竞速赛马分析系统

仪器信息网竞速赛马分析系统专题为您提供2024年最新竞速赛马分析系统价格报价、厂家品牌的相关信息, 包括竞速赛马分析系统参数、型号等,不管是国产,还是进口品牌的竞速赛马分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合竞速赛马分析系统相关的耗材配件、试剂标物,还有竞速赛马分析系统相关的最新资讯、资料,以及竞速赛马分析系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

竞速赛马分析系统相关的厂商

  • 400-860-5168转2872
    江苏国创分析仪器有限公司(原泰州市国创分析器有限公司变更)座落于江苏省泰州市姜堰高新技术创业中心,公司集研发,生产,销售,服务为一体,主要从事石油化工分析仪器,煤质分析仪器,环保分析仪器的开发生产销售,主要产品有:紫外荧光硫、化学发光定氮、微库仑硫氯分析仪,硫氮分析仪,碳氢分析仪,原油盐含量,溴价溴指数,碱性氮,硫醇硫,油品酸值,COD等分析仪器,产品广泛应用于:石油化工,产品质量监督检验所,高等院校,研究院,煤化工,电力环保等领域。江苏国创分析仪器有限公司本着“求实,创新,诚信,高效”的企业精神,以“信守承诺,顾客至上,持续改进,不断创新”的质量方针,坚持“以人为本,科技领先”,凝聚了一批高素质的科技、管理人才,研制出十多项**产品:**证书:荧光测硫仪反应装置(证书号4186303),微库仑测硫仪(证书号4188694),进样器(证书号4188122),电解池(证书号4188509)等,取得ISO-90001质量体系认证资格。公司自创立十多年以来,历经创新分析仪器厂,姜堰市国创分析仪器有限公司,泰州市国创分析仪器有限公司,江苏国创分析器有限公司,见证了企业的发展壮大历程,产品遍布全国各地,并成功进入海外市场,以技术先进,服务优良,深受广大用户青睐!
    留言咨询
  • 南京腾森分析仪器有限公司以“绿色食品,健康生活”为企业的使命,本着“以人为本,服务至上”的经营理念,秉承“诚信、敬业、严谨、创新”的企业文化,专门从事食品安全快速检测系统的研发。公司设有专门的研发部门,由包括多名博士和硕士为核心的高科技人才队伍组成,以食品安全检测和分析仪器的开发研制为主业。公司坚持以客户需求为导向,以产品质量为根本,致力于新型分析仪器和方法的原始性创新。公司与南京大学、东南大学、中国科学院南京土壤研究所和江苏省农业科学院等科研单位有着广泛深入的合作。公司将着力改善我国分析仪器过度依赖进口的现状,团结创新,务实进取,为我国食品安全和人民生命健康保驾护航!
    留言咨询
  • 400-860-5168转1052
    北京新恒能分析仪器有限公司简介 北京新恒能分析仪器有限公司,主要代理进口分析仪器、在线监控设备等,多年以来为制药、电力、电子、自来水、环保、石化等领域的客户提供产品,同时提供仪器验证服务。 新恒能代理的一系列进口品牌仪器: 美国Sievers品牌总有机碳TOC分析仪、Eclipse内毒素、Soleil快速微生物负载分析仪美国安费诺Kaye温度验证系统进口不溶性微粒检查仪、液体颗粒检测系统美国PMS粒子计数器、浮游菌采样器、实时微生物检测以及集成在线系统 新恒能主导业务为制药行业,常态化的邀请国内外药厂清洁验证专家和GMP认证专家到国内交流培训,结合FDA、EUGMP、USP、ICH和WHO等法规规范和国内新版GMP要求,帮助国内用户采用TOC方法进行清洁验证。 新恒能深知技术、品质和能力,是企业发展的新能源,在服务于中国制药、电子、电力、环保、市政和科研领域的十多年里,新恒能人精益求精,专注于提供监测、分析和验证解决方案。 新恒能的技术服务团队,愿成为广大用户的服务合作伙伴,也将更加努力的继续并发扬下去! 通讯地址:北京市朝阳区西大望路63号院 阳光财富大厦903室 关注我们了解更多资讯北京新恒能分析仪器有限公司http://www.yaojian.com.cn赵经理:13701397969 服务热线:010- 59602519邮箱:winers@yaojian.com.cn
    留言咨询

竞速赛马分析系统相关的仪器

  • 产品概述谱育科技SUPEC 5500在线滴定分析系统,包括单因子光度滴定、单因子电位滴定、双因子滴定三种规格,具备自动取样、自动过滤、自动稀释、自动滴定分析、自动清洗排废等功能,能够进行pH、氧化还原、沉淀和络合滴定。可7天*24小时连续获取各工业制造过程中关键参数信息,适用于石化、化工、冶金、工业用水、食品、半导体、制药、造纸等众多行业的物质浓度分析。 性能优势全流程自动化系统实现自动采样、滴定分析、清洗排废、分析结果上传等全流程自动化,单次流程时间小于15min,实现了无人值守。精准分析采用1/20000高精度注射泵;配备高精度传感器,分析结果达ppm级;示值误差≤2%,RSD ≤1%。多样品流+多分析方法一套系统支持多达4个点位的样品采集,支持光度滴定、比色法、电位滴定、直接电位四种分析方法,实现不同流路和方法的平行分析。数据可靠灵活设置清洗次数可减少管路及滴定杯的交叉污染,无人为操作误差,可定期标定、校准、质控样验证。防腐腔体采用微正压密封腔体,不锈钢表面喷塑外壳,全PTFE管路设计,IP65防护应对工况现场恶劣的腐蚀环境。核心算法无接触式光度传感器采用模拟人眼识别算法,平衡时间控制算法,自动温补算法,动态滴定、等体积滴定、设定滴定。系统运维维护周期7天;滴定杯组件易拆装,更换方便。 应用领域石化:油品的酸值/碱值、原油中的盐、石油溴指数、原油产品中氯含量冶金:稀土酸值、稀土总量,金浸出工艺中的氰离子,冶锌工艺中的锌、硫酸和铁,氧化铝生产中的铝酸钠化工:氯碱行业的盐水硬、 聚合物生产过程中的羟值、 单晶硅制绒液中的NaOH、Na2SiO3工业用水:核电站冷却水中的硼酸、电厂循环水的安定指数、锅炉水中的二氧化硅、工业用水总硬度食品:蔗糖糖分分析、食品中的酸值、食品中的过氧化值、葡萄酒中的游离态二氧化硫、维生素C含量半导体:电镀槽中硫酸、铜离子等的浓度, 显影液中的TMAH,研磨液中的H2O2制药:药物的含量分析,药物活性物质的纯度分析,铬、Cl-、SO2-等杂质限量分析 产品选型
    留言咨询
  • 产品概述谱育科技面对日益增长的实验室自动化分析需求,推出了全新的SUPEC 6060/7070定制自动化分析系统,基于ICP-MS/ICP-OES分析平台该系统可对样品进行自动称量、消解定容、离子交换、自动进样分析,实现了样品前处理和进样分析的全流程自动化,减少了分析过程的人为参与,实现实验室分析的数字化和智能化。定制自动化分析系统可广泛应用于各行业实验室中对已知、未知元素进行定性和定量分析。性能优势全自动称重搭配高精度天平、实现自动扫码、自动开盖、关盖,精准的走位控制,自动开、关天平防风罩,模拟人手倾倒式称量方式,一键式启动,完成样品的称量和原始数据记录。全自动消解全自动石墨消解系统,自动加酸、自动加盖取盖、自动加热消解、自动冷却定容,整个过程完全自动化,摆脱了人工操作的繁琐过程,提高消解效率,节约人力资源。全自动离子交换支持定制化离子交换柱子,提供接口定制化服务,定容完成的样品,通过高精度注射泵提供动力,全自动完成活化、上样、淋洗、洗脱全部流程,自动收集目标溶液,并实现全自动定容。全自动分析基于ICP-MS/ICP-OES分析平台,设备萃取样品后,平台软件自动开启仪器、自动调用特定分析方法、自动建立标准曲线、并判断曲线是否合格,样品自动进样分析、分析结束后按照需求自动生存报表、输出结果。一体化系统控制系统所有模块在同一控制软件平台下实现自动连接,实现称重模块称量数据接入,消解模块消解方法参数的建立,离子交换模块参数设置,分析方法建立在同一软件平台中,实现一键启动。每个模块也可以通过软件平台独立控制,单独运行;控制系统可实现LIMS接入(定制化协议)并带有数据库存储功能。应用领域核工业 地质 土壤
    留言咨询
  • 秉承X荧光光谱仪20多年研发经验,天瑞元素录井分析仪EDX5500H再次推动了岩石中元素含量向具体化、快速化方向的发展。将X射线荧光分析(XRF)用于岩屑录井这项技术的独到之处在于:通过岩屑化学元素组合特征的分析来识别岩性,再通过岩性的组合特征分析来判断层位,因此适合于任何钻井条件下的岩屑录井。高效真空形成条件及高灵敏半导体探测器保障对岩心中的元素具有超低的检出限,为录井平台提供更有意义的具体数据特征;更宽的元素检出范围满足多种元素的同时检测需求;同时引入了目前先进的4096道数字多道技术,采用进口超薄铍窗有高激发效率的X射线管,使仪器计数率更高,稳定性更好,适用面更广;优化了光路结构、软硬件可靠性,真空腔体使之性能更好、更便携;独特的抗震性设计,高保护光路设计使得该仪器通过了第三方权威机构高低温、高低频电动振动及湿热等使用认证;在现场测试、在线检测以及各类地质勘察多元素检测中充分发挥作用。 主机标准配置:上照式光路系统直射模式 SDD探测器 数字多道处理器 美国进口高压进口牛津铍窗X射线管 智能测试软件 校正模块内置 封闭式定向散热系统高阻尼可动防震缓冲支脚 定制CCD高清摄像头整套设备包括: X荧光分析主机、电脑、打印机、粉碎机、压片机、真空泵 录井行业应用案例l 岩心成份普查:仅需简单前处理,微量多种元素成分尽在掌握。 l 现时分析能快速、现场追踪岩心数据,圈定油气边界。单个样品30多种元素测试仅需1~4分钟; l 现场分析 独特的减震、超小的真空腔、超稳固样品静态控制结构设计使仪器可以应对各种现场环境的检测任务; 仪器性能优势:仪器外形小巧,简洁大方,可用于车载和实验室,使用方法简单,测试效率高;测试时上照式光路设计加上真空测试腔有效杜绝现场环中粉尘对探测器的污染;准直器极大化设计使样品受激光斑达150mm2 保证测试信号的丰富性,提高测试精确度封闭式定向风冷散热保证X射线管工作温度稳定,延长X射线管寿命;分析样品速度快,快可达60S,并且可同时分析40种元素;高阻尼可动支脚防震设计加上超稳真空控样设计保证了每一个样品与光管、探测器几何关系时刻相一致,屏蔽现场震动所造成的影响;大面积厚晶体SDD探测器,配上Rh靶X光管以及良好的散热性,有力地确保测试高效稳定;X射线屏蔽设计和高分子材料及安全联动装置有效保证无辐射外漏,让测试人员安全放心使用;
    留言咨询

竞速赛马分析系统相关的资讯

  • 美女化学分析专家谈赛马兴奋剂检测的那些事儿
    当今在赛马这项竞技比赛中,用于提高马匹速度的各种兴奋剂层出不穷,针对市场上不断增多的新型药物的出现,化学分析专家们不得不争分夺秒地开发相应的新分析方法,以期达到打击各类禁用兴奋剂的目的。  最近,我们采访了一位该领域的专家,来自中国香港赛马会的Karen Y. Kwok博士。    Karen Y. Kwok毕业于香港城市大学环境分析化学专业,后就职于香港城市大学海洋污染国家重点实验室。2013年,她开始作为一名化学家在香港赛马会赛事化验所工作。此后,她全身心投入于赛马运动中的兴奋剂控制测试工作。Kwok博士目前是皇家化学学会(MRSC)的成员,至今已出版了两本书,并在国际杂志期刊上公开发表了10篇论文,多次作为报告人参加各种国际会议。  您受邀在瑞士日内瓦的HPLC 2015大会上做关于检测马鬃中雄激素合成类固醇的报告,请问为什么在赛马中使用雄激素合成类固醇是值得我们关注的问题呢?  雄激素合成类固醇(AASs)是一种可以用来增加肌肉力量、改善身体物理性能的物质。20世纪60年代以来,该类物质就常被作为兴奋剂在人类体育竞技运动和赛马运动中使用,其实该类物质属于违禁物质。自2014年开始,国际联合会发布的国际协议第6E条款明确规定,对于比赛用马,在其整个参赛生涯中,包括育种、竞赛和赌马,都禁止使用AASs。[1]  在您看来,分析比赛用马的禁用药物,主要的挑战是什么?  随着生物科学和医学的快速发展,越来越多的违禁物质被开发出来。不幸的是,针对新兴违禁药物,即使分析专家们能够以最快的速度开发出相应的检测方法,但相对于违禁药物在市场上的应用,不可避免地会存在时间滞后性。另外,赛马比赛中使用的违禁药物种类繁多,有些是用来增强马的运动机能的,而有些是削弱其机能的。而没有一种成熟的方法是可以检测出所有的违禁药物的 我们只能尽可能地充分利用现有的资源,以实现最广泛的药物检测的可能。  为什么您选择检测比赛用马的马鬃为样品,而不是它们的血液或尿液为首选样品?  作为药物测试的目标样品,尿液、血液和毛发各有各的优点。毫无疑问,毛发的主要优点是具有宽的检测窗口。毛发分析的一个典型特征是有可能通过分析不同段的毛发,确定其用药的时间。这样的信息对于确定给药的比赛用马来说,是非常有用的。此外,毛发样品不像尿液和血液样品,它很稳定,易于运输和贮存,并且很难掺假,具有非侵入性。当然话虽如此,很多药物是不适合采集毛发样品用来分析的,只能在尿液或血液中检测。因此对于兴奋剂的检测,尿液、血液和毛发样品它们存在互补关系。  您为什么要开发用于检测马鬃中48种AASs和(/或)其酯类的方法?  AASs通常是以它们的酯化形式使用,这样它们能够被存储在肌肉中,然后通过缓慢地释放以延长其作用期。对于一些内源性AASs如睾酮,在毛发中鉴别其酯化形式是其外源性的铁证。AASs类药物是赛马运动中任何时候都被禁止使用的药物,其药效的持续作用时间远长于尿液和血液样品的检测时间。因此,毛发就成为了用来追溯赛马中使用AASs的理想样品。  在使用超高效液相色谱-高分辨质谱(UHPLC-MS)技术测定马鬃中AASs之前,马鬃样品的制备方法有什么特别值得注意的因素吗?  与尿液和血液不同,毛发是一直暴露在外界环境中的。所以我们需要特别严格的去除污染物的过程,以避免错误的分析结果。其次,毛发中药物的含量通常是很低的(从10-2至10-9级),所以采用提取药物的方法需要足够高的提取率,这样才能满足UHPLC-MS的分析要求。另外,毛发是一种很复杂的基质,我们需要有效的净化方法,以降低MS分析时的基质效应。    这项工作中,您遇到的主要挑战是什么?您又是怎么克服的呢?相比其他方法,您采用UHPLC-MS的优势是什么?  主要的挑战是建立一种有效的提取方法来消除一些化学物质干扰,以保证后续UHPLC-MS分析的准确性。试验发现通过组合使用固相萃取(SPE)和液-液萃取技术,可以获得满意的样品净化结果。然后在选择性反应监测(SRM)模式下,我们采用具有高分辨能力的轨道阱(质量窗仅± 10 ppm)来进一步降低化学干扰。质量数测定的准确性通过在柱后添加质量参考物苄基二甲基苯胺来校准目标分析物可能存在的质量偏移来保证。  据我们所知,我们给出的关于马鬃中48种AASs和(/或)其酯类物质测定的方法是首次的。  该方法适合使用的领域有哪些呢?接下来您的研究内容是什么?  答:目前,我们的方法可用于检验AASs和(/或)其酯类化合物(含量从10-12到10-9级),方法灵敏度、准确度高。由于方法中添加的目标类固醇,方法可用于马鬃样品的筛选以及马鬃样品中AAS酯类物质的确认。实际上,随着我们研究工作的完成,采用我们建立的方法可用于更多的目标物的筛选。接下来的工作将是进一步验证我们所建立的方法,对于给药后的马鬃样品中AASs和(/或)其酯类物质代谢物测定的适用性。  马匹使用兴奋剂和人类使用兴奋剂之间有相似之处吗?分析方法可以通用吗?  比赛用马和人类运动员所使用的兴奋剂中所含的禁用物质可能是相似的,也可能是不同的。这不仅是由于药物在不同的群体上的作用机理不同(例如,人体运动是不受非甾体抗炎药控制的) 而且也由于对于不同的群体,一些药物产生的效果是不同的。此外,赛马中违禁药物不仅仅局限于机能增强药物(包括使狂躁的马平静下来的镇静剂),而且还包括削弱机能的药物。因此,相较之人类运动员的违禁药物,马的药物范围更广。  另外,马和人所采用分析方法也不是可以直接通用的。相较之人类,马的生物样品尤其是尿液,要复杂得多,测定之前样品需要更全面的净化过程。此外,马和人的药物代谢机理也是不同的。  如果一个年轻的化学分析师将开始该领域的研究,您会给一些什么建议呢?  首先兴奋剂检测是一个非常有意义并具有挑战性的领域。对于一个年轻的化学分析师,首先从思想上要认识到,无论是人类运动还是赛马比赛,诚信和公平都是基石,兴奋剂控制测试则是维护这一价值观的重要因素。由于检测结果是具有法律效力的,所以兴奋剂的控制测试需要按法医鉴定过程实施。除了挑战科学技术上的难题,年轻的科学家们也必须精通法医分析的各方面能力,如保证适当的物证保管链、作为专家证人在法庭上作证等。我们需要不断地向经验更丰富的化学家们学习和借鉴经验,以增强我们自己处理不同困难的能力。  此外,兴奋剂控制测试是相当苛刻的,新兴的违禁药物只会不断地增多 因此,我们需要不断掌握新的兴奋剂发展趋势和不同领域的科技进步。  最重要的一条建议就是,我们要赋予我们这份工作最高的热情,面对挑战时永不放弃。在兴奋剂控制测试领域工作,我相信年轻人们会获得巨大的成就感。  参考文献:  [1] http://www.horseracingintfed.com/resources/2015Agreement.pdf  [2] K.Y. Kwok, T.L.S. Choi, W.H. Kwok, and T.S.M. Wan, “Detection of Anabolic Steroids and/or Their Esters in Horse Hair Using Ultra High Performance Liquid Chromatography-High Resolution Mass Spectrometry,” poster presented at HPLC 2015, Geneva, Switzerland, 21–25 June 2015.  作者:Karen Y.Kwok  原文出处:《The Column》第12卷第6期2-5页  译自:chromatographyonline
  • CRO千亿市场横向整合,“联姻”仪器制造商赛道竞速?
    CRO(Contract Research Organization)即合同研究组织,是专业的医药研发外包组织机构,也是新药研发中重要的一环。不论是创新药还是仿制药,其研发过程都可以大致分为临床前和临床研究,相对应的CRO业务也分为临床前CRO和临床CRO。其中,临床前CRO主要包括新药发现、先导化合物和活性药物中间体的合成及工业研发、制剂研究、安全性评价研究服务、药代动力学等,临床CRO包括临床I-IV期技术服务、生物等效性研究、实验室测试研究、数据管理、统计分析等。广义上的CRO还包括CMO、CDMO(统称CXO),它在创新药研发中发挥了重要作用,有效地降低了药企的研发成本和风险。CRO行业发展迅猛随着药企纷纷向创新化转型,我国逐渐进入制药2.0时代,CRO公司大幅受益于被创新药驱动的医药行业发展,受到资本市场的热捧。据弗若斯特沙利文的数据显示,2021年全球CRO市场规模将达637亿美元,到2023年将增加至761亿美元,而CXO市场规模超千亿且还在不断扩容。全球CRO市场规模及增速(图片来源:Frost & Sullivan,万联证券研究所)2021年我国CRO市场规模将达108亿美元,其中临床CRO市场规模80亿美元,临床前CRO市场规模28亿美元,预期2023年市场规模将达179亿美元。近年来,我国CRO市场规模增长势头迅猛,上升幅度远高于全球市场增速。在国内诸多政策的影响下,我国生物制药的创新升级是必然趋势,新药研发领域的机会将不断涌现,从而带动CRO市场继续扩容。中国CRO市场规模及增速(图片来源:Frost & Sullivan,万联证券研究所)国际CRO并购整合成常态从CRO公司发展来看,单一业务的公司并不能满足制药企业的多样化需求,回顾国际CRO巨头的发展历程不难发现,并购是CRO公司开拓业务的重要手段和快速成长的关键,因此合适的领域布局,在纵向、横向整合一体化的过程中不断扩大公司产能和规模,注重全产业链的开发,开拓多元发展新局面已成为CRO行业发展的必然趋势。放眼全球,国际CRO巨头历经多重并购重组,不断在业务上开拓。2016年,IMS Health与Quintiles的跨界合并结合了临床CRO服务和医疗咨询的优势,诞生了当时全球最大的CRO公司IQVIA;2017年,INC Research 为优化业务布局与inVentiv Health合并为Syneos,成功跃居行业前三;2015到2017年,美国第三方独立实验室LabCorp连续并购Convance 、PAML 、Chiltern,成为了产业线最全的CRO公司,现居全球CRO行业第一。2021年2月,Icon以120亿美元收购PRA Health Science,一跃成为全球市场第三。国内CRO如何赛道竞速?相比国外,国内CRO市场呈现“小多散”的格局,需通过不断探索商业模式来谋求进一步发展。据统计,2020年我国CRO企业数量超500家,其中,国内临床前 CRO 主要从事化学合成、药理/毒理/药代,而从事动物模型、药物筛选的公司则相对较少。国内CRO企业和临床前CRO企业主要业务分布(图片来源:火石创造,国元证券研究中心)国内龙头企业如药明康德、康龙化成、泰格医药、昭衍新药已经开始选择并购来扩大自身业务范围,而其余的企业在激烈的市场竞争中份额分散,为了增加竞争力未来并购重组也将会成为必经之路。除此之外,CRO的合作模式也是行业发展的关键,不同于国际CRO服务于大型跨国药企建立紧密的合作关系,国内CRO面临的药企格局以初创企业为主,难以照搬国外企业的商业模式和合作策略,所以积极探索新的商业模式,实现利益绑定势在必行。相比国外成熟的CRO行业,国内CRO仍处于成长期。在全球CRO的黄金赛道上,国内CRO想要弯道超车需要重视人才培养、加大研发投入、树立行业口碑和积累自身技术。不论在哪个行业,人才都是企业发展的关键,而CRO更是以人为本的行业,很多业务并不需要重资产投入,公司的核心竞争力就在于对研究人员的组织能力上。其次,CRO的发展受新药研发的驱动,医药研发支出是CRO行业发展的基础,直接决定了市场规模和行业景气,所以加大研发投入是CRO发展的刚性需求。另外,CRO是一个全球化产业,除了一些受到监管必须在某地完成的临床试验外,剩下的业务都可以委托海外CRO完成再交付。由于国内CRO在基础设施和人力资源具有成本优势,很多海外CRO业务也随之向国内转移,这时候就是公司比拼技术和行业口碑的时候,自身实力强口碑好的公司会在海外订单转移中瓜分更多的市场份额。CRO“联姻”仪器制造商降本增效前文提到,加大研发投入是CRO发展的刚性需求。据Frost & Sullivan 统计,自2014年起全球医药行业研发投入持续增长,预计到2023年全球研发投入将超2000亿美元,复合年增长率约5%,其中中国研发投入将达500亿美元,并有望继续保持高速发展的良好态势。而不断增长的研发投入在扩大CRO市场规模的同时,还加剧了CRO业务范围扩张成本的增高,而更大需求量的仪器采购和实验室建设是导致成本增高的直接原因之一。中美医药行业研发投入情况(图片来源:Frost & Sullivan,国元证券研究中心)为了解决这一问题,CRO公司开始与仪器制造商“联姻”,希望可以增强上下游版块间的协同作用和企业竞争力,从源头实现降本增效,海外CRO公司PPD与赛默飞的强强结合就是如此。赛默飞从2017年就开始布局CRO行业, 2021年4月,赛默飞继续对制药和生物技术终端市场加码,以174亿美元收购CRO公司PPD,跻身全球CRO行业Top5,导致CRO行业格局重新洗牌。这次收购,赛默飞一方面将完整的产品线和分析技术优势延续到CRO服务,另一方面可以充分发挥其在仪器、耗材、试剂方面的专业和成本优势,增加PPD在CRO的竞争力,在瓜分新药研发市场的同时真正达到降本增效。国内CRO公司也同样走上了与仪器厂商“联姻”的道路,目前药明康德正在全资收购国产色谱公司大连依利特,以期通过横向兼并拓展业务范围,实现市场份额的扩大。高效液相色谱具有快速、简便、高选择性、高灵敏度等特点,是新药研发的有力工具,在CRO公司的仪器采购中占据一定的比例,但其高昂的价格让CRO服务的检测成本增高。药明康德这次收购,不仅在产业规划中为公司增加了一条仪器生产线达到自给自足的目的,同时还使公司在CRO的竞争力进一步增强。
  • 一招直接检测赛马毛发中的违禁药物——成像质谱显微镜技术应用大解析
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/1b29067b-1fd8-40e4-ad30-65ef06707ece.jpg" title="微信截图_20200619185620.png" alt="微信截图_20200619185620.png"//pp style="text-align: center "由 Equine Racing Co. Co.,Ltd. 的首席执行官 Masaru Sese 先生提供/pp style="text-align: justify line-height: 1.75em text-indent: 2em "1.简介/pp style="text-align: justify line-height: 1.75em text-indent: 2em "在法医学领域,除尿液作为药物测试样品外,毛发样品也在不断引起研究者注意。由于通常药物作为尿代谢产物接收检测时,如果没能在药物清除前采集到尿液样品,就无法检测出来。而毛发中的药物则不会代谢掉,并且停留时间很长。换言之,尿液中的药物可能会在最后一次摄入后几天内,由于代谢和排泄的关系排除体外,而毛发样品的特点在于只要不修剪,即可长期保留摄入历史。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  目前,已将气相色谱质谱(GC-MS)和液相色谱质谱(LC-MS)等常规手段作为检测毛发样品的新方法,投入实际使用。采集的毛发经洗涤、干燥后,切割为约 5mm 至 1cm 长度,经提取、纯化后,进行分析。人类毛发平均每月增长 1cm,如果可以确定所测毛发的位置,即可确定“何时使用过药物”、“使用过何种药物”以及“用量多少”。请关注 Ono、Mizuno 等人的文献,该文献作为法医学领域的毛发分析提供参考,包括上述样品预处理方法sup(1) - (3)/sup。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  当前此类毛发分析方法不仅在人来源样品,同时在赛马药物检测领域引起了极大关注sup(4)(5)/sup。迄今报告用于马毛分析的测试样品均来自马鬃毛(以下简称“马毛”)。但是,马毛通常较长,需要充分洗涤和干燥来去除样品表面的污染物。另外,由于切割后所得样品数量很多,前处理过程也会十分麻烦。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  鉴于此,目前除 GC-MS 或 LC-MS 方法以外,已有报道使用质谱成像(MSI)技术进行毛发分析的新方法。利用 MSI,经预处理的毛发样品可被直接分析。近年来,Kamata 等发表使用 MSI 检测人类毛发中药物摄入史的开创性论文sup(6) (7)/sup。使用 MSI 检测毛发中的药物摄入史,则必须沿纵向去除毛发角质层,露出髓质。该过程十分困难, 因此如参考文献 6 所述,尽管制造专用装置进行该步骤,依然无法去除长度超过约 1-2cm 的角质层。与人的毛发不同,马的鬃毛很长,从而导致这一过程变得更加麻烦,因此目前尚未有在马毛中进行检测药物摄入的报道。本文将介绍使用MSI 技术检测马毛中甾体抗炎药磷酸地塞米松的应用实例,该马毛样品长 4cm,经手动方式去除角质层。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  2. 质谱成像/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  在质谱分析时,分子被离子化,根据其在电场和磁场中的位移差来测量其质量(实际为 m/z 值,将质量除以离子所带电荷数)。如前所述,MSI 与使用现有 GC-MS 和LC-MS 方法的不同之处在于,无需进行提取,可直接分析样品表面,获得待测药物空间分布信息。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  通常的实验步骤包括准备样品切片,并将其放置在ITO 导电玻璃上。随后样品被电离并进行质谱分析。在分析时,确定样品检测区域和测量点间的间隔, 获取每个测量点的质谱图及对应位置信息。获取所有测量点质谱图后,选择与目标分子对应的m/z, 并根据其强度分布获得目标分子的定位信息。与常规成像技术不同,IMS 不需要进行免疫化学染色或span style="text-indent: 0em "GFP 标记等。由于直接获得分子量信息,可区分目标化合物的原型及其代谢物 由于能够同时电离多种化合物并进行质谱检测,可在一次分析中获得多种不同物质的定位信息。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  3. iMScope iTRIO/i 的开发理念/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  目前,可以在多种质谱仪上进行 MSI 实验,可选择的离子源以及质谱种类也是各种各样。自 2004 年以来,作者与岛津株式会社(8)合作开发iMScope TRIO™ 成像质谱显微镜,目前正在大阪大学岛津分析创新研究实验室(9)进行各种相关应用研究。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  iMScope TRIO 的开发理念如图 1 所示。尽管普通显微镜可以观察组织结构,但很难获取相关各种组分的信息。另一方面,iMScope TRIO 将对样品的显微观察和基质辅助激光解吸电离(MALDI)技术相结合从而进行成像质谱分析。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/2029d9c6-f5b4-43f7-b811-16f72c0baad9.jpg" title="1.png" alt="1.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 1 iMScope iTRIO/i™ 成像质谱显微镜的理念/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  使用常规显微镜,可区分样品结构上的差异,但是难以获取相关化学成分的信息。相比之下,iMScope iTRIO/i™ 可同时进行光学显微观察和质谱检测,获得对应组分的强度分析信息。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/a181f299-6dcb-4cff-a093-46608a9dd1f2.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 2 本研究中使用的分析设备/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A) iMLayer™ :基质升华仪,(B)iMScope iTRIO/i ™ :成像质谱检测,以及(C)iMScope iTRIO/i ™ 系统的示意图。该系统在大气压下进行样品的显微镜观察,并使用 MALDI 电离方式,生成的离子引入离子阱并由飞行时间质谱仪进行检测。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  4. 实验方法/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本研究使用 iMLayer™ 基质升华仪进行 MALDI 基质涂敷(图 2(A))。所用基质为 α-氰基-4-羟基肉桂酸(α-CHCA,Merck)和 9-氨基吖啶(9-AA, 东京化学工业有限公司),分别用于正离子模式分析和负离子模式分析,通过 iMLayer 涂敷在样品表面上厚度为 0.5 μm。正离子模式分析中,基质升华后,使用喷枪手动喷涂 α-CHCA 溶液(10 mg/ml, 使用 30%乙腈/0.1%甲酸溶液)sup(10)/sup。负离子模式分析中,9-AA 升华后,将 5%的甲醇蒸气喷覆于样品表面 3 秒钟,进行重结晶sup(11)/sup。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  使用iMScopei TRIO/i 进行检测(图 2(B),(C))。如上所述,iMScope TRIO 配有光学显微镜,可在大气压下获得样品表面图像,同时配置大气压MALDI 离子源。MALDI 所用激光器为 Nd:YAG 激光器,频率为 1 kHz。在大气压下产生的离子通过差级真空系统导入质量分析单元,并由离子阱飞行时间质谱仪检测。质量范围(m/z)在 50-3000 之间,本次目标药物磷酸地塞米松为小分子药物,质量范围设定至m/z1000。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  图 3(A)显示该样品的的分析流程。基本过程:span style="text-indent: 0em "采集马毛、去除角质层、涂覆基质、使用 iMScope /spani style="text-indent: 0em "TRIO/ispan style="text-indent: 0em " 检测成像。用浸有蒸馏水的布擦拭所采集每一束马毛的表面。该方式仅针对 MSI 可行,因为MSI 无需提取即可直观分析样品。相反,在已有方法中,如清洗不充分,在提取过程中会发生污染问题。清洁马毛表面后,立即干燥马毛。将干燥后的马毛固定于黏贴导电双面胶带的 ITO 载玻片(Matsunami Glass Ind.,Ltd.)上,并使用切片刀在立体显微镜下从毛囊末端开始去除角质层,如图3(B)所示。由于马毛的直径约为人类毛发直径的两倍(约 200μm),因此即使通过手动操作,也可轻松去除表面。除去角质层后,将剩余附着于 ITO 玻璃载玻片上的毛发作为待测样品,涂覆基质并进行检测。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本研究所使用药物为地塞米松磷酸钠(DexaSP),为一类甾体类抗炎药。DexaSP 可使用 9-AA 基质直接以负离子模式进行检测。或者,通过用吉拉德T 试剂(GirT)对DexaSP 进行衍生化,提高正离子模式的离子化效率(图 4)sup(12)/sup。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/6d74094f-3a75-4167-8954-e714ae6c80a0.jpg" title="3.png" alt="3.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 3(A)分析流程和(B)马毛表皮去除方法/pp style="text-indent: 0em line-height: 1.75em text-align: center "在立体显微镜下使用冷冻切片机刀片去除角质层,暴露出髓质/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/60fdbd8b-a130-43a6-87b2-c4fd636464d0.jpg" title="4.png" alt="4.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 4 地塞米松磷酸钠(DexaSP)是靶向药物/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  如进行正离子模式检测,将以 Gir T 试剂作为衍生试剂生成的 DexaSP 衍生物作为检测目标。对于负离子模式检测,将无变化的 DexaSP 作为检测目标。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  5. 结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  图5 显示使用标准品在正离子模式和负离子模式获得的检测结果。span style="text-indent: 0em "如前所述,在正离子模式检测中,将 GirT 衍生后的 DexaSP 衍生物作为检测目标,而在负离子模式检测中,将无变化 DexaSP 作为检测目标。正离子模式下, 使用α-CHCA 检测,DexaSP 衍生物的质荷比为 m/z 586.267,对应[GirT-DexaSP-2Na + 2H] +离子。另一方面,负离子模式中,使用 9-AA 检测, [DexaSP-H]- 的质荷比为 471.160。两种模式下均观察到 DexaSP 由来的峰,但鉴于前处理所需时间且负离子模式强度约高出正离子模 式 100 倍,决定使用 9-AA 在负离子模式下对马毛进行检测。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  分析可疑马毛样本时,需进行对照实验,检测未给予 DexaSP 的马毛样品,确认没有 m/z 471.160 离子的出现(图 6(A))。图 6(B)显示地塞米松磷酸酯给药后马毛的质谱成像结果。该测试样品于 2017 年 7 月 13 日采集的马毛,该马匹在 2017 年 6 月上旬,连续 3 天注射 15 至 20 mL 0.1%的地塞米松磷酸钠水溶液(Fujita Pharmaceutical Co)。iMScope TRIO 的测量间隔在 x 方向上为 80 μm,在y 方向上为 5 μm,激光斑点大小为 2(系统参数)。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  在该实验中,测量总长为 4cm 的马毛,将其划分为1cm 的区间分别进行检测。在图 6(B)中,所得数据虽然分为 4 个部分,但马毛样本并未被分割: 4cm 长的马毛被固定在 ITO 载玻片上。从毛囊向尖端进行扫描,并在距毛囊约 16.48 mm 处,检测到较高强度地塞米松磷酸酯信号。该结果是首次从毛发中直接检测到原本会于体内迅速代 谢的磷酸酯,具有重要意义。此处质谱成像结果使用绝对强度来表示峰强度,并在 300-1500 强度范围内以多色带显示。在这一结果中暖色表示较高的峰强度。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/d2a0f5a7-7467-4895-8488-c1387c81251f.jpg" title="5.png" alt="5.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 5 标准品的检测结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  正离子模式和负离子模式均可获得信号,但考虑前处理的简便性和离子强度的差异,选择负离子模式进行检测。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f4d9af67-3298-4f85-9e23-22c90acd07f8.jpg" title="6.png" alt="6.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 6 马毛中 DexaSP 分布检测结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)是未给药马匹的马毛检测结果,作为阴性对照 (B)给药后马匹的马毛中检测结果(注射 15-20 mL 由 Fujita Pharmaceutical Co.提供的 0.1%地塞米松磷酸钠水溶液,浓度 1.315 mg/mL, 连续注射 3 天。)用 iMScope TRIO™ 扫描从毛囊开始 4 cm 长度的马毛样本。记录每 1 cm 马毛的检测结果。在距毛囊 16.48 mm 处观察到目标药物最大强度。由于马毛平均每月以 2.0 cm 的速度生长,可判断在采样日期前 25 天给药。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  6. 讨论/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本实验中,根据目标化合物离子化效果选择负离子模式进行分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊 16.48 mm 位置处观察到药物的强大信号。马毛的平均生长速度为每月2cm,是人类的两倍。 基于该生长速率以及最大强度信号距离毛囊的位置估算给药时间,大约在24-25 天前。根据给药记录,该药物在采集毛发前约一个月给药,通过对比该信息,认为药物定位正确。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  另一方面,尽管离子强度较低,但是在毛囊附近依然检测到一些信号。经确认质谱图,发现该信号源自噪声,由此认为进一步提高离子化效率和信噪比对分析实际样品十分重要。为达到这一目标,可能需要进一步改进基质涂覆方法或选择其他基质。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  7. 总结与展望/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  地塞米松磷酸钠是一种经获准使用的抗炎药,但禁止在比赛前使用sup(13)/sup。最近一次在 2016 年 12 月东京大奖赛上,冠军赛马阿波罗肯塔基在赛后发现使用过这一药物的事件依然记忆犹新。本次结果是将iMLayer 基质升华与iMScopei TRIO /i成像质谱分析相结合,应用于违禁药物检测领域的首个示例。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  此外,由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。另一方面,由于在成像结果中存在大量噪声,有必要对毛发预处理流程进行进一步优化,提高离子强度。从该检测结果来看,探索对可检测药物(包括合成类固醇类)定量分析方法的建立也是必不可少的。尽管该应用仍存在许多问题以待解决,但我们依然认为iMScope iTRIO/i 的潜力十分值得期待。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  8. 马毛分析的可能性/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  当前,世界范围内关于赛马违禁药物控制的讨论很多, 讨论赛马违禁药物检测和赛马伤害保护(ICRAV:国际赛马分析专家和兽医会议)的国际会议每两年召开一次。2018 年,在阿拉伯联合酋长国的迪拜举行该会议,作者首次参加并介绍了这项研究结果。图 7 显示了会场和 Meydan 赛马场的景色。能够在世界顶级赛马场之一的 Meydan 赛马场旁会议厅中展示这项研究,是迄今为止作者一生中最难忘的事件之一。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  通常,来自日本的参会者均为 JRA 相关人员或赛马化学实验室的研究人员,而作者则是大学中唯一的参会者。不仅如此,来自香港赛马会、澳大利亚赛马会和其他地方的研究人员对使用 IMS 进行药物检测产生了浓厚兴趣并寄予厚望,讨论非常活跃。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  2018 年 11 月,在撰写本文时,岩手赛马比赛中参赛的赛马 Ubatouban 被检测出使用禁用药品去氢睾酮(14)。今后,我将继续改进和优化该检测方法(包括简化毛发前处理技术),使这种来自日本的新型检测方法在世界赛马领域中用以进行违禁药品检测。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  作者同时还得到岛津制作所的大力支持, 并与Equine Racing Co., Ltd.的全体员工进行广泛合作,其中来自Equine Racing Co., Ltd.的代表人也是本文的合著者。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  作者将在图8 中展示马毛采样图片以及作者和合著者的最新照片作为本文的结尾。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ee91fa21-88d0-4e07-a965-a1df9ad924ef.jpg" title="7.png" alt="7.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 7 ICRAV2018/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)、(B)ICRAV 2018 会场的场景,(C)举行 ICRAV 的 Meydan 赛马场。Meydan 赛马场景色壮观,其规模和完备程度在日本也数一数二。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/6a43445f-916c-4ab3-9fb7-890880d85bf3.jpg" title="8.png" alt="8.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 8 参观 Equine Racing Co., Ltd./pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)Equine Racing Co., Ltd.的工作人员介绍马匹。(B)在马腿上可以看到的称为“栗子”的部分:角质化的退化拇指(C) 鬃毛采样 (D)作者(右)和合著者(左)的近期照片。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  参考文献/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (1) Masahiro Ohno (2005) Asahi Law Review, 32, 144-199/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (2) Dai Mizuno (2017) Analysis, 12, 589-590/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (3)Shima N et al. (2017) Drug. Metab. Dispos., 45, 286-293, https://doi.org/10.1124/dmd.116.074211/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (4)Wong JKY et al. (2018) J. Pharm. Biomed. Anal., 158, 189-203,a href="https://doi.org/10.1016/j.jpba.2018.05.043" _src="https://doi.org/10.1016/j.jpba.2018.05.043"https://doi.org/10.1016/j.jpba.2018.05.043/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(5) Madry MM et al. (2016) BMC Vet. Res., 12, 84, /spana href="https://doi.org/10.1186/s12917-016-0709-5" _src="https://doi.org/10.1186/s12917-016-0709-5" style="text-indent: 0em "https://doi.org/10.1186/s12917-016-0709-5/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(6)Kamata T et al. (2015) Anal. Chem., 87, 576-81, https://pubs.acs.org/doi/10.1021/acs.analchem.5b00 971/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (7)Hang W, Ying Wang (2017) Anal. Chimica Acta, 975, 42-51, a href="https://doi.org/10.1016Zj.aca.2017.04.012" _src="https://doi.org/10.1016Zj.aca.2017.04.012"https://doi.org/10.1016Zj.aca.2017.04.012/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(8)Harada T et al. (2009) Anal. Chem., 81,9153-7, https://doi.org/10.1021/ac901872n/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (9) https://www.shimadzu.co.jp/labcamp//pp style="text-align: justify text-indent: 0em line-height: 1.75em " (10)Shimma S et al. (2013) J. Mass Spectrom., 48, 1285-90, https://doi.org/10.1002/jms.328/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (11)Nakamura J et al. (2017) Anal. Bioanal. Chem., 409, 1697-1706, a href="https://10.1007/s00216-016-0118-4" _src="https://10.1007/s00216-016-0118-4"https://10.1007/s00216-016-0118-4/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(12) Shimma S et al.(2016) Anal. Bioanal. Chem., 408, 7607-7615,/spanspan style="text-indent: 0em "https://doi.org/10.1007/s00216-016-9594-9/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (13) http://company.jra.jp/0000/law/law07/07.pdf/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (14) http://www.iwatekeiba.or.jp/news/180915i/ppbr//p

竞速赛马分析系统相关的方案

竞速赛马分析系统相关的资料

竞速赛马分析系统相关的试剂

竞速赛马分析系统相关的论坛

  • 【转帖】北京奥运会参赛马疫病诊断采用中国试剂

    新华社哈尔滨7月4日电(记者范迎春)经国际奥委会批准,北京奥运会马术比赛参赛马匹的传染性贫血病诊断将应用中国农科院哈尔滨兽医研究所研制的试剂。这是中国动物疫病检测试剂首次应用于对奥运会参赛马匹的把关。  据哈兽研所马病专家相文华介绍,马传贫是一种烈性慢病毒传染病,特征是病毒持续感染、反复发热和贫血,一旦发生,可能造成马匹群体感染和死亡。历史上,马传贫曾经给全球的农牧业生产和相关产业带来巨大损失。  哈兽研所从上个世纪六七十年代开始开展马传贫疫病研究,研制成功的“马传染性贫血病诊断试剂”对马传贫疫病诊断准确,在国际上享有良好的声誉。同时,应用于防疫的马传贫疫苗是迄今国际上唯一成功应用于慢病毒免疫的疫苗。  北京奥运会马术比赛将在香港进行。届时,将有来自国内外的大批名贵赛马参赛。相文华说:“对参赛马的疫病检测非常重要,是关系到赛马安全和比赛能否顺利进行的一个关键因素。”  此前,哈兽研两位马病研究专家应香港渔农署邀请前往香港,使用哈兽研诊断试剂与美国的诊断试剂分别对40匹马的血样同时进行马传贫病检测。结果表明,哈兽研自主研发的马传贫诊断试剂准确可靠,因而获准在奥运会上使用。  按照国际奥委会规定,奥运会参赛马匹在入境前将全部提取血样送检,确认无疫病后方可参加比赛。“我们已经做好了检测马传贫疫病的充分准备,”相文华表示。

  • 有谁知道国际上赛马饲料需要的营养成分?

    有谁知道国际上赛马饲料需要的营养成分?比如,需要每日蛋白进食量?各种微量元素需求?吃哪种草料最好?......或者,国际上是否有关于赛马 需求的营养成分规定?有个朋友咨询这方面问题,只好求助各位。谢谢~!

竞速赛马分析系统相关的耗材

  • 指纹分析仪系统配件
    指纹分析仪系统配件是为法医研究,刑侦等应用设计的最新最强大的指纹分析系统,指纹分析仪系统满足刑侦成像,证据和背景各种照明图片的处理需求。指纹分析仪系统配件特色结合了先进的成像技术,多波长照明与简单易用的软件,是全球唯一具有有两种操作模式能为公安干警,法医人员提供快速和高质量结果的指纹分析系统。潜指纹和处理过指纹包括le 自动化标准指纹分析或为指纹提供的订制化分析程序。可以用于各种法医摄影,潜指纹显现,处理过的指纹分析,痕迹物证,伪造和篡改文件分析痕迹物证Trace Evidence包括体液,纤维,涂料,玻璃碎片和枪击残留物。伪冒和篡改的文件检验能够识别所有手写和打印的文档。无需培训,几分钟内可获得专业结果:使用操作的自动模式,3个简单步骤实现有效成像和加强。1将证据放置在指纹分析仪样品室内2选择分析和证据的类型3按“运行”按钮。自动分析程序将根据预置的法医学领域常见的分析,或自定义分析的特殊要求运行。多个光源和过滤器可以通过几个途径加强证据的图像。高级模式选择最好的全屏图像或在进一步加强。指纹分析仪系统配件双模式软件:指纹分析仪提供快速,高品质成像的两种操作模式:自动模式使用自动模式,任何没有经验的操作者可以执行分析,并根据预先设定的程序获得结果。软件里包含用于普通法医治疗证据的综合分析程序,但自定义分析或细节分析要调整或是根据具体结果设置,然后使用自动模式执行。指纹,包括化学处理后进行的法学领域常见分析文件, 手写和打印追踪证据, 包括血液,纤维,GSR等。高级模式高级模式中,操作者可以选择全手动控制照明,过滤器和后成像增强这些特定的图像增强处理。高级模式允许专业操作者微调增强过程。指纹分析仪系统配件 高级模式特点:高分辨率成像系统,同时提供500万像素14 bit 的单色和1500万像素的彩色成像。高灵敏度,科学级相机和优化的色彩校正透镜,在可见和红外线波长从400-1000nm区间提供高对比度、高分辨率的图像。总控光源和用于强烈聚焦多波长照明的滤光镜和效果增强。可变波长的窄带光源,用于高度彩色背景里的先进的指纹高光谱成像指纹分析仪系统硬件脱机指纹分析仪有高感光度图像捕捉和多波长照明功能。用户可以使用额外的照明,系统安装,PC硬件和相机镜头选项建立一个系统,以满足任何要求。高感光摄像头1500万像素的彩色成像,35mm宽广角镜头(其它镜头可选),集成第二个摄像头指纹分析仪系统 高强度照明犯罪精简版8×4的多波长光源,32个高效率的LED,高达98种颜色的组合4×20W卤素灯提供可见光/ IR照明长通滤镜摄像机滤光镜400nm,455nm,495nm,530nm,550nm,570nm,590nm,610nm,630nm,645nm,665nm,695nm,715nm,780nm,850nm短通滤波器摄像机滤光镜752nm,660nm,610nm和550nm全部附件包括可在犯罪精简版成像仪产品手册上找到额外的照明组件。
  • ZJKY-2000扫描电镜联机图像处理分析系统
    主要针对旧款扫描电镜,不具备计算机图像处理系统,经过更新改造 使扫描电镜具备最先进的计算机系统,并可进行图像处理分析。 增配联机图象处理分析系统后新增以下功能 1、显示具有照片质量的,随电镜扫描实时刷新的静止稳定图象。 使你能更清楚地观察图象细节,同时保护您的视力。 2、将各种信号图象采集到计算机,并以通用格式存贮到磁盘,使你 能更加方便与外界交流和进行电子排版。 3、具有丰富的图象处理功能处理输入到计算机的图象,使图象细节更 加清晰,从而提高电镜的分辨率。处理后的图象可返送电镜照像。 4、对图像中的颗粒、孔洞、裂纹、纤维直径等的尺寸和形状参数 进行快速精确地测量和分析。 5、测定抛光面背散射电子(或二次电子)成份像中各组分的百分含量。 6、彩色组合显示多种元素的X射线面分布像及背散射电子像的伪 彩色显示。 7、在图象上加注文字和各种标记,方便学术交流和论文发表。 8、实时、照片质量图象打印,能节省大量冲印照片的时间。 9、所见即所得的图文报告功能,快速打印出图文并茂的分析报告。 10、建立快速检索的图象数据库,方便你的科研和教学。 技术指标 ●图象清晰度: 512× 512~2048× 2048 灰度等级:256 ●采集图象信号各类: 二次电子像,背散射电子像,吸收电子像,透 射电子像及X射线面分布像,摄象机视频信号。 ●同步方式: 被动式 ●接口阻抗: 同步输入端:15M 视频输入端:200K 视频输出端 :1K ●可配接所有型号电镜, 绝不干扰原电镜使用。电镜和图象系统 多种信息查询检索方式 可联机使用,也可独立使用。
  • 井下自燃火灾束管监测系统(矿井气分析)专用色谱工作站
    井下自燃火灾束管监测系统(矿井气分析)专用色谱工作站可输出64路开关量,其中4路控制气体柜,60路控制束管。自动在选中的束管之间进行切换,依次对各路束管中的气体进样分析。可对选中的束管设置总循环次数。允许手工进样,进行普通的样品分析。对双通道产品,可将A、B两个通道的谱图嫁接到一张谱图中,故仅对一张谱图进行处理和计算即可。可设置各种气体浓度和烷烯比的报警值,并可自动对进入瓦斯爆炸三角形的甲烷和氧气浓度进行报警。自动进样和手工进样的结果都可存入数据库。在数据库中可按时间或取样地点打印(或查询)历史数据或趋势图,并可显示瓦斯爆炸三角形与历史数据之间的距离。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制