝的为提升客户价值而努力,致力国产仪器更大的发展。嘉鹏品牌国内各地办事处一览办事处联系人联系方式负责区域地址上海总部王培培13501668369上海、江苏上海市真陈路1398弄14、15号楼温州工厂销售部黄孙勇13957706028浙江、福建浙江省温州市龙湾区永兴街道兴朝路27号西安办事处马丽13772157831陕西、甘肃、河南陕西省西安市长安区西长安街168号长乐小区北京办事处丁先锋19921192965北京、天津、河北、内蒙古北京市海淀区西三旗桥南通厦集团宿舍公寓 A5区303房间广州办事处李国健19921583293广东、广西、海南广州市越秀区先烈中路76号中侨大厦15BC武汉办事处高超13641625218湖北、湖南、江西武汉湖北武汉武昌粮道街粮道街得胜桥38高号重庆办事处李玲琳13764178383四川、重庆、贵阳重庆市南岸区海棠溪聚丰江山里5栋15-8青岛办事处周率斌15711680211山东、山西山东省青岛市城阳区瑞阳路都霖美景二期26号楼一单元1301沈阳办事处张蓓13524109013辽宁、吉林、黑龙江沈阳于洪造化汀江街10-1号华润橡树湾二期合肥办事处张锐15821306986安徽合肥市蜀山区望江西路西湖国际广场B座2211室哈尔滨代理商黑龙江驰胜18945647862高校,生物制药单位哈尔滨市南岗区保健路大众新城125栋1号门市海南代理商海南启源13198968585高校,生物制药单位海口市美兰区海甸街道福安路富苑小区4栋深圳代理商深圳市凌达13670072542高校,生物制药单位深圳市宝安区新安街道71区留仙二路三巷16号盛天龙**谷212室长沙代理商湖南百思特17308409886高校,生物制药单位长沙市岳麓区银盆岭街道杜鹃路99号天骄福邸综合楼2902房
    留言咨询

蛋白质结构分析仪相关的仪器

  • 仪器简介:作为全球最大的实验室过滤及超滤产品供应商,Millipore 可为您提供l. 0.5mL至1000L处理量的实验室除菌过滤装置,可用于血 清、组织培养基及其他溶液的除菌过滤。高通量,低吸附的除菌滤膜,使蛋白质损失最少。可选择即用式过滤器或可更换膜的过滤装置。2. 0.5mL至3000mL处理量的实验室超滤装置,用于蛋白质,核酸的分离、纯化、浓缩和脱盐,专利 的结构设计和新型的超滤膜,使超滤速度更快,产物回收率更高。单片超滤膜和膜包可清洗并反复使用。3. 高通量纯化系统,特别适合大规模样品纯化实验室的应用,可快速有效地同时处理多达96个样品,大大减轻了实验室的负担。主要产品包括:* Amicon 系列超滤离心装置: 浓缩,脱盐一部到位,* DNA Extraction Kit: 从琼脂糖凝胶中回收DNA,只需10分钟即可回收100bp-10,000kb DNA* Micropure -EZ:从DNA中去除常用的42种限制性内切酶,可与Amicon超滤离心装置连用,一步离心即可完成去酶,浓缩及脱盐。* Immobilon 系列转印膜: Ny+ 用于Southern和Northern Blotting PVDF 用于Western Blotting* ZipTip 微量固相萃取吸嘴:只需数秒即可纯化fmol至pmol的蛋白质样品,提高质谱分析的灵敏度* Montage Plasmid kit:用于质粒DNA纯化2 Montage BAC kit:用于BAC DNA纯化2 Montage SEQ kit:用于测序反应后PCR纯化* Montage In-Gel Digest Kit: 同时处理96个1-D或2-D胶中的蛋白质样品* Millex GP33: 超大面积,超高流速的针头式除菌过滤器。技术参数:1.96孔PCR 纯化板---纯化96个样品只需10分钟2.无须离心,只需真空抽干3.不需要使用任何有机试剂及任何盐溶液,也无须洗涤步骤4.纯化后的PCR样品回收率90%(500bp以上)5.纯化后的DNA纯度极佳--Primer的去除率98%主要特点:1.Albumin Deplete Kit--有效去除人血清中65%以上的白蛋2.预装好亲和层析小柱,只需15分钟离心,洗脱操作3.非特异性蛋白吸附极低4.提高低峰度蛋白质在电泳,层析及质谱分析中的解析度5.此Kit同样可适合于其他多种哺乳动物
    留言咨询
  • 最新款 Qubit Flex 八通道核酸/蛋白定量荧光计 已上市!Qubit 4 荧光计采用专门研制的荧光检测技术和Invitrogen™ Molecular Probes™ 染料。这些染料荧光只有与特异性的靶分子结合时,才能发射荧光信号,即使有游离核苷酸或降解核酸存在,这些染料仍能发挥作用。Qubit 4 荧光定量即便在低浓度下亦具有目前最高的DNA 和RNA 定量特异性和灵敏度。? 选择性 — Qubit 荧光定量采用Qubit 分析试剂盒,其包括专利的染料,只有与DNA、RNA或蛋白质结合时方可发出荧光。由于Qubit 技术只报告靶分子( 而不是杂质) 的浓度,因此这种特异性可以使您获得十分精确的结果? 灵敏性 — 最低仅需1 uL 样品,能精确可靠地定量浓度仅为10pg/L 的DNA 和12.5μg/mL 的蛋白质样本? 简单直观 — 反应灵敏的5.7 英寸彩色触摸屏,直观的导航按钮? 迅速 — 全新的双核处理器,5 秒内快速计算样品浓度,最多存储1000 个结果? 个性化 — 个性化设置常规应用,可通过MyQubit 软件和网络工具创建个性化assay,六国操作语言可供选择上市12 年来,Qubit 荧光计一直以其极高的准确度和灵敏性,受到全球上万个实验室的青睐。迄今为止,已经有17,500 篇有关Qubit 的文献引述。最新推出的Qubit 4 荧光计秉承上一代仪器的高准确性,不仅仅可精确测量样品DNA,RNA 和蛋白质含量,还拥有全新的功能,包括:? 适用全新RNA IQ assay — 快速可靠地检测RNA 完整性和质量? 数据导出 — 除U 盘和USB 连接电脑导出数据,还拥有WiFi 功能? 内置试剂计算器 — 快速计算配置工作溶液所需的染料和缓冲液Qubit 操作简单直观ubit RNA IQ Assay快速、准确地检测RNA 完整性和质量RNA 样品的质量评估对于下游的实验的成功尤为重要。全新上市的InvitrogenTM Qubit RNA IQ(Integrity & Quality )试剂盒和Qubit 4 荧光计配套使用,只需两步就可以准确区分完整和降解RNA,快速评估RNA 质量或降解程度。无需特殊的处理步骤,繁杂的样本制备或漫长的等待过程——最少仅需1 uL,浓度为0.5-1.5 ug/uL 的待测样品,即可在4 秒内获得RNA IQ 结果。Qubit RNA IQ 试剂盒采用两种独特的荧光染料——一种与大RNA,完整和/ 或结构RNA 结合,另一种选择性地结合较小、降解的RNA(图5),两种染料结合使用,可快速地评估RNA样品的完整性和质量。使用时,您只需将样本加入RNA IQ 工作液,然后在Qubit 4 荧光计上完成检测。检测结果会提供RNA 样品完整性和质量的总数值或RNA IQ#,以及样本中大小RNA 的百分比值(图6)。与其他RNA 质量分数类似,RNAIQ# 评分范围为1 到10,数值越大,说明RNA 的质量越高,完整性越好。 与电泳法相比,RNA IQ 检测法有何优势?Qubit RNA IQ 为检测RNA 样本是否降解提供一种快速简单的方法。与基于微流体芯片法比较,RNA IQ 法需要的设备便宜,操作简单,更重要的是检测所需的时间大大缩短。通常来说,完成12 个样品的检测,RNA IQ 法约需要10 分钟,而使用微流体法,约需要75 分钟。如果您只是需要简单评估RNA 样品是否降解,可以使用RNA IQ 法快速完成检测,但如果您需要获取具体的RNA 片段大小及分布信息,我们依然推荐您使用基于凝胶或微流体的电泳方法。RNA IQ 检测结果反映样本中大RNA 和/ 或结构RNA 和小RNA的百分比,其数值与电泳法结果正相关(图7)。然而,需要注意的是IQ# 值反映的是样本中大小RNA 的比值,由于计算原理不同,IQ# 值与其他质量评估方法得到的结果之间存在一些差异(图8)。对特定样本或下游应用,我们推荐您最开始同时使用RNA IQ 试剂盒和传统电泳法来确定测量值的相关性。官方渠道购买 — 品质保证,售后无忧从现在起,通过赛默飞世尔科技官方渠道购买全新Qubit 4 荧光计,即享三年免费退换。
    留言咨询
  • EA3017蛋白质分析仪简介EA3017可用于测定各种物质中蛋白质含量,例如:食物,动物饲料,大米,油料种子、谷类食品、谷类,大豆、玉米、鱼肉、果汁等。 EA3017蛋白质分析仪优点:■ 完全燃烧产生的混合气体经吸附阱消除CO2和H2O,通过高灵敏的TCD检测器检测N2含量,整个分析过程不到90s;■ 60位零空白自动进样器,适合固体、粘性、液体样品;■ 进样、样品处理过程平稳,进样过程可通过电子倒计时同步进行,操作者可以通过宽视镜清楚观察到当样品在较高温度达到燃烧级别时TurboFlash燃烧的光亮;■ 专利吹扫系统能够瞬时消除空气污染,即使在自动运行时,也可以添加样品,确保出色的精确性;■ 符合AOAC标准推荐的燃烧方法,保证分析结果准确。 EA3017蛋白质分析仪技术应用:EA3017蛋白质分析仪采用独特的 Turbo Flash 动态燃烧技术,不仅可设置合适的氧气体积,还可对注入速率进行优化,使得氧气的供给燃烧在可控、独立、程序化的定量条件下完成,确保样品的彻底氧化燃烧,使其分析能力得到突破性提高。结合成熟的色谱分离技术,及高灵敏度热导检测器,实现对氮元素的精确分析测量,可用于测定各种物质中蛋白质含量,例如:食品、饲料、谷物、种子等。除了能够测定蛋白质中氮的含量,同时可在短时间内升级为(CHN)(O) 或 (CNS) 的检测仪器,该特性可使仪器对生物质、食物、树叶、根等样品进行分析。生物燃料样品的分析可使用 (CHN)(O) 模式,其他应用:如 土壤、植物组织、肥料、种子、食物和废弃物的分析使用 (CNS) 模式。EA3017蛋白质分析仪满足标准:GB 5009.5-2010 食品安全国家标准 食品中蛋白质的测定GB/T 24318-2009 杜马斯燃烧法测定饲料原料中总氮含量及粗蛋白质的计算GB/T 31578-2015 粮油检验 粮食及制品中粗蛋白测定 杜马斯燃烧法
    留言咨询

蛋白质结构分析仪相关的资讯

  • 蛋白质结构分析新技术创测定速度纪录
    《自然-方法学》:蛋白质结构分析新技术创测定速度纪录  过去需几年时间完成的工作现在仅用几天即可完成  据美国物理学家组织网7月20日报道,隶属于美国能源部的劳伦斯伯克利国家实验室的科学家开发出一种利用小角度X射线散射技术测定蛋白质结构的新方法,大大提高了蛋白质结构研究分析的效率,使过去需要几年时间完成的工作仅需要几天即可完成,这将极大地促进结构基因组学的研究进程。  结构基因组学是一门研究生物中所有蛋白质结构的科学。通过对蛋白质结构的分析,可大致了解蛋白质的功能。结构基因组学重视快速、大量的蛋白质结构测定,而快速结构测定技术正是该学科研究面临的一个瓶颈问题。目前通常使用的两种测定技术,X射线晶体衍射和核磁共振质谱技术,虽然精确,但速度很慢,测定一个基因的蛋白质结构,动辄就需要几年的时间。随着新发现的蛋白质及蛋白质复合物越来越多,目前的分析速度远远不能满足研究的需要。  为解决这个瓶颈问题,劳伦斯伯克利国家实验室的科学家们借助了该实验室的先进光源(ALS)。他们运用一种称为小角度X射线散射(SAXS)的技术,对处于自然状态下(如在溶液之中)的蛋白质进行成像,其分辨率大约为10埃米(1埃米等于1/10纳米),足够用来测定蛋白质的三维结构。ASL产生的强光可以使实验所需材料减至最少,这使得该技术可以用于几乎所有生物分子的研究。  为了最大限度提高测定速度,研究小组安装了一个自动装置,可自动使用移液器吸取蛋白质样品到指定位置,以便利用X射线散射进行分析研究。他们还使用美国能源部国家能源研究科学计算机中心(NERSC)的超级计算资源进行数据分析。利用这一系统,研究小组取得了惊人的研究效率,在1个月内分析测定了火球菌的40组蛋白质结构。如果使用X射线晶体衍射技术,这可能需要花几年时间。同时,他们所获取的信息十分全面,涵盖了溶液中大部分蛋白质样本的结构信息。相比于在结构基因组学启动计划中使用核磁共振和晶体衍射技术仅能获取15%的信息量来说,这是十分巨大的进步。  高通量蛋白质结构分析有助于加快生物燃料的研究步伐,帮助解读极端微生物在恶劣环境中的繁荣之谜,更好地理解蛋白质的功能。研究小组之所以首先选择火球菌进行实验分析,就是因为它可用来生产清洁能源——氢。同时,在许多工业流程中都会出现高酸高热的环境状态,而这正是火球菌喜欢的生存环境。  但这种技术也有不足之处,追求速度会造成一种失衡,使成像质量相应打了折扣。与X射线晶体衍射成像的超高分辨率相比,小角度X射线散射成像的分辨率比较低,大约是10埃米。但这并不妨碍该技术的应用前景,因为并不是所有的研究都需要超高精度成像。对于结构基因组学研究来说,有时只要知道一种蛋白质与另一种蛋白质具有相似的结构,就可以了解其功能。而且,小角度X射线散射技术能够提供溶液中蛋白质形状、结构及构造变化等方面的精确信息,足以弥补其在成像精度方面的不足。  该研究成果刊登在7月20日《自然—方法学》杂志网络版上,美国斯克利普斯研究所和乔治亚州大学的科学家亦参与了该项研究。
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙沃特世科技(上海)有限公司实验中心氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。参考文献(1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875(2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61(3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554(4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933.(5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27(6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217(7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22.(8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506(9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167(10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speedand high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820(11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414(12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40(13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52.(14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132(15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem.2011, 3, 172-177(16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 蛋白质结构解析六十年
    几种不同折叠模式的蛋白质模型(图片来源Protein Data Bank Japan )  上个世纪初,科学家们认为蛋白质是生命体的遗传物质,而具有独特的作用。随着这个理论被证伪,真正的遗传物质DNA的结构被给予了很大关注。然而,蛋白质作为生命体的重要大分子,其重要性也从未被忽视,而且在1950年代开始,科学家一直在探寻DNA序列和蛋白质序列的相关性。与此同时,蛋白质测序和结构解析蛋白质结构的努力开始慢慢获得回报。更多的生化研究揭示了蛋白质的功能重要性,因此蛋白质的三维结构的解析对于深入理解蛋白质功能和生理现象起着决定性作用。  本文简要回顾了蛋白质结构解析的重大历史事件,并总结了蛋白质结构解析的常用方法和结构分析方向。通过了解蛋白质结构,能够让我们更好地理解生物体的蛋白的理化特性,以及其相关联的化学反应途径及其机制,对于我们认识生物世界和研发治疗方法和药物都起着关键作用。在即将召开的2015高分辨率成像与生物医学应用研讨会上,各位专家学者将会进一步讨论相关议题。  蛋白质结构解析六十年来大事件  在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。  然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy ),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P. Schoenborn 提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。  进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年) 开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析 同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。  在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。  下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。  进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。  蛋白质结构解析的常用实验方法  1.X-ray衍射晶体学成像  X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。  后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。  X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。  上海同步辐射加速器外景(图片来源 上海同步辐射光源网站)  2.NMR核磁共振成像  核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi (1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。  RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。  使用NMR解析的血红蛋白结构建模(图片来源RCSB PDB)  3.Cryo-EM超低温电子显微镜成像  电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。  Cyro-EM解析TRPV1离子通道蛋白(图片来源Structure of the TRPV1 ion channel )  将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。  近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。  除去介绍的这三种方法以外,计算机建模技术也越来越多地被用在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。  蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。 第一届电镜网络会议部分视频回放

蛋白质结构分析仪相关的方案

蛋白质结构分析仪相关的资料

蛋白质结构分析仪相关的试剂

蛋白质结构分析仪相关的论坛

  • 牛奶蛋白质分析仪可以用于检测乳蛋白制品嘛

    牛奶蛋白质分析仪可以用于检测乳蛋白制品。以下是详细解释和相关信息:  功能与应用:牛奶蛋白质分析仪是一种专门用于分析牛奶及其制品中蛋白质含量的仪器。它基于先进的生化分析技术,如比色法、光谱法或电化学法等,能够准确、快速地检测样品中的蛋白质含量。  乳蛋白制品的检测:乳蛋白制品,如奶粉、酸奶、奶酪等,其蛋白质含量是产品质量和营养价值的重要指标。牛奶蛋白质分析仪可以有效地检测这些乳蛋白制品中的蛋白质含量,为生产厂家提供准确的质量控制手段。  优点与特点:  准确性高:牛奶蛋白质分析仪具有高灵敏度和高准确性,能够确保测量结果的可靠性。  快速便捷:该仪器操作简单,使用方便,可以快速得出测量结果,提高检测效率。  适用范围广:除了牛奶及其制品外,还可以用于其他含蛋白质样品的检测,如豆类制品、肉制品等。  在乳品工业中的重要性:随着乳品市场的不断扩大和消费者对乳制品质量要求的提高,牛奶蛋白质分析仪在乳品工业中的重要性日益凸显。它可以帮助乳品企业提高产品质量、降低生产成本,同时为消费者提供更加安全、健康的乳制品。  综上所述,牛奶蛋白质分析仪是一种功能强大、应用广泛的检测仪器,完全可以用于检测乳蛋白制品中的蛋白质含量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405271615421543_8284_6238082_3.jpg!w690x690.jpg[/img]

  • 氨基酸分析仪和蛋白质测序仪的区别以及价格

    大家好,氨基酸分析仪与蛋白质测序仪有主要区别在什么地方呢?目前实验室需要进行氨基酸的测序分析,究竟买一台蛋白质测序仪好呢,还是氨基酸分析仪好呢?价格大概有多少呢?这些仪器有没有国产的呢 QQ:2392795357

蛋白质结构分析仪相关的耗材

  • 蛋白质分析柱
    Protein Analysis Columns 蛋白质分析柱部件号产品名称 材质内径长度PRO-99-4650ProteinSep C18 NP2 SS4.6mm50mm
  • 力可 502-338 CHN 蛋白质分析 其他元素分析仪配件
    无氮胶囊 Nitrogen free Gel capsules产品名称参照货号规格装样量包装小胶囊502-3387mm50-250mg400个/瓶中胶囊502-3828mm50-500mg400个/瓶大胶囊502-81010mm50-1000mg400个/瓶产品简介: 无氮胶囊用于氮、蛋白质测定, 装食品、油籽、饲料、牧草等样品提供进口产品
  • 安捷伦蛋白质 80 试剂
    使用 2100 生物分析仪系统进行蛋白质电泳是快速、自动进行蛋白质和肽谱表征、质量控制和杂质检测的一种客观、灵活的解决方案。Agilent Protein 80 和 Protein 230 分析可提供与考马斯亮蓝染色法相当的灵敏度。该系统无需 SDS-PAGE 平板凝胶处理、染色或成像步骤,使工作流程更加高效。使用生物分析仪系统评估的样品类型包括蛋白质裂解物、纯化蛋白质和多肽、还原态和非还原态抗体以及蛋白质的稳定性检测。可根据分子量测定范围灵活选择合适的试剂盒。样品消耗量极少,仅需 4 µL 样品即可完成准确分析。可在约 30 分钟内自动分析 10 个样品,快速得到分析结果。可在一次分析中进行完整的数据分析,提供分子量、定量和纯度信息。可在整个宽线性动态范围内提供与考马斯亮蓝染色法相当的灵敏度。可利用安全包满足 GMP 和 GLP 要求,安全包是一款可选的附带软件,满足 21 CFR Part 11 法规认证的要求。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制