流式在微纳米载体及小颗粒检测

仪器信息网流式在微纳米载体及小颗粒检测专题为您提供2024年最新流式在微纳米载体及小颗粒检测价格报价、厂家品牌的相关信息, 包括流式在微纳米载体及小颗粒检测参数、型号等,不管是国产,还是进口品牌的流式在微纳米载体及小颗粒检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流式在微纳米载体及小颗粒检测相关的耗材配件、试剂标物,还有流式在微纳米载体及小颗粒检测相关的最新资讯、资料,以及流式在微纳米载体及小颗粒检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

流式在微纳米载体及小颗粒检测相关的仪器

  • 纳米流式颗粒成像分析仪仪让颗粒无处遁形设备名称:纳米流式颗粒成像分析仪仪器型号:YH-FIPS-10工作原理:图像法原理产品介绍: 随着科技不断进步,产品质量快速提升,各行各业对颗粒检测的要求也越来越高。而在实际生产过程中,往往 颗粒呈现出不规则形状。颗粒的形貌会影响到产品的稳定性,溶解性,流动性等。因此,颗粒分析不仅仅要做粒度 分布的检测,还需要得到颗粒的形貌这一关键信息。 FIPS 10 流式动态图像法粒度仪,是采用高速相机实时采集图片, 再进行颗粒分析的一种粒度仪。样品在流动过程中实时拍摄,能够采集到足够多的颗粒图片,使得测试结果具有代 表性和统计学意义。技术优势:√ 宽广的检测范围(0.2 μm-3 mm)、检测浓度可高达 1*107 个 /mL;√ 专业远心变倍镜头,兼容不同类型粒子测试,杜绝形貌畸变;√ 引入 FIPS 超分辨算法及 AI 智能算法等多种算法,确保数据准确性;√ 数据同时给出粒子形貌、尺寸分布等信息,以达到最“真”统计;√ 符合 21 CFR part 11 及 GMP 对数据完整性的要求。流式动态图像法粒度仪技术参数:型号 :YH-FIPS-10检测范围: 0.2 μm-3 mm进样体积 :最小 50μL 流速 20 μL/min-200 μL/min镜头类型 :远心镜头放大倍率 :0.75-9 倍可调NA 值: 0.1 Distortion0.02%VOF :2600*2100@3.45 μmFrame ratio: 93 fps DOF 13 μm-300 μm光源 :单色 LED 光源调焦功能: 电动调焦距粒子浓度: 1*107 个 /mL结果输出: 数量结果 (PSD, 浓度等 ),形貌结果(长径,短径,面积等)分析软件: 符合 21 CFR part 11 审计追踪要求。应用案例 案例一: 样品描述:不同浓度的标准粒子(5 μm) 测试结果:右图为不同浓度标准粒子测试得到的PSD 数据图,可以看到经过等比例稀释得到的不同浓度样品的测试结果具有很好的线性关系。案例二: 样品描述:标准粒子(2 μm) 测试结果:右图为2 μm标准粒子在不同流速下测试得 到的PSD数据图,可以看到样品在不同流 速下的测试结果具有很好的一致性,体现出该仪器不同测试条件下的数据稳定性。案例三: 样品描述:亚微米标准粒子(0.495 μm、0.799 μm、0.994 μm) 测试结果:下图为不同尺寸的亚微米粒子的PSD数据图, 表明此仪器能实现亚微米级粒子粒径分布的精准测量及颗粒的计数。案例四:样品描述: 生物蛋白药物 测试结果:下图为该样品的粒径分布和颗粒累计分布图。 该药物的蛋白理论上为纳米级颗粒,但是从右 图双峰的粒径分布结果,可以得出该药物中蛋 白颗粒逐渐聚集长大的过程。同时,从大颗粒 的典型形貌图也可以得出蛋白质发生了聚集,且形态各异。说明该药物稳定性还需要进一步提高。案例五:典型颗粒形貌:样品描述: 纳米乳液 测试结果:下图为纳米乳液的粒径分布图及累计分布图, 可以得到样品中包含三个尺寸的粒子,从样品 的部分颗粒形貌中可以观察到部分乳滴的融合, 这可以为该样品实际生产的品控提供一定建议。应用领域 :FIPS流式动态图像法粒度仪不仅可以得到样品中的粒子浓度、不同尺寸粒子的比例分 布等详细的PSD信息,实现亚微米到微米级颗粒的计数功能,还可以得到样品的实际颗粒 形貌信息,以达样品颗粒的最真实统计。可广泛应用在生物医药、半导体、材料化工、食品卫生等多个领域。
    留言咨询
  • 微流控制备仪描述:MPE-Lab型微流控制备仪,是一种工具型微流控制备系统,是实验室规模微纳米颗粒制备、质量评价、效用考察的重要工具,也是新型技术应用研究的重要帮手。MPE-Lab提供了提供了基础而必要的方案,脂质体、脂质纳米颗粒、微球、胶束等各种微纳米载体均可在此之上展开探索研究。相较于传统制备工艺及相关硬件方案, MPE-Lab实验过程高效、操作简单、结果稳定、重现性好。最为重要的是,MPE-Lab微流控制备仪极大减少了不同操作人员、实验时段对结果的可能影响,保证了研究工作的客观性和独立性。微流控技术:微流控(Microfluidic)技术是一种基于(微)流体力学理论,在管线中实现样品制备与加工的技术。完美的将微流体的理化模型与流体力学理论相结合,可实现样品的混合、乳化及分离纯化等功能。微流控技术将过程控制技术(Process Control Technology,PCT)与过程分析技术(Process Analytical Technology,PAT)相结合,可实现良好的在线样品制备技术(On-line Preparation Technology,OPT)。样品在连续化制备的过程中,工艺过程中参数完全可控,且具备良好重现性,所以较传统分步割裂式制备、分批次生产的方法来说更具有可放大性。可实现样品的初乳化、复乳化、粒径控制功能。微流控制备系统通过制备泵和高压输送泵与微流控芯片相连接,A相和B相可按照一定的比例恒速的输送至芯片中进行混合,乳化。在微流控芯片中通过设计不同的流道结构,控制不同的速度,使得样品在微流控芯片中达到湍流、层流或雾化状态,可以实现样品的初乳化或复乳化的要求。制备好的样品通过高压泵输送至高压微流控芯片中,通过撞击力和剪切力来控制粒径,使其达到所需范围内。粒径最小可达到100nm以内,PDI至0.1以下。微流控芯片: 微流控芯片是基于应用工艺的定制型特殊流道结构部件,其通道结构和尺寸均与项目工艺需求相结合,属定制型结构件。具体来说可实现以下四种功能:两相的混合、乳化微粒形成后的孵育;微粒形成后的粒径控制;二次混合或乳化。技术参数:型号MPE-Lab适用载体脂质体、脂质纳米颗粒、微球、胶束等微纳米颗粒/载体适用体系适用于互溶或不互溶溶剂体系统最小工作体积400μL单次最大实验体积40mL设备最大总流速100mL/min设备参数设置注射器类型/规格、总流速、流速比、弃液体积等操作方式集成式触屏操作操作软件MPE微流控制备系统(Lab型),支持终身免费升级兼容性兼容进口及国产注射器,兼容多种结构芯片其他支持芯片定制典型芯片:
    留言咨询
  • 一.机型称号:纳米粒子颗粒微粒研磨混合机,药物研磨混合机,毫微米研磨混合机,超飞快研磨混合机,水管式研磨混合机,3级研磨混合机,高剪切研磨混合机。二.研磨机:机型19款,处理量50到8*10000KG/小时,旋转1100到1.4*10000转/分钟,线速度23到44m/秒,电滚功耗1.5到160kW,磨头胶体磨&锥体磨。三.研磨分散机:机型6款,处理量50到6*1000KG/小时,旋转1100到9*1000转/分钟,线速度23m/秒,电滚功耗2.2到150kW,磨头胶体磨。四.小型分散乳化机:机型30款,处理量0.2克到10KG/小时,旋转50到3*10000转/分钟,线速度3到33m/秒,电滚功耗0.3到0.8kW。五.真空分散乳化机:机型32款,处理量5到2*10000KG/小时,旋转14到1.4*10000转/分钟,线速度44m/秒,电滚功耗0.18到120kW。六.均质匀浆机:机型4款,处理量0.2到150克/小时,旋转3500到8*1000转/分钟,线速度3到10m/秒,电滚功耗0.145到0.18kW。七.多效用分散乳化均质机:机型27款,处理量150到12.5*10000KG/小时,旋转960到1.4*10000转/分钟,线速度10到44m/秒,电滚功耗1.5到160kW。八.混合机:机型I6款,处理量300到12.5*10000KG/小时,旋转1100到9*1000转/分钟,线速度20到23m/秒,电滚功耗1.5到160kW。九.实用物料种类:胶粘溶胶,巨粒子固态液体悬空液乳剂,不包溶等。十.终级粒径:主腔内有叁组定转子,每组粗齿、中齿、细齿、超细齿。调动定转子间隙,加工后地终级粒径在10微纳米之下。十一.胚料配件:百分之八十以上进ロ海内外公司。十二.技艺出处:引荐德国技艺,立发明加工,备有专利。十三.工作方式:有在线式,批次式,内外循环式,水管式,可倒式,若干效用式。十四.机型合成:靠预加工锅、搅动锅、泵、液压系统、倒料系统、电力调动系统、主腔等部件合成。十五.智力化:CIP冲洗系统,液压升降松盖,包括配料给料吸料安装。十六.磨头好处:研磨头可调5款模版,6款分散头,20多款工作头。十七.锥磨好处:锥磨转子外层包含金属碳化物跟不一样粒子地陶瓷镀层等高上材料,提防毁伤腐蚀。十八.机型材料:统统接碰物料地材料皆是进口耐酸钢,主腔跟管路内乃亮面抛光三百EMSH(卫生级),无死角。十九.密封好处:博格曼双机械密封,液压平稳系统(可以担当16atm重压),软密封。二十.搅动方式:可挑刮壁式/锚固式/融解式/叶面式。二十一.机型好处:机型采选上层同轴三重装搅动器,循环管路,出水阀。二十二.操控箱好处:不但可以操控电滚旋转,摄氏度降温升温(经历电能,热汽,油水循环,可以担当-40到250摄氏度),重压,PH度,粘性。且可以设定不一样效用模版,呈现相称地个个参数,可以线性扩大量产。?.可抉选:参观窗,硅氟酸玻璃参观,电导率计,二层绝缘保护,稳定夹,作业台,底盘,图案解析多功用显微硬度仪(测量界线1—4千维氏硬度),管路式测量电炉(测量界线zui高1350度),传送泵/转子泵/气动隔膜泵/锚杆泵/离心泵(产量850—4.3万升/H),反应翻搅单罐/多罐(500—3千升/H),反渗入/全自动纯净装备(0.5—3千升/H),超氧产生器,过流式紫外光灭菌器等。?.别的特长:整体立方小,电耗低,分贝低,可每日不断出产。?.访客垂访:按照访客实况必要恰当抉选!别的可订制非标和生产线!假若是非常情况,比方超温,超压,易烧易炸,侵蚀性,可产品升级!?.物料测量:得到访客物料后当即投入测量,瞧可否到达要求&答复测量进程&成果。?.方案价格:断定好产品功用后当即策画方案,包含2D部署图,总安装出产线表示图,立体成果图,&呈上本该得价格单子!?.结语:我们是出产厂家,详尽信息可以企业查看,因此分外恭候访客去垂访&更深一步长谈!以上信息不容坊造,非常道谢!扩展内容可不看:纳米颗粒是指粒径在1-100nm之间的颗粒(纳米颗粒也称为超细颗粒)。 属于胶体粒径范畴。它们处于原子团与宏观物体之间、微观系统与宏观系统之间的过渡地带,是由少量原子或分子组成的群,既不是典型的微观系统,也不是典型的宏观系统。1959 年末,诺贝尔奖获得者 Richard Feynman 在一次演讲中提出了纳米的概念,但对纳米粒子真正有效的研究始于 1960 年代。 1963年Uyeda等人采用气体冷凝法制备金纳米粒子。1984年以来,德国科学家格莱特等人通过惰性气体冷凝法成功获得铁纳米粒子,标志着纳米科学技术的正式诞生。 近十年来,越来越多的科学家致力于纳米材料的相关研究,在制备、性能和应用等方面取得了丰硕的研究成果。可以预见,纳米粒子应该具有一些新颖的物理和化学性质。 纳米粒子与宏观物体的区别在于其表面积占很大比例,表面原子既没有长序也没有短序无定形层。可以认为,纳米粒子表面的原子状态更接近于气态,而粒子内部的原子可能呈有序排列。即便如此,由于粒径小,表面曲率大,内部会产生很高的Gilibs压力,这会导致内部结构发生一定的变形。 纳米粒子的这种结构特征使其具有以下四种作用:音量效果,表面效果,量子尺寸效应,宏观量子隧穿效应。
    留言咨询

流式在微纳米载体及小颗粒检测相关的方案

流式在微纳米载体及小颗粒检测相关的论坛

  • 深入探索纳米流式检测技术的核心原理与应用领域

    [b][font=宋体]一、纳米流式检测技术的原理[/font][/b][font=宋体] [/font][font=宋体][font=宋体]纳米流式检测技术的原理主要基于纳米流式检测仪([/font][font=Calibri]Flow NanoAnalyzer[/font][font=宋体],[/font][font=Calibri]FNA[/font][font=宋体])。这种技术能够覆盖传统流式细胞仪在[/font][font=Calibri]200[/font][font=宋体]纳米以下粒径检测的盲区,包括纳米颗粒以及亚细胞结构、细菌、病毒、外泌体等天然生物纳米颗粒的表征。其检测原理是利用流体聚焦和激光聚焦技术,减小探测区体积、延长被测颗粒穿越激光探测区的时间、降低散射背景、提高激光功率等措施,实现[/font][font=Calibri]200[/font][font=宋体]纳米以下颗粒的检测。[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术的工作原理是:当被测颗粒通过激光检测区时,颗粒被激光照射产生散射光和荧光信号。通过一系列光学元件收集并分离散射光和各波段的荧光信号,经过电学系统中的信号转换和数据处理,获得样品的各种理化信息。其中,散射光信号可以用来表征颗粒的大小和粒度,染色后的荧光可以用来表征细胞内特定蛋白的表达水平、细胞的生理状态和分裂周期等。通过对检测到的颗粒进行计数,可以实现颗粒浓度的无标样定量检测。[/font][font=宋体] [/font][font=宋体]总之,纳米流式检测技术结合了流式细胞术和纳米技术,具有高灵敏度、高分辨率和高通量等优点,为生物医学研究提供了新的工具,有助于深入研究和了解生物纳米颗粒的特性和功能。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]二、纳米流式检测技术的应用[/font][/b][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])肿瘤诊断[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米流式检测技术可以对肿瘤细胞进行快速、敏感的检测,并且可以在单细胞水平上进行分析,从而实现早期肿瘤诊断。同时,纳米流式检测还可以检测循环肿瘤细胞([/font][font=Calibri]CTC[/font][font=宋体]),这是一种正在被广泛研究的肿瘤诊断手段,可以极大地提升肿瘤治疗成功的概率。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])细胞免疫学[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术可以通过检测细胞表面和内部的特定蛋白质、抗原或基因,实现对细胞的免疫学分析。这种方法可以在单个细胞水平上对细胞进行分类和排序,同时也可以在细胞群体中进行比较分析。这对于了解免疫系统的正常和异常状态,以及研究免疫治疗等方面都有着重要的意义。[/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])病毒学研究[/font][/font][font=宋体] [/font][font=宋体][font=宋体]病毒是一种纳米尺度的微生物,纳米流式检测技术可以用于病毒的检测和计数,包括流感病毒、[/font][font=Calibri]HIV[/font][font=宋体]病毒、疱疹病毒等。这种技术还可以用于病毒分型和病毒载量测定等方面。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]4[/font][font=宋体])生物分子检测[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术可以用于生物分子的检测,包括蛋白质、核酸、糖类等。这种技术可以用于生物标志物的检测和诊断,以及生物分子相互作用的研究。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]三、总结[/b][/font][font=宋体] [/font][font=宋体]纳米流式检测技术是一种应用前景广阔的单细胞分析技术。它具有高灵敏度、高通量、高精度的特点,能够针对不同细胞类型和样品进行分析和检测。随着技术不断发展和完善,纳米流式检测技术将有望在医疗诊断、新药开发等领域得到更广泛的应用。[/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以查看义翘神州[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测服务[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 【分享】微结构决定的具有均一米状形貌的新奇银纳米颗粒的高产率合成

    金属纳米颗粒由于其良好的电学、光学、热导、催化以及磁学性质而得到广泛的研究。近年来,金属纳米颗粒奇异的光学性质引起人们极大的兴趣。其中,金银纳米颗粒由于在可见和红外光频区有着很好的表面等离子体共振性质而格外引人注目,在表面增强光谱、生物检测等方面具有巨大的应用前景。通过控制纳米颗粒的形貌可以有效的调制金属纳米颗粒的表面等离子体共振性质。因此,获得不同形貌的金属纳米颗粒是最近兴起的表面等离子体光子学研究领域中重要的研究方向之一。 最近,中国科学院物理研究所/北京凝聚态物理国家实验室徐红星研究员研究组的梁红艳同学和王文忠教授首次用多羟基醇还原法合成了一种外形为纺锤状的银纳米颗粒(Ag Nanorice),并与李建奇研究员研究组的杨槐馨副研究员合作,发现这种银纳米颗粒为六方相和立方相交生形成,内部存在孪晶,堆垛层错,多重调制等多种缺陷结构,并且缺陷密度在银纳米颗粒的不同部位有着明显区别,这种微结构突破了传统银纳米颗粒常规的单晶、孪晶特性,决定了具有均一米状形貌的新奇银纳米颗粒的高产率合成。该项研究的意义不仅在于为有效调制表面等离子体共振特性提供新的纳米结构,还在于这种堆垛结构可能打破晶体生长时晶体结构对形貌的限制,为设计合成所需形貌晶体带来曙光。这将丰富纳米晶体结构控制生长的内涵,深化对金属晶体生长规律的认识,拓展金属纳米结构在光谱分析、超灵敏检测等方向的应用,因而具有十分重要的实际意义。 该工作发表于近期的J. Am. Chem. Soc. 131,6068-6069(2009)上。此项研究获得国家自然科学基金委杰出青年基金,科技部重大项目,中科院知识创新工程和教育部的“985”和“211”等项目的资助。

流式在微纳米载体及小颗粒检测相关的耗材

  • 纳米颗粒分析仪配件
    纳米颗粒分析仪配件用于观测和分析液体中的微小颗粒的布朗运动速率与尺寸分布相关,采用纳米颗粒跟踪分析(NTA)技术,通过激光散射装置(纳米观测)与超显微镜ultra-microscope和NTA软件的相结合,生成纳米颗粒图像,是全球领先的纳米粒度分析仪。纳米颗粒分析仪配件 纳米观测原理纳米颗粒分析仪使用纳米透视Nano-Insight 激光散射模块,可以通过顶眼超显微镜观测到液体中的纳米粒子。采用不同激光散射颗粒在矩阵中表现为模糊点。模糊点根据其各自的布朗运动而移动。液体中有不同的布朗运动粒子。小粒子比大粒子受到相邻粒子的影响更少。因此,在超显微图像中,较大的粒子有大的模糊外观。 NTA能够追踪粒子的相应路径。纳米观测模块纳米观测模块的设计,可以使其安装在超显微镜,顶眼纳米的底板。可以通过Mishell软件来控制该模块。Mishell软件控制着纳米观测模块以及照相机。根据应用决定在纳米观测模块装备一个或多个激光器。激光器以一种特殊的方式排列。左侧图片上展示的是纳米观测图。较小的粒子比较大的粒子移动更快。我们用摄像机同时跟踪每个粒子。顶眼超显微镜顶眼超显微镜将进入模糊点的散射光可视化。用适当的时间分辨跟踪,模糊云可被分配并与各自的粒径相关。粒子的布朗运动图像是唯一的。下面将给出例子。每个模糊点代表单个粒子。NTA 软件上图展示的是NTA分析的典型图像。散射激光被捕获到模糊点,要根据时间函数跟踪模糊点。我们跟踪每个模糊点。跟踪每个粒子的方法,得到的技术结果是高分辨率。我们正在寻找与图像相关的量,当我们知道相关的量后,我们就可以极其精确地确定各种粒子的浓度。该技术将会带起许多可能的应用。例如,可能也可以使用荧光激光器。使用荧光激光器,可以瞄准复杂的基质里的一个粒子。该技术带来的好处是,用户可以在视觉上检查并且通过观察相应图像验证所有可能的应用。MiNan是Mishell® 内的一个模块- 扩展图像分析软件包,被认为是市场上最先进的图像分析软件。MiNan是一个子程序,可以进行Morphious纳米粒子分析的全部描述。MiNan是自带Morphious纳米系统的软件,研发用于纳米粒子的可视化以及纳米粒子的大小、形状(形态)和浓度的测量。每个粒子是一个个体,但通过观测扩散同时被分析。这种一个粒子后接一个粒子的方法产生高分辨率的结果,即粒子的尺寸分布和浓度分辨率高,同时视觉验证让用户对数据有了额外的信心。当荧光模式检测标记粒子时,粒子尺寸和浓度,蛋白质聚集和粘度都可以被分析。纳米颗粒分析仪配件应用?在制药或复合产业研发药物?用于病毒筛查?用于开发纳米生物标记物或毒物筛查?用于蛋白质聚集的动力学模型研究?用于通过膜泡的表征研究疾病?用于促进纳米复合材料的发展纳米颗粒分析仪配件特色?在同一时间多粒子高通量表征?实时视觉展示粒子,允许用户评估试验,无需额外复杂性?方便和易于使用的软件,允许用户通过宏设置任何实验?添加像高通量自动采样器,泵或加热和制冷配件?自适应模块化系统构建任何复杂的应用程序,操作轻松舒适?超级高效和购买成本低?该系统提供高分辨率的粒度特性来研究复杂的多分散矩阵?激光波长可选择?通过给过滤器添加电动轮,得到自适应荧光分析纳米颗粒分析仪配件参数?尺寸10 nm - 2000 nm*?浓度 106 - 109 粒子/ mL?荧光检测纳米颗粒分析仪配件规格温度范围15-40 °C电源230V AC/115V AC, 50/60 Hz摄像机USB3 CMOS分辨率:1936x1216 161帧/秒,像素尺寸5.86μm:颜色校准模块功耗18W激光波长405nm(紫色),488nm(蓝),532nm(绿),642nm(红色)尺寸范围从10 nm到2000 nm (取决于材料)焦点电脑控制电动调焦个人计算机SDD亿康II SDSSDHII-120G-G25HDD西数蓝WD10EZEX1 TB|主板千兆字节GA-Z97X-UD3H|内存金士顿骇客神条怒黑| HX318C10FBK2/1616 GB DDR3-RAM处理器英特尔® 酷睿™ i7 i7-4790K四核4×4.0 GHz显卡 PNY VCQK2200-PB 4GB电源 酷冷至尊G750M 750w机箱 酷冷至尊黑软件Windows® &(或更高).由Mishell® 供电Mishell是Microptik BV公司的注册商标。Windows是微软公司的注册商标。MiNan尖端程序在Mishell下运行,以充分体现由Morphious纳米获得的纳米粒子尺寸(长×宽×高)20 x 18 x 30 cm重量10.5 kg
  • 纳米级微球颗粒标准品
    纳米级微球颗粒标准品(Particle-Size Standards)直径大小高度均一,具有NBS 的NIST认证,属于Duke Scientific公司荣誉出品Nanosphere Size Standards?系列产品中的聚合体微球标准品(苯乙烯单体聚合而成)。纳米级微球颗粒标准品应用广泛,电子显微镜领域、气液相微粒研究、色谱柱、激光散射研究等等,20-1000nm范围内的微球颗粒可以用来测量细菌、病毒、核糖体和细胞亚显微结构的大小。该产品以水溶液瓶装形式出售。聚合体密度为1.05g/ml;Refractive index of 1.58 @ 589 nm (25°C)。订购信息:货号正常直径Certified Mean Dia.Size UniformityStd. Dev.&C.V固体百分比7088120nm19nm+/-1.5nmNA1%7088350nm50nm+/-2.0nmNA1%70885100nm102nm+/-3.0nm7.6nm (7.5%)1%70886200nm204nm+/-3.1nm3.1nm (1.5%)1%70887300nm304nm+/-6.0nm4.5nm (1.5%)1%70888400nm404nm+/-4.0nm5.9nm (1.5%)1%70889500nm486nm+/-5.0nm5.4nm (1.1%)1%70890600nm600nm+/-5.0nm6.6nm (1.1%)1%70891700nm701nm+/-6.0nm9.0nm (1.3%)1%70892800nm802nm+/-6.0nm9.6nm (1.2%)1%70893900nm895nm+/-8.0nm9.1nm (1.0%)1%下面推荐的是最高级别测量标准品,对直径1-40um的颗粒来说,以下产品极具竞争力。订购信息:货号Nominal diameterCertifiedMean Dia.Size UniformityStd. Dev.&C.V.SolidsContent708941.0μm0.993+/-0.0210.010μm (1.0%)1.0%708952.0μm2.013+/-0.0250.022μm (1.1%)0.5%708963.0μm3.063+/-0.0270.03μm (1.0%)0.5%708975.0μm4.991+/-0.0350.06μm (1.2%0.3%7089810.0μm9.975+/-0.0610.09μm (0.09%)0.2%
  • 电子曝光机(纳米图形发生器)
    微纳米图形的制作已成为半导体器件、微机电系统和纳米科学等研究中的基本手段。但传统设备昂贵、庞大,NanoPattern图形发生器可以利用电子束/离子束/探针具有容易控制和分辨率高的特点方便地获得微纳米图形。而且不像普通光刻机需要先制作掩膜,并且有更高的分辨率和灵活性。NanoPattern图形发生器可利用扫描电镜/聚焦离子束/扫描透射电镜的外接扫描口、束流测量装置和二次电子检测输出等而使其升级获得微纳米图形制作的功能并且不损失电镜原来的任何功能。结合扫描电镜/聚焦离子束/扫描透射电镜上的其他功能如电子

流式在微纳米载体及小颗粒检测相关的资料

流式在微纳米载体及小颗粒检测相关的资讯

  • mRNA疫苗递送载体分析技术进展与应用-脂质纳米颗粒
    脂质纳米颗粒(Lipid nanoparticles, LNPs)是一种具有均匀脂质核心的脂质囊泡,因其高包封率和高转染效率等特点,广泛用于核酸等药物的递送,目前 Moderna、CureVac和BioNTech等mRNA 疫苗企业研发的预防新型冠状病毒肺炎(COVID-19)mRNA 疫苗均采用了LNPs递送技术。LNPs 是一种多组分脂质递送系统,通常包括阳离子/可电离脂质、中性磷脂(辅助性脂质)、胆固醇以及聚乙二醇化脂质(PEG-脂质),如图1所示。阳离子/可电离脂质是LNPs系统实现递送功能的关键,由于LNPs带正电,能够吸引带负电的mRNA,并结合在LNPs内部,可以避免被溶酶体降解,提高mRNA在体内的稳定性。LNPs的各种组分的准确含量和配比是脂质纳米颗粒的形成和稳定的重要影响因素,如磷脂和胆固醇能够稳定LNPs结构,聚乙二醇化脂质能够延长LNPs在生物体内的循环半衰期。因此,分析和监测LNPs制备过程的脂质载体是控制LNPs质量的关键,能够保证脂质纳米颗粒的形成并提高其稳定性。由于LNPs的主要四种组成组分的结构中不含明显的紫外吸收基团,在传统的紫外检测器上没有或具有较低的响应信号,因此高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)和拉曼光谱技术(Raman spectra)是LNPs研发和生产中常用的分析技术,本文对这两种常用的脂质纳米颗粒分析技术进行简要介绍。图1. mRNA脂质纳米颗粒示意图1. 高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)1.1 技术原理:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)将高效液相色谱与蒸发光散射通用检测器联用,其中蒸发光散射检测器(evaporative light scattering detector,ELSD)是20世纪90年代出现的通用型检测器。其工作原理如图2所示,被分析对象经过色谱分离后,随流动相从色谱柱流出,流出液引入雾化器与通入的气体(常为高纯氮,也可是空气)混合后喷雾形成均匀的微小雾滴,经过加热的漂移管,蒸发除去流动相,被分析组分形成气溶胶,然后进入检测室,用强光或激光照射气溶胶,产生光散射,最后使用光电二极管检测散射光。图2. 蒸发散射检测器(ELSD)的部件及原理[3]1.2 技术特点:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD),采用的蒸发光散射检测器能够检测不含发色团的化合物,非常适合紫外检测响应信号不佳的半挥发性及非挥发性化合物的分析,它对各种物质有几乎相同的响应,但其灵敏度通常较低,尤其对于有紫外吸收的组分其灵敏度较紫外检测器约低一个数量级,高效液相色谱-蒸发光散射联用技术较适用于氨基酸、脂肪酸、聚合物、脂质、生物载体以及无紫外吸收的辅料的分析。1.3 分析仪器:第一台ELSD是由澳大利亚的Union Carbide研究实验室的科学家开发,距今已经数十年。目前ELSD通常与液相色谱配套使用,主流液相色谱品牌均可配备。该类设备国内外均有生产,如国内的上海通微ELSD-UM5800Plus蒸发光散射检测器、美国安捷伦1260 II 蒸发光检测器、岛津ELSD-LT III 蒸发光检测器、沃特世2424 蒸发光检测器、美国奥泰(Alltech)蒸发光散射检测器ELSD 6100等。2. 拉曼光谱技术(Raman spectra)2.1 技术原理:拉曼光谱法研究化合物分子受光照射后所产生的非弹性散射-散射光与入射光能级差及化合物振动频率、转动频率间关系。拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以 cm-1 单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。频率不变的散射称为弹性散射,即瑞利散射:如果产生的拉曼散射频率低于入射频率,则称之为斯托克斯散射;反之,则称之为反斯托克斯散射。实际应用中几乎所有的拉曼分析均为测量斯托克斯散射。2.2 技术特点:拉曼光谱技术具有快速、准确、不破坏样品的特点,样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃、石英或塑料)中或将样品溶于水中获得。拉曼光谱能够单机、联机、现场或在线用于过程分析,可适用于远距离检测。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便,适合对药用辅料,以及脂质纳米颗粒的形态和组成成分的分析[4]。2.3 分析仪器:拉曼光谱仪器在实验室台式/在线和现场便携/手持仪器两个方向上呈现了多元化的发展。实验室仪器追求更高性能,目前常用的实验室拉曼光谱仪主要包括国内卓立汉光Finder微区激光拉曼光谱仪、港东科技LRS-4S显微拉曼光谱仪、奥谱天成 ATR8300自对焦显微拉曼成像光谱仪、日本HORIBA LabRAM HR Evolution高分辨拉曼光谱仪 、LabRAM Soleil 高分辨超灵敏智能拉曼成像仪、英国雷尼绍(Renishaw)inVia Oontor显微拉曼光谱仪、赛默飞DXR 3xi 显微拉曼成像光谱仪等。便携式与手持式小型拉曼光谱仪致力于现场检测,在快速检测方面得到应用,如国内南京简智的SSR-5000便携式拉曼光谱仪、奥谱天成ATR6600手持式拉曼光谱仪、鉴知技术(同方威视) RT6000S手持拉曼光谱仪、美国必达泰克i-Raman Prime高通量便携拉曼光谱仪、美国海洋光学ACCUMAN (SR-510 Pro)便携拉曼光谱仪、美国赛默飞First Defender RM手持拉曼等。3 应用实例分享3.1 采用HPLC-ELSD技术定量7种脂质有研究人员基于HPLC-ELSD技术建立同时定量7种脂质类成分的分析方法[5],包括阳离子脂质CSL3和DODMA、胆固醇Chol、磷脂DSPC和DOPE、亲水性聚合物脂类PolyEtox和DSPE-PEG2000,这7种脂质在高效液相色谱的C18 色谱柱上能够实现良好分离,见图3。通过分析4种不同脂质成分(CSL3/Chol/DSPE-PEG2000/DSPC、CSL3/Chol/PolyEtOx/DSPC和CSL3/Chol/DSPE-PEG2000/DOPE)以及不同脂质比的LNPs配方,评估了HPLC- ELSD方法在脂质定量中的适用性,同时发现LNPs中各类脂质在透析纯化后等比例损失了约40 %,这提示纯化步骤后脂质定量的重要性,该方法可以用于优化LNPs的配方和最终质量控制。图3. HPLC-ELSD方法检测到的7种脂类混合标准溶液的色谱图[5]3.2 采用拉曼光谱技术研究脂质纳米颗粒骨架和空间排列脂质纳米颗粒(LNPs)表面电荷的极性和密度能够影响静脉内给药的免疫清除和细胞摄取,从而决定其递送到靶标的效率,有研究人员采用不同配比的带负电荷脂质的抗坏血酸棕榈酸酯(AsP)和磷脂酰胆碱(HSPC)制备了AsP-PC-LNPs。采用DXR拉曼显微镜在50-3500 cm的位移范围内测定AsP/HSPC不同配比(4%,8%和20% w/w)的拉曼光谱。其中在位移1101cm-1和1063 cm-1处峰的强度比(I1101/I1063)和 1101cm-1和1030 cm-1处峰的强度比(I1101/I1030)均表示脂肪链C-C骨架的紊乱程度。由图4和图5可知,当AsP/HSPC比值分别为4%和8%(w/w)时,与仅含HSPC组无显著差异,而当AsP/HSPC比值增加到20%(w/w)时,两组峰强度均比下降,即过量的AsP增强了AsP-PC水合物中的脂肪链排序。在拉曼位移717cm−1处是C-N 的伸缩振动,随着AsP/HSPC比值逐渐增加,超过8%(w/w)时717cm−1处拉曼位移略有红移。当AsP/HSPC比值继续增加到20%(w/w)时,717cm−1处拉曼位移略微蓝移,结果表明低比例的AsP(≤8%,w/w)使极性的HSPC排列略无序和松散,而过量的AsP使极性的HSPC排列有序,进一步验证了拉曼光谱是研究脂质纳米颗粒骨架和空间排列的有力手段。图4 具有不同AsP比例的AsP-PC-LNPs的拉曼光谱图5 不同AsP比例的AsP-PC-LNPs拉曼光谱I1101/I1063和I1101/I1030的强度比4.小结与展望LNPs在疫苗、核酸等基因治疗等生物技术药物研发方面发挥着重要作用,LNPs中各类脂质配方的组成和配比,影响着疫苗等生物技术药物的稳定性、有效性、安全性。因此选择合适的分析技术,建立可行的分析方法,确保疫苗等生物技术药物中LNPs载体质量与稳定性,具有重要意义。参考文献:[1] Verbeke R, Lentacker I, De Smedt S C, et al. Three decades of messenger RNA vaccine development[J]. Nano Today, 2019, 28: 100766.[2] Karam M, Daoud G. mRNA vaccines: Past, present, future[J]. Asian Journal of Pharmaceutical Sciences, 2022, 17(4): 32.[3] Magnusson L E, Risley D S, Koropchak J A. Aerosol-based detectors for liquid chromatography[J]. Journal of Chromatography A, 2015, 1421: 68-81.[4] Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry[J]. Analytica chimica acta, 2020, 1097: 1-29.[5] Mousli Y, Brachet M, Chain J L, et al. A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations[J]. Journal of pharmaceutical and biomedical analysis, 2022, 220: 115011.[6] Li L, Wang H, Ye J, Chen Y, et al. Mechanism Study on Nanoparticle Negative Surface Charge Modification by Ascorbyl Palmitate and Its Improvement of Tumor Targeting Ability[J]. Molecules. 2022 27(14):4408.
  • 普洛帝多维跨越创造液体颗粒检测新高度 发布全新品类微纳米检测设
    普洛帝多维跨越创造液体颗粒检测新高度发布全新品类微纳米检测设备 [导读]英国普洛帝近期宣布,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,本系列产品是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨两个大单位级,是微纳米检测相融合的全新品类的技术型产品。 可用于微纳米微粒检测的PMT-2液样颗粒分析仪英国普洛帝近期宣布,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,并与2017年3月伦敦、纽约、北京三地同时上市,2017年5月将会向世界所有行业开放订购渠道。PULUODY/普洛帝PMT-2系列产品是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨三大单位级,是毫米、微米和纳米检测相融合的全新品类的技术型产品。PMT-2创新点多维跨越 创造液体颗粒检测新高度测试精度高 - 重新定义微米级别的检测(0.01微米或10纳米)检测误差小 - 双激光窄光技术一检测二核查的检测思维分析浓度高 - 创新构造传感器技术(PMT创新检测技术) 在线监测、便携移动式检测、实验室离线分析等多方式集于一体手机APP、PC分析、远程LAN监控等控制方式可多操作途径可实现纳米、微米和毫米减的一键切换应用于医药类微粒检测、油品类颗粒度检测和零部件清洁度监测知识链接:随着个人掌上电脑、数码产品的丰富,工业PC、商业电脑及各类工控设备的发展更新,电子半导体领域日新月异,对于生产过程中的污染物监测尤为重要。工业中的清洁度表示零件或产品在清洗后在其表面上残留的污物的量。一般来说,污染物的量包括种类、形状、尺寸、数量、重量等衡量指标;具体用何种指标取决于不同污物对产品质量的影响程度和清洁度控制精度的要求。产品是由零件经过设备加工装配而成,所以清洁度分为零件清洁度和产品清洁度。产品的清洁度与零件的清洁度有直接的关系,同时还与生产工艺过程、车间环境、生产设备及人员有密切关系。PULUODY/普洛帝PMT-2将会对污染物的种类、形状、尺寸、数量、重量等项目上进行相关的数据分析,并保证分析的误差、准确度和重复性,成为工业企业中污染物控制设备的有力检测工具。企业链接:油液监测技术型设备的专业提供商!普洛帝(简称:PULUODY)是油液监测技术提供商,1970年7月由PULUODY本人创立于英国诺福克,致力于向人们提供“精准、可信赖”的颗粒监测技术。普洛帝颗粒监测技术延续并持续创新了40余年,现已成为油液颗粒监测技术及设备的专业提供商。普洛帝/PULUODY、普勒/PULL、卡尔德/CALDEE是PULUODY ANDLYSIS & TESTING GROUP LTD.(简称PULUODY GROUP)授权公司在中国的注册商标,任何使用方需得到PULUODY GROUP及其授权公司的许可方可使用。PULUODY GROUP拥有在中国区油液监测技术的所有权,陕西普洛帝测控技术有限公司为其授权执行方。PULUODY GROUP授权陕西普洛帝测控技术有限公司在中国区向广大提供其优质的技术及产品!如有疑问请联络普洛帝服务中心!029-85643484
  • 低电压透射电镜LVEM 5助力“生物导弹”载体复合物纳米颗粒的相关研究
    癌症的治疗一直是医学科学家研究的前沿方向,靶向治疗作为一种定向杀灭癌/肿瘤细胞的治疗方法,俨然成为癌症治疗的研究热点。简单来说,靶向治疗就是在细胞分子水平上,针对已明确的致癌位点来设计相应的治疗药物,药物进入体内会特定选择致癌位点相结合,杀死特定的肿瘤细胞,但不会波及肿瘤周围的正常组织细胞,因此又被称为“生物导弹”。 在这种“生物导弹”研究中,生物可降解聚合物纳米粒子经常作为药物的载体应用于靶向治疗。纳米颗粒的一个优势是,他们利用肿瘤发生过程中,肿瘤区域的血管和淋巴具有增强的渗透和截留(EPR)特性,允许纳米的颗粒通过血管壁。进入肿瘤区后,通过溢出,这些粒子可以实现封装药物释放,并杀灭肿瘤细胞。安德烈斯贝罗大学(Santiago, 智利),Luis A.Velasquez教授在《Biomaterials》杂志上发表文章,结合物理化学特性和生物分析对可生物降解的聚羟基丁酸戊酯(PHBV)-紫杉醇(paclitaxel)复合物纳米颗粒癌症细胞株的吸收、释放和细胞毒性进行了详细研究。分子模拟显示复合物纳米颗粒具有高水亲和力的界面和多孔纳米结构,具有48小时窗口期的毒性保护,228~264nm颗粒尺寸范围让它们具有适当的EPR被动靶向的效果,其-6~8.9 mV的负电性也适合生物环境允许的颗粒细胞的内吞作用,并完成癌症细胞内的药物释放,对IIIc浆液性卵巢癌细胞有很好的治疗效果。Time-dependence of the NP-Taxel size and surface-polymer structuresduring Taxel liberation processes observed using LVEM. 0 (A), 1 (B), 2 (C), 3(D), 4 (E) and 5 (F) days 该研究过程中,低电压透射电子显微镜LVEM 5起到了非常关键的作用。Velasquez教授应用的纳米颗粒为有机聚合物,组成为C,H,O,N等轻质原子的分子,这些分子对电子的散射能力较弱。常规透射电子显微镜的加速电压通常为80~300kV,有机分子在不通过重金属染色的情况下,电子束大部分透过了样品到达荧光屏,无法呈现高对比度的形貌图像。然而,重金属染色后的样品由于和重金属的络合作用造成有机分子的畸变,以至于观察到的形貌不是天然状态,影响研究结果的后续分析和结论的准确判断。Velasquez教授借助低电压显微镜LVEM 5对样品进行观察,由于加速电压小(约5kV),未经染色的样品可以得到高对比度清晰的TEM图像,实现生物有机分子纳米结构的天然状态下的检测。低电压显微镜LVEM 5呈现的图像有效帮助Velasquez教授完成聚羟基丁酸戊酯(PHBV)-紫杉醇(paclitaxel)复合物纳米颗粒针对卵巢癌细胞治疗过程的机理及动力学问题的分析和研究。 相关产品:LVEM5 超小型透射电子显微镜: http://www.instrument.com.cn/netshow/SH100980/C157727.htmLVEM25小型低电压透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C234215.htm

流式在微纳米载体及小颗粒检测相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制