含量测定分析方法验证的可接受标准

仪器信息网含量测定分析方法验证的可接受标准专题为您提供2024年最新含量测定分析方法验证的可接受标准价格报价、厂家品牌的相关信息, 包括含量测定分析方法验证的可接受标准参数、型号等,不管是国产,还是进口品牌的含量测定分析方法验证的可接受标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合含量测定分析方法验证的可接受标准相关的耗材配件、试剂标物,还有含量测定分析方法验证的可接受标准相关的最新资讯、资料,以及含量测定分析方法验证的可接受标准相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

含量测定分析方法验证的可接受标准相关的仪器

  • 深圳冠亚SFY-20D食用油水分含量测定仪产品特点★只需几分钟,速度快★易操作,不用培训★操作简单,全自动操作模式,无可动部件;★核心部件均采用纯进口高端材料,以保证产品检测结果的准确性;★零易损件,样品盘采用耐酸耐碱耐变形的纯不锈钢材料;★采用特质的环形卤素光源,加热均匀,加热器更耐用;★显示7种参数:(水分示值、样品重量初值、终值、测定时间、温度初值、终值、判别时间) 我国是食用油使用大国,油料需求的刚性增长和油料(或食用油脂)总产量增长缓慢之间的供不应求矛盾,是我国油料产业发展存在的核心问题。发展油料生产,保证食用油安全,已是当务之急。我们所面临的问题不仅是产量问题,更重要的也是质量问题,食用油脂是人们摄取能量和营养的重要来源,是加工食品的重要原料。保证食用油质量安全是重中之重,水分检测是保证食用油安全的关键一步,水分会使油脂透明度差,易导致油品酸败。深圳冠亚SFY-20D食用油水分含量测定仪生产厂家、油脂水分检测仪可以快速检测水分,操作便捷,只需几分钟就可得到测试结果,可以帮助食用油生产企业严把质量关,提高产品品质,增加收益!!!深圳冠亚SFY-20D食用油水分含量测定仪技术参数:1、称重范围:0-90g★★可调试测试空间为3cm、5cm、10cm2、水分测定范围:0.01-**3、 净重:3.7Kg★★JK称重系统传感器4、样品质量:0.5-90g5、加热温度范围:起始-205℃★★加热方式:应变式混合气体加热器★★微调自动补偿温度15℃6、食用油水分快速测定仪生产厂家、油脂水分检测仪水分可读性:0.01%7、显示7种参数:★★ 水分示值,样品初值,样品终值,测定时间,温度初值,终值,恒重值★★红色数码管独立显示模式8、双重通讯接口:RS 232(打印机)RS 232(计算机)9、外型尺寸:380×205×325(mm)10、电源:220V±10%/110V±10%(可选)11、频率:50Hz±1Hz/60Hz±1Hz(可选)深圳冠亚SFY-20D食用油水分含量测定仪专利证书《中华人民共和国制造计量器具许可证》 MC 粤制 03000235号SFY系列快速水分测定仪器(专利号:2005301013706)发证单位:深圳市质量技术监督局
    留言咨询
  • 1.蜡含量测定装置/石蜡含量测定仪 型号HAD-0537标准SY/T-0537 一、用途及适用范围标准SY/T-0537《原油中蜡含量测定法》规定的要求设计制造的,适用于测定原油产品中蜡的含量。二、主要技术参数1、工作电源: AC220V±10%,50Hz。2、水浴加热功率: 2.0kW。3、水浴控温范围: 室温&sim 90℃(温度任意设定)。4、工作冷槽 : 两槽四孔,两槽等温5、冷浴控温范围: 室温—-30℃(温度任意设定)。6、制冷系统: 压缩机制冷7、控温精度: ≤±0.5℃。8、温度显示: LED数字显示2.恒温磁力搅拌器/磁力搅拌仪 型号:HAH01-3 HAH01-3恒温磁力搅拌器 特点 特  点:无刷直流电机驱动,特强磁力,适用于高粘度大容量液体搅拌, 恒温型,配电接点水银温度计可自动控温,加热功率无级可调,电压表显示加热电压 HAH01-3恒温磁力搅拌器主要技术参数 电  源:AC220V±10% 50Hz搅拌转速:100~1800 r/min最大搅拌容量:10000ml电机转矩:25mNm加热功率:800W内可调加 热 盘:¢175mm控温范围:室温~250℃控温精度:±1℃外形尺寸:280×175×145(mm)注:电接点水银温度计用户自备 3.恒温型 浸渍提拉镀膜机 垂直提拉机 提拉涂膜机 镀膜机 型号:HAD-100H 一. 产品简介 浸渍提拉镀膜机是专门为液相(特别是sol-gel法)制备薄膜材料的研究工作而设计,对不同液体通过浸渍提拉生长薄膜。提拉速度、提拉高度、浸渍时间、镀膜次数(多次多层镀膜)、镀膜间隔时间均连续可调、精密控制。对镀膜基质无特殊要求,片状、块状、圆柱状等均可镀膜。运行稳定、工作时液面无振动,可极大提高实验精度与实验效率。 适用于硅片、玻璃、陶瓷、金属等固体材料表面涂覆工艺。应用于科学研究、产品生产。 二. 产品特点1. 采用自主设计的先进的精密传动装置;2. 关键零部件来自中国台湾及德国进口,确保运行精度及稳定性;3. 多参数全自动控制;提拉速度连续可调;4. 镀膜过程采用4.3寸液晶触摸屏使控制更方便;恒温场温度LCD液晶显示可编程控温,。5. 运行时,各项参数实时显示,更直观了解镀膜进程;6. 高、低速均运行平稳,镀膜时液面无振动,使成膜更均匀;7. 整个镀膜过程在恒温温度场内进行,可精密控温,温度均匀性好。8. 特殊设计的平口型夹具,两面均匀夹持样片,不会夹坏样片;(单点螺丝顶紧样片的夹持方式容易夹坏样片) 三. 技术参数1. 提拉速度范围:1~5000 μm/s,最小分辨率1μm/s;2. 适用基片尺寸:MIN 5×5 mm,MAX 100×100 mm,厚度MAX 10mm;3. 浸渍时间:1~1200 s,最小分辨率1s;4. 镀膜次数:1~20次,最少1次;5. 每次镀膜间隔时间:1~3600 s,最小分辨率1s;6. 恒温温度:RT+10~200℃,温度分辨率0.1℃;7. 温度波动度≤±0.2℃;8. 恒温场内尺寸:340×320×320 mm(W×D×H);9. 电源:220V/50Hz 4. ISE法混凝土碱含量快速测定仪/混凝土碱含量检测仪 型号:HAD-JAL-C 检测方法:ISE法测试指标:混凝土及原材料的碱含量,即等当量氧化钠含量Na2O(%) 产品用途混凝土原料中含有碱(钾、钠离子),当混凝土处在足够湿度的环境中一段时间后,混凝土中的碱(钾、钠离子)会与粗细骨料中的活性硅发生反应,造成结构膨胀和开裂,即发生碱骨料反应。由于碱骨料反应会对混凝土结构造成有害影响,国内外非常重视混凝土碱含量限值。根据《混凝土碱含量限值标准》CECS 53:93,《混凝土结构耐久性评定标准》CECS 220:2007等相关标准,混凝土碱含量是指混凝土中等当量氧化钠的含量,以kg/m3计,混凝土原材料的碱含量是指原材料等当量氧化钠的含量,以重量百分率(%)计。等当量氧化钠含量是指氧化钠与0.658倍的氧化钾之和,即 “等当量氧化钠含量=Na2O+0.658×K2O”。本仪器采用离子选择电极法(Ion Selective Electrode, ISE法),利用美国进口复合钾离子电极和复合钠离子电极在室温下快速测定混凝土(包括新拌混凝土、湿混凝土、硬质混凝土粉状样品等)以及混凝土原材料(包括水泥、化学外加剂、掺合料等)中的碱含量(%) 执行标准1.《混凝土碱含量限值标准》CECS 53:932.《混凝土结构耐久性评定标准》CECS 220:2007 产品特点1. 快速测量混凝土碱含量2. 特有抗离子干扰剂,强化离子浓度同时去除各种金属的干扰作用3. 高精度钾、钠离子复合电极,性能稳定4. 大屏幕液晶直显,手持式打印机即时打印,使用操作合理5. 独有自诊断功能,独创上位机分析软件6. 大容量数据存储,可存储100组测试数据7. 数据连续记录,安全可靠 测试对象:新拌混凝土、湿混凝土和混凝土原材料。 检测原理HAD-JAL-C型手持式碱含量快速测定仪,采用离子选择电极法(ion selective electrode)ISE法,快速测定混凝土、砂石子、外加剂等水溶性物质的碱含量。使用时预处理混凝土或其他样品。将两个预先活化并标定过的电极按说明浸入混合溶液中,其中一个测量钠离子含量,另一个测量钾离子含量。仪器可通过测量的电压数据(mv)利用标定曲线转化为Na2O 和K2O 含量(%),将结果输入主机中的计算公式后自动获得混凝土碱百分比Na2O(%)。电极活化后每个实验过程只需要10分钟。 HAD-JAL-C和火焰光谱法测试结果的相关系数为0.97%,测试偏差为10%以内。 技术参数电源电压:AC 220V工作电压:DC 3.6V测量精度:≤10%打印机工作电压:DC 5V数据存储量:100组PC通讯参数:波特率 2400采集时间:≤3min待机时间:24 hr整机重量:240 g液晶尺寸:128*128 测试步骤1. 活化电极2. 试样称重,按说明书进行预处理3. 标定电极并测量待测试样溶液4. 显示测量数据 测试结果1. 混凝土碱含量百分比(%)2. 混凝土氧化钠百分比(%)3. 混凝土氧化钾百分比(%)测量范围:0.001%~30.000%测量精度:±10%操作温度:0℃~45℃。分辨率:0.001 仪器规格主机尺寸:180*70*30(mm)主机重量:0.4 kg主机外形尺寸: 390*310*150(mm)总机重量:4.5 kg 5.多功能食品安全分析仪/水产品安全检测仪 型号HAD-1001B 产品特点● 采用320×240液晶中文大屏幕背光显示,中文提示操作。● 自动显示样品中检测项目的浓度和含量。● 设有出厂默认曲线和用户自建曲线,大大提高使用的灵活性和测量的准确性。● 开放式的参数设定功能,使样品处理和检测更加灵活。● 可由电脑直接控制仪器操作和仪器单独操作两用。● 仪器具有自动保存检测结果,并能随意查询保存的记录。● 仪器带有微型高速打印机,可实现快速自动打印检测结果。● 带有RS232接口,实现外部通讯和监控联网。● 带有食品分析数据管理软件,可实现有效的数据管理,以及与食品监控网联网,实现数据传送。技术指标1、 检测项目水产品中甲醛、亚硝酸盐、甲醛、双氧水、孔雀石绿、组胺、工业碱、挥发性盐基氮、碱性橙Ⅱ号2、检出限: 0.05mg/kg—2mg/kg(不同项目检测限不同) 准确度: ±5% 重复性:RSD≤2.5% 3、 透射比准确度:±3.0% 4、 透射比重复性:0.5% 5、 光电流漂移:≤0.5%(3min)6、 外形尺寸:470×280×150(mm) 6.表观密度测定仪 洗衣粉表观密度测定仪 表面活性剂表观密度测定仪装置GB/T 13173 装置GB/T 13173-2008《表面活性剂 洗涤剂试验方法》的测定(给定体积称量法)。用于测量表面活性剂或洗衣粉的表现密度。 原理:在规定条件下,将试样从一个具有规定形状的漏斗中漏下,装满一个已知容积的受容器后,测定此粉体的质量。 技术要求: 1、整体装置材料为优质不锈钢制作 2、受料器容积:500ML±0.5ML 3、取样量:510-550ML 4、漏斗1规格:漏斗上口内径:108MM 下口内径:40MM 高度:130MM 5、漏斗2规格:漏斗上口内径:112MM 下口内径:60MM 高度:110MM 2个漏斗从中选一个 6、不锈钢直尺150mm一把 7、玻璃板:100×100×7mm一块 8、截止板:100×70mm 也可以做成110*70mm(另加钱)7.振荡培养箱 微电脑型号HAD-HX60 1、控温范围:4-60℃2、温控精度:±1℃3、温度波动度:±0.5℃4、温控方式:微电脑PID控制5、制冷功率:130W6、加热功率:300W7、振荡方式:回旋8、调速范围:0-300转/分9、调速方式:微电脑无极调速,速度偏差为010、托盘尺寸:370×370mm 8.粉体振实密度测试仪LK-20 粉末,颗粒及薄片材料依赖于颗粒的堆积方式,在振动过程中小颗粒流向两个大颗粒之间。如此,颗粒货物的包装就会更加有效。粉末体积减少,振实密度增加,通常可达50%到100%。 LK-20粉体振实密度测试仪藉由规律地拍打含有粉末的测量筒来达成,当使用者选择充填的量后,便可开始拍击的动作,当产生改变时,读数便会产生,此种拍击是藉由测量筒的上下振动,在特定的重量及指定的距离来完成,在拍击的过程中,会优先地将任何可分开的团块物,在向下拍击时将之最小化,而透明的玻璃充填管则有助于观察及读出测量值. LK-20粉体振实密度测试仪应用于:冶金粉末行业,碳粉行业,焦炭石墨行业,磁材行业,生物制药行业,高新能源材料行业,塑料行业,奶粉食品配料行业等。 标准: 符合ASTM B527、D4164、D4781、IDF 134、ISO 787-11、3953、8460、8967、9161、JIS K5101-12-2、Z 2512、MPIF 46、USP616Part II、BSIB527、GB/T 21354、5162、14853等。 规格: 1.振幅: 20 mm 可调 2.振荡频率: 0~100次/min 3.容量: 25、50、100、200 ml 4.马力: AC 25W 5.电源 : AC110V/220V 50/60 Hz. 特性: 当使用者选择充填的步骤后,试验器会 计算粉末减少之容积。透明的塑料充填管 操作步骤: Ø 操作方式: 1、机台之速度调节钮转至O的位置后将本机与控制箱连结再插入指定电源。 2、调整高度量尺至预定充填高度,只需放松高度调整钮后旋转充填基座高低,即可将调整钮以工具锁紧。 3、将填充物放入量筒内,用固定环将量筒固定。 4、选择振动模式。 5、打开电源键,旋转调速钮至适当转速,按一下启动键机台就会开始动作。 注意事项: 1、请放置放水平稳固之桌面上。 2、易于清理操作之场所。 3、灰尘及潮湿较少之地方。 4、调整高度键后,务必以工具锁紧。 5、避免与用电量大的电品共享同一电源。 6、用毕请擦拭干净。 LK-1636B塑料粉末表观密度测定仪符合GB/T3402主要用于从规定的漏斗中留出塑料松散物料的表观密度的测定,用于聚氯乙稀树脂表观密度的测定是化工行业以及塑料异型材厂原料进厂质量检验理想的测试仪器。产品符合GB/T3402、GB/T1636等标准要求。 二、适用范围:本方法适用于测量粉料模塑料的表观密度,即单位体积中的质量,为模塑料的包装,模具型腔和挤出螺杆的设计提供参数。 三、技术参数: 主要组成部分:底座、支撑架、漏斗、插板、受料器 受料器容积:100ml±0.5ml 取样量: 110ml-120ml 漏斗:A型、上口径56mm,下口径33mm B型、漏斗角度为:40度,孔径为8mm 可满足K-6721(1966)之要求 四、测试要求: 1、试样:按产品标准规定抽取试样。 2、试验仪器: (1)天平:感量0.1克 (2)表面观度测定仪 (3)量筒式量杯:100毫升 3、试验步骤: (1)把漏斗置于仪器上,其下端小口在测量圆筒正上方20-30毫米,并尽可能与测量筒同轴线。 (2)将挡料板插入漏斗中,将100+5ml试样倒入漏斗中。 (3)迅速抽开挡料板,让试验自由流进测量圆筒,用刮板刮去测量圆筒上部多余的试样并在天平上称量圆筒中的试样,精确至0.1克。 (4)每批料进行三次测试(已测试样不得重复使用) 五、表观密度测定仪试验结果计算方法: 按式(A1)计算 式中: m2——受料器与样品的质量,g m1——受料器质量,g v——受料器的容积。mL(即100mL)。 平行样品的单个测定值和平均值的相对误差大于2%时 ,必须重做。结果取二个平行样品测试结果的算术平均值 10.LK-200S数显直读固体密度计根据GB/T533是固体密度测量仪器。可以快速方便测量各种形状的固体的密度,配置专业的测量配件,透明水槽。携带方便、操作简单、功能强大、精度高、重复性好! LK-200S数显直读固体密度计适用范围: 广泛应用于橡胶,塑料,管材,板材,电线电缆,硬质合金,聚氨酯,保温材料,耐火材料,固体板,PE颗粒,新材料,固体型材,发泡材料,胶粒,海绵,泡棉,陶瓷,粉末冶金,岩石,塑胶颗粒,EVA材料,PU发泡,塑胶复合材料,高分子材料,石墨材料,玻璃制品,氧化铝陶瓷、氧化锆、氧化钇、新型电池材料,石等电极材料,永磁材料,黄金等的密度。 原理: 根据GB/T533、ISO2781、ASTMD297-93、DIN 53479、ASTMD792、D618,D891、ISO1183、GB/T1033、ASTM D792-00、JISK6530, ASTM D792-00、JISK6530标准。采用阿基米得原理浮力法,准确直读量测数值。 1.直读固体的密度值 2.密度大于一小于一块状、颗粒皆可快速测量 3、可温度补偿设定、溶液补偿设定更人性化的操作、更符合现场作业需求。4、具有RS-232C计算机接口,可轻易的连接PC和打印机。5、采用大水槽设计[长宽高160*110*86mm],可测大的块状物体密度。6. 机身为铝合金材质,不存在因液体溢流渗入电路板与传感器造成损坏的问题标准配件:①主机、②水槽、③测量台、④镊子、⑤测颗粒配件一套、⑥100G砝码、⑦测浮体配件一套⑧电源变压器测试步骤1、放样品于测量台上秤重量按E键记忆。 2、放样品于水中秤重量按E键记忆,立即读出结果 备注:测试密度小于一的时候,使用专业配件抗浮架 以上参数资料与图片相对应
    留言咨询
  • TP304铁含量分析仪铁含量,铁含量分析仪,铁含量测定,铁离子测定仪型号:TP304  TP304铁含量分析仪应用于锅炉给水、凝结水、蒸汽水、内冷发电机冷却水、炉水及天然水中铁含量的分析测定。生产厂家  北京时代新维测控设备有限公司主要特点5.0寸触摸彩色液晶,中文显示,操作方便。先进贴片工艺及一体化设计,集成电路设计稳定耐用。先进单片机技术,性能好,低功耗。光源采用进口单色冷光源 ,性能优良,信号稳定,功耗低,寿命长。自动计时提醒功能,方便操作者使用,提高工作效率。空白校准,消除零点漂移和电气漂移,提高测量精确度。数据循环存储功能(≤256条),自动清除溢出数据,操作简单,查询方便。采用邻菲罗啉标准比色测定分析方法。
    留言咨询

含量测定分析方法验证的可接受标准相关的方案

含量测定分析方法验证的可接受标准相关的论坛

  • 【转帖】含量测定分析方法验证的可接受标准简介

    摘要:本文介绍了在对含量测定所用的分析方法进行方法学验证时,各项指标的可接受标准,以利于判断该分析方法的可行性。 关键词:含量测定 分析方法验证 可接收标准 在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制。为规范对各种分析方法的验证要求,我国已于2005年颁布了分析方法验证的指导原则。该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述。但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求。另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求。本文结合国外一些大型药品研发企业在此方面的要求,提出了在对含量测定方法进行验证时的可接受标准,供国内的药品研发单位在进行研究时参考。

  • 【讨论】HPLC含量测定分析方法验证中数据可接受标准讨论

    在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制。为规范对各种分析方法的验证要求,中国药典2005年版附录规定了分析方法验证的指导原则。该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述。但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求。另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求。本文提出了在对HPLC含量测定方法进行验证时的可接受标准,供大家讨论。1.准确度 该指标主要是通过回收率来反映。验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率。 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为: 在80%至120%的浓度范围内配制5份浓度不同的供试液,分别测定其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。 3.精密度 1)重复性 配制6份相同浓度或分别配制浓度为80%、100%和120%的供试品溶液各三份的供试品溶液,由一个分析人员在尽可能相同的条件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 配制6份相同浓度的供试品溶液,分别由两个分析人员使用不同的仪器与试剂进行测试,所得12个含量数据的相对标准差应不大于2.0%。 4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。 5.检测限 主峰与噪音峰信号的强度比应不得小于3。 6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。 7.耐用性 分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、流速相对值变化±20%时,仪器色谱行为的变化,选择至少三个不同厂家或不同批号的同类色谱柱,每个条件下各测试两次。可接受的标准为:主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,分离度应大于1.5;各条件下的含量数据(n=6)的相对标准差应不大于2.0%。 8、系统适应性 配制6份相同浓度的供试品溶液进行分析,主峰峰面积的相对标准差应不大于2.0%,主峰保留时间的相对标准差应不大于1.0%。另外,主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,分离度应大于1.5,供试品主峰的理论塔板数应取耐用性试验不同厂家或不同批号的同类色谱柱的平均值的100%-120%。

含量测定分析方法验证的可接受标准相关的耗材

  • 皮革中铬(vi)含量的测定-制样装置耗材
    皮革六价铬检测设备、皮革六价铬检测仪、皮革六价铬测试系统、纺织品六价铬检测设备、纺织品六价铬检测仪、纺织品六价铬测试系统 皮革六价铬检测设备、纺织品六价铬检测设备产品名称:皮革/纺织品六价铬检测设备型号:ISO17075适用范围:皮革、纺织品、服装执行标准:ISO 17075、GB/T 22807、GB/T 17593.3售后服务:上门培训、教会为止 一、六价铬限量法规: 欧盟委员会2014年3月发布了301/2014号法规,对在欧盟生产或进口的可与皮肤直接接触的皮革类产品作出六价铬含量限制要求。 主要内容包括:规定与皮肤接触的皮革物品及含皮革零件的物品,若六价铬浓度每千克超过3毫克,不得在欧盟市场投放;将六价铬限制措施列入《化学品注册、评估、授权和限制法规》(REACH法规)附件XVII的被禁物质(以及含被禁物质的物品)清单内;确定EN ISO 17075标准为皮革六价铬浓度分析方法。该法规将于2015年5月1日起生效。 二、系统介绍: 本套皮革、纺织品六价铬检测设备满足《皮革六价铬检测ISO 17075:2007Leather-Chemical tests-Determination of chromium(Ⅵ) content》、《皮革和毛皮 化学试验 六价铬含量的测定GB/T 22807-2008》和《纺织品 重金属的测定 第3部分:六价铬 分光光度法GB/T 17593.3-2006》,适合各种皮革、毛皮、人造革、合成革及纺织品、服装的六价铬含量检测。 该皮革六价铬检测系统采用与质检、商检机构同样的执行标准、检测方法和仪器规格,专业为广大皮革厂、纺织品、服装厂等生产企业,第三方检测机构,质检商检单位提供“一站式服务”的皮革六价铬实验室筹建解决方案。 本司派专业技术工程师送货上门,到现场进行安装调试、人员培训(人数不限、教会为止)、标准/法规解读、检测指导、维护维修等全面的技术服务。三、系统组成:1、制样装置:电子分析天平、水浴振荡器、过滤装置、pH酸度计等;2、分析仪器:六价铬检测仪、电脑(客户自备);3、配套玻璃器皿:量筒、容量瓶、烧杯、移液管、锥形瓶、碘量瓶等;4、配套药品试剂:重铬酸钾标准物质、磷酸氢二钾、磷酸、1,5-二苯卡巴肼等;5、数据处理软件:可自动计算出样品检测结果。6、技术服务:安装调试、技术人员培训(教会为止)、维护维修、耗材供应、检测指导等。四、系统特点:1、性价比高:采购成本低,检测成本低,节省长期送检的高昂检测费用;2、性能可靠:按照国家标准配备,与质检、商检执行相同检测方法;3、技术培训完善:上门培训技术人员(初中水平即可),教会为止;4、检测成本低:药品试剂无毒无害,便宜易得,可长期供应;5、实时灵活质检:1天内多批次检测,对原料、成品等灵活进行质量监控;6、数据可回溯性:可与第三方检测机构的检测数据作对比验证;7、塑造企业形象:可供来厂客户参观,宣传企业重视产品质量。五、执行标准:国际《皮革六价铬检测》ISO 17075:2007(DIN EN ISO 17075:2008-02; IULTCS/IUC-18)德国《皮革的检验.皮革中铬(vi)含量的测定》DIN 53314-1996[7]欧盟《手套总体要求.六价铬》EN420:1994[6]中国《皮革和毛皮 化学试验 六价铬含量的测定》GB/T 22807-2008中国《纺织品 重金属的测定 第3部分:六价铬 分光光度法》GB/T 17593.3-2006中国《出口皮革手套中铬VI的检验方法.分光光度法》SN 0704-1997中国《生态纺织品技术要求》GB/T 18885-2002六、六价铬限量值:欧盟委员会2014年3月发布了301/2014号法规,对在欧盟生产或进口的可与皮肤直接接触的皮革类产品作出六价铬含量限制要求。 主要内容包括:规定与皮肤接触的皮革物品及含皮革零件的物品,若六价铬浓度每千克超过3毫克,不得在欧盟市场投放;将六价铬限制措施列入《化学品注册、评估、授权和限制法规》(REACH法规)附件XVII的被禁物质(以及含被禁物质的物品)清单内。七、适用范围:1、各种皮革、毛皮,和各种皮革制品,皮革包括:真皮革、再生皮、人造革、合成革等。2、纺织品、服装。八、适用客户:皮革、皮鞋、皮包、皮衣及其他皮革制品,纺织品及服装等生产企业,第三方检测机构,质检商检单位。九、售后服务:1、六价铬检测仪等主要仪器设备质保1年,终身维修维护;2、长期供应玻璃仪器、药品试剂等实验耗材;3、专业、全面的技术培训,包括:皮革/纺织品六价铬标准曲线绘制、皮革/纺织品样品检测;4、现场进行安装调试、人员培训(教会为止)、标准/法规解读、检测指导、维护维修等全面的技术服务。
  • XSelect 分析柱方法验证包(含XP 柱)
    XSelect 分析柱方法验证包(含XP 柱)每个产品验证包含三个色谱柱,分别来自3个不同的填料批次。规格 粒径 CSH C 18 CSH氟苯基 CSH苯己基 HSS C 18 HSS C 18 SB HSS T3 HSS PFP HSS CN2.1 x 50mm XP 2.5um 186006233 186006239 186006245 186006251 186006263 186006257 186006815 1860062752.1 x 100mm XP 2.5um 186006234 186006240 186006246 186006252 186006264 186006258 186006816 1860062762.1 x 150mm XP 2.5um 186006785 186006788 186006791 186006794 186006800 186006797 186006803 1860068063.0 x 50mm XP 2.5um 186006235 186006241 186006247 186006253 186006265 186006259 186006817 1860062773.0 x 100mm XP 2.5um 186006236 186006242 186006248 186006254 186006266 186006260 186006818 1860062783.0 x 150mm XP 2.5um 186006786 186006789 186006792 186006795 186006801 186006798 186006804 1860068074.6 x 50mm XP 2.5um 186006237 186006243 186006249 186006255 186006267 186006261 186006273 1860062794.6 x 100mm XP 2.5um 186006238 186006244 186006250 186006256 186006268 186006262 186006274 1860062804.6 x 150mm XP 2.5um 186006787 186006790 186006793 186006796 186006802 186006799 186006805 1860068082.1 x 100 mm 3.5 μm 186005538 186005549 186005560 186006406 186006447 186006488 Custom 1860059503.0 x 100 mm 3.5 μm 186005539 186005550 186005561 186006407 186006448 186006489 Custom 1860059513.0 x 150 mm 3.5 μm 186005540 186005551 186005562 186006408 186006449 186006490 Custom 1860059524.6 x 100 mm 3.5 μm 186005541 186005552 186005563 186006409 186006450 186006491 Custom 1860059534.6 x 150 mm 3.5 μm 186005542 186005553 186005564 186006410 186006451 186006492 Custom 1860059542.1 x 150 mm 5 μm 186005543 186005554 186005565 186006411 186006452 186006493 Custom 1860059553.0 x 100 mm 5 μm 186005544 186005555 186005566 186006412 186006453 186006494 Custom 1860059563.0 x 150 mm 5 μm 186005545 186005556 186005567 186006413 186006454 186006495 Custom 1860059574.6 x 100 mm 5 μm 186005546 186005557 186005568 186006414 186006455 186006496 Custom 1860059584.6 x 150 mm 5 μm 186005547 186005558 186005569 186006415 186006456 186006497 Custom 1860059594.6 x 250 mm 5 μm 186005548 186005559 186005570 186006416 186006457 186006498 Custom 186005960
  • 混凝土的外加剂固含量快速检测分析仪
    在外加剂固含量检测领域,测量准确性和测量速度之间的矛盾一直没有解决;针对这一现状深圳市芬析仪器制造有限公司提供一种有烘干法结构的快速测定固含量值的仪器,CSY-G2外加剂固含量检测仪深圳市芬析仪器制造有限公司生产的CSY-G2外加剂固含量检测仪引用了传统固含量检测方法研制而成,能够快速检测外加剂、淤泥、泥浆、油漆、胶水、浆料、乳化沥青等各种液体、糊状样品的固含量值,操作简单、测量快速、智能化操作、固含量值数据时时显示;一般3-5分钟即可完成测试。 传统固含量检测方法采用GB1725-1979固体含量测定法,配备电子天平、烘箱等辅助设备,操作繁琐、时间长,满足不了现代工业生产及检验需求;CSY-G2固含量检测仪采用高精度称重系统,保证称重准确;环形石英钨卤红外线加热源,快速干燥样品;与GB1725-1979固体含量测定法相比,环形石英钨卤红外线加热可以在高温下将样品均匀地快速干燥,样品表面不易受损,其检测结果与国标GB1725-1979固体含量测定法具有良好的*性,具有可替代性,且检测效率远远高于GB1725-1979烘箱法。 CSY-G2固含量检测仪产品优点:(1)体积小,重量轻,结构简单(2)无需辅助设备(3)操作简单,无需安装调试培训(4)效率高、速度快,整体操作不超过10分钟(5)多种分析方式,全自动、定时、半自动满足各种分析方式(6)标配RS232通讯接口-方便连接打印机、电脑和其他外围设备、符合FDA/HACCP格式要求(7)钨卤环形灯加热方式可直接从物质内部加热,大大缩短了烘干时间,而且还具有加热均匀、清洁、效率高、节约能源。 CSY-G2固含量检测仪技术参数:1、固含量测定范围: 0.01-100%2、固含量值可读性:0.01%3、称重范围:0-100g4、传感器精度:0.005g5、称重传感器:德国HBM传感器6、加热温度范围:起始-205℃7、加热源:钨卤环形灯8、显示参数:%固含量,时间,温度,重量 CSY-G2固含量检测仪信息由深圳市芬析仪器制造有限公司为您提供,如您想了解更多关于CSY-G2固含量检测仪报价、型号、参数等信息,欢迎致电深圳市芬析仪器制造有限公司夏经理

含量测定分析方法验证的可接受标准相关的资料

含量测定分析方法验证的可接受标准相关的资讯

  • 干货!详解溶出度测定方法验证
    本文来自书籍AnalyticalMethodValidationandInstrumentPerformanceVerification,作者为ChungChowChan,HermanLam,Y.C.Lee,Xue-MingZhang。  本文翻译自:  Chaper4DISSOLUTIONMETHODVALIDATION  本文作者:  CHUNGCHOWCHAN,PH.D.,NEILPEARSON,ANDANNAREBELO-CAMEIRAO  EliLillyCanada,Inc.  Y.C.LEE,PH.D.  PatheonYM,Inc.  4.1简介  在药物分析实验室中,溶出测试方法是一种最常见的分析技术,主要应用于口服固体制剂的体外溶出测定。溶出测试可以作为描述制剂特性的方法(如含量、有关物质)的补充。  一个好的溶出测试方法应能提供三个关键方面的信息。  首先,溶出方法应能够检测产品由于理化性质变化引起的药物释放速率或量的变化。这些信息有助于建立批与批(batch-to-batch)生产一致性的质控。  其次,溶出方法应能区分在开发阶段使用不同工艺和/或处方制备的产品。  最后,建立体内-体外相关性后,溶出应能反应人体内药物的释放和吸收速率。  然而,并不是所有药物的溶出方法都能满足以上三个方面的功能。  译者注解:我们假设一种极端情况,如果片剂不能崩解,其中的活性成分不能溶出,即使含量与有关物质均符合规定,那也不会产生应有的药效。因此可以看出溶出度是口服固体制剂的一项关键质量属性,评价它的就是溶出度检测方法。  溶出度检测方法需要能区分影响溶出度的关键工艺参数的变化,例如难溶性API的粒径(或粒径分布)、制粒参数、处方比例等。这些一般在不同批次间都可能存在差异,溶出度方法应能区分这些差异。这就是溶出度方法强调区分力的原因。需要注意的是,这和溶出速度快慢并不是必然的关系。同时溶出度方法也需要对贮存期间样品物理化学性质的变化具有一定的敏感性,例如晶型转变、自身聚集、脱水、吸湿等,如果这种变化可能影响药物释放的话。  质量标准收载的溶出度方法应当满足上述两个要求,不强求需要有体内外相关性,这就是译文中“不是所有药物的溶出方法都能满足以上三个方面的功能”的情况。在研究阶段,会寻找具有体内外相关的溶出条件,但不一定能找到。因为药物在体内产生药效有四个过程,即“溶出、吸收、分布、代谢”,溶出仅仅是其中一个环节,后面的三个环节并不一定与其有良好的对应关系。因此质量标准中制定溶出度方法,更重要的是评价自身批内与批间的质量一致性,不要迷恋体内外相关。  对于一个非药典的产品(如新产品),尽可能开发一个标准药典溶出方法。在方法开发与验证中,应考虑EP、JP和USP的法规要求。尽管USP通常要求速释制剂(IR)测试单点的溶出度,但对于中等溶解和略溶的药物,在方法开发过程中仍需测定多时间点的溶出数据以更好研究产品的特性。  4.2章节介绍  本章概述了药物溶出方法验证的一般要求。溶出方法的开发和验证阶段与其他测试方法一样,都不是很明确的。因此,本章有时会论述一些关于开展调查的补充意见。这个讨论是基于小分子药物的方法验证,重点关注制药行业的现行法规要求。因为方法验证贯穿于产品开发过程中的不同阶段,因此本章提供的信息主要适用于根据ICH指导原则准备提交注册申请(如NDA)时进行的最终溶出方法的验证。  溶出方法包括两个步骤:样品制备和样品分析。本章“样品制备”是指样品溶出的过程,包括样品液的收集。从溶出装置收集的样品液可能直接进行分析或需要进一步处理(如稀释)获得最终的样品液。  译者注解:溶出包括两个过程:溶出取样与分析。在做溶出方法验证的时候应对这两个过程都进行相应的验证。目前我们大多将方法验证的重点放在分析这块,忽略了溶出取样过程的验证。  含有新化学实体(NCEs)的固体口服制剂通常制成片剂或胶囊。NCEs后续开发可能会研究其更特殊的药物递送系统。标准的口服片剂或胶囊的溶出方法通常使用桨法或篮法装置。在这章中我们主要关注使用这两种装置进行方法开发和后续的方法验证。  4.3策略、验证试验和参数  验证要求包括溶出样品制备和样品分析。本章重点讨论溶出方法验证的注意事项。验证是为了评估拟定测试方法的性能。任何成功的验证结果都是一组全面数据,能够支持方法的预期目的。因此,执行一个没有明确计划的验证会遇到许多困难,包括产生不完整的或有缺陷的验证数据。有计划的验证必须包括以下内容:确定需要评估的项目(strategy)、如何评估每个项目(experimental)和预期最低标准(criteria)。强烈推荐准备一个清楚规定实验操作和相应接受标准的验证方案。方法验证必须包括样品制备和样品分析的评估。ICHQ2A(1)提供了溶出方法验证的指导原则,见表4.1。  溶出方法验证要求与含量方法验证是相似的,虽然没有在表4.1中列出,但应该评估方法中不同参数的耐用性(如样品溶液的稳定性),这些要求详见2.4章节。  4.3.1样品制备  通常,溶出介质的体积为500-1000mL,温度保持在37.5± 0.5℃,测试装置(如篮或桨)固定到轴上后,调节至规定的转速。按照药典要求将装置固定到轴上的相对位置上。在溶出过程中,应盖住溶出杯防止溶出介质的蒸发。  当使用篮法装置时,应将样品放在干燥的篮里,篮固定在连接的圆盘上,然后降低至规定的位置,立即开始转动。当使用桨法时,样品应在溶出杯的底部,立即按规定转速开启桨。如果要求使用沉降装置(Sinker),样品应放在沉降装置中,使其沉于溶出杯底部。在合适的时间点取样,用合适的方法滤过,滤液作为样品溶液。分析样品溶液中的药物,以相对标示量的百分含量表示规定时间的溶出量。  三大药典中关于篮法和桨法装置的要求是相似的,但也有一些不同。这些常见的要求汇总见表4.2。在方法开发时,知道这些差异是很重要的。在溶出装置定期校验时,其中的一些特征指标(如杆的位置,杆的转速变化和桨到溶出杯底部的距离)会作为系统检查。  表4.2篮法和桨法溶出装置药典规定允许杆转速的变化± 4%± 4%± 4%装置底部与溶出杯底部内壁的距离25± 2mm25± 2mm25± 2mm装置系统测试溶出校正片,崩解型和非崩解型无规定无规定溶出介质的温度37± 0.5?C37± 0.5?C37± 0.5?C加入的溶出介质胃蛋白酶最大750000单位/1000mL或胰酶最大10USP单位/1000mL无规定吐温80最大1%w/v取样篮或桨叶的上边缘到溶出介质液面的中间位置;离杯壁不小于1cm篮或桨叶的上边缘到溶出介质液面的中间位置;离杯壁不小于1cm篮或桨叶的上边缘到溶出介质液面的中间位置;离杯壁不小于1cm允许沉降装置螺旋金属丝或其他验证过的沉降装置合适的沉降装置(如螺旋金属丝或玻璃丝)固定形状的沉降装置数据解释6+6+1266+6S1每片不少于Q+5%6片都不小于Q前6片或12片中的10片满足规定的标准S212片(S1+S2)的平均值≥Q,没有一片小于Q-15%S324片(S1+S2+S3)的平均≥Q,不超过2片小于Q-15%,没有一片小于Q-25%  4.3.2定性溶出方法  通过观察制剂的溶出现象,可以在不进行样品分析时就能很快的发现处方或溶出方法的问题。这在处方开发和方法开发前期是特别有用的,当筛选多个处方或多种溶出介质时应进行考虑。  在方法最初开发阶段,溶出方法的定性评估可以节约大量的时间,某一测试的要求没有满足,可以不进行样品分析。一些可能观察到的剂型性能和相关问题如下:  胶囊壳或片剂的包衣开始破裂需要的时间,这提示胶囊壳或包衣可能引起药物延迟释放的问题(如明胶的交联作用)  完全崩解需要的时间,暗示剂量单位可能影响活性成分的释放(如过度压制的胶囊粉末或片芯)。  胶囊在特定沉降装置内的行为(如胶囊粘在篮网上)。  在溶出杯内混合的效果。堆积(在溶出杯底部形成一堆不溶性的辅料颗粒)可能需要更高的转速或用不同的装置(用篮法代替桨法)。  介质脱气方法的适用性。溶出过程中的气泡可影响活性成分的释放速度。  表4.3显示胶囊剂的溶出结果。通过一系列实验研究两种沉降装置。当使用不同沉降装置时,通过溶出试验的定性评价比较胶囊的溶出行为。沉降装置B是这个处方的最适宜装置。一旦使用这个最适宜沉降装置重复试验,溶出试验就会显示出良好的低变异性结果。  表4.3溶出15分钟时的观察与分析胶囊沉降装置(类型A)胶囊沉降装置(类型B)序号观察释放量的RSD%观察释放量的RSD%1正常崩解1.6正常崩解32正常崩解1.7正常崩解1.73一些明胶交联作用(成膜)13.9正常崩解1.34一些明胶交联作用(成膜)32.1正常崩解1.7  4.3.3样品制备过程的验证  应采用不同的方法来验证溶出测试中的样品制备过程。验证的目的是为了证明这个方法是符合其预期目的的。例如,一个策略是,在方法开发时(方法正式验证前)证明不同样品制备方法的有效性。最后的验证将会确认方法开发时所作的工作。方法开发和验证过程遵循的策略取决于分析实验室的文化、专业化程度和策略。  译者注解:方法验证的结果如何,在方法开发阶段已经决定了。方法验证时只是将开发好的方法以数据证明其合理性。这是QbD理念在方法开发验证中的体现,在方法开发阶段对方法进行适当的风险评估,可以大大减少方法验证出问题的可能性。比如溶出取样常见的风险包括:滤膜吸附、API在介质中的稳定性、仪器参数如温度的偏离等。在方法开发阶段进行了相应的验证,就保证了方法验证的顺利完成。当然还有一些未描述的基于对样品了解可能存在的其他风险也需要进行评估。这些理念并不只是用于溶出取样阶段,其他检测方法的开发验证的理念也是相通的。  (1)装置  剂型的性质将决定方法开发和验证时使用的溶出装置的类型。当选择溶出装置时必须了解下面的问题:  这是一个胶囊吗?  需要使用沉降装置吗?  药物在介质中溶出后的稳定性怎么样?  是速释还是缓释制剂?  这是皮肤贴剂吗?  USP溶出装置1(篮法)和2(桨法)通常用于速释制剂。USP装置3(往复筒法)是测试缓释制剂或要求多个pH的溶出曲线和时间点剂型的选择。小剂量的产品可能要求使用流池法分析或小体积测试技术(非药典规定的100、200mL溶出杯)。在方法开发时,一旦装置被选择且证明是合适的,那么在方法验证时就不需要再评估其他的装置。  (2)溶出介质  水、盐酸(0.1N)和不同pH缓冲盐是常用的溶出介质。尽管水是常用的溶出介质,但因为水没有控制pH,应避免使用。水的pH受处方组成(包括活性成分)的影响很大。缺少pH的控制可能导致溶出曲线发生改变。辅料发生变化或因制剂降解而发生的变化可能会导致pH的改变。盐酸(0.1N)常作为溶出介质使用,因为其可以模拟胃的酸性环境。其他溶出介质(如pH4.5或6.8缓冲液)可以用来模拟患者的胃的状态(如空腹或进食)或改善释放曲线特征和/或区分力。对于低溶解性药物,可使用表面活性剂(如吐温80)来改善溶出曲线。  在方法开发和验证时,溶出介质的选择取决于以下因素:  药物的溶解性  剂型的性质  药物的化学结构  脱气在溶出方法开发和验证中是很重要的因素,因为它可以影响药物的释放速度。理想情况下,一个方法不应该受脱气方法的影响。至少应证明脱气程度不会显著改变溶出试验的结果。需要注意的是,含有表面活性剂的介质不应被脱气,因为这可能导致过多的气泡产生。  常用的溶出介质脱气方法有三种:  (1)真空过滤法  (2)氦气脱气法  (3)加热法  真空通常应用在溶解介质过滤后,滤液持续暴露于真空泵所产生的低真空中(加热或不加热)。真空泵的水压力(例如真空度)可能会影响这种脱气的方法。应该确保有足够的吸力。应该注意暴露的时间。  氦气脱气法常用于去除HPLC流动相中溶解的气体。同样的原理可以用于介质的脱气。应该注意吹氦气的时间,因为它是溶出试验的一个关键参数。  加热是这三种方法中最不常用的溶出介质脱气方式。这种技术中,过滤的介质要加热到37℃以上(达到约90℃),并不断搅拌使溶解的气体消失。温度和时间间隔是确定脱气程度的重要因素。  通过测定介质中最终的含氧量,可以确定脱气技术是否有效。应在使用介质前进行脱气,以免再溶解气体。然而在使用前脱气,并不是可行的。因此,应该有数据支持使用某种程度上在空气中再暴露介质的结果及可以接受溶解氧的水平。  译者注解:溶出度方法验证很少验证溶出介质的脱气,比如验证脱气的方式和程度。但这并不说明该项一定可以不用研究,如果脱气程度对溶出结果有非常大的影响,则应对脱气进行相应的验证。检测方法涉及的某项操作是否需要验证,取决于该项操作对结果可能产生影响的程度,即风险的高低。方法验证中需要验证的内容,应该是基于我们对方法的了解,基于风险的判断。  (3)转速  在溶出方法的开发和验证中,篮法或桨法的转速是一个重要因素。篮法常用100rpm,桨法常用50rpm。方法验证中,需要确保转速的微小变化不会影响溶出试验结果。药典规定的转速在± 4%内变化,但是方法耐用性应考虑更大的变化(如± 10%)  译者注解:耐用性验证的区间应该考虑较大的范围,使方法在不同仪器上都有良好的重现性。不要说仪器已经做了机械性能的验证,就可以不用做相关耐用性验证了。仪器机械性能验证只是说明仪器的机械性能的偏差在允许的范围内,而耐用性是证明这种偏差不会对检测结果产生影响。  (4)样品收集  在方法开发和验证过程中,样品制备需要考虑样品收集的两个方面:  (1)从溶出杯中取出样品溶液   (2)样品溶液的澄清度(过滤)。  在方法开发和验证时,需要考虑在质控实验室建立自动或手动取样的可行性。如果选择自动取样,必须证明等同于手动取样。  在自动取样系统中,管路中有残留可能会引起正偏差。对于这一点必须进行调查确认是否发生残留,并在可接受范围内。根据残留量的大小,可能需要为系统制定一个特定的清洗程序,确保残留量降低至最小。  另一方面,管路的吸附作用将会引起负偏差。如果这个偏差太高,可能有必要规定样品取样只能为手动方法。  最后,比较自动和手动取样时,应该考虑取样探头可能会改变杯内的流体动力学。理论上,取样探头只有在取样时才可以浸在溶出杯中。  溶出样品收集时需要过滤。过滤掉可能干扰样品分析的辅料是很有必要的。进行适当的回收率研究和记录是必要的。任何观察到的偏差都应该进行说明。过滤必须在取样时进行,而不是在过一段时间以后。  译者注解:手动取样和自动取样应评估结果的一致性。自动取样存在管路吸附和残留的风险,需要评估可能产生的影响,并制定相应的处理措施。  (5)非USP方法  新处方研究的溶出方法的开发和验证通常会使用到非药典方法(如peak杯、特殊沉降装置)。在方法开发和验证过程中,应评估这些方法的适应性。  (6)清洁验证  一旦清洗干净溶出杯后,需要进行“空白”的溶出测试,以确保溶出杯的清洁方法是适当的,不会引起污染。  在方法开发或验证时,或在测定方法中,任何的清洁方法都必须确认。在实验设计中,可研究样品取样过程的耐用性,研究所有或部分之前讨论的参数。表4.4显示了44次影响因素试验设计统计分析的数据。设计试验研究脱气、介质浓度、桨高度、桨转速和取样时间的影响。在此方法中,模拟了方法操作条件的正常变化。  介质浓度、桨叶高度和沉降装置因素的p值表示无显著影响(p值 0.05)。然而,即使观察到在介质脱气、桨转速和取样时间方面的统计意义,但这些影响是微不足道的。  表4.4JMP耐用性分析汇总因素因素范围p-值影响评估(%溶出度)脱气Yes/no0.00590.5介质浓度0.08-0.12N 0.050.1桨转速45-55rpm0.00020.9桨高度15-35mm 0.050.1沉降装置类型3个螺旋 0.050.3取样时间13-17min0.00140.7  译者注解:可以参考这个表做相应的取样参数耐用性验证,但不必完全一致。比如介质浓度,如果介质浓度产生偏离的风险很小,就不必验证。  4.3.4分析方法验证  如前文所述,溶出分析方法的验证将根据指导原则进行,类似于第2章节的描述,验证参数已进行了详细的讨论。本章着重强调溶出方法的验证要求。  线性  制备覆盖样品浓度的系列标准溶液。ICHQ2B建议± 20%范围。通常从25%-125%的正常浓度范围进行线性测试,这个范围覆盖了早期的溶出时间点。目测响应相对于浓度应是一条直线。应报告相关系数(r)、残差和y轴截距。对于缓释产品的溶出曲线,配制规定范围的± 20%浓度。例如,对于溶出度为20-90%的释放曲线,范围应是0-110%。  准确度  准确度是对已知浓度的样品溶液(如加标样品)进行测定。在进行实验时,线性和准确度溶液可能使用相同的储备溶液。准确度溶液必须在正常试验条件下进行(如在加热的溶出杯内混合)。测定取样和分析样品溶液引起的偏差。如果产品需要测定溶出曲线,需在不同浓度下进行准确度的测试(如在理论溶出量的40%,75%和110%),结果以百分比的形式表示。  精密度  重复性试验是指使用同一台溶出仪制备6份溶出样品进行测定。  中间精密度是指不同的分析者及不同的仪器设备制备6份溶出样品进行中间精密度测定。然而,这个过程无法区分方法变化和片与片的变化。它将预测最坏情况下的精密度,包括片与片之间、取样和分析的变化。  测定缓释处方多个取样点的溶出曲线的精密度,通常最后一个取样点可以消除片与片之间和批次之间的差异。图4.1阐明了扣除片与片之间的差异的标准溶出曲线,然而标准的技术仅作为研究手段用于方法开发。最后处方应该在最后时间点完全释放。可以使用该方法进行标准化,以消除批与批之间的变化,公式如下:  %t:表示t时间的溶出度%  范围  溶出度测试的线性、准确度和精密度结果有助于范围的确定(单点理论溶出的25%-125%,缓释产品溶出曲线规定值的± 20%)  HPLC分析的耐用性  与HPLC含量和有关物质方法相似,应研究色谱柱、流动相、HPLC溶液稳定性和波长的影响。对于溶液稳定性,应在不同天分析之前的样品溶液或在同一天分析新配制的溶液。  UV-Vis分析的耐用性  在分析方法验证时,应研究波长准确性、波长重复性,稀释溶剂(如pH、浓度)、溶液稳定性和脱气情况。  专属性  对于HPLC分析,应该证明原料与辅料、系统干扰峰是可以分离的。对于UV-Vis分析,空白辅料的吸收不应太大。需要注意的是,溶出方法不需要具有稳定性指示能力、不必将降解物峰与被分析物分离。  译者注解:溶出度结果允许较大的误差,我们应该注意到溶出度的可接受标准都是整数,不同于含量测定的小数点后一位的可接受标准。因此较小量的杂质对溶出结果的影响可以忽略,比如质量标准中总杂不得过1.0%之类,在进行专属性验证时可不验证已知杂质的分离情况。个人认为含量测定方法验证也是同理,之前含量测定很多用紫外进行检测,这种方法并不能排除杂质的干扰,应当是忽略掉了。  4.4溶出方法的再验证  在溶出方法的生命周期中,很多情况要求进行方法的再验证。这些与第2章节中的含量测定是相似的。  4.5常见问题与解决方案  以下我们总结了溶出方法中常见的缺陷,在方法验证中可能会导致一些问题。关于分析部分的常见问题与第2章节中含量测定是相似的。  4.5.1.溶出试验的负偏差  图4.2列出了3个分析结果,与分析1相比,分析2和3均较低。分析1代表100%药物释放的正常溶出曲线。  验证过程中可能引起的一些负偏差的原因包括:  ?标准曲线和分析物线性响应的影响   由于样品浓度较低引起的较大的负偏差,这可能是由于被分析物与各种材料,如辅料、装置表面和/或滤器等吸附造成负干扰。  由于较高的样品浓度引起的较大的负偏差,这可能是由于溶解性较差,取样后温度由37℃到室温(或冷藏)进行分析,导致样品析出(沉淀)。  与样品浓度无关的负偏差:  ?样品溶液的组成与对照品溶液不匹配,导致样品出现较低的响应。这可能是由于对照品溶液和样品溶液制备方法不同或溶出介质中的负基质效应引起的(如pH改变)。  溶出过程中或溶出后阶段发生了样品降解,与对照品溶液相比,改变了样品溶液的响应。  ?计算多点(曲线)的样品分析,前面取样点没有校正样品和介质体积的变化引起的偏差。这种偏差随着取样体积和取样时间的增加而增加。  4.5.2.溶出试验的正偏差  图4.3显示一个高于正常曲线(100%释放)的正偏差。  产生正偏差的可能原因包括:  标准曲线和分析物线性响应的影响   由于样品浓度较低引起的较大的正偏差,这可能是由于被分析物与各种材料,如辅料、溶出杯残留、取样装置和滤器等造成的正干扰。  与样品浓度无关的正偏差:  ?如果使用UV-Vis直接测定,相比依赖降解物吸收的对照品,样品溶出过程中或溶出后阶段发生了降解,改变了样品溶液的响应。  ?样品溶液的组成与对照品溶液不匹配,导致样品溶液有高的响应偏差。这可能是由于对照品溶液和样品溶液制备方法不同或溶出介质中的正基质效应引起的(如pH改变)。  ?蒸发损失会导致偏差结果,特别是对于延长溶出周期的情况(如从几小时至几天)  4.5.3.溶出仪的校验  溶出仪应定期进行校验。每次进行溶出试验时,应该检查校验状态和校验的有效期。  4.6溶出方法验证总结  应采用表格的方式对溶出方法验证进行总结,这可以快速浏览验证数据。表格中应列出ICH规定的详细验证要求和验证结果。总之,支持方法验证的必要数据都应包括。表4.5是一个例子:  译者总结性的注解:溶出方法的验证应包括两大块:一是溶出取样过程的验证,包括溶出介质处理(脱气、不同成分的加入顺序等)、供试品在溶出介质中的稳定性、不同类型仪器(如自动取样与手动取样)、不同品牌仪器的结果一致性验证、仪器参数的耐用性验证(温度、转速等)、过滤操作的验证(滤膜和注射器吸附)、取样时间(自动取样可省略)等。另一块是分析方法的验证,这块内容著述非常多,就不再赘述。  参考文献  ICHHarmonizedTripartiteGuidelines,ICHQ2A,TextonValidationofAnalyticalProcedures,Mar.1995 ICHQ2B,ValidationofAnalyticalProcedures:Methodology,May1997.  EuropeanPharmacopoeia,4thed.,Section2.93,DissolutionTestforSolidDosageForms,2002.  UnitedStatesPharmacopeia,USP26Chapter 711 ,Dissolution,2003.  JapanesePharmacopoeia,14thed.,Chapter15,DissolutionTest,pp.33–36,2001.  JapanMinistryofHealth&LabourGuidelines,PAB/PCDNo.487,Dec.1997.
  • 行业标准《地下水质分析方法 第98部分: 锑和铊含量的测定 电感耦合等离子体质谱法》等6项标准公开征求意见
    各有关单位:行业标准《地下水质分析方法 第99部分: 锑含量的测定 氢化物发生-原子荧光光谱法》、《地下水质分析方法 第99部分: 锑含量的测定 氢化物发生-原子荧光光谱法》、《地下水质分析方法 第100部分: 阴离子表面活性剂的测定 二氮杂菲萃取分光光度法》、《地下水质分析方法 第101部分: 阴离子表面活性剂的测定 流动注射在线萃取法》、《地下水质分析方法 第102部分: 多氯联苯的测定 气相色谱-质谱法》、《地下水质分析方法 第103部分: 多环芳烃的测定 气相色谱-质谱法》公开征求意见。序号国/行计划号项目编号标准名称征求意见稿及编制说明1行业标准202213010DZ20226210地下水质分析方法 第100部分: 阴离子表面活性剂的测定 二氮杂菲萃取分光光度法编制说明_地下水质分析方法+第100部分.pdf征求意见稿_地下水质分析方法+第100部分.pdf2行业标准202213008DZ20226211地下水质分析方法 第98部分: 锑和铊含量的测定 电感耦合等离子体质谱法征求意见稿_地下水质分析方法+第98部分.pdf编制说明_地下水质分析方法+第98部分.pdf3行业标准202213009DZ20226213地下水质分析方法 第99部分: 锑含量的测定 氢化物发生-原子荧光光谱法编制说明_地下水质分析方法+第99部分.pdf征求意见稿_地下水质分析方法+第99部分.pdf4行业标准202213011DZ20226225地下水质分析方法 第101部分: 阴离子表面活性剂的测定 流动注射在线萃取法征求意见稿_地下水质分析方法+第101部分.pdf编制说明_地下水质分析方法+第101部分.pdf5行业标准202213012DZ20226217地下水质分析方法 第102部分: 多氯联苯的测定 气相色谱-质谱法征求意见稿_地下水质分析方法+第102部分.pdf编制说明_地下水质分析方法+第102部分.pdf6行业标准202213013DZ20226221地下水质分析方法 第103部分: 多环芳烃的测定 气相色谱-质谱法征求意见稿_地下水质分析方法+第103部分.pdf编制说明_地下水质分析方法+第103部分.pdf联 系 人:韩梅联系电话:15930153255电子邮箱:hanmei0209@163.com下载意见反馈表.docx全国自然资源与国土空间规划标准化技术委员会2023年10月27日
  • 溶出度方法学验证的一般内容探讨
    药物的质量研究与质量标准的制定是药物研发过程的重要研究内容之一,贯穿于研发的整个生命周期。在药物质量研究工作中,分析方法学的开发及验证是其重要的组成部分之一。分析方法开发验证的目的是判断所采用的分析研究方法是否科学、合理,能否有效控制药品的内在质量特性,做到质量可控。本文旨在和大家一起交流溶出度方法学验证内容的一般研究思路,如有存在表述不当之处还请各位批评指正。溶出度方法学验证的步骤主要有:1)初步确定分析方法,UV法或HPLC法;2)制定验证的方案,包括前期文献材料调研、验证目的、验证项目及不同项目验证的可接受标准;3)开始验证工作,积累收集数据及相应图谱;4)对验证的结果进行判断,评价分析方法是否通过验证。溶出度方法学验证的项目与其他分析方法基本一致,常规验证项目包括:专属性、线性及范围、准确度、精密度和耐用性等,方法验证的指导原则可参考中国药典、ICH Q2(A/B)、USP通则1225、1226、1092等。1. 专属性专属性系指在其他成分(如杂质、降解产物、空白辅料等)存在时,采用的分析方法能正确测定出被测物的能力。专属性测定环节,应分别分析加有杂质、降解产物等控制成分的样品和实际样品,比较两组测试结果,结果合格的标准应该为:空白溶剂对主峰的检测无干扰,不超过1%;主成分与有关物质完全分离,分离度r≥1.5;峰纯度符合相应规定。辅料对专属性的干扰:空白辅料是指除了活性成分以外的所有辅料和包衣材料,还包括油墨和胶囊壳。具体操作方法可按处方比例配制空白辅料(含油墨或胶囊壳)的混合样品,将该混合样品溶解或分散在溶出介质中,然后向溶液中加入一定量药物,作为供试品溶液,可接受标准为:辅料(包括胶囊壳等基质)对主峰的检测无干扰,不能超过2.0%。对于溶出实验方法而言,还需要特别注意的一点是:取样时所采用的过滤装置,如滤膜、滤头等,必须要经过药物的吸附验证,防止对测定结果产生一定干扰,这一部分应在溶出方法开发阶段做充分论证研究。2. 线性和范围可取对照品适量,按照标准方法配置一系列浓度的溶液。一般操作是在容量瓶中配成一定浓度的储备液,分别精密移取储备液适量,稀释成系列浓度的溶液,通常至少使用5个浓度点(参见1225),1225中说明:对原料或成品药(制剂)的含量测定:一般应在测试浓度的80-120%,该范围是应考虑的最小规定范围,若超出此范围,应有正当理由,主要是根据剂型的特点;对于溶出度试验,应为规定范围的±20%,例如如果是控释制剂,规定1h后达到20%,24h达到90%,它的验证范围应为标示量的0-110%。另外,若线性贮备溶液制备过程中为了增加药物的溶解度,可能会用到有机溶剂,除非经过验证外,有机溶剂的量均不得超过总体积的5%(v/v)。例如取头孢克肟对照品55.37mg,置100ml容量瓶中配置为储备液,然后就依次精密移取稀释成一系列梯度浓度,以浓度为纵坐标,相应峰面积为横坐标进行线性回归,结果表明头孢克肟浓度在0.48-477.84μg/ml范围内,进样量在9.34-9337.66ng范围内,进样量与峰面积呈良好线性关系。3. 准确度准确度即回收率实验。回收率试验目的是考察采用拟定方法测定结果与真实值或参考值接近的程度,且应应在规定的线性范围内进行试验。在回收率实验进行之前,USP1092建议:在回收率实验之前,过滤器、滤膜等对药物的吸附要进行全面评估,同时要设法排除由于仪器的玻璃材质部分对样品吸附而对测定结果造成的干扰影响。具体的实验方法包括:在规定范围内,取同一浓度(相当于100%浓度水平)的供试品,用至少6份样品的测定结果进行评价;或考虑设计至少三种不同浓度,每种浓度至少平行配制3份,用至少9份样品的测定结果进行评价,回收率验证的浓度范围一般要求为限度的±20%。两种分析方法的选定应考虑分析的目的和样品的浓度范围。回收率供试样品溶液配制:按处方比例混合的空白辅料+不同浓度的主成分对照品或原料,再按照拟定的质量标准配制溶液,必要时可超声使主成分溶解。配制溶剂尽量与溶出介质体系一致。如果药物溶解性较差,可以将药物溶解在少量有机溶剂(一般不超过5%)中制备储备液,并用溶出介质稀释到最终浓度。可接受标准一般为:各浓度下的平均回收率应在98%-102%之间,相对标准偏差RSD应不大于2.0%。例如取头孢克肟对照品适量各三份,按照100%比例加入空白辅料,加溶出介质振摇溶解,作为50%、75%和100%供试溶液,回收率结果表明其方法回收率良好。4. 重复性重复性即在同样的操作条件下,在较短时间间隔内,由同一分析人员测定所得结果的精密度。可在规定浓度范围内,取同一浓度(分析方法拟定的样品测定浓度,相当于100%浓度水平)的供试品,用至少6份样品溶液的测定结果进行评价;或设计至少三种不同浓度,每种浓度分别制备至少三份供试品溶液进行测定,用至少9份样品的测定结果进行评价(浓度设定应考虑样品的浓度范围)。实际实验操作中,可能有几种方法,方法一:取6个单独制剂分别测定溶出度,计算RSD,但该方法测定时受制剂个体差异影响比较大,如果测定结果重复性不好,可能是因为制剂含量差异所导致,用该方法时最好是挑选质量较好,例如含量均匀度较好的片剂进行实验;方法二即取供试品1片(粒),置于一个溶出杯中,按照溶出度方法测定,至规定取样点时去处六份供试液分别测定溶出度计算RSD值。结果接受标准为RSD不超过2.0%。例如取头孢克肟颗粒6袋,按照溶出度方法进行溶出,30min取溶出液滤过,进样计算溶出度,结果表明该溶出测定方法重复性良好。5. 中间精密度中间精密度即在同一实验室内的条件改变,如不同时间、不同分析人员、不同设备等测定结果之间的精密度。研究过程中的典型的变化,包括不同天、不同操作人员和设备。USP 1092中建议:可选用同一批次质量特征较好的制剂(如较好的含量均匀度)的溶出试验可以由同一实验室至少两个不同的分析人员进行,每个分析人员制备标准溶液和溶出介质和依据明确的提取和定量步骤进行。通常情况下,分析人员用不同的溶出液、分光光度计或HPLC(包括色谱柱)和自动进样器,在不同天进行试验。可接受标准:USP 1092建议:当该时间点的溶出量小于85%时,两个分析员溶出结果的平均值相差不得超过10%;当该时间点的溶出量大于85%时,两个分析员溶出结果的平均值相差不得超过5%。当然,具体的可接受标准可根据特定产品做具体规定。6. 溶液稳定性溶液稳定性考察的具体时间区间可根据不同的项目需求去做不同的考察。稳定性包括对照品溶液稳定性和供试品溶液稳定性。对照品溶液稳定性:取对照品溶液适量,在室温下放置,分别于不同时间点测定吸光度值,计算其RSD值;供试液稳定性:取自制样品适量,用相应介质制备成供试液,在室温下放置,分别于不同设置时间点测定吸光度值,计算其RSD值。对于UV法测定的供试液,一般稳定性做到24小时即可,缓控释制剂可相对延长时间;对于HPLC法测定的供试液,一般需满足一条溶出曲线所有样品测定完全的时间。如果溶液不稳定,还需要考虑温度(需要冷藏)、避光(透明容量瓶+棕色容量瓶)、以及容器材料(塑料或玻璃)等对稳定性结果的影响。可接受标准一般为:取每时间点的吸光度值,计算其RSD,应不大于2%,则说明该溶液在此时间段内的稳定性良好。7. 耐用性耐用性主要评估溶出条件故意做微小改变时对溶出方法耐用性的影响。对于该实验,最好选用具有较好质量特征(如具有较好含量均匀度)的制剂批次进行,排除制剂个体差异对该结果造成的干扰。HPLC法可根据具体情况考虑流动相组分差异、流速、PH值、色谱柱类型、分离温度、波长等变化对测定结果耐用性的影响;UV测定方法可结合不同项目溶出度方法的具体情况对表面活性剂浓度、pH值、溶出介质是否脱气处理、转速、温度、体积、取样时间、不同型号品牌的溶出仪等进行方法的耐用性研究,对比溶出条件的微小变化对产品测定结果的影响。例如若选择的溶出介质是缓冲液介质体系或是含有表面活性剂的介质体系,需要做pH值变化、表面活性剂浓度变化对溶出速度的影响,以确定溶出介质的耐用性。根据品种特点考察耐用性,推荐但不仅限于上述变动条件。8. 溶出均一性溶出均一性试验包括批内均一性和批间均一性。这两项指标既能检验药品本身质量特性是否符合规定,同时也可以检验溶出方法是否满足准确性、精确性良好的要求。批内均一性可取同一批次产品的6或12个剂量单位测定溶出曲线,计算各取样时间点的RSD值。其中,早期的一些取样时间点(如5min),要求RSD≤20%;其他时间点,要求RSD≤10%。批间均一性:取不同批次产品的6或12个剂量单位测定溶出曲线,比较各批次的溶出曲线是否相似。综上,溶出方法验证的一般项目基本如上几项,当然并不局限于该些项目,具体的验证项目及可接受标准可根据产品自身特点所设定。参考文献:[1]. 《中国药典》2020年版四部9101:分析方法验证指导原则[2]. USP通则 1092、 1225 [3]. 山广志,药物制剂质量研究——方法选择与验证[4]. 胡利敏,杨丽,头孢克肟颗粒溶出曲线方法学验证[J]. 中国抗生素杂志,2017,5(42):373-376.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制