水的溶氧量检测

仪器信息网水的溶氧量检测专题为您提供2024年最新水的溶氧量检测价格报价、厂家品牌的相关信息, 包括水的溶氧量检测参数、型号等,不管是国产,还是进口品牌的水的溶氧量检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水的溶氧量检测相关的耗材配件、试剂标物,还有水的溶氧量检测相关的最新资讯、资料,以及水的溶氧量检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

水的溶氧量检测相关的仪器

  • 水溶臭氧检测仪 400-860-5168转6122
    水溶臭氧检测仪采用进口臭氧传感器,它们为膜装置,不受PH值变化的影响,无需试剂,使用可靠,可减少维护量和整体使用成本。过程控制具有良好的可靠性和稳定性,适用于饮用水、水处理以及盐水行业的水中臭氧检测。只需每6个月维护一次、每3个月校正一次、不会对余氯产生反应,不受水中清洁剂的影响。水溶臭氧检测仪特点:1. 高品质,多语言2. 低成本3. 多达3个传感器4. 可选功能有:(1)PH值补偿(2)光学隔离式I/O接口(3)多达3个4-20mA模拟量输出(4)多达4个继电器(固态或机械式继电器)(5)支持modbus TCP协议(6)支持modbus ASCII/RTU协议(7)支持profibus协议(8)支持HART协议(9)流量开关输入(10)PID控制水溶臭氧检测仪技术数据:1. 类型: 膜式安培极谱二电极系统2. 测量类型: 臭氧3. 测量范围: 0-0.05、0-2、0-5、0-10mg/L(ppm)4. 测量精度: 0.001mg/L(1ppb)5. 重 现 性 : ±5%6. 稳 定 性 : -1%月(不需要校准)7. 工作电极: 阴极为金8. 反 电 极 : 银/卤化银9. 膜 材 质 : 微孔亲水性膜10. 流速 : 约0.5L/min11. 温度范围: 0-50℃12. 温度补偿: 通过集成的电热调节器自动调节13. PH值范围: PH4-PH9.514. 允许过压: 0.5Bar15. 干扰 : 可忽略C12,C102 6%16. 箱体材质: PVC,硅树脂,聚碳酸酯,不锈钢17. 零点调整: 不需要18. 校准 : 采用合适的臭氧测试工具19. 尺寸 : 直径大约25mm,长175mm20. 维护间隔: 膜 /每年 电解液/每季度到每半年 校准/每季度21. 极化时间: 120分钟22. 再次极化时间: 30分钟
    留言咨询
  • XY-810型便携式精密溶解氧测定仪荧光法产品介绍:XY-810是本公司推出一款全新的便携式荧光法溶解氧检测仪。传感器采用了国际领先的荧光技术,仪器的显著优点在于测量过程中不耗氧、无测试溶液污垢影响、无流速限制,同时无需预热不需电解液,免于维护和频繁校准,探头的响应时间更是低至30秒,让溶解氧测量更精准、更稳定、更迅速、更便捷。本仪器具有计算机程序控制标定、自动温度补偿、盐度校正和大气压调整功能,适合各行业水溶液中氧含量的测量技术参数: 1. 测量范围: 溶解氧(DO):0.00~20.00mg/L 饱和度:0~200% 温度(T):0~50℃ 2. 测量精度: 溶解氧:±0.2mg/L(被测体系与校正体系等温) ±0.5mg/L(被测体系与校正体系±10℃时) 温度:±0.5℃3. 分辨率:0.01mg/L4. 自动温度补偿范围:0~50℃5. 校准点:1或2点6. 盐度补偿设定:0~35g/L7. 大气压力设定:0.5~1.5个大气压8. 显示:中英文双语(可切换)9. 电源:可充锂电池10.外形尺寸:185mm×92mm×50mm11.重量:约370g产品特点:1.高性能超低功耗16位单片机,并配以高容量可充电锂电池2.采用荧光法溶解氧测量技术,无需更换膜片和电解液,不受流速、搅拌环境、化学物质等因素的影响,抗干扰能力强,测量稳定。3.LCD大屏幕液晶中英文菜单显示,操作方便直观4.支持测量溶解氧浓度、溶解氧饱和度和温度值5.稳定性高,毋须经常校准(常规检测不需校准)或更换传感器帽6.仪器自动温度和压力补偿,即插即用7.具盐度补偿功能:能测试海水和各种盐溶液中的溶解氧8.具有数据断电保护功能,仪器可储存300组数据9.具有Type-c端口,可连接电脑传输数据10.仪器防腐防水防尘性能好配置清单: 主机1台,溶氧电极1支(5米长),无氧水1包,充电电源1个,Type-c连接线1根,便携箱1个,说明书1份,合格证1份,保修卡1份。
    留言咨询
  • 便携式溶氧仪、在线溶氧仪、溶氧仪养殖、荧光法溶氧仪、光学溶氧仪、溶解氧仪,溶氧仪,溶解氧检测仪、溶氧测定仪、溶解氧测试仪、溶解氧测量仪、溶解氧分析仪、溶解氧监测仪、工业溶氧仪、实验室溶解氧仪报价、便携式溶解氧浓度测定仪、便携式溶解氧浓度检测仪、便携式溶氧仪、便携式溶解氧检测仪、便携式溶解氧测量仪报价、溶氧表 DOG-3082型工业溶氧仪 DOG-3082型工业溶氧仪是我公司最新一代中(英)文微机型高档仪表,具有中(英)文显示、中(英)文菜单式操作、全智能、多功能、测量性能高、环境适应性强等特点。可以配DOG-208极谱式电极,自动实现从ppb级到ppm级的宽范围测量,是检测锅炉给水、凝结水、环保污水等行业的液体中溶解氧含量测量的专用仪器。仪器特点:全新版面设计,铸铝壳体,金属质感,打造高品位E时代化水仪表!全中文显示,操作方便:全中(英)文显示,界面美观:采用高分辨率的液晶显示模块,所有的数据、状态和操作提示都是中(英)文显示,完全没有厂家自己定义的符号或代码。简单的菜单结构,文本式的人表对话: 与传统的仪表相比, DOG-2082功能增加了很多,但由于采用了分门别类的菜单结构,类似微机的操作方法,使用起来更清晰、方便。不必记忆操作步骤和操作顺序 可以不用说明书,按照屏幕上的提示就可操作。多参数同时显示:在一屏上同时显示氧浓度值、输入电流或输出电流、温度、时间和状态。主显示以10x10mm规格显示氧浓度值,醒目,可视距离远;6个副显示以5x5的规格显示输入电流或输出电流、温度、状态、星期、年月日和时分秒等,以满足用户的不同使用习惯和提供仪表的时间基准。技术指标:1、测量范围:0~100.0 ug/L;0~20.00 mg/L(自动切换);0~60℃; 分辨度:0.1 ug/L;0.01 mg/L;0.1℃;2、整机基本误差:ug/L:±1.0%FS;mg/L:±0.5%FS,温度:±0.5℃;3、整机示值重复性:±0.5%FS;4、整机示值稳定性:±1.0%FS;5、自动温度补偿范围:0~60℃,25℃为基准;6、响应时间:60秒(终值的98%,25℃) 37℃:98%终值20秒;7、时钟精度:±1分/月;8、输出电流误差:≤±1.0%FS;9、隔离输出:0~10 mA(负载电阻1.5KΩ ) 4~20 mA(负载电阻750Ω ); 10、RS485通讯接口(选配);11、数据存储数量:1个月(1点/5分钟);12、数据连续掉电保存时间:10年;13、报警继电器:AC220V,3A;14、电源:220V±10% 50±1HZ;15、外形尺寸:二次表:146(长)*146(宽)*150(深)*mm 开孔尺寸:138*138mm16、重量:二次表:1.0Kg; 17、工作条件:环境温度:0~60℃ 相对湿度:85%;18、进出水连接管道:硬管或软管,外径有Φ8、Φ10、Φ12三种规格。 郑重声明:本公司生产的DOG-3082型工业在线溶氧仪已停产,替代型号为:DOG-2082Pro!!!
    留言咨询

水的溶氧量检测相关的方案

水的溶氧量检测相关的论坛

  • 【分享】水中溶氧检测

    摘 要:本文综述了水体溶解氧的各种检测方法及原理,诸如碘量法、电流测定法(Clark溶氧电极)、电导测定法、荧光淬灭法等,比较各种方法的优缺点,对荧光淬灭法的应用前景进行了初步探讨。 关键词:溶解氧、荧光淬灭、环境监测 0.引言 随着当今世界工业、农业的迅猛发展,大量的工业废水、农田排水向江河湖海排放,同时,我国城市生活污水大约有80%未经处理直接排放,小城镇及广大农村生活污水大多处于无序排放状态[1],使得许多地方的水质日益恶化,水污染和水资源短缺日益严重,所以迫切需要对污水进行及时监控和有效处理。其中,水中溶解氧含量是进行水质监测时的一项重要指标。 溶解氧(Dissolved Oxygen)是指溶解于水中分子状态的氧,即水中的O2,用DO表示。溶解氧是水生生物生存不可缺少的条件。溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。溶解氧除了被通常水中硫化物、亚硝酸根、亚铁离子等还原性物质所消耗外,也被水中微生物的呼吸作用以及水中有机物质被好氧微生物的氧化分解所消耗。所以说溶解氧是水体的资本,是水体自净能力的表示。天然水中溶解氧近于饱和值(9ppm),藻类繁殖旺盛时,溶解氧含量下降。水体受有机物及还原性物质污染可使溶解氧降低,对于水产养殖业来说,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响,当溶解氧低于4mg/L时,就会引起鱼类窒息死亡,对于人类来说,健康的饮用水中溶解氧含量不得小于6mg/L。当溶解氧(DO)消耗速率大于氧气向水体中溶入的速率时,溶解氧的含量可趋近于0,此时厌氧菌得以繁殖,使水体恶化,所以溶解氧大小能够反映出水体受到的污染,特别是有机物污染的程度,它是水体污染程度的重要指标,也是衡量水质的综合指标[2]。因此,水体溶解氧含量的测量,对于环境监测以及水产养殖业的发展都具有重要意义。 1.水体溶解氧的各种检测方法及原理 1.1 碘量法(GB7489-87)(Iodometric) 碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法,使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。其原理是在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰: 4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4 (1) 2Mn(OH)2+O2 = 2H2MnO3↓ (2) 2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O (3) 加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘: 4KI+2H2SO4 = 4HI+2K2SO4 (4) 2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5) 再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化学方程式为: 2Na2S2O3+I2 = Na2S4O6+4NaI (6) 设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a为滴定时所取水样体积(mL),DO可按下式计算[2]: DO(mol/L)= (7) 在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱和度两倍(约20mg/L)的水样。当水中可能含有亚硝酸盐、铁离子、游离氯时,可能会对测定产生干扰,此时应采用碘量法的修正法。具体作法是在加硫酸锰和碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠溶液加于水样中,Fe3+较高时,加入KF络合掩敝。碘量法适用于水源水,地面水等清洁水。碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其测量不确定度为0.19mg/L[4]。但该法是一种纯化学检测方法,耗时长,程序繁琐,无法满足在线测量的要求[5]。同时易氧化的有机物,如丹宁酸、腐植酸和木质素等会对测定产生干扰。可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧的呼吸系统那样产生干扰。当含有这类物质时,宜采用电化学探头法[6],包括下面将要介绍的电流测定法以及电导测定法等。 1.2 电流测定法(Clark溶氧电极) 当需要测量受污染的地面水和工业废水时必须用修正的碘量法或电流测定法。电流测定法根据分子氧透过薄膜的扩散速率来测定水中溶解氧(DO)的含量。溶氧电极的薄膜只能透过气体,透过气体中的氧气扩散到电解液中,立即在阴极(正极)上发生还原反应: O2+2H2O+4e à 4OH- (8) 在阳极(负极),如银-氯化银电极上发生氧化反应: 4Ag+4Cl- à 4AgCl+4e (9)

水的溶氧量检测相关的耗材

  • 快速检测双氧水浓度含量双氧水测试条
    快速检测双氧水浓度含量双氧水测试条快速检测各种环境下水质中双氧水的含量,测试范围在0-100mg/l,当然还有其他两种型号范围的测试产品0-25mg/l、0-1000mg/l,该产品能在15秒内完成测试,且测试简单结果准确(周)。品牌德国MN尺寸0.6*0.6测试类型水质检测规格100条/盒材质进口测试范围0-1-3-10-30-100mg/l产地德国供货期每天生产商德国MACHEREY-NAGEL公司型号91312包装铝制试管盒装售货地深圳市南山区/上海闵行区重量0.1kg送货方式快递送货上门代理商深圳市方源仪器有限公司产品特点:采用目视比色法或滴定法测量,操作简便。2~10分钟即可完成一个水样的分析,快速高效。测定结果可靠。所有试剂及附件均内置,无需另行准备。分析费用低。体积小,重量轻,携带方便。适用于海、淡水的实时实地水质测试。相关产品 VISOCOLOR? ECO比色测试盒VISOCOLOR? alpha比色测试盒方源仪器热销铵测试盒 铵根离子分析试剂铵快速检测工具盒铵测试盒多参数水质应急检测箱水质应急检测箱水质应急测试纸专用镍快速测试盒快速总硬度测试盒半定量总氯测试盒自来水余氯测试盒泳池专用余氯测试盒银快速测试盒快速亚硝酸盐测试盒特价亚硫酸盐测试盒方源铜离子测试盒铜补充测试盒铁快速测试盒快速砷测试盒软水硬度测试盒溶解氧测试盒偏硅酸测试盒快速铍测试盒尿素测试盒热销猛测试盒氯离子测试盒水质铝测试盒六价铬测试盒liu化物测试盒磷酸盐测试盒方源总硬度测试盒快速余氯测试盒快速亚硝酸盐测试盒快速铜测试盒快速镍测试盒快速碱度测试盒半定量碱度测试盒快速甲醛测试盒硅酸盐测试盒方源水质氟测试盒水质二氧化氯测试盒臭氧测试盒批发臭氧快速检测试纸氨氮快速测试盒快速亚硫酸盐试纸亚硫酸盐测试盒总硬度测试盒水硬度快速测试盒快速亚硫酸盐测试盒电镀废水铜测试盒方源亚硝酸盐测试盒磷酸盐快速测试盒氨氮快速测试盒过氧化氢浓度快速检测水质应急检测箱磷酸盐快速测试盒德国MN快速测试盒线路板铜测试盒六价铬快速测试盒硝酸根测试盒硝酸盐快速测试盒快速qing化物测试盒废水qing化物测试盒镍快速测试盒铜离子快速测试盒比色法测试盒比色测试盒VISOCOLOR HE测试盒锌测试盒氨氮测试盒六价铬测试盒磷酸盐测试盒铬离子测试盒余氯测试盒亚硝酸盐测试盒qing化物测试盒镍测试盒铜测试盒水硬度快速测试盒余氯快速测试盒氯化物测试盒砷快速测试盒铝快速测试盒中国代理商:深圳市方源仪器有限公司
  • 半定量双氧水测试条H202双氧水检测试纸
    半定量双氧水测试条H202双氧水检测试纸方源仪器提供半定量双氧水测试条H202双氧水检测试纸产品,其特点快速检测,易于操作,经济有优惠,盒装100条/盒,能有效的测试各种水中双氧水的含量。品牌:德国MN(周)产品编号:91319测试参数:双氧水(过氧化氢)规格:100条/盒测试范围:00.5251025 mg/l有效期:两年半其他两种不同测试范围不同型号产品:91312(测试量程:0-100mg/l)91333(测试量程:0-1000mg/l)特点:1.快——大多数试纸可以在10-120秒内完成测试,用户可以快速获取测试结果;2.方便——试纸随取随用,作为“口袋里的实验室”用户取用非常方便。3.精确——比色卡是使用专业的标准溶液进行调整和校正的,用户可以随时获取精确的测试结果。4.质量——采用德国先进的测试工艺 QUANTOFIX?比色法测试。测试结果非常精确,是环保水利局与大型水质检测行业的必备安全测试产品。测试领域:工程管理—原物料品管,残留量检查,一般用水/循环用水/锅炉用水等管理。排水管理—最终放流水确认,污水处理设施运转管理,设备验收,异常处理,异常早期发现,操作指导,取缔。用水检查—自来水/工业水/地下水检查,自来水塔清洗消毒确认检查,紧急灾害,野外活动等等饮用水安全的确认检查,牧场农畜等饮用水检查。养殖管理—养殖渔业水质检查,取水口检查,观赏鱼/水族馆水质检查,活鱼搬运/递送管理。环境调查—河川湖泊水质调查,污水分布,残留调查,污染源追踪,酸雨调查,温泉水调查,海洋环境调查。教研机构—中小学环境教育,大专院校实习器材,科学实验,研究专案,食品检查。农业应用—水耕栽培营养液管理,农业用水检查。中国代理商:深圳市方源仪器有限公司
  • 双氧水检测试纸快速测定双氧水测试条
    双氧水检测试纸快速测定双氧水测试条深圳市方源仪器有限公司大量批发供应双氧水检测试纸快速测定双氧水测试条,只需15秒即可测得水中双氧水的残留含量。测试领域包含各种行业排放废水,像纺织、电镀、养殖用水、医用、工业生产水等行业(周)。双氧水检测试纸快速测定双氧水测试条产品资料:编号:91319品牌:德国MN代理商:深圳市方源仪器有限公司测试项目:双氧水测试类型:QUANTOFLX@水质检测产品测试范围:00.5251025 mg/l H2O2产品规格:100次/盒保质日期:2.5年编号:91312品牌:德国MN代理商:深圳市方源仪器有限公司测试项目:双氧水测试类型:QUANTOFLX@水质检测产品测试范围:0131030100 mg/l H2O2产品规格:100次/盒保质日期:2.5年编号:91333品牌:德国MN代理商:深圳市方源仪器有限公司测试项目:双氧水测试类型:QUANTOFLX@水质检测产品测试范围:0501503005008001000 mg/l H2O2产品规格:100次/盒保质日期:2.5年编号:985871品牌:德国MN代理商:深圳市方源仪器有限公司测试项目:双氧水测试类型:NANOCOLOR@水质检测产品测试范围:0.03–2.00 mg/l H2O2产品规格:10-19次保质日期:1年( 2-8℃下保存)中国代理商:深圳市方源仪器有限公司

水的溶氧量检测相关的资料

水的溶氧量检测相关的资讯

  • 【莱恩德新品】食品双氧水检测仪智能开机自检亮点展示
    点击此处可了解更多产品详情:食品双氧水检测仪  食品双氧水检测仪是一种用于检测食品中双氧水含量的仪器。在食品生产过程中,双氧水作为一种化学物质,常被用于消毒和漂白食品,但也存在安全隐患。因此,对食品中双氧水含量的检测非常重要。    食品双氧水检测仪的主要原理是利用双氧水在酸性条件下能够分解成水和氧气的性质,通过检测样品中释放出的氧气含量来推算该双仪氧器水采的用含光量度。计法或电化学法测定样品中氧气的含量,具有准确、快速、方便等优点。    在使用食品双氧水检测仪时,需要注意以下几点:    1. 样品的前处理:为了获得准确的检测结果,需要对样品进行适当的前处理。例如,对于固态或半固态的食品,需要将其粉碎或研磨成均匀的样品;对于液体样品,需要摇匀后取样。    2. 试剂的配制:在使用食品双氧水检测仪时,需要使用一些化学试剂,如硫酸、双氧水等。因此,使用者需要了解基本的化学知识,并按照说明书的要求正确配制试剂。    3. 仪器的校准:为了保证检测结果的准确性,使用者需要定期对仪器进行通校常准。仪器附带校准溶液,用于校准仪器的零点数据    4. 量程解读:使用食品双氧水检测仪后,需要对数据进行解读。通常,仪器会自带报告生成软件,自动计算出样品的双氧水含量。如果发现样品中双氧水含量超标,需要及时采取措施,如更换供应商或进行深加工。    除了以上需要注意的几点外,还需要注意以下几点:    1. 在使用过程中要保证环境的干燥和清洁,避免仪器受到潮湿和污染的影响。    2. 在使用前需要对仪器进行充分的预热和调试,以保证其处于最佳的工作状态。    3. 在测试过程中要避免干扰和影响,如远离电磁干扰和高温环境。    4. 对于不同的食品种类和检测要求,需要选择合适的检测方法和仪器型号,以确保检测结果的准确性和可靠性。    总之,食品双氧水检测仪是一种非常有用的食品安全检测仪器,可以快速、准确地检测食品中双氧水的含量。在使用过程中需要注意样品的前处理、试剂的配制、仪器的校准以及数据的同解时读还等需方要面注的意问保题证。仪器的清洁和干燥、预热和调试以及避免干扰和影响等方面只的有问这题样。才能够保证检测结果的准确性,从而保障人民群众的食品安全。【莱恩德新品】食品双氧水检测仪智能开机自检亮点展示
  • 得利特在线溶解氧分析仪--实现微量溶解氧的在线监测
    “十四五”期间,国家将建立统一的水生态监测技术体系,指导各流域按照物理、化学、生物完整性要求,研究建立符合流域特征的水生态监测方法、指标体系、评价办法,初步形成基于流域的全国水生态监测网络,逐步开展分类、分区、分级的水生态监测与评估。预计到2035年,形成科学、成熟的水生态监测体系并业务化运行,为水质目标管理向水生态目标管理转变奠定基础。将探索开展生态流量、水位监测和河流生态水量遥感监测研究,加快建立完善水资源、水环境、水生态数据共享机制。B2100在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。突出特点:1、 192×64点阵液晶、多参数显示、内容丰富2、 采用先进的嵌入式系统设计、贴片工艺技术提高了产品性能和可靠性、符合EMC设计要求3、 中、英文双语可编程切换,满足不同用户需求4、 全中、英文引导式操作模式、使用简单、通俗易懂5、 可编程的自动或手动温度补偿方式、使用灵活方便6、 两路完全隔离的电流信号输出,可分别设定输出电流范围7、 带有上、下限报警功能,可分别设定报警值8、 带有标准的485数字通讯接口,可实现远距离通讯9、 具有历史数据、运行、校准记录存储、查询功能,可查询100000条历史数据、1000条运行记录、100条校准记录10、防护等级高,达到IP65,可以满足各种复杂环境应用要求11、电极零点漂移量小,响应速度快12、电极残余电流小,维护简单、寿命长久、结构牢固、抗污染能力强技术参数:显 示:中、英文显示,192×64点阵液晶测量范围:(0~20)μg/L、(0~200)μg/L 、(0~20)mg/L (量程自动切换)分 辨 率:0.1μg/L、0.01mg/L基本误差:±1.5%F.S或1ug/L(取大者)响应时间:25℃时60秒内达到变化的90%温度传感器:热敏电阻  温度测量范围:(0.0~99.9)℃  温度测量精度:±0.5℃  温度测量分辨率:0.1℃  温度补偿范围:(0~50)℃(手动或自动)样品条件:温度范围:(5~50)℃   流量范围:(50~300)ml/min (150ml/min左右佳)环境温度:(5~45)℃环境湿度:不大于90%RH(无冷凝)电流输出:(4~20)mA(二路隔离输出)电流精度:±1%F.S电流负载:800Ω报警输出:二路报警输出、直流5A/30V或交流5A/250V。储运温度:(-20~55)℃外形尺寸:144mm×144mm×115mm(宽×高×长)开孔尺寸:139mm×139mm供电电源:交流(85~265)V、频率(45~65)Hz功 率:≤10W重 量:约1.2 kg
  • 废水监测:从生化需氧量BOD/化学需氧量COD到总有机碳TOC分析的转变
    图片来源:Avatar _023/Shutterstock.com随着全球人口水平的上升,包括制药、炼油和制造在内的各个行业也在不断发展和扩张。尽管存在差异,但每一个行业都应对所产生的水污染负责,并确保水质质量。无论是市政还是工业废水,都对人类健康构成很大风险并危害环境;因此,所有废水在排放前都必须经过仔细处理和密切监测。随着公众对健康和环境保护的不断推动,废水排放法规变得越来越严格。每个国家都有自己的废水管理机构和各种排放限制,因而开发和使用了各种监测方法。快速准确识别污染物的方法对防止有害物排放到公共水源中至关重要。世界卫生组织(WHO)于1948年应运而生,旨在帮助和促进全球健康[6]。2017年,WHO开展了一项涉及100个国家和275个国家标准的废水排放质量要求的研究。该研究确定了废水中五类最常见的污染物,即化学品、营养物、有机物、病原体和固体,其中有机物是最常监测的类别[28]。有机化合物占废水污染的很大一部分,并已监测了100多年。世界上测量有机物含量最常用的分析技术是生化需氧量BOD。[43]随着技术进步,法规允许使用其他方法,例如化学需氧量COD[44]和总有机碳TOC[45]来评估有机污染物。尽管BOD被普遍使用,但为了满足合规性和过程控制的要求,从BOD/COD转向TOC是一个新的趋势。有机污染参数有机污染物是一类污染物,由于其重要性,需要在废水中进行监测。然而,因为有多种有机化合物,单独测量它们中的每一种不切实际。因此,“总和参数”的概念用于将许多具有相似质量的化合物归为一类:BOD、COD和TOC是最常用于有机污染物检测的参数。生化需氧量BOD20世纪初期,大量污水和有机物释放至泰晤士河中,从英国排至大海大约需要五天时间。当微生物分解所含的有机物时,它们也会消耗水中的溶解氧含量,危害水生生物。[1, 48]因此,1908年发明了为期五天的生化需氧量BOD5测试,作为衡量水中有机污染物的一种方法。BOD5是用于确定废水中有机污染物含量最常用的总和参数之一。该技术依赖于微生物通过消耗样品中的氧气来分解有机物。水样中的大量有机物导致溶解氧消耗更大。BOD5测试通过测量20°C下五天培养期所消耗的氧气量,提供了有机污染物的间接指示。[43]BOD测试的需氧量通常包括碳质生化需氧量CBOD和含氮生化需氧量NBOD,这是由氨或其他含氮化合物的分解而产生的。氮需求会阻碍BOD5测试,因此通常使用替代的CBOD方法,这需要添加抑制性化合物。[43]由于该测试在过去的一个世纪中得到了长久认可,BOD5参数已纳入几乎所有全球废水法规中。虽然得到广泛使用,但生化需氧量仍存在许多问题。BOD5的一个主要缺点是取样和获得结果之间需要五天时间。该测试的持续时间使BOD5无法成为用于过程控制的参数。[2, 8]当污水处理厂意识到其已经超过了污水排放限定值时,实际上其不合规的排放已经经过了几天时间。[42]BOD5测试的另一个主要缺点是它依赖于微生物的生长。因此,阻碍生物生长的化合物(包括氯、重金属、碱或酸)都会影响结果。[8, 39]BOD仅测量可自然降解的物质,但有几种微生物无法分解的有机化合物,因此BOD5无法测定水中所有有机污染物。[8]由于取决于生物生长,该测试不仅遇到精度和准确度问题[8, 42],且灵敏度较差。[42]化学需氧量COD化学需氧量COD是另一种间接方法,用于确定废水中的有机污染物含量。在该测试中使用化学氧化分解水中的污染物,然后测量在该过程中排出的氧气。与BOD5测试类似,氧气消耗量的增加通常意味着样品中存在更高含量的有机物。[3]有许多不同的COD测试方法已获批准。开放式回流法要求样品在重铬酸钾强酸中回流。由于与氧化剂短暂接触,挥发物可能无法有效氧化。当样品中挥发物含量增加时,密闭滴定回流是一种令人满意的方法,因为它们与氧化剂长时间接触。任何可以吸收可见光的物质(例如不溶性悬浮固体和带色组分)都会影响结果。[44]与BOD5相比,COD测试有一些优势。其中一大优势是缩短了测试所需时间。BOD需要五天才能获得结果,但COD通常只需几个小时。[2, 44]另一个好处是该测试不需要微生物生长进行氧化,因此产生相对可靠和可重复的结果。[2]与BOD只能测定可生物降解有机物的需氧量不同,COD氧化的更为彻底,几乎可以氧化样品中的所有有机物。因此,COD测试结果更高,也提供了对水中有机物含量更准确的评估。COD测试的主要缺点是需要使用有毒化学品,并会产生更多危废,包括银、六价铬和汞:氯化物和其他卤化物会在不添加银或汞离子的情况下严重干扰测试。吡啶和类似的芳香族化合物可能会排斥氧化并导致假的低测量结果。[44]总有机碳TOC多年来的技术进步,诞生了总有机碳TOC分析仪,它提供了一种测量水中有机物含量的直接方法。与BOD5或COD不同,BOD5或COD使用需氧量来确定有机物含量,而TOC分析仪直接测量并定量分析样品中所含的碳。[42, 44, 45]所有TOC分析仪都是将有机物氧化成CO2,然后可以使用电导法或非色散红外检测(NDIR)对其进行测量。[45]样品氧化的不同方法包括燃烧、紫外线过硫酸盐和超临界水氧化 (SCWO)。[45]与传统的需氧量测试相比,TOC分析有许多优势。BOD5只能测量可生物降解的有机物的需氧量。TOC分析仪可快速氧化所有有机化合物,以测定样品中存在的有机物。与COD测试不同,TOC分析可以识别有机碳和无机碳之间的差异,包括碳酸盐、碳酸氢盐和二氧化碳。如果样品中挥发性有机物含量降低,分析仪可以酸化并置换出无机碳以定量分析不可置换的有机碳(NPOC)。[43]分析仪还可以独立评估总碳(TC)和总无机碳(TIC)以计算总有机碳。TOC分析仪的显着优势是具有更高的灵敏度和多功能性,它可以测定低至0.03 ppb和高达50000 ppm的有机物浓度。与传统的BOD和COD实验室方法相比,TOC可在短短几分钟内产生准确的结果。TOC仪器通常有实验室和在线型号,这使得它们成为合规性和过程控制中必不可少的工具。[43]标准方法5310指出,“总有机碳TOC是总有机物含量更方便和直接的表达方式… … TOC的测量对于水处理和废物处理厂的运行至关重要”。[45]全球有机物监测法规的转变每个地区或国家的管理机构都制定了废水排放中有机污染物可接受的排放限值。BOD5自1908年开始推广使用,几乎包含在全球所有法规中。然而,随着监测技术的进步,法规也在不断发展。一些国家允许使用BOD与TOC的相关性[4]甚至声明TOC将用作最佳可用技术。[7]北美的废水法规1999年,加拿大环境保护法(CEPA,Canadian Environmental Protection Act)实施,以管理污染和废物。根据渔业法案,还通过了废水系统排放法规。[13]也称为SOR/2012-139,该文件强调了排放限值并详细说明了监测和报告所需的条件。有机污染物的当前限值在碳质BOD参数中有详细说明。[13, 34]SOR声明:“废水中碳质生化需氧物质的数量,必须根据具有硝化抑制作用的五天生化需氧量测试来确定需求量。”[34]该文件确定了25 mg/L的CBOD限值,并要求运营商必须对废水样品建立一致的CBOD,但取样频率可以根据装置规模而波动。[34]在美国,由于公众对水污染的日益关注,制定了《1972清洁水法案》。该法案授权美国环境保护署(USEPA,US Environmental Protection Agency)确定废水标准并制定污染管理计划。[17, 29]该《清洁水法案》促成了美国污染物排放消除制度(NPDES,National Pollutant Discharge Elimination System)的建立,以规范排放污染物的点源。这些许可证制度建立了有关排放限值、监测和报告的要求。[26, 27]目前,根据《清洁水法案》第304(a)(4)节,BOD5归类为常规污染物。[22]尽管排放要求可能因行业和NPDES许可的不同而不同,但《联邦法规》40 CFR 133.102详细规定了公有处理厂的污水排放限制(表1),指出“根据NPDES许可机构的选择,代替参数BOD5… … CBOD参数可被代替...”[3]表1. 美国公有处理厂的排放限制资料来源:苏伊士水务技术与方案尽管美国NPDES允许将BOD5确定为标准测试,但40 CFR 133.104规定“当证明BOD:COD或BOD:TOC具有长期相关性时,化学需氧量(COD)或总有机碳(TOC)可以取代BOD5”。[4]目前,美国的许多工厂已经设计了长期相关性关系,利用TOC分析来跟踪其废水排放水平。[42]亚洲的废水法规中华人民共和国环境保护部制定中国的环境政策和法规。[25]中国综合废水排放标准(GB 8978-1996)的出台是为了管理水污染水平以保证健康和环境。2002年,环境保护部发布了GB 18918-2002,这是专门为控制污水处理厂排放而制定的。[49]中国的法规允许使用BOD和COD,GB 8978-1996确定了制药和石化等行业的COD限值。该法规还确定了合成脂肪酸行业和脱胶行业的TOC限值。[20, 23]表2列出了各行业污染物的允许废水排放量。表2. 中国工业废水允许排放量资料来源:苏伊士水务技术与方案1974年9月,印度环境、森林和气候变化部成立了中央污染控制委员会(CPCB,Central Pollution Control Board)来管理空气和水中的污染排放。[5]1986年,印度标准局(BIS,Bureau of Indian Standards)成立,以纳入许多可接受的测试方法和标准。在BIS 3025第44部分中,详细介绍了生化需氧量的方法。该标准指出,与在20°C下进行的传统BOD5测试相比,在27°C下进行的3天BOD测试更适合炎热的气候条件。[1]BIS 3025第58部分详细说明了化学需氧量的适当方法。该标准强调了COD测试相对简单和准确,并且比BOD干扰更少。[2]尽管印度严重依赖BOD测量,但CPCB制定了“在线连续污水监测系统指南”(OCEMS),其中对TOC技术进行了讨论。在第4.6节中,该文件指出:“TOC是一种比BOD或COD更方便、更直接的总有机含量表达方式。”与美国指南类似,该文件允许使用TOC估算伴随的BOD或COD一起使用,“如果建立了可重复的经验关系”。[16]欧洲的废水法规1991年,欧盟(EU)制定了城市污水处理指令(UWWTD,Urban Waste Water Treatment Directive)。该文件的制定是为了保护环境,避免城市污水处理厂、食品加工厂和雨水径流造成的严重排放。表3详细列出了该文件中对城市污水处理厂BOD和COD的要求。表3.欧洲城市污水处理厂的排放要求资料来源:苏伊士水务技术与方案该文件规定,对于BOD5,“该参数可以用另一个参数替代:总有机碳(TOC)… … 如果可以在BOD5和替代参数之间建立关系”。[14]2000年,欧盟发布了水框架指令(2000/60/EC),确定了欧盟的水质目标和参数。[30]2010年发布了工业排放指令(2010/75/EU),重点是减少工业对环境的排放。该文件确定了能源、金属生产、化学品和废物管理等行业类别。[15, 18]2016年,根据指令2010/75/EU,公开了文件2016/902,以详细说明工业部门废水的最佳可用方法(BATs,best available methods)和相对排放限值(AELs,relative emission limits)。根据工业排放指令,这些BAT-AEL做法将在四年内纳入。该文件确定应每天监测TOC或COD,以符合EN标准。引用标准EN 1484作为测量TOC的技术。[7]表4突出显示了TOC和COD直接排放到接收水体的通用BAT-AEL。表4.欧洲TOC和COD直接排放的BAT-AEL资料来源:苏伊士水务技术与方案该文件规定,“BAT-AEL不适用生化需氧量(BOD)。作为指示,生物废水处理厂污水年平均BOD5含量通常≤20 mg/L。”它还提到TOC或COD限值都适用,但规定“TOC是首选选项,因为它的监测不依赖于使用剧毒化合物。”[7]开发TOC与BOD5的相关性虽然BOD5测试范围广且不具专属性,但当涉及到取代这样一个成熟的行业标准时,大多数监管机构都会感到担忧。但,包括美国和印度在内的一些国家/地区了解其他测试参数的价值,并允许将BOD应用于与TOC的相关性。正如标准方法5310A所述,“如果在特定源水的BOD、AOC或COD之间建立了可重复的经验关系,则TOC可用于估算伴随的BOD、AOC或COD。必须为每组矩阵条件独立建立这种关系”。[42, 45]制定BOD与TOC的相关性通常需要与当地管理机构合作设计一项长期研究。由于BOD5结果往往是含糊不清的,需要几个数据点来产生适合于制定这种相关性和随后的回归曲线方程的信息。许可或管理机构必须签署相关性。美国的许多工厂已经开发了具体工厂的相关性,现在利用TOC来监测其废水排放。[16, 42]Inland Empire Utilities Agency是一家位于圣贝纳迪诺县(San Bernardino County)的废水处理设施,它使用TOC来监测其水质。颁发给其的NPDES证书和废物排放许可证规定:“排放者已证明废水中的生物需氧量(BOD5)和总有机碳(TOC)浓度之间的相关性,令执行官满意。”[12]这使得Inland Empire Utilities Agency能够根据TOC分析确定BOD5合规性。对于进水监测和三级出水监测,许可证需要每周进行一次BOD和TOC的综合分析结果,说明“BOD5是根据区域水务局批准的BOD/TOC相关性计算的”。[12, 31]加利福尼亚州的圣克鲁斯市(Santa Cruz County)也为其污水处理厂建立了一项长期的TOC相关性研究。NPDES水排放要求文件强调了工厂对传统污染物的排放限制,声明“排放者已证明该设施的TOC和BOD之间具有充分可靠的统计相关性”[32],并批准利用TOC相关性来满足BOD5排放限制。经批准的圣克鲁斯市具体现场的TOC相关性是:TOC=0.4141(BOD)+4.3937。表5显示了基于相关性的批准TOC限值。[32, 36]表5. 圣克鲁斯市平均每周和每月排放量资料来源:苏伊士水务技术与方案圣克鲁斯市发布的题为“更快更智能”的文章称,“这项研究证明了通过公有处理厂为污水开发具体现场TOC值的可行性。”由于TOC可带来更短的停工检修时间,此项开发还通过在工厂过程控制中用TOC分析代替BOD,提高了操作效率。”[36]随着技术进步,世界各地的管理机构将继续在法规中引入更准确和精确的参数。原文英文版于2021年4月发表在www.azosensors.com/article.aspx?ArticleID=2188,作者:Amanda Scott(Sievers分析仪全球产品经理),本文有所修改。◆ ◆ ◆联系我们,了解更多!参考文献:“3025 Part 44 Biochemical Oxygen Demand.” Bureau of Indian Standards, https://archive.org/details/gov.law.is.3025.44.1993/page/n3“3025 Part 58 Chemical Oxygen Demand.” Bureau of Indian Standards, https://archive.org/details/gov.law.is.3025.58.2006/page/n3“40 CFR 133.102 Secondary Treatment.” Electronic Code of Federal Regulations, https://www.law.cornell.edu/cfr/text/40/133.102“40 CFR 133.104.” Electronic Code of Federal Regulations, https://www.ecfr.gov/cgibin/textidx? SID=4f99ad02644fb790819e9af0dabed218&mc=true&node=pt40.24.133&rgn=div5#se40.24.133_1104“About Us.” Central Pollution Control Board, http://cpcb.nic.in/Introduction/“About WHO.” World Health Organization, https://www.who.int/about/whoweare“BAT 2016/902” https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32016D0902&from=EN“Biochemical Oxygen Demand (BOD).” Pennsylvania Department of Environmental Protection, https://www.watereducation.org/sites/main/files/file attachments/pennsylvania_department_of_environmental_protection_biochemical_oxygen_demand.doc“Biochemical Oxygen Demand and Chemical Oxygen Demand.” Caltest Analytical Labs, https://www.caltestlabs.com/Services/BODandCOD.aspx“Biological Oxygen Demand.” Encyclopedia of Public Health, Encyclopedia.com, 2019, www.encyclopedia.com/science/dictionariest hesaurusespicturesandpressreleases/biologicaloxygendemand0.“Bottling company uses Sievers InnovOx Online TOC analyzer to Optimize Membrane Bioreactor Wastewater System” Suez Water Technologies and Solutions https://www.suezwatertechnologies.com/node/1708“California Regional Water Quality Control Board NPDES Permit Order No Ca8000409.” Inland Empire Utility Agency, 20 July 2009, https://www.ieua.org/wpcontent/uploads/2014/09/ConsolidatedNPDESPermitOrderNo.R820090021.pdf“Canadian Environmental Protection Act Registry.” Government of Canada, 24 April 2019, https://www.canada.ca/en/environmentclimate change/services/canadianenvironmentalprotectionactregistry.html“Council Directive concerning urban wastewater treatment (97/271/EC).” Official Journal of the European Communities, https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:31991L0271&from=EN“Directive 2010/75/EU Of European Parliament on Industrial Emissions.” 24 November 2010, https://eurlex.europa.eu/legalcontent/EN/TXT/?uri=celex%3A32010L0075“Guidelines for Online Continuous Effluent Monitoring.” Central Pollution Control Board, July 2018“History of the Clean Water Act.” United States Environmental Protection Agency, 8 August 2017, https://www.epa.gov/lawsregulations/historycleanwateract“Industrial Emissions Directive.” European Commission, 25 March 2019, http://ec.europa.eu/environment/industry/stationary/ied/legislation.htm“Industry Effluent Standards.” Central Pollution Control Board, http://cpcb.nic.in/industryeffluentstandards/“Integrated Wastewater Discharge Standard – GB 89781996.” National Standard of the people’s republic of China, Chinese Standard, https://www.chinesestandard.net/PDF.aspx/GB89781996“Introduction to Activated Sludge.” Wisconsin Department of Natural Resources. December 2010 https://dnr.wi.gov/regulations/opcert/documents/WWSGActSludgeINTRO.pdf“Learn about Effluent Guidelines.” United States Environmental Protection Agency, 21 November 2018, https://www.epa.gov/eg/learnabouteffluentguidelines“Maximum Allowable Discharge Concentrations for Other Pollutants in China.” China Water Risk, http://www.chinawaterrisk.org/wpcontent/uploads/2011/05/MaximumAllowableDischargeConcentrationsForOtherPollutantsinChina.pdf“Method 410.3: Chemical Oxygen Demand (Titrimetric, High Level for Saline Waters) by Titration.” United States Environmental Protection Agency, https://www.epa.gov/sites/production/files/201508/documents/method_4103_1978.pdf“Ministry of Ecology and Environment of the People’s Republic of China.” www.mee.gov.cn“National Pollutant Discharge Elimination System (NPDES) – About NPDES." United States Environmental Protection Agency, 29 November 2016, https://www.epa.gov/npdes/aboutnpdes“National Pollutant Discharge Elimination System (NPDES) – NPDES Permit Basics." United States Environmental Protection Agency, 25 July 2018, https://www.epa.gov/npdes/npdespermitbasics“Progress on Wastewater Treatment.” World Health Organization, 2018, https://www.who.int/water_sanitation_health/publications/progressofwastewatertreatment/en/“Summary of the Clean Water Act 33 U.S.C. §1251 et seq. (1972).” Laws and Regulation, United States Environmental Protection Agency, 11 March 2019, https://www.epa.gov/lawsregulations/summarycleanwateract“The EU Water Framework Directive.” European Commission, 6 August 2018, http://ec.europa.eu/environment/water/waterf ramework/index_en.html31. “Title 22 Engineering Report.” Inland Empire Utilities Agency, January 2010, http://www.ieua.org/wpcontent/uploads/2014/09/RP1Title22EngineeringReportJanuary2010.pdf“Waste Discharge Requirements for the City of Santa Cruz Wastewater Treatment Plant.” California Regional Water Quality, https://www.waterboards.ca.gov/rwqcb3/board_decisions/adopted_orders/2010/2010_0043_Santa_Cruz.pdf“Wastewater Regulations Overview.” Government of Canada, 7 February 2007, https://www.canada.ca/en/environmentclimatechange/services/wastewater/regulations.html“Wastewater Systems Effluent Regulations SOR/2012139”. Justice Laws Website, Government of Canada, https://lawslois.justice.gc.ca/eng/regulations/sor2012139/fulltext.htmlAssman, Celine, et al. “Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization.” Drinking Water Engineering and Science. August 2017 https://www.researchgate.net/publication/318976763_Online_total_organic_carbon_TOC_monitoring_for_water_and_wastewater_treatment_plants_processes_and_operations_optimizationBaba, Akin and Tianfei Xu. “Faster and Smarter A BODtoTOC conversion enables quick response to process control needs.” City of Santa Cruz Water environment laboratory October/November 2010, http://www.cityofsantacruz.com/home/showdocument?id=21451Bengtson, Harlan H. “Biological Wastewater Treatment Processes III: MBR Processes.” CED Engineering https://www.cedengineering.com/userfiles/02%20%20Biological%20WWTP%20III%20%20Membrane%20Bioreactor.pdfBengtson, Harlan H, “Biological Wastewater Treatment Processes III: MBR Processes” CED Engineering.com https://www.cedengineering.com/userfiles/02%20%20Biological%20WWTP%20I%20%20Activated%20Sludge.pdfDelzer, G.C. and S.W. McKenzie. “Five Day Biochemical Oxygen Demand.” United States Geological Survey, November 2003, https://water.usgs.gov/owq/FieldManual/Chapter7/NFMChap7_2_BOD.pdfHazma, Rania Ahmed, et al. « Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling.” Membranes (Basel). June 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931528/Muro, Claudia, et al. “Membrane Separation Process in Wastewater Treatment of Food Industry.” Institute Technology of To luca http://cdn.intechweb.org/pdfs/29163.pdfNutt, Stephen G. and John Tran of XCG Consultants Ltd. “Addressing BOD5 limitations through Total Organic Carbon Correlations: A Five Facility International Investigation.” Pensacola, Florida: water & Wastewater Instrumentation Testing Association of North America (ITA). January 2013.Rice, E.W. et al. “5210 Biochemical Oxygen Demand.” Standard Methods for the Examination of Water and Wastewater. 22nd ed. 2012. Washington, DC: American Water Works Association. Print.Rice, E.W. et al. “5220 – Chemical Oxygen Demand.” Standard Methods for the Examination of Water and Wastewater. 22nd ed. 2012. Washington, DC: American Water Works Association, Print.Rice, E.W. et al. “5310 – Total Organic Carbon” Standard Methods for the Examination of Water and Wastewater. 22nd ed. 2012. Washington, DC: American Water Works Association, Print.Shon, H.K et al. “Membrane technology for organic removal in wastewater.” Faculty of Engineering, University of Technology, Sydney Australia, Dec 2007 https://pdfs.semanticscholar.org/0818/e843ada017587afdc653a438fe45801b6614.pdf (D)Toit, Wynand du. “Use of total organic carbon on a wastewater treatment plant.” Tshwane University of Technology, September 2006 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.608.8456&rep=rep1&type=pdfZainudin, Zaki bin. “The Many Intricacies of Biochemical Oxygen Demand.” Research Gate, January 2008, https://www.researchgate.net/publication/271019944_The_Many_Intricacies_of_Biochemical_Oxygen_DemandZhou, Yuhua, et al. “COD Discharge Limits for Urban Wastewater Treatment Plants in China Based on Statistical Methods” Agricultural Green Infrastructure for Nutrient Reduction in Watersheds – Volume 10,
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制