当前位置: 仪器信息网 > 行业主题 > >

流式在微纳米载体及小颗粒检测

仪器信息网流式在微纳米载体及小颗粒检测专题为您提供2024年最新流式在微纳米载体及小颗粒检测价格报价、厂家品牌的相关信息, 包括流式在微纳米载体及小颗粒检测参数、型号等,不管是国产,还是进口品牌的流式在微纳米载体及小颗粒检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流式在微纳米载体及小颗粒检测相关的耗材配件、试剂标物,还有流式在微纳米载体及小颗粒检测相关的最新资讯、资料,以及流式在微纳米载体及小颗粒检测相关的解决方案。

流式在微纳米载体及小颗粒检测相关的论坛

  • 深入探索纳米流式检测技术的核心原理与应用领域

    [b][font=宋体]一、纳米流式检测技术的原理[/font][/b][font=宋体] [/font][font=宋体][font=宋体]纳米流式检测技术的原理主要基于纳米流式检测仪([/font][font=Calibri]Flow NanoAnalyzer[/font][font=宋体],[/font][font=Calibri]FNA[/font][font=宋体])。这种技术能够覆盖传统流式细胞仪在[/font][font=Calibri]200[/font][font=宋体]纳米以下粒径检测的盲区,包括纳米颗粒以及亚细胞结构、细菌、病毒、外泌体等天然生物纳米颗粒的表征。其检测原理是利用流体聚焦和激光聚焦技术,减小探测区体积、延长被测颗粒穿越激光探测区的时间、降低散射背景、提高激光功率等措施,实现[/font][font=Calibri]200[/font][font=宋体]纳米以下颗粒的检测。[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术的工作原理是:当被测颗粒通过激光检测区时,颗粒被激光照射产生散射光和荧光信号。通过一系列光学元件收集并分离散射光和各波段的荧光信号,经过电学系统中的信号转换和数据处理,获得样品的各种理化信息。其中,散射光信号可以用来表征颗粒的大小和粒度,染色后的荧光可以用来表征细胞内特定蛋白的表达水平、细胞的生理状态和分裂周期等。通过对检测到的颗粒进行计数,可以实现颗粒浓度的无标样定量检测。[/font][font=宋体] [/font][font=宋体]总之,纳米流式检测技术结合了流式细胞术和纳米技术,具有高灵敏度、高分辨率和高通量等优点,为生物医学研究提供了新的工具,有助于深入研究和了解生物纳米颗粒的特性和功能。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]二、纳米流式检测技术的应用[/font][/b][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])肿瘤诊断[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米流式检测技术可以对肿瘤细胞进行快速、敏感的检测,并且可以在单细胞水平上进行分析,从而实现早期肿瘤诊断。同时,纳米流式检测还可以检测循环肿瘤细胞([/font][font=Calibri]CTC[/font][font=宋体]),这是一种正在被广泛研究的肿瘤诊断手段,可以极大地提升肿瘤治疗成功的概率。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])细胞免疫学[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术可以通过检测细胞表面和内部的特定蛋白质、抗原或基因,实现对细胞的免疫学分析。这种方法可以在单个细胞水平上对细胞进行分类和排序,同时也可以在细胞群体中进行比较分析。这对于了解免疫系统的正常和异常状态,以及研究免疫治疗等方面都有着重要的意义。[/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])病毒学研究[/font][/font][font=宋体] [/font][font=宋体][font=宋体]病毒是一种纳米尺度的微生物,纳米流式检测技术可以用于病毒的检测和计数,包括流感病毒、[/font][font=Calibri]HIV[/font][font=宋体]病毒、疱疹病毒等。这种技术还可以用于病毒分型和病毒载量测定等方面。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]4[/font][font=宋体])生物分子检测[/font][/font][font=宋体] [/font][font=宋体]纳米流式检测技术可以用于生物分子的检测,包括蛋白质、核酸、糖类等。这种技术可以用于生物标志物的检测和诊断,以及生物分子相互作用的研究。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]三、总结[/b][/font][font=宋体] [/font][font=宋体]纳米流式检测技术是一种应用前景广阔的单细胞分析技术。它具有高灵敏度、高通量、高精度的特点,能够针对不同细胞类型和样品进行分析和检测。随着技术不断发展和完善,纳米流式检测技术将有望在医疗诊断、新药开发等领域得到更广泛的应用。[/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以查看义翘神州[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测服务[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 【分享】微结构决定的具有均一米状形貌的新奇银纳米颗粒的高产率合成

    金属纳米颗粒由于其良好的电学、光学、热导、催化以及磁学性质而得到广泛的研究。近年来,金属纳米颗粒奇异的光学性质引起人们极大的兴趣。其中,金银纳米颗粒由于在可见和红外光频区有着很好的表面等离子体共振性质而格外引人注目,在表面增强光谱、生物检测等方面具有巨大的应用前景。通过控制纳米颗粒的形貌可以有效的调制金属纳米颗粒的表面等离子体共振性质。因此,获得不同形貌的金属纳米颗粒是最近兴起的表面等离子体光子学研究领域中重要的研究方向之一。 最近,中国科学院物理研究所/北京凝聚态物理国家实验室徐红星研究员研究组的梁红艳同学和王文忠教授首次用多羟基醇还原法合成了一种外形为纺锤状的银纳米颗粒(Ag Nanorice),并与李建奇研究员研究组的杨槐馨副研究员合作,发现这种银纳米颗粒为六方相和立方相交生形成,内部存在孪晶,堆垛层错,多重调制等多种缺陷结构,并且缺陷密度在银纳米颗粒的不同部位有着明显区别,这种微结构突破了传统银纳米颗粒常规的单晶、孪晶特性,决定了具有均一米状形貌的新奇银纳米颗粒的高产率合成。该项研究的意义不仅在于为有效调制表面等离子体共振特性提供新的纳米结构,还在于这种堆垛结构可能打破晶体生长时晶体结构对形貌的限制,为设计合成所需形貌晶体带来曙光。这将丰富纳米晶体结构控制生长的内涵,深化对金属晶体生长规律的认识,拓展金属纳米结构在光谱分析、超灵敏检测等方向的应用,因而具有十分重要的实际意义。 该工作发表于近期的J. Am. Chem. Soc. 131,6068-6069(2009)上。此项研究获得国家自然科学基金委杰出青年基金,科技部重大项目,中科院知识创新工程和教育部的“985”和“211”等项目的资助。

  • 微纳米粉捕集装置

    微纳米粉捕集装置

    [font=仿宋_GB2312][size=19px]将待分离粉末加入到电磁筛分部分最上部,承筛部分放置筛孔为微米的筛网(如10、20微米)。[/size][/font][font=仿宋_GB2312][size=19px]筛网层上面有机玻璃盖,通过管路联接到微纳米物质分离捕集器。这是一款内置双层粗孔片和超细滤膜的配件,可将微纳米微粒和大于上层筛孔直径的物料分离。[img=,554,283]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011653556947_148_1812435_3.png!w554x283.jpg[/img][/size][/font][font=仿宋_GB2312][size=19px]捕集器另一端联接真空泵。工作时,真空泵提供负压传输到筛分仪,筛分仪超声装置可将原料粉团聚体打开,并将堵塞的筛孔打开,有利于三维震动的筛分部分将物料快速筛下,扬起微细粒颗粒的作用,空气和纳微米颗粒由筛分仪向真空泵运移,纳微米颗粒最终在捕集器中分离富集[/size][/font][font=宋体][size=19px]。[img=,156,409]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011654144101_1924_1812435_3.png!w156x409.jpg[/img]本装置特点:[font=Wingdings]u [/font][font=宋体]电磁驱动,清洁能源[/font][font=Wingdings]u [/font][font=宋体]三维抛掷筛分,速度快,重复性高[/font][font=Wingdings]u [/font][font=宋体]操作简便,功率、振幅可调节[/font][font=Wingdings]u [/font][font=宋体]独有S型压盘设计,可快速拆卸筛子,筛分效率高[/font][font=Wingdings]u [/font][font=宋体]采用单向夹具,可快速压紧[/font][font=Wingdings]u [/font][font=宋体]连续、精微、间断三种震动模式可选[/font][font=Wingdings]u [/font][font=宋体]干法、湿法筛分可选[/font][/size][/font]

  • 【转帖】本身毒性小携带药量大 日开发出纳米药物载体。

    日本科学技术振兴机构村上达也博士研究员和饭岛澄男研究小组负责人,最近成功完成了利用碳纳米管(CNH)作为药物传送系统运载载体的基础实验。利用这一药物传送系统,科学家成功地使抗炎症药物地塞米松吸附在碳纳米管内,从而确认了碳纳米管具有缓慢释放药物成分和缓释后保持药效的特性,此项研究成果可大大加速碳纳米管的药物运载研究与开发。   实验中,科学家首先使用1比1的水与乙醇混合溶剂,在室温液相中使药物地塞米松吸附在碳纳米管中。碳纳米管直径为80至100纳米,具有高亲和性,而地塞米松也是一种易于吸附的物质。碳纳米管氧化后,管端部和侧面会出现孔洞,经过对开孔与未开孔碳纳米管进行对比发现,开孔后的碳纳米管吸附地塞米松的药量比未开孔的高出6倍多。碳纳米管出现孔洞后,每克碳纳米管能够吸附200毫克地塞米松。碳纳米管吸附地塞米松后,经过两周时间才能释放出一半吸附量,证明具有缓释特征。地塞米松在试管中有促进骨形成作用,使用碳纳米管中释放出的地塞米松进行试验发现了这一作用。同时发现,在药物释放后也能保持药效。   碳纳米管具有高纯度和尺寸一致等优点,对人体毒性较小,在结构上表面积大,能携带大量药物。科学技术振兴机构的科学家正着手对抗癌药物传送系统进行试验,不久后将进入动物试验阶段。

  • 【资料】金纳米颗粒微观结构首次得到揭示

    [B]“这是一项应该被写入教科书的重要发现” [/B]纳米颗粒的广泛应用并不意味着科学家对它们的微观结构了如指掌。美国科学家的一项最新研究,首次揭开了科研中经常用到的一种金纳米颗粒的神秘面纱。相关论文以封面文章的形式发表在10月19日的《科学》杂志上。 由于金的活动性弱且对空气和光线都不敏感,实验室中经常用金纳米颗粒作为示踪剂,比如探测样本中是否存在某种DNA或者蛋白质。为了防止不同金纳米颗粒的原子之间形成化学键,科学家经常在金纳米颗粒表面覆盖一层保护性分子层,最常用的是含硫的分子团。如果改造这些含硫分子团,使其具有特殊的绑定位点或者荧光标记,观察和区分金纳米颗粒将更加容易。 尽管如此,科学家对金纳米颗粒的结构却没有清晰的认识,有认为金纳米颗粒是胶质的,形状杂乱,大小不一,还有认为它们是具有同一尺寸和结构的离散分子。 在最新的研究中,美国斯坦福大学Roger Kornberg领导的小组成功制备出了有单层硫醇保护的金纳米颗粒晶体,并利用X射线结晶学技术,首次对它们的精确结构进行了成像。值得注意的是,制备晶体和确定结构一样,都是突破性的进展。

  • 粒径和zeta电位检测标准粒子,mRNA纳米脂质颗粒zeta电位检测稀释剂

    刚接触这个检测项目,用的马尔文的仪器,请问大家符合药典规定的粒径和zeta电位检测标准粒子用什么,大家购买的什么品牌的,标准粒径和电位是多少?做mRNA纳米脂质颗粒zeta电位检测大家用什么稀释剂,因为没有测物理常数的仪器,所以用不了较优的产品背景溶液,有什么别的稀释剂可以代替,使检测结果与真实值偏差较小。

  • 纳米压印设备商光舵微纳完成近亿元B+轮融资

    据致道资本官微消息,近日,致道资本已投项目——苏州光舵微纳科技股份有限公司(简称:光舵微纳)完成由国投创合投资的近亿元B+轮股权融资。作为国内领先的纳米压印技术完整方案提供商,光舵微纳经过多年的研发及市场应用推广,制造出了多款研发型纳米压印设备及全自动量产型纳米压印设备,实现了设备、耗材及工艺的全方位突破。纳米压印技术是微纳加工领域的一项关键底层技术,在国际半导体蓝图(ITRS)中,该技术被列为下一代半导体加工技术的重要代表之一。[img=图片]https://img1.17img.cn/17img/images/202401/uepic/35f3a9bc-4344-456c-bb7c-169186c68048.jpg[/img]光舵微纳在LED图形化衬底产业(LED-PSS)处于绝对的技术及市场领先地位,纳米压印设备及耗材已在客户端实现超过4000万片LED-PSS的大规模稳定量产,在此应用场景上实现了对尼康光刻机的产业化替代,并处于快速扩张阶段。同时,积极拓展纳米压印技术在高端半导体、AR衍射光波导、生物检测器件、消费电子等诸多重大[color=#686868]领域的产业化应用,并取得了重要进展。[/color][img=图片]https://img1.17img.cn/17img/images/202401/uepic/a55665c3-16b9-45c4-ad33-6ace1d7108bf.jpg[/img]此次融资完成后,光舵微纳将继续提升其核心研发团队的技术实力,积极研发应用于多个重要场景的高端纳米压印设备并进行广泛的市场开拓,进行产线扩充,推进纳米压印技术在更多应用领域的导入,打造从产品、系统到整体解决方案的商业模式,助力我国半导体制造产业的高速发展。[来源:致道资本][align=right][/align]

  • 【求助】如何测定纳米颗粒负载在电极上的量(或厚度)?如何确保纳米颗粒不从电极上脱落?

    我在电化学实验中需要将悬浮在乙醇中的纳米颗粒(5纳米左右)做在FTO导电玻璃电极或铂片电极上测定其电催化性能。但在实验中发现纳米颗粒极其容易从电极上脱落下来,请问有什么方法可以确保纳米颗粒不从电极上脱落(同时不影响其电催化性能的测试)?另外一个问题是将悬浮在乙醇中的纳米颗粒做到电极上时,很难对电极上的纳米颗粒定量,请问如何确定纳米颗粒在电极上的量?文献中多用“等价单层”(ML:monolayer)来定量,请问ML值一般是如何测定的?

  • 壳聚糖基pH响应性纳米凝胶粒子药物载体的研究

    【序号】:3【作者】: 姜雪【题名】:壳聚糖基pH响应性纳米凝胶粒子药物载体的研究【期刊】:青岛科技大学【年、卷、期、起止页码】:2015【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkbl4wwVeJ9RmnJRGnwiiNVvSvQyglLO6aQfTrjT020AbtKH-W_NRH_jXvokbHNIyw&uniplatform=NZKPT

  • 【原创】激光粒度仪中亚微米及纳米的粒度检测

    在激光粒度仪的性能指标中测试下限标称为0.1甚至为0.02等,那么这部分粒度是怎么检测出来的呢?如果下限为0.1微米,那么探测器所能接收的前向角度至少要达到70度,或是有后向探测器.如果下限为0.02微米必须要应用后向散射技术,而且还要看后向激光器的波长,如果是普通的红光激光器,波长范围大概为600-800nm的激光器将无法区分纳米级颗粒后向的散射信号区别.所以必须采用波长更短的激光器,比如蓝光激光器,波长405nm等,这样纳米颗粒的后向信号区别会比较明显,但还要有特殊的采样与处理方式,否则测量下限0.02也是无法做到的.具体的方法不便说出,但用户可以采用纳米级颗粒去验证,最好中位径范围在0.05um以下的几种颗粒,比如中位径分别为0.02,0.03,0.04,0.05等几种接近单分散样品,确实在实际中这种验证比较困难,这里只是建议方法而已,希望用户能选择到一款性价比较高的仪器!尤其是检测中位径在0.2-0.02um的用户尤其要注意!

  • 分离纳米颗粒的HPLC柱

    Sepax CNT Size Exclusion Phases用于分离碳钠米管和碳纳米纤维 分离纳米管的先驱     质量最优产品概述  利用独特的表面技术, Sepax CNT SEC固定相由特殊涂布的多孔硅胶物质组成。硅胶纯度高,且具有增强的机械稳定性。 Sepax CNT SEC经过革新后,特别对纳米管(如纳米碳管和纳米碳纤维)的分离具有最高的分辨率及最大回收率。 Sepax 独特的表面技术使柱与柱之间具有很好的重现性及稳定性。 Sepax CNT 体积排阻柱固定相颗粒均匀,球形颗粒孔径有 300Å , 500Å , 1,000Å , 和 2,000Å ,孔体积为 1.0 mL/g 。 Sepax CNT SEC 固定相 用特殊技术填充,使其均一稳定,从而具有最高柱效。 Sepax CNT SEC 柱主要用于缓冲溶液和普通有机溶剂(如乙腈、甲醇和四氢呋喃)中纳米管的分离。 应用  根据长度分离碳纳米管  根据长度分离纳米纤维  根据直径分离纳米粒子  分析、半制备、制备型分离 详情请查询:www.sepax-tech.cn

  • 纳米颗粒的粒径问题

    一直在做Au的纳米颗粒方面的东西,有个问题一直比较困扰。我的颗粒理论是0.8-1 nm的,粒径分布比较均匀,但是观察时有这么一个问题:如果简单分散到碳膜上(普通碳膜,非超薄),那么颗粒在1.0 -1.1nm左右,但如果分散到纳米线上,悬空观察,则是0.9 nm左右。后者应该比较可信,因为纳米线有特征晶格条纹做内标。前者应该也可以,是用金标样做过校正的。那么是不是碳膜的厚度影响了纳米颗粒的粒径测量?还是说在分散到纳米线上和分散到碳膜上,颗粒发生了一定的形变?多谢!

  • 癌症检测新技术知多少——神奇的纳米追踪技术

    http://i1.sinaimg.cn/IT/2012/0710/U5385P2DT20120710181155.jpg癌症早期检测  生物工程师正在开发微小的纳米颗粒,用来检测早期癌症。  一些微小的颗粒可能会解决医学上的一个重大问题。这些所谓的纳米颗粒,直径只有几纳米(一纳米为十亿分之一米),500个这样大小的颗粒排列在一起,才有一根头发丝那么宽。科学家正在对它们进行改造,希望能完成多种任务:将药物输送到人体的特定部位;获取更清晰的器官影像……现在,它们又多了一种用途,科学家想用这些微小颗粒来探测癌细胞,不论它们藏在哪里。  目前,只有当肿瘤大到在扫描图上看得见时,常用的成像工具才能检测到它们。而纳米颗粒,则可以在一个由1 000万个正常细胞组成的样本中发现单个癌细胞。例如,实验性的纳米医学乳腺癌检测,能够发现比乳房X射线所能发现的小100倍的肿瘤。在包裹上肿瘤细胞特有的蛋白质或遗传物质后,纳米颗粒还可以帮助医生区分肿瘤是在恶性生长,还是进行性炎症,或是良性病灶。  美国华盛顿大学圣路易斯分校的生物医学工程教授格里高利•兰萨(Gregory Lanza)和同事正在研制一种纳米颗粒,能够追踪并标记新形成的、专为肿瘤供血的血管,而这类血管的产生,是结肠癌、乳腺癌和其他癌症发生过程中的关键步骤。在非肿瘤的组织中,通常不会有这样的血管。理论上,通过这项技术,医生还可以知晓癌症生长的速度,应该采取怎样的治疗措施。  美国斯坦福大学的诊断放射学教授桑吉夫•萨姆•甘姆希尔(Sanjiv Sam Gambhir)和同事正在研究大肠癌,希望能发现常规结肠镜检查发现不了的轻微恶性病变。研究小组用金和硅制成纳米颗粒,然后添加上一些分子,用来引导纳米颗粒,让它们附着在特定癌细胞上。当附着到结肠或直肠中的肿瘤上时,用一种特殊的内窥镜照射,纳米颗粒就会散射其所发出的光,显示癌细胞的存在。

  • 【技术@创新】我国科学家首次发现氧化铁纳米颗粒模拟酶

    [font=黑体]简介:中国科学院生物物理研究所阎锡蕴研究小组的《氧化铁纳米颗粒具有过氧化物酶活性》一文,日前在9月份出版的《自然—纳米技术》杂志上发表。该刊物同时配发的评论文章《氧化铁纳米颗粒:蕴藏的功能》[/font]我国科学院生物物理研究所阎锡蕴研究小组的《氧化铁纳米颗粒具有过氧化物酶活性》一文,日前在9月份出版的《自然—纳米技术》杂志上发表。该刊物同时配发的评论文章《氧化铁纳米颗粒:蕴藏的功能》称:“阎锡蕴、柯沙和同事们首次发现氧化铁纳米颗粒具有类似过氧化物酶的催化活性,并提出了氧化铁纳米颗粒模拟酶的概念。这一发现不仅为惰性金属材料在纳米尺度具有催化活性的学说提供了新的论据,而且拓展了磁性纳米颗粒的应用。虽然如何在生物技术和医疗领域更好地利用纳米材料的催化活性还有待探索,但氧化铁纳米颗粒催化活性的发现,无疑将使人们对此产生更多的关注。” 据评论文章介绍,在纳米医学研究中,氧化铁纳米颗粒作为一种理想材料,可用于疾病诊断、控制药物释放和体内分子成像。氧化铁纳米颗粒通常用于分离和纯化蛋白质、DNA、病毒和细胞。这主要利用氧化铁纳米颗粒的磁性,如果将其表面连接抗体—— 一种能够特异识别生物分子的蛋白质,它便具有靶向识别和磁性分离的双重功能。在医学应用中,传统的检测方法是将纳米颗粒的磁分离作用与酶标记的抗体免疫反应结合起来,后者通过酶催化底物显色显示生物分子的存在并进行定量。

  • 【求助】纳米颗粒洗涤

    本人做出的是纳米银粉,要过滤,然后把杂志离子等洗涤。现在的问题是:我抽滤时,有一些银粉随水一起过滤出去了,损失了一部分产品,而我又要算银粉的产率。我想请教一下各位做纳米颗粒的大虾,你们在做纳米颗粒时,是怎么洗涤纳米颗粒的呢?又是怎么过滤的?

  • 【讨论】水体中纳米级催化剂颗粒的去除

    最近在做饮用水处理,选用的催化剂为纳米级的TiO2,文献中有选用Millipore或Whatman的过滤器来去除颗粒,求助各位大侠是否可行,或有其他什么方法?还有就是过滤器的价格如何,谢!!![em09505]

  • 3i流式新品|贝克曼库尔特发布CytoFLEX nano纳米流式分析仪

    [b]贝克曼库尔特生命科学正式推出专为纳米级小颗粒研究设计的CytoFLEX家族新成员——CytoFLEX nano 纳米流式分析仪。[/b]据官方介绍,[b]CytoFLEX nano[/b]突破传统流式细胞术的检测极限,用更优的灵敏度和分辨率、灵活的方案设计、可重复的结果和简单的操作,为用户拓展小颗粒的研究边界。[align=center][img=图片,450,325]https://img1.17img.cn/17img/images/202403/uepic/1acd12ba-5e1c-4c08-adbe-c1e889fbbb10.jpg[/img][/align][align=center][color=#c00000][b]——01——[/b][/color][/align][align=center][color=#c00000][b]突破传统流式检测极限[/b][/color][/align]能够检测传统流式细胞仪检测不到的群体,清晰分辨40nm-1μm粒径的小颗粒样本。[align=center][img=图片]https://img1.17img.cn/17img/images/202403/uepic/747ac44f-379a-41c6-ba1f-cdecdbc3ee7c.jpg[/img][/align][align=center][color=#c00000][b]——02——[/b][/color][/align][align=center][color=#c00000][b]真正的多色小颗粒分群[/b][/color][/align]配备紫色(405nm)、蓝色(488nm)、黄色(561nm)、红色(638nm) 4种激光,6个荧光通道,涵盖小颗粒研究的主要染料。[align=center][img=图片]https://img1.17img.cn/17img/images/202403/uepic/59b55492-10bb-47ab-a287-070d906d8fa8.jpg[/img][/align][align=center][b]——03——[/b][/align][align=center][b][color=#c00000]多SSC通道打开思路[/color][/b][/align]具备5个侧向散射通道,通过不同通道的SSC散射光比值,无需使用染料,即可分离识别不同小颗粒亚群。[align=center][img=图片]https://img1.17img.cn/17img/images/202403/uepic/374e9f8a-e764-4f32-a398-4c0f0aee43d3.jpg[/img][/align][align=center][b]——04——[/b][/align][align=center][color=#c00000][b]高灵敏度检测微弱荧光[/b][/color][/align]在各个荧光通道中检测500nm八峰微球都有优异表现,不仅可以检测到低丰度小颗粒,还可以清晰检测表面的低密度抗原。[align=center][img=图片]https://img1.17img.cn/17img/images/202403/uepic/c6111dd0-7fa8-461b-b216-4cc66c8847cb.jpg[/img][/align][align=center][b]——05——[/b][/align][align=center][color=#c00000][b]高分辨率清晰分辨亚群[/b][/color][/align]在表征多种大小的颗粒时,能够清晰分辨至少10nm粒径差异的类群。[align=center][img=图片,300,319]https://img1.17img.cn/17img/images/202403/uepic/f5906509-afdb-49f4-9373-97cccb5ad9f3.jpg[/img][/align][align=center][b]——06——[/b][/align][align=center][b][color=#c00000]严格质控保障实验结果[/color][/b][/align]对荧光灵敏度、Baseline等实施自动监控,确保排除仪器性能问题影响实验结果。[align=center][img=图片]https://img1.17img.cn/17img/images/202403/uepic/8a37294b-216b-443e-852f-8840f85b82c6.jpg[/img][/align][align=center][color=#c00000][b]——07——[/b][/color][/align][align=center][b][color=#c00000]操作简单方便快速上手[/color][/b][/align]延用CytoFLEX系列相似的软件设计,流程自动化程度高,简化仪器维护步骤。[align=center][img=图片]https://img1.17img.cn/17img/images/202403/uepic/e8a1dcda-6a1e-489e-a2e0-ade74d1ca252.jpg[/img][/align][align=center][color=#ff0000][b]日常新品申报入口 ↓↓↓[/b][/color][/align][color=#ff0000][b][/b][/color][align=center][url]https://www.instrument.com.cn/Members/NewProduct/NewProduct[/url][/align][align=center][img=日常申报新品好处多多.jpg,350,338]https://img1.17img.cn/17img/images/202403/uepic/725a114d-56df-4e86-a262-82086ec34999.jpg[/img][/align][align=center][/align][来源:仪器信息网] 未经授权不得转载

  • 磁性纳米粒子在生物医学方面的应用

    磁性纳米粒子/磁性纳米颗粒(Magnetic Nanoparticles, MNPs)是近年来发展迅速且极具应用价值的新型材料,在现代科学的众多领域如生物医药、磁流体、催化作用、核磁共振成像、数据储存和环境保护等得到越来越广泛的应用。 在科学家、工程师、化学家和物理学家的共同努力下,纳米技术使得生命科学和健康医疗领域在分子和细胞水平上取得很大的进展。磁性纳米粒子是纳米级的颗粒,一般由铁、钴、镍等金属氧化物组成的磁性内核及包裹在磁性内核外的高分子聚合物/硅/羟基磷灰石壳层组成。最常见的核层由具有超顺磁或铁磁性质的Fe3O4或γ-Fe2O3制成,具有磁导向性(靶向性),在外加磁场作用下,可实现定向移动,方便定位和与介质分离。最常见的壳层由高分子聚合物组成,壳层上偶联的活性基团可与多种生物分子结合,如蛋白质、酶、抗原、抗体、核酸等,从而实现其功能化。因此磁性纳米粒子兼具磁性粒子和高分子粒子的特性,具备磁导向性、生物兼容性、小尺寸效应、表面效应、活性基团和一定的生物医学功能。 由于其独特的物理、化学特性,磁性纳米粒子可以简化繁琐复杂的传统实验方法,缩短实验时间,是一种新型的高效率的试剂。目前,磁性纳米粒子在生物医药方面主要应用在磁性分离、磁性转染、核酸/蛋白质/病毒/细菌等的检测、免疫分析、磁性药物靶向、肿瘤热疗、核磁共振成像和传感器等。下文将具体介绍磁性纳米粒子的性质及在生物医学领域的主要应用, 并列出对应于不同应用的具体产品。 磁性纳米粒子的性质 磁性纳米粒子有一系列独特而优越的物理和化学性质。随着合成技术的发展,已成功生产出一系列形状可控、稳定性好、单分散的磁性纳米粒子。磁性纳米粒子具有的磁性使其易于进行富集和分离,或进行定向移动定位。磁效应由具有质量和电荷的颗粒运动形成。这些颗粒包括电子、质子、带正电和负电的离子等。带电颗粒旋转产生磁偶极,即磁子。磁畴指一个体积的铁磁材料中所有磁子在交换力的作用下以同一方向排列。这个概念将铁磁与顺磁区别开来。铁磁性材料有自发磁化强度,在无外加磁场时,也具有磁性。铁磁材料的磁畴结构决定磁性行为对尺寸大小的依赖性。当铁磁材料的体积低于某个临界值时,即成为单磁畴。这个临界值与材料的本征属性有关,一般在几十纳米左右。极小颗粒的磁性来源于基于铁磁材料磁畴结构的尺寸效应。这个结论的假设是铁磁颗粒在具有最低自由能的状态对小于某个临界值的颗粒有均匀的磁性,而对较大颗粒的磁性不均匀。前者较小颗粒称为单磁畴颗粒,后者较大的颗粒称为多磁畴颗粒。当单磁畴颗粒的直径比临界值更进一步降低,矫顽力变成零,这样的颗粒即成为超顺磁。超顺磁由热效应造成。超顺磁纳米粒子在外加磁场作用下具有磁性,而在外加磁场移除后不具有磁性。在生物体内,超顺磁颗粒只在有外加磁场时具有磁性,这使得它们在生物体内环境中具有独特优点。铁、钴、镍等晶体材料都有铁磁性,但由于氧化铁磁铁(Fe3O4)是地球上天然矿物中最具磁性的,且生物安全性高(钴和镍等材料具有生物毒性),因而在多种生物医学应用中,超顺磁形式的氧化铁磁性纳米粒子最常见。 铁磁流体(磁流体)是在外加磁场作用下变得具有很强磁性的液体,它是既具有磁性又具有流动性的新型功能材料。铁磁流体是由纳米级的铁磁或亚铁磁构成的胶体溶液,颗粒悬浮于载体溶液中,载体溶液通常为有机溶剂或水。纳米颗粒完全被表面活性剂包裹以防止聚合成团。铁磁流体通常在无外加磁场时不保持磁性,因而被归类为超顺磁。铁磁流体中的纳米粒子在正常条件下由于热运动不发生沉降。 球形颗粒的磁性纳米粒子的比表面积(表面积与体积之比)与直径成反比。对于直径小于0.1um的颗粒,其表面原子的百分数急剧增大,此时表面效应显著。颗粒直径减小,比表面积显著增大,同时表面原子数迅速增加。当粒径为1nm时表面原子数为完整晶粒原子总数的99%,此时构成纳米粒子的几乎所有原子都分布在表面上,在表面原子周围形成很多悬空键,具有不饱和性,易与其他原子结合形成稳定结构,表现出高化学活性。因此,固定目标分子/原子效率高。[font='

  • 【求助】TEM能谱测400纳米颗粒计数率低

    大家好,有个问题请教,今天做了一个样品,500纳米的颗粒,具体是啥不知道,主要想测里边的S和I,用得是普通的碳网,但是CPS很低只有20左右,请问怎么回事?谢谢

  • 【原创大赛】【微观看世界】趣味TEM实验之金纳米颗粒构成麻将筒子排列

    【原创大赛】【微观看世界】趣味TEM实验之金纳米颗粒构成麻将筒子排列

    前言纯粹的电镜检测工作是有些枯燥乏味的,所以平时工作时要寻找乐趣,维持兴趣,不放弃提高水平。这次的样品是金纳米颗粒,在测样的过程中,偶然发现有些颗粒的排列似乎有规律,于是萌生了将这些排列都找齐的想法!样品的合成和制备在水相中制备球形金纳米颗粒的方法有很多种,如白磷还原法、抗坏血酸还原法、梓檬酸三钠还原法、硼氧化钠还原法、乙醇超声波还原法、鞣酸-梓檬酸三钠还原法等。通过这些方法的应用能够成功制备出尺寸在几纳米至数百纳米范围内各种尺度、分散性较好的球形金纳米颗粒。制备出生长有金纳米颗粒的水溶液之后,将溶液离心使催化剂等分层,取金纳米颗粒溶液层稀释,滴管取少部分,滴1~2滴在直径3mm的碳膜上。干燥后即可上TEM观察。图片展示http://ng1.17img.cn/bbsfiles/images/2013/11/201311181533_477888_2193245_3.jpg图1 麻将之筒子示意图(来自百度百科)http://ng1.17img.cn/bbsfiles/images/2013/11/201311181534_477890_2193245_3.jpg图2 一筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181534_477891_2193245_3.jpg图3 二筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181536_477893_2193245_3.jpg图4 三筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181537_477894_2193245_3.jpg图5 四筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181539_477895_2193245_3.jpg图6 五筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181540_477896_2193245_3.jpg图7 六筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181540_477897_2193245_3.jpg图8 七筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181541_477898_2193245_3.jpg图9 八筒http://ng1.17img.cn/bbsfiles/images/2013/11/201311181541_477899_2193245_3.jpg图10 九筒

  • Winner801光相关纳米粒度仪

    Winner801光相关纳米粒度仪Winner801是我公司最新推出的基于动态光散射原理的纳米粒度仪,也是国内首款采用光子相关光谱(PCS)技术的纳米粒度仪。它采用我公司自主研制的高速数字相关器和专业的高性能光电倍增管作为核心器件,具有快速、高分辨率、重复及准确等特点,是纳米颗粒粒度测定的首选产品。主要性能特点:先进的测试原理:本仪器采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高的特点,从而保证了测试结果的真实性和有效性;是纳米激颗粒粒度测定的首选仪器。高灵敏度与信噪比:本仪器的探测器采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比,从而保证了测试结果的准确度;极高的分辨能力:使用PCS技术测定纳米级颗粒大小,必须能够分辨纳秒级信号起伏。本仪器的核心部件采用微纳公司研制的CR140数字相关器,具有识别8ns的极高分辨能力和极高的信号处理速度,因此可以得到准确的测定结果。超强的运算功能:本仪器采用自行研制的高速数字相关器CR140进行数据采集与实时相关运算,其数据处理速度高达125M,从而实时有效地反映颗粒的动态光散射信息。稳定的光路系统:采用短波长LD泵浦激光光源和光纤技术搭建而成的光路系统,使光子相关谱探测系统不仅体积小,而且具有很强的抗干扰能力,从而保证了测试的稳定性。高精度恒温控制系统:样品测试区域设计有半导体恒温装置,温控精度高达0.1℃,保证测试样品温度恒定,消除因温度的变化导致介质的折射率、粘度的变化以及布朗运动突变等因素,从而保证测试结果的准确度和稳定性。 适用测试对象:各种纳米级、亚微米级固体颗粒与乳液。

  • 纳米颗粒追踪表征的工作原理

    [b]纳米颗粒追踪表征的工作原理:分析原理:[/b]纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。

  • 壳聚糖季铵盐基载药纳米颗粒的制备及抗肿瘤活性研究

    【序号】:1【作者】:宓英其【题名】:壳聚糖季铵盐基载药纳米颗粒的制备及抗肿瘤活性研究【期刊】:中国科学院大学(中国科学院烟台海岸带研究所)【年、卷、期、起止页码】:2021【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whFuPQ0yKi4pXSQlJ_W8wBD9JRPlAs_d8B08_Rb1JUznAFb2v97acEb09IrgYlNXMTwfPMLqRO91a&uniplatform=NZKPT

  • 【求助】关于纳米金属颗粒的观察

    前一段时间看了几个样品,这些样品应该是经过还原后的纳米金属晶体,但XRD判定为无定形。电镜开始观察时通过电子衍射判断样品应该是无定形的,但样品经过电子束较长时间辐照之后(大约1分钟),在同一位置开始出现纳米颗粒,经过HRTEM分析,应该是金属纳米晶体。那么我觉得有两种可能:其一,电子束对样品起到了加热作用,本来是很小的原子簇,加热后逐渐张大,形成纳米晶,其二,样品不是金属态的,而是氧化态,经过电子束的还原,得到了相应晶体。当然也可能是二者的合力。那么如果只是用电镜如何判断是何种作用方式呢?谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制