激光功率计校准规程

仪器信息网激光功率计校准规程专题为您提供2024年最新激光功率计校准规程价格报价、厂家品牌的相关信息, 包括激光功率计校准规程参数、型号等,不管是国产,还是进口品牌的激光功率计校准规程您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光功率计校准规程相关的耗材配件、试剂标物,还有激光功率计校准规程相关的最新资讯、资料,以及激光功率计校准规程相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光功率计校准规程相关的仪器

  • ■光电二极管高灵敏激光功率计探头◆ 高灵敏度,10pW-3W;◆ 波长范围覆盖193nm-1800nm;◆ 适合于HeNe激光器、半导体激光器、DPSS激光器、HeCd激光器等小功率激光测量; 产品参数: 产品型号产品特点探头口径波长范围功率范围PD300自动背景光扣除10× 10mm350-1100nm1nW-300mWPD300-1W自动背景光扣除10× 10mm350-1100nm1nW-1WPD300-3W高功率10× 10mm350-1100nm1nW-3WPD300-IR红外&Phi 5mm700-1800nm5nW-300mWPD300-UV宽波长范围且噪声低10× 10mm200-1100nm10pW-300mWPD300-UV-193宽波长范围,193nm额外校准10× 10mm200-1100nm10pW-300mWPD300-IRG红外,低噪声&Phi 5mm800-1700nm10pW-150pWPD300-BB430-1100nm内光谱谱线平10× 10mm430-1100nm50pW-4mWPD300-CIE模拟人眼响应曲线,单位Lux2.4× 2.8mm400-700nm20m Lux-200K LuxPD300-TP4mm厚探头 10× 10mm350-1100nm50pW-1WPD200低成本功率计(选择一到两个测量波长)10× 10mm400-1100nm20nW-200mWBC20用于扫描光束,速度可达30000inch/s10× 10mm633, 650, 675nm50uW-20mW ■热电堆激光功率计探头◆ 测量功率范围60uW-10kW,光谱范围0.19-20um;◆ 可用于单发脉冲能量测量,还提供美容IPL光专用测试探头;◆ 提供光纤适配器、BNC模拟输出等附件; ■产品参数: 产品型号产品特点探头口径波长范围功率范围能量范围3A高灵敏探头&Phi 9.5mm0.19-20um60uW-3W15uJ-2J3A-FS高灵敏探头,石英光窗&Phi 9.5mm0.19-20um60uW-3W15uJ-2J3A-P高灵敏探头,适用于短脉冲激光&Phi 12mm0.15-6um60uW-3W20uJ-2J10A10W通用探头&Phi 16mm0.19-20um20mW-10W6mJ-2J10A-P适用于短脉冲激光&Phi 16mm0.15-6um40mW-10W10mJ-10J12A12W探头,宽动态范围&Phi 16mm0.19-20um2mW-12W1mJ-30J12A-P适用于短脉冲激光&Phi 16mm0.5-6um2mW-12W1mJ-30J20C-SH紧凑探头&Phi 12mm0.19-20um20mW-20W6mJ-10J30A30W通用探头&Phi 17mm0.19-20um20mW-30W6mJ-30J30A-P适用于短脉冲激光&Phi 17mm0.15-6um20mW-30W6mJ-30J30A-P-DIF适用于短脉冲激光,高损伤阈值&Phi 17mm0.15-6um50mW-30W30mJ-30J30A-N专用于YAG激光&Phi 17.5mm1064, 532nm60mW-30W30mJ-200JL30A中等口径30W探头&Phi 29mm0.19-20um80mW-30W20mJ-30JL30A-EX适用于准分子激光和CO2激光&Phi 29mm0.15-0.4um, 10.6um80mW-30W20mJ-30JL30A-10MM超薄30W探头&Phi 26mm0.15-20um80mW-30W20mJ-60JL30C-SH紧凑探头&Phi 26mm0.19-20um80mW-50W20mJ-30JL50A通用50W探头&Phi 29mm0.19-20um80mW-50W20mJ-100J30(150)A30W连续测量,150W间断测量&Phi 17.5mm0.19-20um50mW-150W20mJ-300J30(150)A-LP1长脉冲及连续激光高损伤阈值&Phi 17.5mm0.25-2.2um50mW-150W20mJ-300J30(150)A-HE30W连续测量,150W间断测量高平均功率调Q YAG激光&Phi 17mm0.19-0.625um, 1.064um,2.1um, 2.94um50mW-150W50mJ-200J30(150)A-HE1红宝石激光,铒激光&Phi 17mm0.19-0.76um, 2.9um50mW-150W50mJ-200J30(150)A-HE-DIF30W连续测量,150W间断测量用于超高损伤阈值调Q YAG激光&Phi 17mm0.19-3um except for625-900nm50mW-150W50mJ-30J30(150)A-SV超高损伤阈值,适用于聚焦激光&Phi 17mm0.19-12um50mW-150W50mJ-300JL30(150)A-LP1长脉冲及连续激光高损伤阈值&Phi 29mm0.25-2.2um, 2.94um80mW-150W80mJ-300JL40(150)A大口径探头30W连续测量,150W间断测量 &Phi 50mm0.19-20um200mW-150W80mJ-300JL40(150)A-LP1长脉冲及连续激光高损伤阈值&Phi 50mm0.25-2.2um200mW-150W80mJ-300JL40(150)A-EX准分子激光,CO2激光&Phi 50mm0.15-0.4um, 10.6um200mW-150W80mJ-300JL50(150)A50W连续测量,150W间断测量大口径探头&Phi 50mm0.19-20um200mW-150W80mJ-300JL50(300)A超大口径探头&Phi 65mm0.19-20um500mW-300W120mJ-300JL50(300)A-LP1长脉冲及连续激光高损伤阈值&Phi 65mm0.25-2.2um500mW-300W120mJ-300JF100A-HE风冷,适用于高能量激光 &Phi 24mm0.19-0.625um, 1.064um,2.1um, 2.94um120mW-100W 50mJ-200J100C-SH紧凑探头&Phi 18mm0.19-20um60mW-20W20mJ-5JF150A风冷150W探头&Phi 17.5mm0.19-20um60mW-150W20mJ-100J150C-SH紧凑探头&Phi 18mm0.19-20um60mW-60W20mJ-100JFL250A风冷250W探头&Phi 50mm 0.19-20um200mW-250W50mJ-300JFL250A-LP1 长脉冲及连续激光高损伤阈值&Phi 50mm0.25-2.2um200mW-250W50mJ-300JFL250A-EX风冷探头用于准分子激光,CO2激光&Phi 50mm0.15-0.4um, 10.6um200mW-250W50mJ-200JFL250A-LP1-DIF连续及长脉冲激光高损伤阈值&Phi 33mm0.4-3um200mW-250W200mJ-600JL250W水冷,超薄250W探头&Phi 50mm0.19-20um4W-250W200mJ-200JFL300A风冷300W探头&Phi 50mm0.19-20um200mW-300W50mJ-300JFL300A-LP连续及长脉冲激光高损伤阈值&Phi 50mm0.14-1.5um, 10.6um200mW-300W50mJ-300JL300W-LP水冷,超薄300W探头&Phi 50mm0.14-1.5um, 10.6um3W-300W 200mJ-300JL50(300)A-IPL美容IPL光测量 &Phi 65mm0.5-1um500mW-300W120mJ-300JFL500A风冷500W探头&Phi 65mm0.19-20um500mW-500W120mJ-600JFL500A-LP1高损伤阈值 &Phi 65mm0.25-2.2um500mW-500W120mJ-600JL100(500)A大口径探头75W连续测量,500W间断测量&Phi 65mm0.19-20um500mW-500W120mJ-600J 1000W水冷1000W探头&Phi 34mm0.19-20um5W-1000W300mJ-300J L1500W水冷1500W探头&Phi 50mm0.19-20um20W-1500W500mJ-200J L1500W-LP高损伤阈值 &Phi 50mm0.19-3um, 10.6um20W-1500W 500mJ-200J 5000W水冷5000W探头&Phi 50mm0.19-20um100W-5000W N.A. 5000W-LP高损伤阈值 &Phi 50mm0.19-1.5um, 10.6um100W-5000W N.A. 10K-W高损伤阈值水冷10kW探头 &Phi 45mm0.8-1.1um, 10.6um200W-10,000W N.A. Comet 1K手持式,经济型,1kW功率计 &Phi 50mm0.2-20um20W-1000W N.A. Comet 10K手持式,经济型,10kW功率计&Phi 100mmCO2, YAG and Diode200W-10,000W N.A.Comet 10K-HD手持式,经济型,10kW功率计高损伤阈值 &Phi 110mmCO2200W-10,000W N.A. ■积分球功率计探头 ◆积分球探头,用于发散激光测量; ◆波长范围350nm-1700nm; ■产品参数: 产品型号产品特点探头口径波长范围功率范围3A-IS3W积分球探头,用于发散激光&Phi 12mm420nm-1100nm 1uW-3W 3A-IS-IRG红外3W积分球探头,用于发散激光 &Phi 12mm800-1700nm1uW-3WF100A-IS 100W积分球探头,用于发散激光&Phi 16mm350-1300nm 50mW-100W
    留言咨询
  • 结构光显微镜校准片 昊量光电新推出法国ARGOLIGHT公司生产的耐用型荧光显微镜校准载玻片,用于荧光显微镜的标定和光路对准。独创的显微镜标定技术和光路对准得益于将亚纳米级三维/二维图案嵌入到载玻片的技术,且图案不会别光漂白可以重复使用。这款强大的新工具可帮助载物台重新定位,测量探测器的功能,检验包括照明均匀性,系统的横向和轴向分辨率以及光谱形状,强度和寿命响应等等一系列参数。ARGOLIGHT荧光显微镜校准载玻片适用系统示例:每个Argo-POWER-HM载玻片包含几个荧光图案结构光显微镜校准片产品规格:终身保修的荧光发光尺寸:75x25x6 mm,标准载玻片尺寸激发波长范围:连续波长250-650nm发射波长范围:激发波长+15nm-800nm的连续体浸泡介质:兼容干式、油性;水物镜,每次小于20分钟储存条件:室温(10-40℃)和正常相对湿度(20-70%RH)成像兼容性:除基于耗尽技术和多光子成像以外的任何基于荧光的成像损伤阈值:50GW/cm2辐照度(峰值或者平均功率)功率测量:10uW-100mW,可实时测量可用波长:350nm-1100nm可兼容延时拍摄。载玻片图案:更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 机床校准激光干涉仪 400-860-5168转6117
    中图仪器SJ6000机床校准激光干涉仪是一种能够测量机床精度的高精度测量装置。具有测量精度高、测量范围大、测量速度快、高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。它利用激光干涉现象来实现非接触式测量,具有高精度、高分辨率、快速测量等优点,在机床加工领域有着广泛的应用。在SJ6000激光干涉仪动态测量软件配合下,还可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。测量原理SJ6000机床校准激光干涉仪的测量原理主要包括相位测量和位移测量。相位测量是通过测量干涉条纹的相位差来计算被测量物体的形状、位置等参数;位移测量是通过测量干涉条纹的位移来确定物体的位移量。这两种测量原理在不同应用场景下有着各自的优势和适用性。产品优势1、激光干涉仪具有非常高的测量精度和重复性。2、激光干涉仪可以实现非接触式测量,不会对被测量物体造成损伤。3、激光干涉仪具有实时性测量能力,能够同时测量多个位置或参数,提高测量效率。产品应用1.测量机床导轨的直线度和平行度。导轨是机床中的重要零部件,直线度和平行度的误差会直接影响机床的加工精度和稳定性。激光干涉仪可以通过测量导轨上的干涉条纹来确定其直线度和平行度的偏差,从而指导后续的优化和调整。2.测量机床工作台的平面度和垂直度。机床工作台的平面度和垂直度直接影响工件的加工精度和质量。通过SJ6000机床校准激光干涉仪测量工作台上的干涉条纹,可以快速发现工作台的不平整和非垂直状态,并及时进行调整和修正,确保工件的加工精度和稳定性。3.测量机床主轴的同心度和轴向垂直度。机床主轴的同心度和轴向垂直度是决定机床加工精度的关键因素。通过激光干涉仪测量主轴上的干涉条纹,可以准确判断主轴的同心度和轴向垂直度是否达到标准要求,从而为后续的机床调整和校准提供依据。4.其它除了上述应用,激光干涉仪还可以用于测量机床各个部件之间的相对位置和尺寸关系,从而检测和纠正机床的装配误差。此外,激光干涉仪还可以用于检测机床在运行过程中的变形和振动情况,及时发现机床的故障和异常状态,保证机床的稳定性和可靠性。对数控机床进行螺距误差补偿部分技术规格稳频精度0.05ppm动态采集频率50 kHz预热时间≤ 6分钟工作温度范围(0~40)℃存储温度范围(-20~70)℃环境湿度(0~95)%RH线性测量距离(0~80)m (无需远距离线性附件)线性测量精度0.5ppm (0~40)℃角度轴向量程(0~15)m角度测量精度±(0.02%R+0.1+0.024M)″平面度轴向量程(0~15)m平面度测量精度±(0.2%R+0.02M2)μm (R为显示值,单位:μm;M为测量距离,单位:m)直线度轴向量程短距离(0.1~4.0)m 长距离(1.0~20.0)m直线度测量精度短距离±(0.5+0.25%R+0.15M2) μm长距离±(5.0+2.5%R+0.015M2) μm垂直度轴向量程短距离(0.1~3.0)m 长距离(1.0~15.0)m垂直度测量精度短距离±(2.5+0.25%R+0.8M)μm/m 长距离±(2.5+2.5%R+0.08M)μm/m注意事项:平面度测量配置需求:平面度镜组+角度镜组平行度测量配置需求:依据轴向量程范围,选择相应直线度镜组即可短垂直度测量(0.1~3.0)m配置需求:短直线度镜组+垂直度镜组长垂直度测量(1.0~20.0)m配置需求:长直线度镜组+垂直度镜组直线度附件:主要应用于Z轴的直线度测量和垂直度测量恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询

激光功率计校准规程相关的方案

  • 积分球 精确测量大功率激光器功率
    弥补热电堆和光电二极管测量激光功率缺陷,实现大功率激光器功率精确快速测量。 采用积分球-光纤-光功率计整体校准,组成全新的功率检测系统。由积分球和光电二极管组合成的传感器呈现出了一个几近完美的激光功率测量传感器。对于高功率激光器的测量,该组合可以让操作者看到热电堆探测器无法捕捉到的激光功率波动。这些波动包括:CW模式运行其间波动,启动激光器时的瞬态和过冲波动,以及运行其间的短时下降波动。
  • 利用激光二极管进行光输出功率的建模方法
    本文提出了一种激光二极管光输出功率的建模方法,包括其对温度的依赖性。本研究使用的设备是一个40W的Monocrom二极管,发射波长为808nm的光,带有一个19个发射器的CS安装激光板条,使用Monocrom的夹紧方法安装。本研究的目的是提出激光二极管器件的Pspice模型,主要关注光学输出功率随温度的变化,并允许其计算机模拟。还要建立一个表征系统,以获得光学模型数学表达式所需的参数值。因此,本文解释了所提出的激光条形二极管光输出功率模型生成方法及其参数值的获取方法、光输出功率测量装置及其校准、所获得的Pspice模型及其仿真,以及能够获得具有短上升时间电流斜率的必要参数的表征系统。最后,给出了评价结果和相关结论。
  • 激光加工,看得见的“激光功率”
    OPHIR作为全球最大的激光量测设备厂商,推出了一款工业系统集成的OEM功率计探头—Helios,可实现在线测量、无需水冷和风冷

激光功率计校准规程相关的论坛

  • 激光功率调节的方式方法及光谱分辨率等光谱仪配置测试标准

    请教各位老师,关于光谱仪的参数配置我有几点疑问。1、我在某厂家拉曼光谱仪激光功率调节的参数描述中看到,仪器采用的是激光多级衰减片,16级,以方便针对不同样品调整激光功率。不同级别的衰减片是否对应的是比如0.1%到100%的激光强度衰减?除了使用衰减片进行调节之外,还有其他的功率调节方法吗?2、光谱分辨率、光谱重复性、灵敏度这几项各自所用的检验标准是否每个厂家都基本一样?

  • 激光功率对样品的影响

    测试光谱时,随着激光功率的提高发现样品的拉曼光谱有了一定的变化,显微镜下看起来样品并没有发生变化。将激光功率降低,样品的拉曼光谱又回到了原来的状态,这种情况如何解释?这种情况下测量时选择哪种激光功率呢?

激光功率计校准规程相关的耗材

  • ZAP-IT激光校准纸
    ZAP-IT® 激光校准纸?行业标准光束轮廓观察纸?记录脉冲激光的光束、发散、模式和强度特性?适用于从UV到IR的宽带源ZAP-IT® 激光校准纸设计用于测试从紫外到红外的脉冲激光的特性。光束特性是通过在光路内手持ZAP-IT® 激光校准纸进行记录的。ZAP-IT® 激光校准纸非常适合用于校准应用或与激光光学件结合使用,其中包括激光扩束器、光学透镜、光圈、衰减器或功率仪表。对于连续波激光,可以使用机械斩波器或Q开关,或者手动快速地打开和关闭激光,以产生短脉冲。注意:如果输入光束的直径为6.3mm或更小,则难以观察到光束特性。如果是这样,可以使用激光扩束器或平凸透镜将光束直径放大。使用平凸透镜时,将ZAP-IT® 激光校准纸放置在图像距离为透镜焦距的2.5倍远的位置上。通用规格厚度(英寸):0.009厚度 (mm):0.24注意:Recommended Pulsed Width: 1ns to 30msRecommended Power Level Range: 5 mJ/cm2to 20 J/cm2产品型号标题产品编码ZAP-IT® 激光对准纸,2 x 5“,20张盒装#15-825ZAP-IT® 激光对准纸,2 x 5“,50张盒装#15-826ZAP-IT® 激光对准纸,4 x 8“,20张盒装#15-824ZAP-IT激光准直纸,4 x 8“,50张盒装#90-709ZAP-IT® 激光对准纸,4 x 8英寸,2mm正方形网格图案,20张盒装#15-827ZAP-IT® 激光对准纸,4 x 8“,2mm正方形网格图案,50张盒装#15-828ZAP-IT® 激光对准纸,20 x 24“,2张#15-829ZAP-IT激光校准纸ZAP-IT低能耗激光校准纸靶型号:ZL-22,ZL-25,ZL-48ZAP-IT® 低能耗激光校准纸靶有3种尺寸。ZL-22:2 x 2.2英寸,带有四个细线,十字准线目标。100张/包。厚度为0.11毫米。卡背面未打印。ZL-25:2 x 5英寸,无目标。75张/包。厚度为0.11毫米。卡背面未打印。ZL-48:4 x 8英寸,无目标。50张/包。厚度为0.11毫米。卡背面未打印。这种低能耗纸的能量阈值比ZAP-IT® 激光校准纸低20%。使用ZAP-IT® 激光校准纸记录激光束特征光束形状模式强度发散能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在可重新封闭的盒子中,以便于访问和存储。在ZAP-IT® 激光校准纸背面提供的区域中记录激光和光束的规格。建立稳定的可视化数据库零件编号:ZL-22(ZL22),ZL-25(ZL25),ZL-48(ZL48)使用ZAP-IT® 激光烧蚀将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜?进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。?对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。?在光束路径中放置一个正透镜(常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。?将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。?并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。?对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:?镜面对准精度?能量分布,模式质量和边缘定义?渐晕?未镀膜或未正确放置的光学元件导致的二次发射?发散?光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸ZAP-IT带网格的激光校准纸4x8英寸型号:ZG-48ZG-48,50张/包装。每张纸为4 x 8英寸,带有细的白线2mm网格。使用ZAP-IT® 激光校准纸记录激光束特征光束形状模式强度发散能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在可重新封闭的盒子中,以便于访问和存储。纸的背面为空白(无打印信息)。建立稳定的可视化数据库。零件编号:ZG-48(ZG48)使用ZAP-IT® 激光烧蚀和对齐纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜?进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。?对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。?在光束路径中放置一个正透镜(常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。?将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。?并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。?对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:?镜面对准精度?能量分布,模式质量和边缘定义?渐晕?未镀膜或未正确放置的光学元件导致的二次发射?发散?光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸ZAP-IT® 激光校准纸10x10英寸型号:Z-1010Z-1010,每包50张。每张纸为10 x 10英寸。 0.25mm的厚度。 背面为纯白色。使用ZAP-IT® 激光校准纸记录激光束特征光束形状模式强度发散能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在重型可重新密封的塑料袋中。建立稳定的可视化数据库零件编号:Z-1010(Z1010)使用ZAP-IT® 激光校准纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜?进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。?对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。?在光束路径中放置一个正透镜(常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。?将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。?并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。?对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:?镜面对准精度?能量分布,模式质量和边缘定义?渐晕?未镀膜或未正确放置的光学元件导致的二次发射?发散?光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸ZAP-IT® 激光校准纸3x3英寸型号:Z-33Z-33,75张/包每张纸为3英寸x 3英寸。厚度为0.11毫米。卡背面未打印。使用ZAP-IT® 激光校准纸记录激光束特征光束形状模式强度发散能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在可重新封口的塑料袋中,方便取用。纸背面为空白(不打印)。建立稳定的可视化数据库。零件编号:Z-33(Z33)使用ZAP-IT® 激光校准纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜?进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。?对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。?在光束路径中放置一个正透镜(常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。?将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。?并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。?对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:?镜面对准精度?能量分布,模式质量和边缘定义?渐晕?未镀膜或未正确放置的光学元件导致的二次发射?发散?光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT® 激光校准纸ZAP-IT® 激光校准纸2 x 5英寸型号:Z-25Z-25,每盒75张。每张纸为2.25英寸x 5英寸。厚度为0.11毫米。文档信息印在背面。使用ZAP-IT® 激光校准纸记录激光束特征?光束形状?模式?强度?发散?能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在选项卡式,可重新封闭的盒子中,以便于访问和存储。在ZAP-IT® 激光校准纸背面提供的区域中记录激光和光束的规格。建立稳定的可视化数据库零件编号:Z-25(Z25)使用ZAP-IT® 激光校准纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。在光束路径中放置一个正透镜(最常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:镜面对准精度能量分布,模式质量和边缘定义渐晕未镀膜或未正确放置的光学元件导致的二次发射发散光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸Z3T ZAP-IT® 激光校准纸6x6英寸型号:Z3T-66-100Z3T-66-100,100张装在有封口的塑料盒中。每张纸为6 x 6英寸。厚度为0.25毫米。正面采用缎面黑色专有涂层。纯白背。使用ZAP-IT® 激光校准纸记录激光束特征?光束形状?模式?强度?发散?能量分配ZAP-IT® 激光校准纸特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件(例如扩束器,透镜,光圈,衰减器和功率测量设备)对准激光束轴。包装在可重新封口的塑料盒中,以便使用和存放。建立稳定的可视化数据库零件编号:Z-66(Z66)使用ZAP-IT® 激光校准纸将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。在光束路径中放置一个正透镜(最常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:镜面对准精度能量分布,模式质量和边缘定义渐晕未镀膜或未正确放置的光学元件导致的二次发射发散光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71AZAP-IT激光校准纸Z3TZAP-IT® 激光校准纸4 x 8英寸型号:Z3T-48-50Z3T-48-50 Zap-It新技术校准纸。每包50张。带封口的保利盒。每张纸为4 x 8英寸。厚度为0.25毫米。正面采用缎面黑色专有涂层。背面为纯白色,无印刷。使用ZAP-IT® 激光校准纸记录激光束特征?光束形状?模式?强度?发散?能量分配ZAP-IT® 激光校准纸张特性脉冲宽度范围:1 ns至30ms能量水平范围:5mJ/cm2至20 J /cm2在紫外线到红外线的广谱范围内敏感。用于将外部附件,如扩束器,透镜,光圈,衰减器和功率测量设备对准激光束轴。现在包装在可重新封闭的塑料盒中,以方便查看产品和访问。建立稳定的可视化数据库。零件编号:Z3T-48-50ZAP-IT® 激光校准纸使用方法将纸张放在光束印记要被记录的光束路径中。脉冲激光以产生的视觉记录,对应于激光束内的能量分布。对于连续波(CW)激光器,请使用机械斩波器或Q开关来产生短脉冲或物理方式快速开关激光。注意:始终佩戴激光防护眼镜进行ZAP-IT® 烧蚀之前,请卸下光纤传输系统。光纤会打乱光束的模结构,从而产生均匀的图案,不会显示出激光束中的不规则性。对于直径小于1/4英寸(6.3毫米)的激光束,请使用扩展透镜来增加直径,并在ZAP-IT® 烧蚀中获得更多细节。在光束路径中放置一个正透镜(最常用),在距离2.5倍透镜焦距处进行烧蚀。在此距离处,光束直径大于在原点处。将激光输出能级增加或减少到ZAP-IT® 激光校准纸上可见细节的程度。并非所有的激光器都具有足够的输出功率来留下详细的烧蚀。作为参考,输出至少10毫焦耳的脉冲激光(毫微微至50毫秒)通常会产生很好的细节。对于没有留下足够细节的激光脉冲,请将纸张留在原处并施加多个脉冲。ZAP-IT® 激光校准纸上的印记提供以下信息:镜面对准精度能量分布,模式质量和边缘定义渐晕未镀膜或未正确放置的光学元件导致的二次发射发散光路中的光学损伤保存ZAP-IT® 烧蚀以进行历史评估,并比较对准和光束质量。原始设备制造商和现场服务人员通常使用以前的刻录模式进行快速性能检查。REV。 71A
  • 高功率激光衰减器
    高功率激光衰减器由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,先后为清华大学,山东大学,中科院上海光机所,沈阳自动化所,安徽光机所,西安光机所等单位提供激光能量衰减器。这款高功率激光衰减器,又称为高功率激光能量衰减器,使用了两个高质量的布儒斯特型偏振片, 反射s光,而透过p光。两个布儒斯特偏振片安装于特殊设计的光机适配器上。可旋转的半波片安装在入射的偏振光束方向。通过旋转该半波片,s光和p的光强比值就可以连续改变而不改变其参数。这样,出射光束的强度和s/p光强比值就可以在很大范围内实现可调。可以让p光全部透过而s光几乎为零,也可以让s光的强度达到最大,而p光的强度几乎为零。高功率激光衰减器特色:*高功率激光衰减器非常适合飞秒激光应用* 激光能量衰减器把激光束分成两个平行的光束,二者强度比可以手动调节* 激光能量衰减器微小可忽略的光速偏离*高功率激光衰减器高损伤阈值 *高功率激光衰减器低色散(非常适合飞秒激光和高能激光)激光能量衰减器标准参数Central wavelengths266 355 400 515 532 780 800 1030 1064 1550nm other available upon requestAperture diameterstandard 15mm, max 50mmDamage Threshold5J/cm2 10ns pulsed at 1064 nm, typicalAntireflection CoatingR Time dispersiontPolarization Contrast (after 1st polarizer)100:1Polarization Contrast (after 2nd polarizer)500:1高功率激光衰减器标准配置型号高功率增强型配置λ/2 ZO Waveplate + 2x Brewster type thin film polarizers工作波长范围+/-10 nm损伤阈值5 J/cm2更多高功率激光衰减器,激光能量衰减器
  • 适用于高功率激光加工的Iris变形镜
    产品信息Iris自适应光学系统Iris分段式可变形镜Alpao自适应光学系统适用于高功率激光加工的Iris变形镜所属类别: ? 调制器 ? 可变形反射镜/自适应光学系统所属品牌:美国Iris AO公司产品简介Iris AO公司针对激光加工应用专门设计的分立镜面MEMS变形镜具有专业的水冷系统与镀膜技术,大幅提高了损伤阈值,适用于高功率激光加工系统,可对光学元件带来的像差予以校正,并有效提高激光的光束质量!关键词:变形镜,DM,deformable mirror,MEMS,分立镜面变形镜,分立式变形镜,分立式MEMS变形镜 ,分离镜面变形镜,Discrete MEMS deformable mirror,Iris变形镜,微变形镜,MEMS变形镜,静电变形镜,像差校正、场镜像差校正、F-Theta Lens像差校正适用于高功率激光加工的Iris变形镜在高功率激光精细加工领域,光束质量对于加工精度与质量至关重要。通常光束质量的影响主要来自激光器本身的光束质量的波动与激光加工系统中光学元器件引入的光学像差。在该领域,所使用的激光器的腔镜会受到激光的直接辐照而产生对激光能量的吸收,特别是随着功率的提高,腔镜吸收的能量也随之增加,腔镜温度升高而产生热变形。腔镜热变形将引起腔内光束的光程发生变化,使得谐振腔的工作参数偏离设计值,从而引起腔内模式发生改变,致使波前相位高频成分及Zernike高阶像差增大,波前畸变程度也将变大,输出光束质量退化,输出功率下降,从而影响激光微加工的精度和质量。而激光加工系统中的光学元器件所引入的光学像差则不可避免地会导致激光光束质量下降。Iris分立镜面MEMS变形镜,采用全球领先的分立镜面混合表面微加工工艺技术,是美国Iris AO公司专门为高功率激光精细加工过程中腔镜热变形和光学器件像差造成的波前畸变进行校正补偿而开发的新型封装变形镜器件,是改善高功率激光精细加工应用中光束质量,提供加工精度与加工质量的有效工具。Iris使用独创MEMS专利技术制造的变形镜采用111个内切孔径3.5或7.0mm的驱动器,37片PTT镜片单元组成蜂窝状阵列。每一个镜面单元可以在三个自由度方向上,伸缩,翻倒,倾斜独立控制。产品特点和优势: 专业介质镀膜可承受高功率激光 配有水冷散热系统,更利于散热并提高产品寿命 配有清除有机物的清洗口,避免水冷系统阻塞 体积紧凑,方便集成 高性价比权威测试结果:1. 全球领先的激光微加工系统制造商使用紫外脉冲激光器(355nm,15W平均功率,ps脉冲)对Iris AO的新型封装并镀膜的PTT111变形镜进行测试显示: Iris变形镜在5W激光功率下测试60小时,10W激光功率下测试70小时,15W激光功率下测试80小时,均没有显示影响光束质量的损坏迹象。在激光功率15W测试时入射到变形镜上的是一束光斑直径大约1mm的激光。测试显示即使在更高的功率强度上,变形镜也没有出现永久损坏的迹象。2. 另一位业内领先的激光加工系统制造商Raydiance Inc.( http://www.raydiance.com/)公司利用平均功率10W的1550nm飞秒脉冲激光器成功对镀金薄膜的PTT111DM和采用新型封装PTT111DM进行测试对比。测试显示这种专为激光应用开发与优化的最新封装,进一步增大镀金薄膜变形镜所能承受的平均功率。3. 测试显示Iris分立镜面MEMS变形镜无需热沉就可以承受300W/cm2平均功率密度,在进行热沉和改善镀膜后,变形镜可以承受3KW/cm2的平均功率密度。对于脉冲激光,变形镜可以承受峰值功率密度1.7GW/cm2。在使用新型封装后,变形镜所能承受的功率密度进一步增大,并且无损连续工作时间显著延长。以上测试均表明专业表面介质薄膜以及为适应恶劣环境进行的新型封装对提高变形镜的损伤阈值与高功率激光下的工作性能非常有效。Iris AO公司下一步将进行1000小时的超长时间测试,来进一步验证和改善这种新型封装镀膜变形镜的承受高功率激光的性能。目前Iris AO由于出色的研发实力,已赢得了美国国家航空航天局的Phase II SBIR项目资金,用来支持其进一步发展变形镜在高功率激光器方面的应用。Iris AO将进一步开发适用更宽波长范围的镀膜技术,适用从288nm到1600nm激光器,(深紫外准分子激光器到ND:YAG激光器),为激光微加工、激光精细加工和激光整形行业应用提供优秀的波前校正与光斑整形方案。分享到 : 人人网 腾讯微博新浪微博 搜狐微博 网易微博

激光功率计校准规程相关的资料

激光功率计校准规程相关的资讯

  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • 便携式电池供电激光功率测量积分球助力激光企业发展
    某现场安装激光二极管的制造公司需要一种可靠的方法用于现场测量激光功率,而无需带回实验室进行测试。激光测量系统需要完全由电池供电,因为现场没有电源。Labsphere(蓝菲光学)根据客户要求提供一套独立的、便携式且耐用的激光功率测试系统。Labsphere (蓝菲光学)提供标准的激光二极管测量积分球; 然而,还需将新功能整合到系统中,使其能被带到现场测试。 由此产生的一个小而轻的积分球系统,能够在世界任何地方进行可靠的激光功率测量。1.5 英寸开口端,用于轻松安装激光二极管组件针孔滤光片后面的制冷型 InGaAs 探测器,用于在功率低至 200 μW 的情况下进行红外范围内的辐射测量两个 FC/PC 适配器,允许通过光纤连接额外的探测器Spectralon 漫反射材料,在 UV-VIS-NIR 范围内提供近乎完美的朗伯反射,以优化测试结果的准确性为 TE 冷却器和充电装置供电的可充电电池组轻巧的手持式塑料支架可固定每个组件,并带有泡沫内衬派力肯手提箱,可确保安全运输特点电池组可为系统供电数小时,为一个项目中的多项测试提供充足的时间每个组件都包依附在安装板上,提供了极大的可移动性,而手提箱确保了产品运输过程中的安全性InGaAs 探测器在近红外范围内提供可靠的校准测量,附加的光纤适配器使系统能够灵活地在其他范围内或使用光谱仪执行附加测试Spectralon 极高的漫反射率,以及积分球内的挡板几何形状,很大限度地提高了光照射到探测器上的均匀性Labsphere(蓝菲光学) 的 HELIOSense 软件进行实时数据收集、存储和可视化,使测试变得简单易行。光谱响应
  • 我国大功率激光器用标准创新打破国外垄断
    全国大功率激光器应用分技术委员会在武汉成立  曾被国外垄断的大功率激光器技术,通过技术标准创新,现已转化为我国具有完全自主知识产权的尖端产品。11月11日,全国光辐射安全和激光设备标准化技术委员会大功率激光器应用分技术委员会,在湖北武汉东湖国家自主创新示范区成立。  大功率激光器是激光产业的高端核心技术。30年来,我国对大功率气体激光器、大功率固体激光器、高功率激光传输聚焦加工系统、大功率激光加工工艺等,实行了引进、吸收和消化,逐步开发出各种大功率的激光焊接、激光切割、激光打孔、激光表面处理的成套设备。随着这些高新技术的广泛应用,使钢铁、汽车、能源、电子、船舶等支柱产业的技术能力和制造水平得到迅速提升。  然而,与美国、欧盟、日本等国相比,目前我国在大功率激光器的制造水平和应用规模上,尚处在初级研制或小规模生产阶段,尤其是高端的大功率激光器与激光加工成套设备几乎全部依赖国外进口。究其原因,主要是我国的大功率激光器尚未达到生产标准化,难以保证产品质量和提高技术档次,同时也限制了发展规模。因此,大功率激光器应用专业的标准研制,是促进我国激光产业科学发展的攻关大课题。  近几年来,武汉华工激光工程有限公司旗下的科威晶激光技术有限公司,在引进生产大功率激光器的过程中,借助武汉华工激光工程有限公司的自主研发和标准创新,成功地开发出4000瓦轴快流二氧化碳激光器。这项拥有完全知识产权的大功率激光器,入选国家重点新产品计划,今年产销量可望达到120台。从此,国产大功率激光器实现了规模化量产,跻身于世界大功率激光器7大生产企业。  武汉华工激光工程有限公司自主制定的大功率激光器生产标准,达到了国外先进水平。自2008年开始,湖北省和武汉市的质监部门积极支持该公司筹备激光领域的国家级标准化分技术委员会,以此提高我国大功率激光器应用专业的整体水平,缩短与国际先进水平的差距。经国家标准化管理委员会批准,由武汉华工激光工程有限公司申办的全国光辐射和激光设备标准化技术委员会大功率激光器应用分技术委员会,正式落户武汉东湖国家自主创新示范区。  在全国大功率激光器应用分技术委员会一届一次工作会议上,确定北京工业大学激光工程研究院院长左铁钏等25位专家担任该委员会委员,武汉华工激光工程有限公司为该委员会秘书处承担单位。  据了解,作为我国激光领域的首个国家级标准化分技术委员会,将站在行业发展的战略高度,对国内外大功率激光器应用加工设备的相关标准进行对比分析 组织编制大功率激光器应用的标准体系,制定大功率激光器应用技术和安全辐射等基础标准。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制