光栅式光谱仪原理

仪器信息网光栅式光谱仪原理专题为您提供2024年最新光栅式光谱仪原理价格报价、厂家品牌的相关信息, 包括光栅式光谱仪原理参数、型号等,不管是国产,还是进口品牌的光栅式光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光栅式光谱仪原理相关的耗材配件、试剂标物,还有光栅式光谱仪原理相关的最新资讯、资料,以及光栅式光谱仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光栅式光谱仪原理相关的仪器

  • “影像谱王”系列光栅单色仪/光栅光谱仪“影像谱王”系列光栅单色仪/光栅光谱仪功能及特点:1.180mm,320mm,500mm等多种焦距可选,适应不同光谱带宽需求;2.光学结构采用经典的C-T结构和非球面影像校正技术,最大限度了抑制了像散,使得离轴信号能够在焦平面上汇聚于空间上的同一位置,获得了清晰的成像,从而提高 了信号强度,提升了光谱仪信号收集的能力;3.多光栅塔台设计,更好的发挥了仪器覆盖UV-VIS-IR全波段光谱范围的优势,并可根据需要更加灵活的选择光谱范围和分辨率;4.光栅采用40×40mm或68×68mm(68×84mm)大面积光栅,提高了光收集效率;5.适应不同光谱波段使用的光栅选择,覆盖UV-IR全波段范围;针对红外(1um)波段的最优化设计,光学镜片采用镀金膜设计,提高红外光反射效率;6.更好的杂散光抑制比,达到1×10-5;7.仪器的控制(如光栅转换、波长扫描等)全部由计算机控制,并用USB2.0接口取代传统的RS-232接口,不仅使仪器的连接更加简单化,更极大提高了通讯速率;8.采用DSP芯片控制设计使得多出入口的选择更加具有灵活性,可根据需要选择双入、出口;双入、出口的控制通过计算机软件自动控制,定位更精准;9.可灵活与卓立光源、探测器(单点探测器和阵列CCD等)组合搭建,实现任意光谱系统解决方案,如荧光、拉曼、透射/反射、吸收光谱及光源发射光谱系统等;10.电子快门可选;11.自动狭缝可选;规格参数表(@1200g/mm光栅条件下):Omni-λ180iOmni-λ320iOmni-λ500iOmni-λ750i焦距(mm)180320500750相对孔径f/4f/4f/6.5f/9.7光学结构C-T机械扫描范围(nm)0-1200分辨率(nm)-PMT0.250.080.050.028分辨率(nm)-CCD(26μm)0.350.210.150.09倒线色散(nm/mm)3.72.31.71.1波长准确度(nm)±0.2±0.15±0.1波长重复性(nm)±0.1±0.08±0.01扫描步距(nm)0.010.0050.0025杂散光1×10-5焦面尺寸(mm)30(w)×10(h)30(w)×14(h)光轴高度(mm)146.5狭缝规格缝宽:0.01-3mm连续手动可调,可选配自动狭缝;缝高:2,4,10,14mm可选光栅尺寸(mm)40×4068×68光栅台双光栅三光栅通讯接口标配USB2.0,可选RS-232
    留言咨询
  • 谱王( Omni- λ)系列为 2005 年推出的第三代光谱仪系列产品,保留了多光栅塔台的设计特点,同时采用全新的 DSP 芯片控制电路,使得仪器的控制更为简单,从而更好的发挥仪器覆盖 UV-VIS-IR 全波段光谱范围的优势,并可根据需要更加灵活的选择光谱范围和分辨率 ;USB2.0 接口取代传统的 RS-232 接口,不仅使光谱仪的连接更加简单化,更极大提高了光谱仪通讯速率 ;全新的 DSP 芯片设计使得光谱仪多出入口的选择更加具有灵活性,可根据需要选择自动双入、出口;与光源、探测器(单点探测器和阵列 CCD 等)的组合搭建,可实现任意光谱系统解决案,如荧光、拉曼、透射 / 反射、吸收光谱及光源发射光谱系统等 ;同时成功研发出双级联和三级联光谱仪,可应用于更微弱光谱探测领域。 “谱王”系列光栅单色仪 / 光谱仪功能及特点■ 150mm,300mm等多种焦距可选,适应不同光谱带宽需求;■ 光学结构采用经典的C-T结构■ 多光栅塔台设计,更好的发挥了仪器覆盖UV-VIS-IR全波段光谱范围的优势,并可根据需要更加灵活的选择光谱范围和分辨率;■ 光栅采用32×32mm或68×68mm大面积光栅,有效提高了收集光效率;■ 适应不同光谱波段使用的光栅选择,覆盖UV-IR全波段范围;■ 针对红外(1μm)波段的最优化设计,光学镜片采用镀金膜设计,提高红外光反射效率;■ 仪器的控制(如光栅转换、波长扫描等)全部由计算机控制,并用USB2.0接口取代传统的RS-232接口,设备连接更简单,同时提升通信效率;■ 采用DSP控制芯片设计使得多出入口的选择更加具有灵活性,可根据需要选择双入、出口;双入、出口的控制通过计算机软件自动控制,定位更精准;■ 可灵活与卓立光源、探测器(单点探测器和阵列CCD等)组合搭建,实现任意光谱系统解决方案,如荧光、拉曼、透射/反射、吸收光谱及光源发射光谱系统等。■ 自动滤光片轮可 “谱王”系列光栅单色仪 / 光谱仪规格参数表( @1200g/mm 光栅条件下) Omni-λ150Omni-λ300焦距(mm)150300相对孔径(f/#)f/4.2f/3.9光学结构C-TC-T分辨率(nm)0.40.1倒线色散(nm/mm)5.42.7波长准确度(nm)±0.25±0.2波长重复性(nm)±0.1±0.1扫描步距(nm)0.010.005焦面尺寸(mm)25(w)×10(h)27(w)×14(h)光轴高度(mm)137.5137.5狭缝规格缝宽:0.01-3mm连续手动可调,可选配自动狭缝;缝高:2,4,14mm可选光栅尺寸(mm)32×3268×68光栅台双光栅三光栅外型尺寸(mm)212×200×207362×260×205重量(kg)515通讯接口标配USB2.0,可选RS-232
    留言咨询
  • “影像谱王”系列光栅单色仪/光谱仪功能及特点: 1.320mm,500mm等多种焦距可选,适应不同光谱带宽需求;2.光学结构采用经典的C-T结构和非球面影像校正技术,最大限度了抑制了像散,使得离轴信号能够在焦平面上汇聚于空间上的同一位置,获得了清晰的成像,从而提高 了信号强度,提升了光谱仪信号收集的能力;3.多光栅塔台设计,更好的发挥了仪器覆盖UV-VIS-IR全波段光谱范围的优势,并可根据需要更加灵活的选择光谱范围和分辨率;4.光栅采用68×68mm(68×84mm)大面积光栅,提高了光收集效率;5.适应不同光谱波段使用的光栅选择,覆盖UV-IR全波段范围;针对红外(1um)波段的最优化设计,光学镜片采用镀金膜设计,提高红外光反射效率;6.更好的杂散光抑制比,达到1×10-5;7.仪器的控制(如光栅转换、波长扫描等)全部由计算机控制,并用USB2.0接口取代传统的RS-232接口,不仅使仪器的连接更加简单化,更极大提高了通讯速率;8.采用DSP芯片控制设计使得多出入口的选择更加具有灵活性,可根据需要选择双入、出口;双入、出口的控制通过计算机软件自动控制,定位更精准;9.可灵活与卓立光源、探测器(单点探测器和阵列CCD等)组合搭建,实现任意光谱系统解决方案,如荧光、拉曼、透射/反射、吸收光谱及光源发射光谱系统等;10.电子快门可选;11.自动狭缝可选;“影像谱王”系列光栅光谱仪规格参数表(@1200g/mm光栅条件下): Omni-λ300iOmni-λ500iOmni-λ750i焦距(mm)320500750相对孔径f/4.2f/6.5f/9.7光学结构C-T光谱范围200nm-22um(根据合适的光栅)机械扫描范围(nm)0-1200分辨率(nm)-PMT0.080.050.028分辨率(nm)-CCD(26μm)0.210.150.09倒线色散(nm/mm)2.31.71.1波长准确度(nm)±0.15±0.1波长重复性(nm)±0.08±0.01扫描步距(nm)0.0050.0025杂散光1×10-5焦面尺寸(mm)30(w)×14(h)光轴高度(mm)146狭缝规格缝宽:0.01-3mm连续手动可调,可选配自动狭缝;缝高:2,4,14mm可选光栅尺寸(mm)68×68光栅台三光栅通讯接口标配USB2.0,可选RS-232
    留言咨询

光栅式光谱仪原理相关的方案

光栅式光谱仪原理相关的论坛

  • 【原创】傅里叶变换红外光谱仪和红外光栅分光光度计比较如何?

    傅里叶变换红外光谱仪和红外光栅分光光度计的对比如何? 傅里叶变换红外光谱仪与红外光栅分光光度计相比,具有:光通量大、测量速度快、测量精度高、分辨率高、信噪比高、可以一次取得全波段光谱等特点。 其二者的性能相比,傅里叶红外光谱仪和其他类型红外光谱仪一样,都是用来获得物质的红外吸收光谱,但测量原理却不相同。在色散型红外光谱仪中,光源发出的光先照射试样,而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得光谱。但在傅里叶变换红外光谱仪中,首先是把光源发出的光经干涉仪变成干涉光,再让干涉光照射样品。经检测器获得干涉图,得不到我们常见的红外吸收光谱,实际吸收光谱是由计算机将干涉图进行傅里叶变换得到的。 从两类红外光谱仪的原理比较可知,傅里叶变换红外光谱仪有其独到之处,它与一般色散型红外光谱仪截然不同,它没有分光系统,测量时是应用经干涉仪调制了的干涉光,可一次取得全波段光谱信息。与红外光栅分光光度计相比具有高光通量,测量速度快、测量准确度高、信噪比高、操作简便等特点,已逐渐替代了早期的红外光栅分光光度计,应用前景十分广泛。

  • 光谱仪用光栅知识简介 !

    光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱分辨率。◆如何选择光栅选择光栅主要考虑如下因素:1、光栅刻线,光栅刻线多少直接关系到光谱分辨率,刻线多光谱分辨率高,刻线少光谱覆盖范围宽,两者要根据实验灵活选择;2、闪耀波长,闪耀波长为光栅最大衍射效率点,因此选择光栅时应尽量选择闪耀波长在实验需要波长附近。如实验为可见光范围,可选择闪耀波长为500nm;3、使用范围,3、光栅效率,光栅效率是衍射到给定级次的单色光与入射单色光的比值。光栅效率愈高,信号损失愈小。为提高此效率,除提高光栅制作工艺外,还采用特殊镀膜,提高反射效率。◆光栅方程反射式衍射光栅是在衬底上周期地刻划很多微细的刻槽,一系列平行刻槽的间隔与波长相当,光栅表面涂上一层高反射率金属膜。光栅沟槽表面反射的辐射相互作用产生衍射和干涉。对某波长,在大多数方向消失,只在一定的有限方向出现,这些方向确定了衍射级次。如图所示,光栅刻槽垂直辐射入射平面,辐射与光栅法线入射角为α,衍射角为β,衍射级次为m,d为刻槽间距,在下述条件下得到干涉的极大值:Mλ=d(sinα+sinβ)定义φ 为入射光线与衍射光线夹角的一半,即φ=(α-β)/2;θ 为相对于零级光谱位置的光栅角,即θ=(α+β)/2,得到更方便的光栅方程:mλ=2dcosφsinθ从该光栅方程可看出:对一给定方向β,可以有几个波长与级次m 相对应λ 满足光栅方程。比如600nm 的一级辐射和300nm 的二级辐射、200nm 的三级辐射有相同的衍射角,这就是为什么要加消二级光谱滤光片轮的意义。衍射级次m 可正可负。对相同级次的多波长在不同的β 分布开。含多波长的辐射方向固定,旋转光栅,改变α,则在α+β 不变的方向得到不同的波长。http://ng1.17img.cn/bbsfiles/images/2017/03/201703121735_01_1841897_3.jpg

  • 火花直读光谱的光栅基本上固定不动的吧?只能微调?

    我们这将要引进一台火花直读光谱。在这方面我是新手。刚看了下原理,感觉比较简单。   我想问一下:火花直读光谱的光栅应该是基本固定的吧?最多只能微调。是不是这样?   我的感觉是:这种光谱仪把经光栅出来的光分光后一次性全给光电倍增管接收了,一起测。是不是有点类似于高效液相色谱中的光电二极管阵列一样?只是这里是光电倍增管阵列。   其它的光谱一般是一次测一个波长的光线。所以每次要转光栅,把它调到合适的位置,使在固定在一个位置上的光电倍增管接收相应的信号。      从原理上来说,就像我们把太阳光用棱镜(火花直读是光栅)分光成七彩虹一样,然后如果我们在不同位置接收不同颜色的光线(相当于检测),这样就知道每种彩色的强度。由于在火花直读光谱仪里光电倍增管是固定的(应该是固定的吧?),所以只有在一个合适的角度才有可能让这些东东入射到相应的光电倍增管上。因为波长的排列顺序是固定的。   从这个方面来说,我觉得火花直读光谱仪的抗震性很重要,位置稍有偏离可能就不好测了,或测不到了。   不知我的理解对不对?

光栅式光谱仪原理相关的耗材

  • 衍射光栅-相干光栅阵列
    衍射光栅-相干光栅阵列图1。照片LightSmyth单片光栅阵列单片式单基片硅栅阵列(图1)提供独特的高分辨率连续获得超出所能获得的单个光栅的光带宽。这种光栅须不能有移动部件。单片光栅阵列是一致的单次数据采集与许多宽带应用,例如激光诱导击穿光谱,可以帮助系统元件数显著减少。每个阵列由的所有相干在单一基板上形成的多个主光栅。母光栅有连续且轻度重叠的有效光谱范围。此外,在基底的顶部和底部的辅助光栅产生直接的校准的输出区域用于使用一个单一参考波长,如氦氖激光器的波长的光输出。图2。示意图说明操作的单片光栅阵列光谱仪与2D检测器设置在图2给出在一个简单的光谱仪装置的光栅阵列。一个二维检测器阵列被用来记录的光栅阵列的输出。图3示出了照射时由白色光源和一个共同传播的氦氖激光器的二维探测器阵列上看到的光栅阵列输出的示意图。每个附近的水平行包括四个主光栅中的一个的输出端,并对应于光谱范围表示。此外,还显示为红点是6个辅助光栅校准参考标记,当暴露在氦氖光。进一步详细描述了设备的运行和设计说明请点击http://www.lightsmyth.com/downloads/product_info/LS_MonoGrat_Array.pdf。图3。阵列输出信号检测原理图校准/准直功能特性顶部和底部的六个小光栅阵列(参见图1)提供了用于校准的光谱输出,以及协助系统对齐标记,这里的校准标记用于氦氖照明,见示意图4。校准标记提供了两个主要的功能:第一,它们表示在主光栅输出的校准部分的开始和结束点。因此,它们允许用户校准波长作为位置的函数的沿着各母光栅色散线 - 注意,校准点所表示的波长范围内是独立的光栅输入角度,使光栅阵列具备各种不同可能的样式。第二,辅助光栅辅助系统调整。当所述检测器表面被适当地定位在焦平面阵列后聚焦镜,两对对准标记设计为一致性和适当远场操作指示。中心两个标记阵列探测器表面使得水平正确的准直方式。更多单片光栅阵列技术细节请参考http://www.lightsmyth.com/downloads/product_info/LS_MonoGrat_Array.pdf。单片硅平面阵列硅基底具有0.73毫米厚度。基板的高度和宽度公差是0.3毫米。光栅基片:单晶硅。光栅镀膜:铝(其它镀膜类型额外收费)。Primary GratingCalibration Markers1Line/mmSizePart NumberPrice first 99 units2,3Unit price 100+1381, 522 nm178812.5mm x 12.5mmSAG-1212A-Al$96.00 ea.$25.00 ea.2509, 696 nm13413683, 935 nm9984929, 1271 nm7341The calibration markers listed are produced by a HeNe laser incident on the small calibration gratings. Use of a different calibration light source having a different wavelength will produce markers (see Fig. 4) coinciding with different values of the dispersed spectra of the four primary gratings. Using a common input angle for calibration light and signal, the calibration marks delineate spectral output ranges of the primary gratings that are independent of grating input angle.2For orders with the total product value below $250.00, a handling charge of $75.00 will be added.3Academic discounts are available for eligible institutions. To determine eligibility complete an account application procedure.
  • 光纤激光器用光纤光栅
    总览光纤激光器用光纤光栅是通过紫外曝光的方法在光纤纤芯中形成周期性的折射率调制,以此达到对光纤 中信号光的调制作用,是光纤激光器不可缺的重要组成部分。光纤激光器用光纤光栅,光纤激光器用光纤光栅产品特点915nm泵浦光条件下温升系数小于0.01°C/W中心波长1060、10641068、1070、1080nm可选带宽范围0.05nm-4nm可选高低反光栅中心波长误差小于0.2nm光纤类型以及光栅参数可根据客户需求定制产品应用各个领域的光纤激光器:打标、焊接、切割等材料加工通用参数产品指标一10/130型光纤光栅产品类型FBG-1064-995-25-J0505-HFBG-1064-100-10-J0505-O光栅类型HROC中心波长 (nm)1064±1峰值反射率 (%)≥ 99.510 ± 23dB带宽 (nm)2.0 ~ 3.00.6 ~ 1.0波长失配值 (nm)旁瓣抑制比(dB)> 10光纤类型GDF-10/130或客户定制信号光耐受性(W)100封装结构低折涂覆尾纤长度两端各0.5米或客户定制产品指标二14/250型光纤光栅产品类型FBG-1080-995-30-R1212-H/XFBG-1080-010-10-R1212-O/Y光栅类型HROC中心波长 (nm)1079 ~ 10811079 ~ 1081峰值反射率 (%)≥ 99.510 ± 23dB带宽 (nm)2 ~ 41 ± 0.2波长失配值 (nm)旁瓣抑制比(dB)> 10光纤类型GDF-14/250或客户定制信号光耐受性(W)1500封装结构散热封装/低折涂覆尾纤长度两端各1.2米产品指标三20/400型光纤光栅产品类型FBG-1080-995-30-H1212-H/XFBG-1080-010-10-H1212-O/Y光栅类型HROC中心波长 (nm)1079 ~ 10811079 ~ 1081峰值反射率 (%)≥ 99.510 ± 23dB带宽 (nm)2 ~ 41 ± 0.2波长失配值 (nm)旁瓣抑制比(dB)>10光纤类型GDF-20/400或客户定制信号光耐受性(W)3000封装结构散热封装/低折涂覆尾纤长度两端各1.2米产品指标四25/400型光纤光栅产品类型FBG-1080-995-30-S1212-H/XFBG-1080-010-10-S1212-O/Y光栅类型HROC中心波长 (nm)1079 ~ 10811079 ~ 1081峰值反射率 (%)≥ 99.510 ± 23dB带宽 (nm)2 ~ 41 ± 0.2波长失配值 (nm)旁瓣抑制比(dB)>10光纤类型GDF-25/400或客户定制信号光耐受性(W)4000封装结构散热封装/低折涂覆尾纤长度两端各1.2米光栅封装件尺寸图公司简介筱晓(上海)光子技术有限公司是一家被上海市评为高新技术企业和拥有上海市专精特新企业称号的专业光学服务公司,业务涵盖设备代理以及项目合作研发,公司位于大虹桥商务板块,拥有接近2000m² 的办公区域,建有500平先进的AOL(Advanced Optical Labs)光学实验室,为国内外客户提供专业技术支持服务。公司主要经营光学元件、激光光学测试设备、以及光学系统集成业务。依托专业、强大的技术支持,以及良好的商务支持团队,筱晓的业务范围正在逐年增长。目前业务覆盖国内外各著名高校、顶级科研机构及相关领域等诸多企事业单位。筱晓拥有一支核心的管理团队以及专业的研发实验室,奠定了我们在设备的拓展应用及自主研发领域坚实的基础。主要经营激光器/光源半导体激光器(DFB激光器、SLD激光器、量子级联激光器、FP激光器、VCSEL激光器)气体激光器(HENE激光器、氩离子激光器、氦镉激光器)光纤激光器(连续激光器、超短脉冲激光器)光学元件光纤光栅滤波器、光纤放大器、光学晶体、光纤隔离器/环形器、脉冲驱动板、光纤耦合器、气体吸收池、光纤准直器、光接收组件、激光控制驱动器等各种无源器件激光分析设备高精度光谱分析仪、自相关仪、偏振分析仪,激光波长计、红外相机、光束质量分析仪、红外观察镜等光纤处理设备光纤拉锥机、裸光纤研磨机
  • 恒定偏差单色凹面光栅(等偏差单色仪光栅)
    在扫描单色器中使用恒定偏差单色器凹面光栅(Constant Deviation Monochromator Gratings)来扫描来自入口狭缝穿过出口狭缝的信号。我们的恒定偏差单色凹面光栅消除了对准直和聚焦光学器件的需求。这减少了系统中光学元件的数量,增加了吞吐量并允许更紧凑的仪器设计。筱晓上海光子提供一系列标准光栅。如果我们没有符合您规格的光栅,请联系我们的销售团队讨论您的具体要求。技术参数下表显示了我们当前的主光栅列表。定期生产额外的主光栅,因此如果您找不到合适的主光栅,则值得检查是否有替代主光栅可用。如果我们的标准光栅或尺寸不符合您的要求,我们可以根据您的规格制造定制母版:沟槽密度 (g/mm)峰值波长 (nm)光谱范围 (nm)最大尺寸(mm)123260190-55090x90240240190-50050 x 50300250190-50090x90600240190-55070x 807001550(S-Pol)950-280090x 901200240190-65090x 901200700350-160090x9012001550(S-Pol)550-165090x 90130080o525-15009o x 901440250220-50090 x901440325220-44090x9017401053(S-Pol)550-114590 x 9o1800230190-40090x 902322250280-800110×1102400240190-80090x802880240200-50090x903600250190-55089 x904200240140-45585x60 沟槽密度(g/mm)峰值波长(nm)光谱范围(nm)Max Size(mm)240300300300300300200-550200-70090x9035068x68500300-80058x585401220325-100068x68800-280068x681200350200-70068×681200450300-1200 90x90通用参数

光栅式光谱仪原理相关的资料

光栅式光谱仪原理相关的资讯

  • HORIBA讲座回放视频|光栅光谱仪原理简介
    课程内容 光谱测量系统组成 光栅技术 光栅光谱仪原理 小结讲师介绍熊洪武,HORIBA 应用技术主管,负责光学光谱仪的应用支持,光学背景深厚,有着丰富的光学系统搭建经验。可根据用户需求提供性能优异,功能独特的的光谱测试方案,如光致发光、拉曼、荧光、透射/反射/吸收等。课程链接识别下方“二维码”即可观看我们录制好的讲解视频了,您准备好了吗? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 大型高精度衍射光栅刻划机:把光谱看得更通透
    科研人员在为光栅检测做准备工作。 罗浩摄(资料图片)  在1毫米距离里划出6000道刻槽,且槽型均匀,这意味着在20公里的刻距内,刻槽间距误差小于一根头发丝的千分之一。这正是不久前,中科院长春光学精密机械与物理研究所研制的“大型高精度衍射光栅刻划机”达到的刻划精度。  走进长春光机所实验室,项目组科技人员向记者介绍了一块银灰色、近似不透明“玻璃窗”的光栅,它是这套“精密机械之王”的杰作,也是目前世界上面积最大的高精度中阶梯光栅。打造这台“精密机械之王”的,正是长春光机所光栅刻划机老中青三代研制项目组。  光栅是分析万物光谱信息的“芯片”,应用遍及海陆空、吃穿用  人类如何通过光认识世界?项目负责人、长春光机所研究员唐玉国说,人类借助光认知世界有两种方式:一是光学成像,二是光谱分析。光学成像可以看到物质世界的形状、尺寸等外在信息 地球上所知的元素及其它们的化合物都有自己的特征光谱线,光谱分析可以获得物质成分信息,帮助我们看清事物的本质。  但要“抓”住光谱信息并不容易。日常生活中的光,是由红、橙、黄、绿等各种单色光组成的复色光,而单色光才能更好地记录下物质的光谱信息。光栅是一种非常精密的光学元件,它的神奇在于,它能从复色光中解析、提取出单色光。  日常生活中,人们很少看到光栅,但其实它的作用无处不在。“人们去医院抽血检验,原理就是依靠光谱仪器里的光栅,来实现观察血液里的成分是否符合健康标准。”项目组成员、长春光机所研究员巴音贺希格说,“简单地说,光谱分析需要光谱仪器,光栅之于光谱分析的作用,就如芯片之于计算机,是核心和‘大脑’。”  与血液检查原理类似,分析不同物质的光谱,可以探查出农药残留、钢材质量、爆炸物特性等许多重要信息。唐玉国表示,光栅的价值不限于光谱仪,其应用“遍及农轻重、海陆空、吃穿用等各行各业。既能看天,也能看地、看人”。在天文观测中,通过光谱测量得到天体的组成及其与地球的距离,从而揭示宇宙诞生及演化规律 在光通信领域,光栅的分光作用使得不同波长的光能够携带信息顺着光纤飞入千家万户̷̷  通常,光栅性能越强,能分析出的物质成分就更精细。光栅面积越大,集光率和分辨本领就越高 光栅的精度越高,信噪比就越高。2009年,中科院长春光机所启动光栅刻划系统研制工作,一开始就瞄准世界领先水平,攻克光栅同时“做大”和“做精”的难题。  “精密机械之王”成功刻划出了400毫米×500毫米的大面积中阶梯光栅,标志着我国大面积光栅制造技术已达到国际领先。这一块光栅有多强?唐玉国说,最有经验的油漆工能辨别出1000多种色彩的微妙变化,而光栅理论上能够分辨出超过4亿种,可谓世界上感知色彩的最强利器。  光栅刻划机是制作光栅的母机,“做大”“做精”光栅是世界性难题  以防尘服武装,再经风淋室除尘,记者才得以获准进入实验室。这里有一套精密的环境保障系统,要求在30天内温差控制在± 0.01℃之内。  项目组成员、长春光机所研究员齐向东参与了光栅刻划机的设计、研制、调试等全过程,并长期在一线担任指挥。他说,这台仪器对环境要求极为严苛,气温、气压、空气成分等哪怕极其微小的变化,在纳米的尺度下,也可能带来巨大的刻划误差。  对环境的苛刻要求源自光栅刻划机自身的高精度。它由上千个元件、部件精妙配合而成,几乎所有关键部件冲击世界极限水平。加工装调精度难、运行保障环境要求之高,前所未有。  丝杠、蜗轮、导轨是刻划系统“三大件”,项目启动之时,国内现有机床技术根本达不到精度要求,研究组不得不采取土办法——手磨加工。  丝杠被誉为刻划机的“心脏”,其精度水平直接影响整机性能。国内不能造,国外买不到,已经退休的80岁高龄老专家张泰返聘回所,并亲自上阵,带领青年团队不分昼夜加工和检测。历时近1年时间,终于研磨出这根丝杠。这也是目前世界上精度最高、行程最长的三角螺纹丝杠。  用同样的方法,项目组费时6个月加工出蜗轮,8个月加工出V形导轨。这些具有亚微米、纳米量级的关键器件,都是科研人员用双手研磨出来的。此外,项目组成员为了攻克金刚石刻划刀、光栅镀膜等技术难题,也屡屡实验、研磨、调整,方才达到了光栅刻划机的要求。“有一次,项目组去外面交流。一握手,对方都说,你们的手不像科学家,倒像工人。”巴音贺希格回忆。  立项之初,研制计划时间是三年半,但由于整个过程比预料困难太多,前后花费了近8年,成为“严重耽搁的项目”。“研制期间,我们承受着巨大的压力,往往‘按下葫芦又起了瓢’,好不容易攻克一个困难,新的问题又立马出现。”齐向东说,科研人员不停地寻找问题产生的根本原因,有时候甚至要推翻之前花了很长时间建立起来的假设,否定自己重新开始。“这8年中,我曾多次感到绝望,以为进行不下去了。大光栅通过验收时,又觉得一切都很值得。”  这项成果使我国在光栅领域不再受制于人,并将精密机械加工技术推向世界前沿  国际上掌握光栅研制技术的国家很少,大面积高精度光栅是科技强国竞争的焦点。在此之前,只有美国能够制作300毫米以上中阶梯光栅。  大面积、高精度光栅刻划机的成功研制,使我国战略高技术领域所需的光栅不再受制于人,还将我国精密机械加工技术推向了世界前沿。  “我们这一代科研人员做出这台机器,离不开长春光机所几代人的努力。我们只是属于摘桃子的人,没有前辈的积累,没有青年梯队人才的付出,都不可能完成这项艰巨任务,是老中青三代人的结晶。”齐向东感慨。  1959年,长春光机所自主研制出了我国第一台光栅刻划机和第一块光栅。项目期间,我国第一代光栅刻划机的领军人、机械刻划光栅创始人梁浩明回到长春光机所,在重要问题上给出了指导意见 带领团队手工研磨丝杠等精密零部件的张泰先生,也是我国第一台光栅刻划机研制的参与者 已经退休的郝德阜研究员参与了系统的总体结构设计。  目前,我国第一台光栅刻划机依然没有“退休”。半个多世纪前,仅仅借助少量公开发表的相关文献,梁浩明等人开始了光栅刻划机的研制工作。没有专门设计的计算机软件,设计人员就靠手工绘制来画图 没有数控机床,科研人员就靠双手打磨加工零部件,精度甚至比当今数控机床加工还要高。  上世纪80年代,长春光机所计划研制高精度大面积光栅刻划机,由于资金等种种限制,项目搁浅,我国遗憾地错失了追赶光栅制造强国的机会,制造大光栅也成为我国光栅人的梦想。  “我们有信心,也有信念能够完成项目。长春光机所具有数十年的技术积累,此外,现代精密仪器加工技艺水平更高,技术条件更好。老一辈在物质匮乏年代都能够制造出精度非凡的光栅刻划机,我们有条件也有责任把新一代刻划机做好。”齐向东说。  八年磨一剑,项目组研制的这套大型高精度光栅刻划系统,攻克18项关键技术,取得9项创新性成果。  让唐玉国欣喜的是,经过光栅刻划机项目历练,一批青年人才成长起来了,关键技术得到有效传承。他还说,研制成功并不是刻划机的重点,未来项目组还将从“精稳快新”四个方面对它进行持续改进和技术升级、提升性能,使其在满足国家重大科研对大光栅需求的同时,始终保持国际领先。
  • “中国创造”的典范:多光栅折叠光谱——访复旦大学陈良尧教授
    2006年,国际两家光电子杂志Laser Focus World和Photonics Spectra的编辑曾分别主动在世界技术新闻专栏中特别介绍了复旦大学陈良尧教授课题组研发的多光栅二维折叠光谱技术,认为该技术的创新原理和方法将能够被拓广并应用于更具挑战性的高效率光谱获取和分析领域,以及推广到中远红外光谱分析领域。  上海市计量测试技术研究院的资深光学科学家袁海林教授也曾评论到,&ldquo 采用多光栅结构对成像光谱进行高密度折叠,在很宽的光谱区内实现高分辨率、快速和长时间可靠测量,将会成为现代光谱仪设计中一个主流技术和发展趋势&rdquo 。  究竟是怎样的技术让国内外一片赞誉之声?为了寻求答案,近日仪器信息网编辑采访了多光栅折叠光谱仪技术的研究者&mdash &mdash 复旦大学陈良尧教授。复旦大学 陈良尧教授  &ldquo 原理性创新&rdquo   光谱分析仪器在科学研究和工业领域有着广泛的应用,为满足应用需求,国际上已经发展了各种类型的光谱分析原理和方法,其中最主要的是采用棱镜和光栅等光学色散元件,结合高灵敏度探测器对各种光谱(如反射、透射、吸收、散射、椭圆、荧光、拉曼等光谱)进行测量和分析。但受到光电探测器光谱响应、光栅色散和机械扫描等因素的制约,只能被迫在光谱工作区宽度、分辨率和速度等参数之间做出妥协,从而严重影响和限制了其在许多重要领域的应用。这是国际学术和产业界长期未能解决的瓶颈和难题。  &ldquo 传统的光栅光谱仪需要使用机械装置对色散元件进行位移和旋转,这将限制测量速度的提高,而且机械转动部件的定位精度低,可靠性差,容易在操作过程中发生故障 另外,由于国内机械加工水平所限,使得国产光栅光谱仪的机械部件精度和可靠性不高,从而影响了光谱仪的整体性能水平,&rdquo 陈良尧说,&ldquo 另外,一块光栅难以覆盖全光谱范围,衍射效率为非均匀性分布,在其光谱衍射工作区的两端效率较低,影响了仪器的信噪比质量。&rdquo   在长期的光谱分析研究中,为克服传统仪器的这两方面局限性困难是陈良尧当初决定研发&ldquo 多光栅折叠光谱分析仪&rdquo 的原因,他希望能够研制出一种没有任何移动部件、光谱工作区宽、测量速度快的光谱仪。基于这一想法,陈良尧于90年代末开始&ldquo 多光栅折叠光谱分析仪&rdquo 的研制。&ldquo 这是原理和方法的创新,并非是&lsquo 阳春白雪&rsquo ,它的物理概念清楚,技术可靠,易于普及推广,只不过很多人没朝这方面去想。&rdquo   但是,当前光谱仪技术可以说是非常成熟了,再要尝试原理性创新,可能并不像陈良尧说的那么容易。在10多年时间的持续研究努力中,陈良尧教授经历了很多,如最初虽有设想,但缺少研究经费支持,在市场上也买不到现成的关键元器件,业内对这类极具应用前景的新原理和新技术的认识也不统一等等。不过,&ldquo 梅花香自苦寒来&rdquo ,2012年,最终实现的研究成果被选为国家自然科学基金&ldquo 十一五&rdquo 优秀成果。至今已经推出了多种可供实用的样机,集成组合的光栅数也由最初的3块增加到了10块。日前,陈良尧教授的&ldquo 极高密度二维折叠光谱成像装置&rdquo 课题入选了2014年高校自然基金国家重大科研仪器研制项目。已研制完成的二维折叠光谱分析仪的整体外形图,250mm焦距,优于0.1nm光谱分辨率,全谱测量时间小于0.1s,重约8.9公斤。  多光栅折叠光谱仪采用了时间并联模式的快速光谱信号获取的新原理和方法,利用二维面阵探测器的优点,在一台光谱仪中,同时满足宽光谱区、高分辨率和快速测量的三项关键功能要求。在10光栅二维折叠光谱分析仪中,是将具有不同闪耀角和色散特性的10块子构成一个光栅阵列,克服了面阵CCD信号接受面的张角限制,在200-1000nm光谱区将一维约276mm光谱探测区的近2万个光谱数据点进行二维10重折叠,快速成像在二维面阵探测器的焦平面上。由于无任何机械位移部件,使得最小的光谱获取时间仅受限制于将光谱从CCD传输到数据存储器件所需要的时间,实现了全光谱高精度快速测量和分析。  &ldquo 所有用到光谱测量分析的地方都可以用&rdquo   &ldquo 多光栅光谱是通用型光谱仪,所有用到光谱测量分析的地方都可以用,如可以应用于食品环境等领域的科研与日常检测,而且未来完全可能替代常见的紫外、红外等光谱分析仪器。&rdquo 陈良尧对多光栅光谱仪的应用前景非常乐观,&ldquo 随着高性能低成本面阵光电探测器的普及,二维折叠光谱将成为主流光谱分析技术在更多领域实现推广应用。&rdquo   &ldquo 而且,由于改进了传统光谱仪的一些不足,使得该仪器可以用于一些极端条件检测。&rdquo 例如:由于无任何机械转动部件,多光栅光谱仪的全谱扫描速度最快能达几毫秒至数十毫秒,所以在清华大学等离子体实验室中,能利用它在真空条件下对等离子体原子谱线进行原位全谱检测分析,在相同的实验条件下,对各种原子态谱线进行比较分析,获得较为可靠的实验数据和结果。&ldquo 并且,等离子体实验室还希望通过合作,研究该技术在真空紫外条件下的应用。&rdquo   多光栅光谱仪既可以作为一种标准配置的光谱仪独立使用,也可以成为一个载体&mdash &mdash 作为光谱分析仪器的核心部件,可以极大简化分析仪器的结构。&ldquo 光谱仪是光谱分析仪器的&lsquo 心脏&rsquo ,目前很多国产光学分析仪器采用的还都是传统扫描型光谱仪,如果多光栅光谱仪能够得到普及,将会显著促进国产光谱仪器的更新换代。&rdquo   &ldquo 探测器技术与成本亟待突破&rdquo   &ldquo 目前在10光栅集成的仪器中,使用的是美国PI公司的CCD面阵探测器,单价在7万美元左右。高性能光电探测器依然是限制我国先进光谱分析技术发展的瓶颈,也是成本无法降下来、难于大规模普及的主要原因。&rdquo 不过,陈良尧也高兴地说到,已有国内企业正从海外引进新一代CMOS光电传感器技术,&ldquo 我们将会成为他们产品的第一批实验室用户。&rdquo   另一个关键元件&mdash &mdash 光栅则可以根据具体需求,既可以购买进口产品,也可以选择国内生产的。&ldquo 我们已经在国内找到一家企业,可以研制和生产出我们所需的光栅和其他光学器件。&rdquo   对于下一步研发方向,陈良尧介绍到,&ldquo 当前最重要的是把研究项目做好,并努力将这一技术应用到不同领域 另外,组合的多光栅模块本身也可以成为一个产品,现在的组合光栅的方位角还需要人工调试,未来希望能够采用自动化激光准直技术,研制出已被封装好、不需要调节的光栅组,用户拿到手里可以直接使用。组合的光栅数也有可能进一步增大,由现在的3-10光栅增至40-50块光栅的组合,满足更高精度的光谱分析需求。&rdquo   经过持续的研究努力,多光栅光谱仪已能够被实际应用。据介绍,除了面阵探测器国内目前还做不出来,其它重要部件都实现了在自己的实验室或在国内找到企业进行加工生产。说到这里,显现出了陈良尧教授比较独特的研究态度和模式,陈良尧将项目研究经费的很大一部分用于改造实验室环境,如在高性能光学仪器研究中,将购买高精度数控机床,用于仪器核心零部件的高品质研制和加工,保证质量,这在目前中国大学的实验室还比较少,对此,陈良尧说,&ldquo 这么做一方面是希望提高科学仪器的研究水平和效率,掌握核心技术,另一方面也十分需要培养研究生们的实际动手能力,不仅进行原理和方法创新,还需要采用先进制造技术,在学生时期就有能力亲手把这些仪器做出来,可靠实现创新科学仪器的各种新功能,在这方面与发达工业化国家相比,我国在培养学生具有硬科学技术研究能力方面的差距还比较大。&rdquo   &ldquo 由于高性能探测器价格一直居高不下,不利于大范围普及,目前仅根据一些用户需求进行定制,需要不断解决问题,让用户满意,建立良好的声誉,&rdquo 陈良尧说到。  后记  据了解,在陈良尧教授的研究成果2003年正式发表后,2007年在美国Light Smyth公司的广告中也出现了采用4种不同光栅结构参数组合的二维折叠光谱分析技术。而关于这一中国自主创新原理和技术的产业化途径,陈良尧无奈的说到,&ldquo 产业化的路还会比较长。&rdquo 究其原因,一是关键部件技术的局限,另外国家的支持政策等也是重要原因。就像采访最后陈良尧所说的,&ldquo 希望能够获得国家较高强度的产业化应用研究项目的支持,并与工业界的合作伙伴一起,使得这项技术被产业化,促进我国高性能光谱分析仪器的进步和发展,将会在国际上有自己的地位,产生出中国乃至世界上最好的光谱仪。&rdquo   编辑:刘丰秋

光栅式光谱仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制